JPWO2009031528A1 - Signal detection device - Google Patents

Signal detection device Download PDF

Info

Publication number
JPWO2009031528A1
JPWO2009031528A1 JP2009531230A JP2009531230A JPWO2009031528A1 JP WO2009031528 A1 JPWO2009031528 A1 JP WO2009031528A1 JP 2009531230 A JP2009531230 A JP 2009531230A JP 2009531230 A JP2009531230 A JP 2009531230A JP WO2009031528 A1 JPWO2009031528 A1 JP WO2009031528A1
Authority
JP
Japan
Prior art keywords
signal
output
converter
amplifier
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009531230A
Other languages
Japanese (ja)
Other versions
JP4756614B2 (en
Inventor
浩 畑中
浩 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2009531230A priority Critical patent/JP4756614B2/en
Publication of JPWO2009031528A1 publication Critical patent/JPWO2009031528A1/en
Application granted granted Critical
Publication of JP4756614B2 publication Critical patent/JP4756614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1014Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/1019Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error by storing a corrected or correction value in a digital look-up table
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/941Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated using an optical detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/941Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector
    • H03K2217/94102Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector characterised by the type of activation
    • H03K2217/94108Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector characterised by the type of activation making use of reflection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/129Means for adapting the input signal to the range the converter can handle, e.g. limiting, pre-scaling ; Out-of-range indication

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Analogue/Digital Conversion (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

例えば反射形光電センサにおけるセンサ信号を増幅器を介して増幅し、この増幅器の出力信号をA/D変換器を用いてデジタル変換した出力から前記センサ信号のレベルを検出する信号検出装置であって、前記増幅器の出力に所定のオフセットを与えると共に、無信号時における前記A/D変換器の出力の平均値を予めメモリに記憶し、通常動作時における前記A/D変換器の出力と前記平均値との差を前記センサ信号のレベルとして検出することを特徴とする。For example, a signal detection device for amplifying a sensor signal in a reflective photoelectric sensor through an amplifier and detecting the level of the sensor signal from an output obtained by digitally converting the output signal of the amplifier using an A / D converter, A predetermined offset is given to the output of the amplifier, and the average value of the output of the A / D converter when there is no signal is stored in a memory in advance, and the output of the A / D converter and the average value during normal operation Is detected as the level of the sensor signal.

Description

本発明は、センサから出力される信号を検出する信号検出装置に関する。   The present invention relates to a signal detection device that detects a signal output from a sensor.

光電センサとして代表的な、例えば反射形の近接スイッチは、所定の監視領域に照射した光の物体による反射光を検出することで上記監視領域における物体の存在を検出するように構成される。具体的には、例えば日本国;特開2007−184689号公報や特開2006−80896号公報に詳しく紹介されるように、監視領域に向けて発光素子(例えば発光ダイオード;LED)から光を照射し、上記監視領域からの反射光を受光素子(例えばフォトダイオード;PD)にて受光する。そして上記受光素子からの出力電流をI/V変換した後、増幅器を用いて所定の電圧レベルに増幅し、これをA/D変換器を介して演算器(例えばCPU)に取り込んで前記受光素子での受光量を検出し、前記監視領域における物体の存在を検出するように構成される。   For example, a reflective proximity switch, which is a typical photoelectric sensor, is configured to detect the presence of an object in the monitoring region by detecting light reflected by the object irradiated to a predetermined monitoring region. Specifically, for example, as described in detail in Japan; Japanese Patent Application Laid-Open No. 2007-184589 and Japanese Patent Application Laid-Open No. 2006-80896, light is emitted from a light-emitting element (for example, a light-emitting diode; LED) toward a monitoring region. Then, the reflected light from the monitoring area is received by a light receiving element (for example, a photodiode; PD). The output current from the light receiving element is I / V converted, amplified to a predetermined voltage level using an amplifier, and this is taken into an arithmetic unit (for example, CPU) via an A / D converter, and the light receiving element The amount of received light is detected and the presence of an object in the monitoring area is detected.

尚、上記増幅器は、例えばI/V変換されたセンサ信号をコンデンサを介して入力する反転入力端子(−端子)および基準電圧Vrefが加えられる非反転入力端子(+端子)を備え、出力端子と前記反転入力端子との間に帰還回路を設けた演算増幅器からなる。そして前記反転入力端子に加えられた前記センサ信号のレベル(電圧)Vinが前記基準電圧Vrefと等しくなるように負帰還を掛けることで前記センサ信号を増幅するように構成される。   The amplifier includes, for example, an inverting input terminal (− terminal) for inputting an I / V converted sensor signal via a capacitor, and a non-inverting input terminal (+ terminal) to which a reference voltage Vref is applied, and an output terminal. It comprises an operational amplifier provided with a feedback circuit between the inverting input terminal. The sensor signal is amplified by applying negative feedback so that the level (voltage) Vin of the sensor signal applied to the inverting input terminal becomes equal to the reference voltage Vref.

