JPS62204138A - Optical fiber measuring instrument - Google Patents

Optical fiber measuring instrument

Info

Publication number
JPS62204138A
JPS62204138A JP4708086A JP4708086A JPS62204138A JP S62204138 A JPS62204138 A JP S62204138A JP 4708086 A JP4708086 A JP 4708086A JP 4708086 A JP4708086 A JP 4708086A JP S62204138 A JPS62204138 A JP S62204138A
Authority
JP
Japan
Prior art keywords
light
optical fiber
delay time
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4708086A
Other languages
Japanese (ja)
Other versions
JPH0781930B2 (en
Inventor
Masayuki Suehiro
未広 雅幸
Muneki Ran
蘭 宗樹
Sunao Sugiyama
直 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP61047080A priority Critical patent/JPH0781930B2/en
Publication of JPS62204138A publication Critical patent/JPS62204138A/en
Publication of JPH0781930B2 publication Critical patent/JPH0781930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3145Details of the optoelectronics or data analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To measure distance with high resolution over a wide measuring range by inputting a detection signal from a light receiving means and varying an amplification factor corresponding to the delay time of return light. CONSTITUTION:A pulse generating circuit 34 generates pulses with specific pulse width according to the measurement distance of an optical fiber to excite a laser diode 11. this impulsive light is incident on the optical fiber 2 to be measured through a directional coupler 12 and its return light is incident on the coupler 12, but its intensity falls as the signal arrives from a more distant place and has a longer delay time. The output of the coupler 12 is detected by a photodetecting element 13, whose output is amplified 31 and then inputted to a variable gain amplification part 32. The switch SW0 of the amplification part 32 is turned on in the starting specific section with a control signal 35. This signal is delayed by delay circuits D1-D3 in specific following sections and switches SW1-SW3 are turned on in order. Consequently, the return light is amplified with a larger amplification factor as the delay time becomes longer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、0TDR法を用いた光ファイバ測定器の分解
能の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improving the resolution of an optical fiber measuring instrument using the 0TDR method.

(従来の技術) 光ファイバの一端から光パルスを送り、戻り光を観測す
ることによりファイバの長さ方向の損失分布や破断点な
どを検出する装置を0TDR(0ptical   T
ime   [)omain   Reflectom
eter)という。0TDRでは、後方散乱光などの石
が微弱なため、アバランシェ・フォトダイオードなどの
受光素子からの出力のS/間は低いものとなっている。
(Prior art) 0TDR (0ptical
ime [)omain Reflectom
eter). In 0TDR, since the backscattered light is weak, the S/distance of the output from a light receiving element such as an avalanche photodiode is low.

これを改善するために平均化処理を行うが、この際受光
した信号を高速AD変換し、コンピュータで処理する方
法が一般にとられている。
To improve this, averaging processing is performed, but generally a method is used in which the received signal is subjected to high-speed AD conversion and processed by a computer.

(発明が解決しようとする問題点) しかしながら、測定距離が良くなると遠方からの信号が
弱くなり、極端な場合にはA/D変換器の分解能以下に
なってしまう。そこでAD変換器へ入力する前段の回路
の増幅度を大きくすると、今度は近距離からの信号が飽
和してしまい、観測できなくなるという問題が生じる。
(Problems to be Solved by the Invention) However, as the measurement distance increases, the signal from a distance becomes weaker, and in extreme cases, it becomes less than the resolution of the A/D converter. Therefore, if the amplification degree of the circuit at the front stage input to the AD converter is increased, a problem arises in that signals from a short distance become saturated and cannot be observed.

本発明は上記の問題点を解決するためになされたもので
、広範囲の測定距離を高分解能に測定できる光ファイバ
測定器を実現することを目的としている。
The present invention was made in order to solve the above problems, and an object of the present invention is to realize an optical fiber measuring instrument that can measure a wide range of measurement distances with high resolution.

(問題点を解決するための手段) 本発明は光源からの光を被測定ファイバに入射し被測定
ファイバからの戻り光を受光手段で検出することにより
被測定ファイバの状態を観測する光ファイバ測定器に係
るもので、その特徴とするところは受光手段からの検出
信号を入力し戻り光の遅延時間に対応して増幅度を変化
させる増幅手段と、この増幅手段の出力を入力する信号
処理手段とを備えた点にある。
(Means for Solving the Problems) The present invention provides optical fiber measurement in which the state of the fiber under test is observed by inputting light from a light source into the fiber under test and detecting the return light from the fiber under test using a light receiving means. It is characterized by an amplification means that inputs the detection signal from the light receiving means and changes the degree of amplification in accordance with the delay time of the returned light, and a signal processing means that inputs the output of this amplification means. It has the following features.

(実施例) 以下本発明を図面を用いて詳しく説明する。(Example) The present invention will be explained in detail below using the drawings.

