JP2006292488A - Apparatus for measuring temperature distribution - Google Patents

Apparatus for measuring temperature distribution Download PDF

Info

Publication number
JP2006292488A
JP2006292488A JP2005111579A JP2005111579A JP2006292488A JP 2006292488 A JP2006292488 A JP 2006292488A JP 2005111579 A JP2005111579 A JP 2005111579A JP 2005111579 A JP2005111579 A JP 2005111579A JP 2006292488 A JP2006292488 A JP 2006292488A
Authority
JP
Japan
Prior art keywords
unit
temperature distribution
operational amplifier
distribution measuring
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005111579A
Other languages
Japanese (ja)
Inventor
Satoshi Makino
訓 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2005111579A priority Critical patent/JP2006292488A/en
Publication of JP2006292488A publication Critical patent/JP2006292488A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring temperature distribution, capable of efficiently removing noise due to high amplification of an infrared sensor array, having a plurality of elements and performing accurate detection. <P>SOLUTION: The temperature distribution measuring apparatus is provided with a plurality of thermopile elements 121 for detecting the distribution of infrared rays; a lens 11 for condensing light from a detection range; and an amplifying part 14 for amplifying detected signals. The amplifying part 14 performs amplification, while removing noise by acquiring filter passage signals, by passing the detection signals through a high-pass filter 142a and subtracting the filter passage signals from the detected signals. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、赤外線を複数素子で検出して、温度を分布で測定する温度分布測定装置に関する。   The present invention relates to a temperature distribution measuring apparatus that detects infrared rays with a plurality of elements and measures temperature in a distribution.

従来の技術においては、受光素子の出力電圧を第1の増幅部で増幅し、基準温度素子の出力電圧を第2の増幅部で増幅し、2つの増幅信号を差動増幅部へ入力して差動増幅している(例えば、特許文献1参照。)。
特開2003−92177号公報
In the conventional technique, the output voltage of the light receiving element is amplified by the first amplification unit, the output voltage of the reference temperature element is amplified by the second amplification unit, and two amplified signals are input to the differential amplification unit. Differential amplification is performed (for example, refer to Patent Document 1).
JP 2003-92177 A

しかしながら、従来では、ゲインが高く、センサ自体のインピーダンスも高いため、ノイズ等も増幅してしまう問題点がある。   However, conventionally, since the gain is high and the impedance of the sensor itself is high, there is a problem that noise and the like are amplified.

本発明は、上記問題点に着目してなされたもので、その目的とするところは、複数の素子を有する赤外線センサアレイの高増幅によるノイズを効率良く除去し、精度よく検出できる温度分布測定装置を提供することにある。   The present invention has been made paying attention to the above-mentioned problems, and its object is to efficiently remove noise due to high amplification of an infrared sensor array having a plurality of elements and to detect temperature distribution accurately. Is to provide.

上述の目的を達成するため、本発明では、赤外線を分布状に検出する複数の素子と、検出範囲から集光するレンズと、検出信号の増幅を行う増幅部と、を備える温度分布測定装置において、前記増幅部は、ハイパスフィルタを通過させた検出信号をフィルタ通過信号とし、検出信号から前記フィルタ通過信号を減算してノイズを除去しつつ増幅する、ことを特徴とする。   In order to achieve the above-described object, in the present invention, in a temperature distribution measuring apparatus including a plurality of elements that detect infrared rays in a distributed manner, a lens that collects light from a detection range, and an amplification unit that amplifies a detection signal. The amplifying unit uses a detection signal that has passed through a high-pass filter as a filter passing signal, and subtracts the filter passing signal from the detection signal to amplify while removing noise.

よって、本発明では複数の素子を有する赤外線センサアレイの高増幅によるノイズを効率良く除去し、精度よく検出できる。   Therefore, in the present invention, noise due to high amplification of an infrared sensor array having a plurality of elements can be efficiently removed and detected with high accuracy.