ところでこの種の近接スイッチにおいては、近距離から遠距離に至る幅広い距離範囲において物体の存在を検出し得ることが望ましい。ちなみに近距離からの反射光の受光レベル(センサ信号)は或る程度高いが、遠距離からの反射光は光伝播に伴う減衰を受けるので、近距離からの反射光に比較してその受光レベルが低くなることが否めない。そこで従来では、専ら、反射光を受光することのない無信号時(遮光時)におけるA/D変換出力(デジタル値)が零[0]となるように前記増幅器の動作条件を設定し、反射光の受光レベルに応じたA/D変換出力(デジタル値)を得るようにしている。具体的には前記増幅器(演算増幅器の非反転端子)に与える基準電圧Vrefとして、A/D変換器のダイナミックレンジ(フルスケール)を規定する該A/D変換器の駆動電圧Vdrivを与えるようにしている。   By the way, in this kind of proximity switch, it is desirable to be able to detect the presence of an object in a wide distance range from a short distance to a long distance. By the way, the light reception level (sensor signal) of reflected light from a short distance is somewhat high, but the reflected light from a long distance is attenuated by light propagation, so its light reception level compared to the reflected light from a short distance. I cannot deny that it becomes low. Therefore, conventionally, the operating condition of the amplifier is set so that the A / D conversion output (digital value) is zero [0] when there is no signal (when light is shielded) without receiving reflected light. An A / D conversion output (digital value) corresponding to the light reception level is obtained. Specifically, the drive voltage Vdriv of the A / D converter that defines the dynamic range (full scale) of the A / D converter is given as the reference voltage Vref given to the amplifier (the non-inverting terminal of the operational amplifier). ing.

ところで前記受光素子が遮光されたとき、一般的には前記受光素子から出力される電流が[0]であると言える。しかし実際にはその受光系を構築する回路には、受光素子のバイアス抵抗やI/V変換器における電圧変換用抵抗に起因する熱雑音が存在する。この熱雑音の出現頻度は一般的には正規分布しており、平均的には正負の分布が相殺して零[0]であると看做し得る。この為、前記増幅器の増幅出力にも上記熱雑音に起因する微弱な雑音成分が重畳する。従って前記受光素子が遮光されて無信号状態となったとしても上記雑音成分がそのままA/D変換器に加えられる。   By the way, when the light receiving element is shielded from light, it can be generally said that the current output from the light receiving element is [0]. However, in reality, a circuit constituting the light receiving system includes thermal noise caused by a bias resistance of the light receiving element and a voltage converting resistance in the I / V converter. The appearance frequency of this thermal noise is generally a normal distribution, and on average, it can be considered that the positive and negative distributions cancel each other and are zero [0]. For this reason, a weak noise component due to the thermal noise is also superimposed on the amplified output of the amplifier. Therefore, even if the light receiving element is shielded from light and becomes no signal, the noise component is directly added to the A / D converter.

しかしA/D変換器は、通常[0]レベルを基準として一極性(例えば正極性)を持つ入力信号に対してだけA/D変換動作するように構成される。この為、A/D変換器に入力された熱雑音のうち一極性(正極性)の雑音成分だけがデジタル変換される。そして図4に斜線を付して示すように、逆極性(負極性)の雑音成分は無視される。この結果、A/D変換器の出力、特に無信号時のデジタル変換値には図4の右半分に示す雑音の分布特性に依存するレベルシフトが生じる。換言すれば無信号時であっても、A/D変換器の出力は[0]レベルから偏倚した微小な値を持つことになる。この為、反射光の受光レベルが低いときと、遮光によって形成される無信号状態との区別(弁別)が付き難くなる。具体的には、反射形光電センサにおける遠距離検出特性が悪くなる。   However, the A / D converter is configured to perform an A / D conversion operation only on an input signal having a single polarity (for example, positive polarity) based on a normal [0] level. For this reason, only a unipolar (positive polarity) noise component of the thermal noise input to the A / D converter is digitally converted. Then, as shown by hatching in FIG. 4, the noise component of reverse polarity (negative polarity) is ignored. As a result, a level shift depending on the noise distribution characteristic shown in the right half of FIG. 4 occurs in the output of the A / D converter, particularly in the digital conversion value when there is no signal. In other words, even when there is no signal, the output of the A / D converter has a minute value deviated from the [0] level. For this reason, it becomes difficult to distinguish (discriminate) between when the light receiving level of the reflected light is low and the no-signal state formed by the light shielding. Specifically, the long-distance detection characteristics of the reflective photoelectric sensor are deteriorated.

本発明の目的は、熱雑音の影響を減じることができ、例えば反射形光電センサを用いた近接スイッチにおける物体検出距離を十分に長く設定することのできる簡易な構成の信号検出装置を提供することにある。   An object of the present invention is to provide a signal detection device having a simple configuration capable of reducing the influence of thermal noise and capable of setting a sufficiently long object detection distance in a proximity switch using a reflective photoelectric sensor, for example. It is in.

本発明は、例えば反射形光電センサを用いた近接スイッチに適用するに好適なものであって、増幅器を介してセンサ信号を増幅し、A/D変換器を用いて前記増幅器の出力信号をデジタル変換した出力から前記センサ信号のレベルを検出する信号検出装置に係る。
特に本発明に係る信号検出装置は、無信号時における前記A/D変換器の出力に着目してなされており、前記増幅器の出力に所定のオフセットを与えると共に、無信号時における前記A/D変換器の出力の平均値を予めメモリに記憶し、通常動作時における前記A/D変換器の出力と前記平均値との差を前記センサ信号のレベルとして検出することを特徴としている。
The present invention is suitable for application to, for example, a proximity switch using a reflective photoelectric sensor, and amplifies a sensor signal through an amplifier, and digitally converts an output signal of the amplifier using an A / D converter. The present invention relates to a signal detection device that detects the level of the sensor signal from the converted output.
In particular, the signal detection device according to the present invention is made paying attention to the output of the A / D converter when there is no signal, and gives a predetermined offset to the output of the amplifier, and also the A / D when there is no signal. The average value of the output of the converter is stored in a memory in advance, and the difference between the output of the A / D converter and the average value during normal operation is detected as the level of the sensor signal.

ちなみに前記センサ信号は、例えば受光素子の出力電流をI/V変換した電圧信号であって、前記無信号時は上記受光素子を遮光して設定されるものである。
また前記増幅器は、例えばセンサ信号を入力する反転入力端子および基準電圧が加えられる非反転入力端子を備え、その出力端子と前記反転入力端子との間に帰還回路を設けた演算増幅器からなり、前記反転入力端子の電圧が前記基準電圧と等しくなるように負帰還を掛けて前記センサ信号を増幅するように構成される。そしてこの増幅器の前記非反転入力端子に与える前記基準電圧を、前記A/D変換器の電源電圧に所定のオフセット電圧を与えた電圧として設定することで、その出力に雑音のレベルに相当するオフセットを与えたものである。尚、所定のオフセット電圧を加えた後の前記基準電圧が[0]以下とならないようにすることが望ましい。
Incidentally, the sensor signal is, for example, a voltage signal obtained by I / V converting the output current of the light receiving element, and is set by shielding the light receiving element when there is no signal.
The amplifier includes, for example, an inverting input terminal for inputting a sensor signal and a non-inverting input terminal to which a reference voltage is applied, and includes an operational amplifier provided with a feedback circuit between the output terminal and the inverting input terminal, The sensor signal is amplified by applying negative feedback so that the voltage of the inverting input terminal becomes equal to the reference voltage. Then, by setting the reference voltage applied to the non-inverting input terminal of the amplifier as a voltage obtained by applying a predetermined offset voltage to the power supply voltage of the A / D converter, an offset corresponding to a noise level is output to the output. Is given. Note that it is desirable that the reference voltage after applying a predetermined offset voltage does not fall below [0].

上記構成の信号検出装置によれば、増幅器の出力に所定のオフセットを与えると共に、無信号時におけるA/D変換器の出力の平均値を予めメモリに記憶しておき、通常動作時には前記A/D変換器の出力と前記メモリに記憶した平均値との差をセンサ信号の検出値として取り扱うので、上記オフセットに拘わることなく入力信号のレベルを精度良く検出することが可能となる。特に雑音の影響を受けることなく入力信号のレベルを精度良く検出することが可能となる。   According to the signal detection device having the above-described configuration, a predetermined offset is given to the output of the amplifier, and the average value of the output of the A / D converter at the time of no signal is stored in advance in the memory. Since the difference between the output of the D converter and the average value stored in the memory is handled as the detection value of the sensor signal, the level of the input signal can be accurately detected regardless of the offset. In particular, it is possible to accurately detect the level of the input signal without being affected by noise.

本発明の一実施形態に係る信号検出装置を採用した光電センサの概略的な構成を示す図。The figure which shows schematic structure of the photoelectric sensor which employ | adopted the signal detection apparatus which concerns on one Embodiment of this invention. 増幅器からA/D変換器に与えられるセンサ信号と、このセンサ信号にオフセットを与えた場合とを対比して示す図。The figure which contrasts and shows the case where the sensor signal given to an A / D converter from an amplifier and this sensor signal are given an offset. センサ信号にオフセットを与えたときの無信号時におけるA/D変換器の出力分布特性を示す図。The figure which shows the output distribution characteristic of the A / D converter at the time of no signal when giving an offset to a sensor signal. センサ信号に重畳した熱雑音に起因する無信号時におけるA/D変換器の出力分布特性を示す図。The figure which shows the output distribution characteristic of the A / D converter at the time of no signal resulting from the thermal noise superimposed on the sensor signal.

符号の説明Explanation of symbols

1 受光素子
10 I/V変換器
20 増幅器
30 A/D変換器
40 演算器(CPU)
50 メモリ
DESCRIPTION OF SYMBOLS 1 Light receiving element 10 I / V converter 20 Amplifier 30 A / D converter 40 Calculator (CPU)
50 memory

以下、図面を参照して本発明の一実施形態に係る信号検出装置について、反射形光電センサの受光素子にて検出された反射光のレベルを検出する装置を例に説明する。
図1は本発明に係る信号検出装置を組み込んで構成された光電スイッチの要部概略構成図である。この光電スイッチは、例えば図示しない投光素子から所定の監視領域に周期Tのパルス光を照射し、上記監視領域に存在する物体による反射光を受光素子(フォトダイオード)1にて受光する。そして受光素子1による受光量(反射光の受光レベル)から前記監視領域における物体の存在を検出するように構成される。尚、透過形の光電スイッチの場合は、監視領域を挟んで投光素子と受光素子とを対向させて配置し、上記監視領域に進入する物体によって前記投光素子からの光が遮られることから前記受光素子での受光量の変化から上記物体を検出するように構成される。
Hereinafter, a signal detection apparatus according to an embodiment of the present invention will be described with reference to the drawings, taking as an example an apparatus for detecting the level of reflected light detected by a light receiving element of a reflective photoelectric sensor.
FIG. 1 is a schematic configuration diagram of a main part of a photoelectric switch constructed by incorporating a signal detection device according to the present invention. For example, the photoelectric switch irradiates a predetermined monitoring area with pulse light having a period T from a light projecting element (not shown), and receives light reflected by an object existing in the monitoring area by a light receiving element (photodiode) 1. And it is comprised so that presence of the object in the said monitoring area | region may be detected from the light reception amount (light reception level of reflected light) by the light receiving element 1. FIG. In the case of a transmissive photoelectric switch, a light projecting element and a light receiving element are arranged to face each other with a monitoring area interposed therebetween, and light from the light projecting element is blocked by an object entering the monitoring area. The object is detected from a change in the amount of light received by the light receiving element.