以下に、本発明の温度分布測定装置を実現する実施の形態を、実施例に基づいて説明する。   Embodiments for realizing the temperature distribution measuring apparatus of the present invention will be described below based on examples.

まず構造を説明する。   First, the structure will be described.

図1は実施例1の温度分布測定装置のブロック図である。図2は実施例1の温度測定装置のサーモパイルユニットの回路構成図である。   FIG. 1 is a block diagram of the temperature distribution measuring apparatus according to the first embodiment. FIG. 2 is a circuit configuration diagram of the thermopile unit of the temperature measuring apparatus according to the first embodiment.

実施例1は、自動車の車内の温度分布を測定するのに用いられる例である。
実施例1の温度分布測定装置は、サーモパイルモジュール1とマイコン2を主な構成とする。
サーモパイルモジュール1は、レンズ11、サーモパイルユニット12、スキャン部13、増幅部14、基準温度素子15を主な構成とする。
レンズ11は、サーモパイルユニット12の前方に配置され、検出エリア3から放射される赤外線をサーモパイルユニット12に集光する。
サーモパイルユニット12は、赤外線を検出するサーモパイル素子(素子に相当する)121を、マトリクス状に配置したものである。
スキャン部13は、サーモパイル素子121からの出力信号をアドレス信号によって選択する。
Example 1 is an example used for measuring the temperature distribution in a vehicle.
The temperature distribution measuring apparatus according to the first embodiment mainly includes a thermopile module 1 and a microcomputer 2.
The thermopile module 1 mainly includes a lens 11, a thermopile unit 12, a scanning unit 13, an amplifying unit 14, and a reference temperature element 15.
The lens 11 is disposed in front of the thermopile unit 12 and condenses infrared rays emitted from the detection area 3 on the thermopile unit 12.
The thermopile unit 12 has thermopile elements (corresponding to elements) 121 for detecting infrared rays arranged in a matrix.
The scanning unit 13 selects an output signal from the thermopile element 121 by an address signal.

増幅部14は、図2に示すように、オペアンプOP1、マイナス入力部141、プラス入力部142、調整部143、負帰還部144からなる。
マイナス入力部141は、サーモパイルユニット12からの入力信号を抵抗R1が介し、オペアンプOP1のマイナス端子に入力する。
プラス入力部142は、サーモパイルユニット12からの入力信号をコンデンサC1と抵抗R3からなるハイパスフィルタ142aを介し、オペアンプOP1のプラス端子に入力する。
調整部143は、基準温度素子15から得る基準電圧を、抵抗R4を介し、ハイパスフィルタ142aとオペアンプOP1の間に接続する。
負帰還部144は、オペアンプOP1の出力を抵抗R2を介し、抵抗R1とオペアンプOP1のマイナス端子の間に接続する。
As shown in FIG. 2, the amplifying unit 14 includes an operational amplifier OP1, a minus input unit 141, a plus input unit 142, an adjustment unit 143, and a negative feedback unit 144.
The minus input unit 141 inputs the input signal from the thermopile unit 12 to the minus terminal of the operational amplifier OP1 via the resistor R1.
The plus input unit 142 inputs the input signal from the thermopile unit 12 to the plus terminal of the operational amplifier OP1 through the high pass filter 142a including the capacitor C1 and the resistor R3.
The adjustment unit 143 connects the reference voltage obtained from the reference temperature element 15 between the high-pass filter 142a and the operational amplifier OP1 via the resistor R4.
The negative feedback unit 144 connects the output of the operational amplifier OP1 via the resistor R2 between the resistor R1 and the negative terminal of the operational amplifier OP1.

基準温度素子15は、基準温度を示す出力である基準電圧を出力する。
なお、基準温度素子15は、サーモパイル素子121により、一定温度の物を測定するようにしてもよく、一定の電圧が出力されるようにしてもよい。
マイコン2は、サーモパイルユニット12の制御、出力信号の処理、演算を行い、自動車の機器、通信ラインにデータ出力や制御出力を行う。
マイコン2には、信号出力部21、マルチプレクサ22を備えている。
The reference temperature element 15 outputs a reference voltage that is an output indicating the reference temperature.
The reference temperature element 15 may measure an object at a constant temperature by the thermopile element 121 or may output a constant voltage.
The microcomputer 2 controls the thermopile unit 12, processes output signals, and performs calculations, and outputs data and control outputs to automobile equipment and communication lines.
The microcomputer 2 includes a signal output unit 21 and a multiplexer 22.

信号出力部21は、所定のタイミングでスキャン部13にサーモパイル素子121のマトリクスの配列のアドレス信号を出力する。
マルチプレクサ22は、増幅部14からの出力信号を受け取り、サーモパイル素子121のマトリクス状の選択・切替を行う。
The signal output unit 21 outputs an address signal in a matrix arrangement of the thermopile elements 121 to the scanning unit 13 at a predetermined timing.
The multiplexer 22 receives the output signal from the amplifying unit 14 and performs selection / switching of the thermopile elements 121 in a matrix.

次に作用を説明する。
[ノイズ除去作用]
実施例1の温度分布測定装置は、マイコン2の信号出力部21からのアドレス信号により、スキャン部13で選択されたサーモパイル素子121の出力信号が、図2の増幅部14における入力信号となる(図3(a)参照)。
Next, the operation will be described.
[Noise removal]
In the temperature distribution measuring apparatus according to the first embodiment, the output signal of the thermopile element 121 selected by the scanning unit 13 based on the address signal from the signal output unit 21 of the microcomputer 2 becomes the input signal in the amplifying unit 14 of FIG. (See FIG. 3 (a)).

この入力信号の一方は、抵抗R1を介し、オペアンプOP1のマイナス入力となる。他方は、ハイパスフィルタ142aを介し、基準電圧により、電位が調整され、オペアンプOP1のプラス入力となる(図3(b)参照)。
オペアンプOP1は、負帰還部144を設けて、差動反転増幅を行う。つまり、図3(a)の波形から、図3(b)の高周波ノイズ成分を減算し、増幅を行うことになる。よって、従来のようにノイズ成分が増幅されてしなうことがない。
これにより、温度測定の精度が従来より向上する。
One of the input signals is a negative input of the operational amplifier OP1 through the resistor R1. The other is adjusted in potential by the reference voltage via the high-pass filter 142a and becomes a positive input of the operational amplifier OP1 (see FIG. 3B).
The operational amplifier OP1 is provided with a negative feedback unit 144 to perform differential inversion amplification. That is, the high frequency noise component of FIG. 3B is subtracted from the waveform of FIG. Therefore, the noise component is not amplified unlike the conventional case.
Thereby, the accuracy of temperature measurement improves compared with the past.

さらに、本作用について、言い換えて説明する。
オペアンプの出力電圧をVo、基準電圧をVref、各抵抗R1〜R4の値をR1〜R4とし、コンデンサC1の値をC1、演算子をS、iを変数とし、記号の連続は乗算を意味するとし、オペアンプOP1のマイナス入力には、{R1Vo+R2Vi}/{R1+R2}が入力される。また、オペアンプOP1のプラス入力には、ハイパスフィルタ142aの出力が入力される。これは、{SC1R4Vi+(1+SC1R3)Vref}/{1+SC1(R3+R4)}となる。
よって、オペアンプOP1の出力は、以下のようになる。
Further, this action will be described in other words.
The output voltage of the operational amplifier is Vo, the reference voltage is Vref, the values of the resistors R1 to R4 are R1 to R4, the value of the capacitor C1 is C1, the operator is S, i is a variable, and the symbol sequence means multiplication Then, {R1Vo + R2Vi} / {R1 + R2} is input to the negative input of the operational amplifier OP1. The output of the high-pass filter 142a is input to the positive input of the operational amplifier OP1. This is {SC1R4Vi + (1 + SC1R3) Vref} / {1 + SC1 (R3 + R4)}.
Therefore, the output of the operational amplifier OP1 is as follows.