具体的には上記光電スイッチの受光系は、受光量に応じて前記受光素子1から出力される電流をI/V変換して出力するI/V変換器10と、このI/V変換器10から出力された電圧信号(センサ信号)を所定の信号レベルに増幅する増幅器20とを備える。そしてこの増幅器20を介して増幅されたセンサ信号をA/D変換器30を介してデジタル変換した後に演算器(例えばCPU)40に取り込んで、その信号レベルを、ひいては前記受光素子1による受光量を検出する。そして反射形の場合には前記受光量が所定の閾値を上回るときに、また透過形の場合には前記受光量が所定の閾値に満たないときに前記監視領域に物体が存在するとして検出するように構成される。   Specifically, the light receiving system of the photoelectric switch includes an I / V converter 10 that performs I / V conversion on the current output from the light receiving element 1 according to the amount of received light, and the I / V converter 10. And an amplifier 20 that amplifies the voltage signal (sensor signal) output from the signal to a predetermined signal level. Then, the sensor signal amplified through the amplifier 20 is digitally converted through the A / D converter 30 and then taken into the arithmetic unit (for example, CPU) 40, and the signal level is detected. Is detected. In the case of the reflective type, when the received light amount exceeds a predetermined threshold value, and in the case of the transmissive type, it is detected that the object is present in the monitoring area when the received light amount is less than the predetermined threshold value. Configured.

ちなみに前記I/V変換器10は出力端子と反転入力端子(−)との間に帰還回路11を設けた演算増幅器12を主体として構成される。受光素子1は、抵抗器を介して電源VDDに接続されている。抵抗器と受光素子1の接続点の電圧は、受光により前記受光素子1の出力電流が大きくなると低下する。I/V変換器10は、上記接続点の電圧(受光素子1の出力電流)をコンデンサ13を介して前記演算増幅器12の反転入力端子(−)に入力すると共に、該演算増幅器12の動作点を規定する基準電圧VR1を前記演算増幅器12の非反転入力端子(+)に入力することで、前記演算増幅器12の出力端子に前記受光素子1の出力電流Iを電圧変換したセンサ信号Vを得る。このセンサ信号Vは、受光素子1の受光量が増大するにつれて増大する。   Incidentally, the I / V converter 10 is mainly composed of an operational amplifier 12 in which a feedback circuit 11 is provided between an output terminal and an inverting input terminal (−). The light receiving element 1 is connected to the power supply VDD through a resistor. The voltage at the connection point between the resistor and the light receiving element 1 decreases when the output current of the light receiving element 1 increases due to light reception. The I / V converter 10 inputs the voltage at the connection point (the output current of the light receiving element 1) to the inverting input terminal (−) of the operational amplifier 12 via the capacitor 13, and the operating point of the operational amplifier 12. Is input to the non-inverting input terminal (+) of the operational amplifier 12 to obtain a sensor signal V obtained by converting the output current I of the light receiving element 1 into a voltage at the output terminal of the operational amplifier 12. . This sensor signal V increases as the amount of light received by the light receiving element 1 increases.

また増幅器20は、基本的には前記I/V変換器10から出力されてコンデンサ21および入力抵抗を介して与えられるセンサ信号Vを入力する反転入力端子(−)および基準電圧VR2が加えられる非反転入力端子(+)を備え、その出力端子と前記反転入力端子(−)との間に帰還回路22を設けた演算増幅器23からなる。この演算増幅器23は、前記反転入力端子(−)の電圧Vが前記基準電圧VR2と等しくなるように前記帰還回路22を介して負帰還を掛けて前記センサ信号Vを増幅するように構成される。   The amplifier 20 basically has a non-inverting input terminal (−) for inputting a sensor signal V output from the I / V converter 10 and applied via a capacitor 21 and an input resistor, and a reference voltage VR2. The operational amplifier 23 includes an inverting input terminal (+) and a feedback circuit 22 provided between the output terminal and the inverting input terminal (−). The operational amplifier 23 is configured to amplify the sensor signal V by applying negative feedback via the feedback circuit 22 so that the voltage V of the inverting input terminal (−) becomes equal to the reference voltage VR2. .

尚、図2に破線で示すように前記帰還回路22の回路定数を変えることで前記増幅器20の増幅利得を可変設定可能に構成する場合もある。増幅器20の出力信号電圧は、前記受光素子1の受光量が零[0]のときには前記基準電圧VR2と等しく、受光素子1の受光量が増大するにつれて前記基準電圧VR2から減少して零[0]に近付く。この増幅器20の出力信号は、A/D変換器30にてデジタル値に変換された後、演算器(CPU)40に入力される。この演算器(CPU)40は、後述するように予めメモリ50に記憶されている前記基準電圧VR2と前記A/D変換器30の出力信号との差を前記受光素子1での受光量として求める。   In some cases, the amplification gain of the amplifier 20 can be variably set by changing the circuit constant of the feedback circuit 22 as indicated by a broken line in FIG. The output signal voltage of the amplifier 20 is equal to the reference voltage VR2 when the light receiving amount of the light receiving element 1 is zero [0], and decreases from the reference voltage VR2 as the light receiving amount of the light receiving element 1 increases to zero [0]. ]. The output signal of the amplifier 20 is converted into a digital value by the A / D converter 30 and then input to the arithmetic unit (CPU) 40. This computing unit (CPU) 40 obtains the difference between the reference voltage VR2 stored in advance in the memory 50 and the output signal of the A / D converter 30 as the amount of light received by the light receiving element 1 as will be described later. .

ところで従来においては、前記演算増幅器23の非反転入力端子(+)に加える電圧VR2は、増幅器20の後段に設けられるA/D変換器30でのダイナミックレンジを最大限に確保するべく、該A/D変換器30の駆動電圧Vdrivと等しく設定される。ちなみに前記A/D変換器30のレンジは[0〜Vdriv]である。即ち、受光素子1の受光量が零[0]のとき増幅器20の出力信号電圧が[VR2=Vdriv]となるように設定される。   Incidentally, in the prior art, the voltage VR2 applied to the non-inverting input terminal (+) of the operational amplifier 23 is set to the A / D converter 30 provided at the subsequent stage of the amplifier 20 in order to ensure the maximum dynamic range. It is set equal to the drive voltage Vdriv of the / D converter 30. Incidentally, the range of the A / D converter 30 is [0 to Vdriv]. That is, the output signal voltage of the amplifier 20 is set to [VR2 = Vdriv] when the amount of light received by the light receiving element 1 is zero [0].