Figure 2006292488
Figure 2006292488

ここで、R1=R3,R2=R4とすると、式Aについて、0Hzでは、Vo=-R2Vi/R1+(R1+R2)Vref/R1となり、高周波では、Vo=Vrefとなる。
図3について、素子切替時、急激にレベルが変化するため、オペアンプOP1のプラス入力にハイパスフィルタ142aによる微分波形が入力され、出力が大きく変化する。微分成分が無くなると、ノイズ成分が消去される。
Here, assuming that R1 = R3 and R2 = R4, in Equation A, Vo = −R2Vi / R1 + (R1 + R2) Vref / R1 at 0 Hz, and Vo = Vref at high frequencies.
In FIG. 3, since the level changes abruptly when the element is switched, the differential waveform by the high-pass filter 142a is input to the plus input of the operational amplifier OP1, and the output changes greatly. When the differential component disappears, the noise component is eliminated.

次に効果を説明する。
本実施の形態の温度分布測定装置にあっては、次に列挙する効果を得ることができる。
(1)赤外線を分布状に検出する複数のサーモパイル素子121と、検出範囲から集光するレンズ11と、検出信号の増幅を行う増幅部14とを備える温度分布測定装置において、増幅部14は、ハイパスフィルタ142aを通過させた検出信号をフィルタ通過信号とし、検出信号からフィルタ通過信号を減算してノイズを除去しつつ増幅するため、複数の素子を有する赤外線センサアレイの高増幅によるノイズを効率良く除去し、精度よく検出できる。
Next, the effect will be described.
In the temperature distribution measuring apparatus according to the present embodiment, the following effects can be obtained.
(1) In a temperature distribution measuring apparatus including a plurality of thermopile elements 121 that detect infrared rays in a distributed manner, a lens 11 that collects light from a detection range, and an amplification unit 14 that amplifies a detection signal, the amplification unit 14 includes: The detection signal that has passed through the high-pass filter 142a is used as a filter-passing signal, and the filter-passing signal is subtracted from the detection signal to amplify the noise while removing the noise. It can be removed and detected accurately.

(2)増幅部14は、負帰還部144を設けたオペアンプOP1と、検出信号をオペアンプOP1のマイナス入力とするマイナス入力部141と、検出信号をハイパスフィルタ142aに通過させてオペアンプOP1のプラス入力とするプラス入力部142と、オペアンプOP1のプラス入力の電位を所定電位にする調整部143とを備えたため、複数の素子を有する赤外線センサアレイの高増幅によるノイズを効率良く除去し、精度よく検出できる。   (2) The amplifying unit 14 includes an operational amplifier OP1 provided with a negative feedback unit 144, a negative input unit 141 that uses a detection signal as a negative input of the operational amplifier OP1, and a positive input of the operational amplifier OP1 that passes the detection signal through the high-pass filter 142a. And the adjustment unit 143 that sets the potential of the positive input of the operational amplifier OP1 to a predetermined potential, so that noise due to high amplification of the infrared sensor array having a plurality of elements can be efficiently removed and detected accurately. it can.

本実施例1の作用効果について、さらに説明する。
実施例1の温度分布測定装置は、スキャン式であり、素子を切り替えて検出を行う。この場合に、従来のノイズが増幅されてしまう出力、又は入力に、ノイズを除去するためのローパスフィルタを用いると、ノイズを取ろうとするため、時定数が長くなり、信号が鈍ってしまい素子の切り替え速度を遅くしなければならないのである。実施例1の温度分布測定装置では、素子の切り替え速度を遅くすることなく、ノイズ除去を行い増幅できる。
The operational effects of the first embodiment will be further described.
The temperature distribution measuring apparatus according to the first embodiment is a scan type, and performs detection by switching elements. In this case, if a conventional low-pass filter for removing noise is used for the output or input that amplifies the noise, the time constant becomes longer and the signal becomes dull because the noise is taken. The switching speed must be slowed down. In the temperature distribution measuring apparatus according to the first embodiment, noise can be removed and amplified without slowing down the element switching speed.