しかし本発明に係る信号検出装置においては、前述した受光素子1を遮光して無信号状態としたとき、つまり前記センサ信号のレベルを零[0]にしたときのA/D変換器30の出力が前記受光素子1の熱雑音のレベルに相当するオフセットVoffを持つように、前記演算増幅器23の非反転入力端子(+)に加える電圧VR2を[Vdriv−Voff]として設定される。そして予め無信号状態におけるA/D変換器30の出力の平均値を、メモリ50に記憶する。前記演算器(CPU)40は、上記メモリ50に記憶した上記無信号時の出力平均値を基準値として用いて前記センサ信号のレベルを検出する。換言すれば前記演算器(CPU)40は、通常動作時に求められる前記A/D変換器30の出力から前記メモリ50に記憶した平均値を差し引くことで、その差を前記センサ信号のレベルとして検出する。   However, in the signal detection apparatus according to the present invention, the output of the A / D converter 30 when the light receiving element 1 described above is shielded from light so that there is no signal, that is, when the level of the sensor signal is zero [0]. The voltage VR2 applied to the non-inverting input terminal (+) of the operational amplifier 23 is set as [Vdriv−Voff] so that has an offset Voff corresponding to the thermal noise level of the light receiving element 1. Then, the average value of the output of the A / D converter 30 in the no-signal state is stored in the memory 50 in advance. The arithmetic unit (CPU) 40 detects the level of the sensor signal using the output average value at the time of no signal stored in the memory 50 as a reference value. In other words, the arithmetic unit (CPU) 40 detects the difference as the level of the sensor signal by subtracting the average value stored in the memory 50 from the output of the A / D converter 30 obtained during normal operation. To do.

より具体的に説明すれば、従来のように増幅器20に与える基準電圧VR2(演算増幅器23の非反転入力端子に印加する電圧)を前記A/D変換器30の駆動電圧Vdrivと等しい値に設定した場合、パルス状に入力されるセンサ信号に対して前記増幅器20は、図2に実線で示すように、[Vdriv]レベルを基準としたパルス状の増幅出力AをA/D変換器30に出力する。この結果、前記A/D変換器30は、センサ信号のレベルが[0]であるときの増幅出力Aのレベルをデジタル変換値Vdrivとし、このレベル[Vdriv]を基準として上記増幅出力Aのパルス高WA(パルスの振幅)に相当するデジタル変換値を出力する。   More specifically, the reference voltage VR2 (voltage applied to the non-inverting input terminal of the operational amplifier 23) applied to the amplifier 20 is set to a value equal to the drive voltage Vdriv of the A / D converter 30 as in the prior art. In this case, the amplifier 20 responds to the pulsed sensor signal, and the pulsed amplified output A based on the [Vdriv] level is supplied to the A / D converter 30 as shown by the solid line in FIG. Output. As a result, the A / D converter 30 sets the level of the amplified output A when the level of the sensor signal is [0] as the digital conversion value Vdriv, and the pulse of the amplified output A based on this level [Vdriv]. A digital conversion value corresponding to high WA (pulse amplitude) is output.

一方、前記受光素子1が遮光されたときには、理想的には前記受光素子1から出力される電流が[0]であると共に前記増幅器20からの出力が[0]となる。しかし実際にはその受光系を構築する回路における前記受光素子1のバイアス抵抗やI/V変換器10の電圧変換用抵抗などに熱雑音が生じるので、受光素子1が受光していない状態にあっても前記増幅器20からは熱雑音に起因する微弱な信号が出力される。尚、図3に示すように、この熱雑音は一般的には零[0]を中心としてその発生頻度が正負に正規分布しており、平均的には零[0]とみなし得る。この為、前記増幅器20の増幅出力Aにも上記熱雑音に起因する微弱な雑音成分が重畳し、前記受光素子1を遮光して無信号状態としても上記雑音成分がそのままA/D変換器30に加えられる。即ち、A/D変換器30には受光素子1での受光量が[0]であっても[Vdriv]を中心として正負方向に正規分布した雑音成分が入力される。   On the other hand, when the light receiving element 1 is shielded from light, ideally, the current output from the light receiving element 1 is [0] and the output from the amplifier 20 is [0]. However, in reality, thermal noise is generated in the bias resistance of the light receiving element 1 and the voltage conversion resistance of the I / V converter 10 in the circuit constituting the light receiving system, so that the light receiving element 1 is not receiving light. However, the amplifier 20 outputs a weak signal due to thermal noise. As shown in FIG. 3, this thermal noise generally has a normal distribution of positive and negative frequencies around zero [0], and can be regarded as zero [0] on average. For this reason, a weak noise component due to the thermal noise is also superimposed on the amplified output A of the amplifier 20, and the noise component remains as it is even if the light receiving element 1 is shielded from light and is in a no-signal state. Added to. That is, a noise component normally distributed in the positive and negative directions around [Vdriv] is input to the A / D converter 30 even when the amount of light received by the light receiving element 1 is [0].

しかしA/D変換30はVdrivレベルを基準として一極性(例えば負極性)に対してだけA/D変換動作するように構成されるので、図4に示したように一極性の雑音成分(斜線部分)だけがデジタル変換され、逆極性(正極性)の雑音成分(斜線なしの部分)は無視される。この結果、A/D変換器30の出力、特に無信号時のデジタル変換値には雑音の分布特性に依存するレベルシフトが生じる。換言すれば無信号時であっても、A/D変換器30の出力はVdrivレベルから負側に偏倚した微小な値を持つことになる。この為、反射光の受光信号WAが小さいと、遮光によって形成される無信号状態との区別(弁別)が付き難くなり、反射形光電センサにおける遠距離検出特性が悪くなる。   However, since the A / D conversion 30 is configured to perform A / D conversion only for one polarity (for example, negative polarity) on the basis of the Vdriv level, as shown in FIG. Only the part) is digitally converted, and the noise component with no reverse polarity (positive polarity) (the part without diagonal lines) is ignored. As a result, a level shift depending on the noise distribution characteristic occurs in the output of the A / D converter 30, particularly in the digital conversion value when there is no signal. In other words, even when there is no signal, the output of the A / D converter 30 has a minute value deviated from the Vdriv level to the negative side. For this reason, if the received light signal WA of the reflected light is small, it is difficult to distinguish (discriminate) from the no-signal state formed by the light shielding, and the long-distance detection characteristics of the reflective photoelectric sensor are deteriorated.

この点、本願発明においては前述したように増幅器20に所定のオフセットVoffを与えることで、図2に示すようにVdrivレベルから所定のオフセットを与えた増幅出力Bを得、この増幅出力BをA/D変換器30に入力するようにしている。この結果、A/D変換器30は、図3に示すように上記オフセットレベル[Vdriv−Voff]を中心として変化する熱雑音成分の全てを増幅することになる。そして受光素子1の遮光時における該受光素子1の熱雑音成分によって生じるA/D変換器30の微小な出力変化分は平均的には[0]となるので、無信号時におけるA/D変換出力のレベルは実質的には[Vdriv−Voff]だけとなる。   In this regard, in the present invention, by giving a predetermined offset Voff to the amplifier 20 as described above, an amplified output B having a predetermined offset from the Vdriv level is obtained as shown in FIG. / D converter 30 is input. As a result, the A / D converter 30 amplifies all the thermal noise components that change around the offset level [Vdriv−Voff] as shown in FIG. Since the minute output change of the A / D converter 30 caused by the thermal noise component of the light receiving element 1 when the light receiving element 1 is shielded is [0] on average, the A / D conversion is performed when there is no signal. The output level is substantially only [Vdriv−Voff].

一方、予め受光素子1を遮光状態にして、この遮光状態(無信号時)におけるA/D変換器30の出力を複数回採取する。そしてこの出力の平均値を前記受光素子1の熱雑音の大きさの平均値Voffとしてメモリ50に記憶しておく。その後の通常動作時には、前記演算器40において前記A/D変換器30の出力Bから上記メモリ50に記憶した平均値Voffを差し引き、その差を前記センサ信号のレベルWBとして算出する。このようにしてセンサ信号のレベルを検出する本装置によれば、熱雑音の影響を受けることなしに前記センサ信号のレベル(受光量)を高精度に求めることが可能となる。従って反射形光電センサにおける遠距離検出特性が劣化する等の問題を招来することがなくなる。   On the other hand, the light receiving element 1 is set in a light shielding state in advance, and the output of the A / D converter 30 in this light shielding state (no signal) is sampled a plurality of times. The average value of the output is stored in the memory 50 as the average value Voff of the magnitude of thermal noise of the light receiving element 1. In the subsequent normal operation, the arithmetic unit 40 subtracts the average value Voff stored in the memory 50 from the output B of the A / D converter 30, and calculates the difference as the level WB of the sensor signal. According to the present apparatus that detects the level of the sensor signal in this way, it is possible to obtain the level of the sensor signal (the amount of received light) with high accuracy without being affected by thermal noise. Therefore, problems such as deterioration of the long-distance detection characteristics of the reflective photoelectric sensor are not caused.

特に上述した如くして求められるセンサ信号のレベル(受光量)は、上記オフセットVoffが与えられた前記増幅器20の駆動電圧Vdrivのレベル、即ち無信号時のレベルである[Vdriv−Voff]レベルと、同様に上記オフセットVoffが与えられたセンサ信号Bのパルス高との差であるので、前述したオフセットVoffがセンサ信号のレベル検出に支障を招くことがない。従って本信号検出装置を反射形光電センサ(近接センサ)に適用した場合、近距離から遠距離に至る幅広い距離範囲において、監視対象領域における物体検出を精度良く行うことが可能となる。   In particular, the level (light receiving amount) of the sensor signal obtained as described above is the level of the driving voltage Vdriv of the amplifier 20 to which the offset Voff is given, that is, the [Vdriv−Voff] level which is a level when there is no signal. Similarly, since the offset Voff is a difference from the pulse height of the sensor signal B to which the offset Voff is applied, the above-described offset Voff does not cause trouble in detecting the level of the sensor signal. Therefore, when this signal detection device is applied to a reflective photoelectric sensor (proximity sensor), it is possible to accurately detect an object in a monitoring target region in a wide distance range from a short distance to a long distance.

即ち、本発明によれば、例えば反射形光電センサの出力を判定する場合であっても、入力信号レベルの小さい遠距離からの反射光を確実に検出することが可能となり、その検出ダイナミックレンジを十分に広く設定することができる。具体的には増幅器の出力に所定のオフセットを与え、その零レベル自体をシフトするので、負の値を取ることのないA/D変換器の出力として、一般的には正規分布する熱雑音を含む信号の全てをA/D変換することができる。この結果、無信号入力時(遮光時)には受光系で生じた熱雑音の全てをA/D変換することができるので、前述した熱雑音を含む信号の平均値を求めることで無信号時の受光系の出力レベルを正確に求めることができる。   That is, according to the present invention, for example, even when determining the output of a reflective photoelectric sensor, reflected light from a long distance with a small input signal level can be reliably detected, and the detection dynamic range can be increased. It can be set wide enough. Specifically, a predetermined offset is given to the output of the amplifier, and the zero level itself is shifted. Therefore, as the output of the A / D converter that does not take a negative value, generally, thermal noise that is normally distributed is used. All of the included signals can be A / D converted. As a result, when no signal is input (when light is blocked), all of the thermal noise generated in the light receiving system can be A / D converted. Therefore, by calculating the average value of the signals including the thermal noise described above, The output level of the light receiving system can be obtained accurately.