(その他の実施の形態)
以上、本発明の実施の形態を実施例1に基づいて説明してきたが、本発明の具体的な構成は実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
(Other embodiments)
As described above, the embodiment of the present invention has been described based on the first embodiment. However, the specific configuration of the present invention is not limited to the embodiment, and design changes and the like within the scope of the invention are not limited. Even if it exists, it is included in this invention.

増幅部の回路構成は、別のものであってもよく、実施例1中に数式で示すものをソフト上で行うものであってもよい。   The circuit configuration of the amplifying unit may be different, or what is shown by the mathematical expression in the first embodiment may be performed on software.

実施例1の温度分布測定装置のブロック図である。It is a block diagram of the temperature distribution measuring apparatus of Example 1. 実施例1の温度測定装置のサーモパイルユニットの回路構成図である。FIG. 3 is a circuit configuration diagram of a thermopile unit of the temperature measuring device according to the first embodiment. 実施例1の温度測定装置の波形処理例を示す説明図である。It is explanatory drawing which shows the waveform processing example of the temperature measuring apparatus of Example 1. FIG.

符号の説明Explanation of symbols

1 サーモパイルモジュール
11 レンズ
12 サーモパイルユニット
121 サーモパイル素子
13 スキャン部
14 増幅部
141 マイナス入力部
142a ハイパスフィルタ
142 プラス入力部
143 調整部
144 負帰還部
15 基準温度素子
2 マイコン
21 信号出力部
22 マルチプレクサ
3 検出エリア
DESCRIPTION OF SYMBOLS 1 Thermopile module 11 Lens 12 Thermopile unit 121 Thermopile element 13 Scan part 14 Amplification part 141 Negative input part 142a High pass filter 142 Plus input part 143 Adjustment part 144 Negative feedback part 15 Reference temperature element 2 Microcomputer 21 Signal output part 22 Multiplexer 3 Detection area

Claims (2)

赤外線を分布状に検出する複数の素子と、
検出範囲から集光するレンズと、
検出信号の増幅を行う増幅部と、
を備える温度分布測定装置において、
前記増幅部は、
ハイパスフィルタを通過させた検出信号をフィルタ通過信号とし、
検出信号から前記フィルタ通過信号を減算してノイズを除去しつつ増幅する、
ことを特徴とする温度分布測定装置。
A plurality of elements that detect infrared rays in a distributed manner;
A lens that collects light from the detection range;
An amplifying unit for amplifying the detection signal;
In a temperature distribution measuring device comprising:
The amplification unit is
The detection signal that has passed through the high-pass filter is used as the filter passing signal,
Subtracting the filtered signal from the detection signal and amplifying it while removing noise,
A temperature distribution measuring device characterized by that.
請求項1に記載の温度分布測定装置において、
前記増幅部は、
負帰還部を設けたオペアンプと、
前記検出信号を前記オペアンプのマイナス入力とするマイナス入力部と、
前記検出信号をハイパスフィルタに通過させて前記オペアンプのプラス入力とするプラス入力部と、
前記オペアンプのプラス入力の電位を所定電位にする調整部と、
を備えた、
ことを特徴とする温度分布測定装置。
In the temperature distribution measuring apparatus according to claim 1,
The amplification unit is
An operational amplifier with a negative feedback section;
A negative input section that uses the detection signal as a negative input of the operational amplifier;
A positive input unit that passes the detection signal through a high-pass filter and serves as a positive input of the operational amplifier;
An adjustment unit for setting a positive input potential of the operational amplifier to a predetermined potential;
With
A temperature distribution measuring device characterized by that.
JP2005111579A 2005-04-08 2005-04-08 Apparatus for measuring temperature distribution Pending JP2006292488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005111579A JP2006292488A (en) 2005-04-08 2005-04-08 Apparatus for measuring temperature distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005111579A JP2006292488A (en) 2005-04-08 2005-04-08 Apparatus for measuring temperature distribution