そしてこの熱雑音を含む遮光時の出力信号の平均値を基準値としてメモリ50に記憶しておき、通常動作時にはA/D変換器30の出力から上記基準値を差し引いた値を受光素子1での受光量として求めるので、一般的には正規分布する熱雑音を上記A/D変換器の出力を平均化処理することで打ち消すことができる。従って熱雑音の影響を受けることなしに受光量(受光レベル)を正確に検出することが可能となる。換言すればA/D変換器の出力が負の値を取ることがないことに起因して、その出力が熱雑音の影響を受けてシフトすると言う不具合を解消して受光素子での受光量を正確に検出することができる。この結果、例えば反射形光電センサにおける遠距離検出特性を犠牲にすることなく、広範囲に亘って物体検出することが可能となる等の効果が奏せられる。   The average value of the output signal at the time of light shielding including the thermal noise is stored in the memory 50 as a reference value, and the value obtained by subtracting the reference value from the output of the A / D converter 30 in the normal operation is received by the light receiving element 1. In general, it is possible to cancel out the normally distributed thermal noise by averaging the output of the A / D converter. Therefore, it is possible to accurately detect the amount of received light (light reception level) without being affected by thermal noise. In other words, due to the fact that the output of the A / D converter does not take a negative value, the problem that the output shifts due to the influence of thermal noise is solved, and the amount of light received by the light receiving element is reduced. It can be detected accurately. As a result, for example, an object can be detected over a wide range without sacrificing the long-distance detection characteristic of the reflective photoelectric sensor.

尚、本発明は上述した実施形態に限定されるものではない。例えば無信号時におけるA/D変換器30の出力の平均値の検出については光電センサの出荷時における校正時に行い、その検出値をプリセットすれば良い。しかし光電センサの使用環境において遮光状態を形成し、該光電センサに組み込んだプリセットスイッチを操作することで検出するようにしても良い。この際、遮光状態での前記A/D変換器30の出力の平均値に応じて前述したオフセットを適宜調整可能としておくことも可能である。   In addition, this invention is not limited to embodiment mentioned above. For example, the detection of the average value of the output of the A / D converter 30 when there is no signal may be performed at the time of calibration at the time of shipment of the photoelectric sensor, and the detection value may be preset. However, it may be detected by forming a light shielding state in the usage environment of the photoelectric sensor and operating a preset switch incorporated in the photoelectric sensor. At this time, the above-described offset can be appropriately adjusted according to the average value of the output of the A / D converter 30 in a light-shielded state.

またここでは反射形近接スイッチを例に説明したが、透過形の光電センサにおける受光素子の出力を検出する場合でも同様に適用することができる。更には受光素子1の出力を検出する場合を例に説明したが、その他のセンシング素子の出力レベルを検出する場合にも同様に適用可能である。また実施形態では反転型増幅器を用いることでVdrivレベルからマイナス(−)方向に振れる信号をA/D変換する例について示したが、非反転型増幅器を用い、Vdrivレベルからプラス(+)方向に振れる信号をA/D変換して演算器(CPU)40に取り込む場合にも同様にして実施可能なことは言うまでもない。また前記メモリ50については、演算器(CPU)40が内蔵したメモリ機能であっても良い。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   Although the reflective proximity switch has been described here as an example, the present invention can be similarly applied to the case where the output of the light receiving element in the transmissive photoelectric sensor is detected. Furthermore, although the case where the output of the light receiving element 1 is detected has been described as an example, the present invention can be similarly applied to the case where the output level of other sensing elements is detected. In the embodiment, an example in which an A / D conversion is performed on a signal that swings in the minus (−) direction from the Vdriv level by using an inverting amplifier. However, a non-inverting amplifier is used in the plus (+) direction from the Vdriv level. Needless to say, the present invention can also be implemented in the same manner when a signal that fluctuates is A / D converted and taken into the arithmetic unit (CPU) 40. The memory 50 may have a memory function built in the arithmetic unit (CPU) 40. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

Claims (5)

物理量を電気信号に変換するセンサと、このセンサから出力された電気信号を増幅する増幅器と、この増幅器から出力された電気信号をデジタル信号に変換するA/D変換器と、このA/D変換器から出力されたデジタル信号から物理量を算出する演算器とを備える信号検出装置において、
前記増幅器の出力に所定のオフセットを与えるオフセット手段と、予め無信号時における前記A/D変換器の出力の平均値を記憶するメモリとを有し、前記演算器は、通常動作時における前記A/D変換器の出力と前記メモリに記憶した前記平均値との差を物理量として算出することを特徴とする信号検出装置。
A sensor that converts a physical quantity into an electric signal, an amplifier that amplifies the electric signal output from the sensor, an A / D converter that converts the electric signal output from the amplifier into a digital signal, and the A / D conversion In a signal detection device comprising an arithmetic unit that calculates a physical quantity from a digital signal output from a device,
An offset unit that gives a predetermined offset to the output of the amplifier; and a memory that stores in advance an average value of the output of the A / D converter when there is no signal, and the arithmetic unit includes the A during normal operation. A signal detection apparatus that calculates a difference between an output of a / D converter and the average value stored in the memory as a physical quantity.
前記センサ信号は、受光素子の出力電流をI/V変換した電圧信号であって、前記無信号時は上記受光素子を遮光して設定されるものである請求項1に記載の信号検出装置。 The signal detection device according to claim 1, wherein the sensor signal is a voltage signal obtained by performing I / V conversion on an output current of the light receiving element, and is set by shielding the light receiving element when there is no signal. 前記増幅器は、センサ信号を入力する反転入力端子および基準電圧が加えられる非反転入力端子を備え、その出力端子と前記反転入力端子との間に帰還回路を設けた演算増幅器からなり、前記反転入力端子の電圧が前記基準電圧と等しくなるように負帰還を掛けて前記センサ信号を増幅するものであって、
前記オフセット手段は、前記非反転入力端子に与える前記基準電圧を、前記A/D変換器の電源電圧に所定のオフセット電圧を与えた電圧として設定することで、前記増幅器の出力にオフセットを与えるものである請求項1に記載の信号検出装置。
The amplifier includes an inverting input terminal for inputting a sensor signal and a non-inverting input terminal to which a reference voltage is applied, and includes an operational amplifier provided with a feedback circuit between the output terminal and the inverting input terminal. Amplifying the sensor signal by applying a negative feedback so that the terminal voltage is equal to the reference voltage,
The offset means gives an offset to the output of the amplifier by setting the reference voltage given to the non-inverting input terminal as a voltage obtained by giving a predetermined offset voltage to the power supply voltage of the A / D converter. The signal detection device according to claim 1.
前記オフセットは、無信号時における前記A/D変換器の出力の平均値として設定されるものである請求項1に記載の信号検出装置。 The signal detection apparatus according to claim 1, wherein the offset is set as an average value of the output of the A / D converter when there is no signal. 前記無信号時における前記A/D変換器の出力の平均値の検出は、その校正時に実施されるものである請求項1に記載の信号検出装置。 The signal detection apparatus according to claim 1, wherein detection of an average value of the output of the A / D converter at the time of no signal is performed at the time of calibration.
JP2009531230A 2007-09-05 2008-09-02 Signal detection device Active JP4756614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009531230A JP4756614B2 (en) 2007-09-05 2008-09-02 Signal detection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007230136 2007-09-05
JP2007230136 2007-09-05
JP2009531230A JP4756614B2 (en) 2007-09-05 2008-09-02 Signal detection device
PCT/JP2008/065750 WO2009031528A1 (en) 2007-09-05 2008-09-02 Signal detection device

Publications (2)

Publication Number Publication Date
JPWO2009031528A1 true JPWO2009031528A1 (en) 2010-12-16
JP4756614B2 JP4756614B2 (en) 2011-08-24

Family

ID=40428844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009531230A Active JP4756614B2 (en) 2007-09-05 2008-09-02 Signal detection device

Country Status (3)

Country Link
JP (1) JP4756614B2 (en)
TW (1) TWI442709B (en)
WO (1) WO2009031528A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8854028B2 (en) * 2011-11-18 2014-10-07 Realtek Semiconductor Corp. Signal level detector and method thereof
JP2015015580A (en) * 2013-07-04 2015-01-22 アズビル株式会社 Projection element drive circuit and photoelectric sensor
CN204013469U (en) 2014-07-21 2014-12-10 深圳市中兴微电子技术有限公司 A kind of control circuit and terminal
CN107241097A (en) * 2016-03-28 2017-10-10 中芯国际集成电路制造(上海)有限公司 A kind of system and method for being used to measure high speed dynamic comparer thermal noise
GB202014042D0 (en) * 2020-09-07 2020-10-21 Ams Int Ag Proximity sensing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2973218B2 (en) * 1990-05-31 1999-11-08 オムロン株式会社 Compensation method for change in received light amount of photoelectric sensor
JP3684970B2 (en) * 1995-07-27 2005-08-17 オムロン株式会社 Passive detection device
JP2006080896A (en) * 2004-09-09 2006-03-23 Keyence Corp Detection switch, photoelectronic switch and detecting method

Also Published As

Publication number Publication date
TWI442709B (en) 2014-06-21
WO2009031528A1 (en) 2009-03-12
JP4756614B2 (en) 2011-08-24
TW200926610A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
TWI734677B (en) Precision estimation for optical proximity detectors
US9237856B2 (en) Light detecting apparatus and fluid measuring apparatus
JP4756614B2 (en) Signal detection device
TW201616152A (en) Open loop correction for optical proximity detectors
TW200714877A (en) Apparatus and method for sensing ambient light
JP2008275626A (en) Optical rangefinder
US9117359B2 (en) Photoelectric smoke detector and process for testing the photoelectric smoke detector
JPWO2017175458A1 (en) Ranging device and ranging method
CN109581401B (en) Distance detection sensor and working method thereof
JP2008042493A (en) Optical receiving circuit and its identification level control method
KR19990073005A (en) Infrared-rays detector
JP2010286235A (en) Photoelectric sensor
US7339154B2 (en) Level detector
JPWO2015198470A1 (en) Measuring apparatus and measuring method
JP5253601B2 (en) Smoke sensor
KR101998859B1 (en) Device and method for controlling detection signal of lidar
JP6718284B2 (en) Signal processing circuit, coulomb counter circuit, electronic device
JP2006292488A (en) Apparatus for measuring temperature distribution
KR100816294B1 (en) Trigger circuit of x-ray photographing device having two photo-diodes
KR101579558B1 (en) Apparatus for sensing laser
US20180074197A1 (en) Distance measuring device
KR102544474B1 (en) Dust sensor
JP2018017516A (en) Light detection circuit and bias setting method thereof
KR101687570B1 (en) Offset cancellation apparatus using if amplifier and integrator
WO2003088141A3 (en) Device for event detection and method for measuring the activity of neuronal networks

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110526

R150 Certificate of patent or registration of utility model

Ref document number: 4756614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250