Publications (1)

Publication Number Publication Date
JP2006292488A true JP2006292488A (en) 2006-10-26

Family

ID=37413219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005111579A Pending JP2006292488A (en) 2005-04-08 2005-04-08 Apparatus for measuring temperature distribution

Country Status (1)

Country Link
JP (1) JP2006292488A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067422A3 (en) * 2010-11-17 2012-07-19 (주)이지템 Device and method for measuring temperature using infrared array sensors
EP2484575A1 (en) * 2011-02-04 2012-08-08 Progress Rail Services Corporation A detector for detecting train wheel bearing temperature
CN103507831A (en) * 2012-06-15 2014-01-15 北京工业大学 Digital multipoint infrared detecting device of railway axle temperature monitoring system
KR101377655B1 (en) * 2012-08-24 2014-03-24 한국기초과학지원연구원 Apparatus For Measuring Thermal Distribution of Infrared Image sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067422A3 (en) * 2010-11-17 2012-07-19 (주)이지템 Device and method for measuring temperature using infrared array sensors
WO2012067423A3 (en) * 2010-11-17 2012-07-19 (주)이지템 Portable device for measuring temperature using infrared array sensor
KR101355947B1 (en) 2010-11-17 2014-01-29 (주)이지템 Portable device for measuring temperature using infrared array sensor
KR101355946B1 (en) * 2010-11-17 2014-02-12 (주)이지템 Device and method for measuring temperature using infrared array sensors
US9506809B2 (en) 2010-11-17 2016-11-29 Easytem Co., Ltd. Portable device for measuring temperature using infrared array sensor
EP2484575A1 (en) * 2011-02-04 2012-08-08 Progress Rail Services Corporation A detector for detecting train wheel bearing temperature
US9145152B2 (en) 2011-02-04 2015-09-29 Progress Rail Inspection & Information Systems S.R.L. Detector for detecting train wheel bearing temperature
CN103507831A (en) * 2012-06-15 2014-01-15 北京工业大学 Digital multipoint infrared detecting device of railway axle temperature monitoring system
KR101377655B1 (en) * 2012-08-24 2014-03-24 한국기초과학지원연구원 Apparatus For Measuring Thermal Distribution of Infrared Image sensor

Similar Documents

Publication Publication Date Title
TWI550495B (en) Capacitive touch device with high sensitivity and operating method thereof
US20080135735A1 (en) Signal-enhancement system for photodetector outputs
JP2006292488A (en) Apparatus for measuring temperature distribution
US8365579B2 (en) Knock detection system and method for an amplifier control for a knock signal
JP4756614B2 (en) Signal detection device
JP2006300748A (en) Device for measuring temperature distribution
KR101614102B1 (en) Magnetic sensing device and bill validator
JP6718284B2 (en) Signal processing circuit, coulomb counter circuit, electronic device
JP4696685B2 (en) Detection device
JP2006292552A (en) Apparatus for measuring temperature distribution
JP2014098566A (en) Vibration analyzer, vibration analysis method, and vibration analysis program
US20080115564A1 (en) Method Of Processing An Analog Sensor Signal In A Gas Sensor Arrangement And Measured Value Processing Device
KR102128024B1 (en) Apparatus and method for sensing registance with ripple reduction
JP3170006B2 (en) Bearing abnormality detection device
US11262465B2 (en) Method for evaluating a single-photon detector signal
KR102544474B1 (en) Dust sensor
JP4629599B2 (en) Sample timing monitor system
JP4781146B2 (en) Fire detector
JP2009128213A (en) Sensor signal detecting circuit and sensor module
JPS62204138A (en) Optical fiber measuring instrument
KR930008562B1 (en) Measurement device
JP2021163113A (en) Fire sensor and fire sensing system
KR100373217B1 (en) Sensor sensing circuit using voltage amplifier
RU2229687C1 (en) Gear to measure variable scalar values distributed in space
JP2009129246A (en) Physical quantity detection device