第1図は本発明に係る光ファイバ測定器の一実施例を示
す構成ブロック図である。1は光送受信部、2はこの光
送受信部1から光パルスを印加される被測定光ファイバ
、3は光送受信部1を制御するとともにこの被測定光フ
ァイバ2からの戻り光を増幅する電子回路部、4はこの
電子回路部3を制御するとともにその出力を信号処理す
る信号処理部である。
FIG. 1 is a block diagram showing an embodiment of an optical fiber measuring device according to the present invention. Reference numeral 1 denotes an optical transceiver section, 2 an optical fiber to be measured to which optical pulses are applied from the optical transceiver section 1, and 3 an electronic circuit that controls the optical transceiver section 1 and amplifies the return light from the optical fiber to be measured 2. Section 4 is a signal processing section that controls the electronic circuit section 3 and processes its output.

光送受信部1において、11は光源を構成するレーザダ
イオード、12はこのレーザダイオード11の出力光を
入射して被測定光ファイバ2に出力する光方向性結合器
、13は被測定光ファイバ2からの戻り光を前記光方向
性結合器12を介して入射する受光素子である。電子回
路部3において、31は前記受光素子13の検出出力を
増幅するプリアンプ、32はこのプリアンプ31の出力
を入力する可変ゲイン増幅部、33はこの可変ゲイン増
幅部32のゲインを制御する可変遅延回路部、34は前
記ダイオードレーザ11を駆動するパルス発生器、35
はこのパルス発生器34および前記可変遅延回路部33
を制御する制御回路である。可変遅延回路部33におい
て、D1〜D3は前記制御回路35の制御出力をそれぞ
れ所定時間だけ遅延する遅延回路である。可変ゲイン増
幅部32において、Δ2は前記プリアンプ31の出力を
増幅する増幅器(例えば演算増幅器)、RO〜R4はこ
の増幅器△2の出力端子とコモンとの間に直列に接続す
る分圧抵抗、SWo〜S W sはこの抵抗Ro〜R4
の各接続点と前記増幅器A2の他方の反転入力端子に接
続するゲイン切換用のスイッチである。スイッチS W
 o ” S W 3はそれぞれ前記制御回路35の出
力および遅延回路D1〜D3の出力が駆動入力となる。
In the optical transmitter/receiver 1, 11 is a laser diode constituting a light source, 12 is an optical directional coupler that inputs the output light of the laser diode 11 and outputs it to the optical fiber 2 to be measured, and 13 is a component from the optical fiber 2 to be measured. This is a light-receiving element that receives the returned light from the optical directional coupler 12 through the optical directional coupler 12. In the electronic circuit section 3, 31 is a preamplifier that amplifies the detection output of the light receiving element 13, 32 is a variable gain amplification section that inputs the output of this preamplifier 31, and 33 is a variable delay that controls the gain of this variable gain amplification section 32. A circuit section 34 is a pulse generator 35 that drives the diode laser 11.
This pulse generator 34 and the variable delay circuit section 33
This is a control circuit that controls the In the variable delay circuit section 33, D1 to D3 are delay circuits that each delay the control output of the control circuit 35 by a predetermined time. In the variable gain amplification section 32, Δ2 is an amplifier (for example, an operational amplifier) that amplifies the output of the preamplifier 31, RO to R4 are voltage dividing resistors connected in series between the output terminal of this amplifier Δ2 and the common, and SWo ~S W s is this resistance Ro ~ R4
and the other inverting input terminal of the amplifier A2. Switch SW
The output of the control circuit 35 and the output of the delay circuits D1 to D3 serve as driving inputs of the o'' SW3, respectively.

信号処理部4において、41は前記増幅器A2の出力を
入力するA/D変換器、42はこのA/D変換器41の
出力を入力するとともに前記制御回路35を制御するマ
イクロプロセツサなどからなる信号処理回路である。
In the signal processing section 4, 41 is an A/D converter that inputs the output of the amplifier A2, and 42 is a microprocessor that inputs the output of this A/D converter 41 and controls the control circuit 35. This is a signal processing circuit.

このような構成の光ファイバ測定器の動作を次に説明す
る。パルス発生回路34は光ケーブルの測定距離に応じ
て、所定のパルス幅(例えば100nsec〜1μ5e
c)のパルスを発生してレーザダイオード11を励]辰
する。レーザダイオード11から出力されたパルス状の
光はレンズで平行光となって方向性結合器12に入射し
、その出力光がレンズで集光されて被測定光ファイバ2
に入射する。被測定光ファイバ2からの戻り光はレンズ
で平行光となった侵、光方向性結合器12に入射する。
The operation of the optical fiber measuring instrument having such a configuration will be explained next. The pulse generation circuit 34 generates a predetermined pulse width (for example, 100nsec to 1μ5e) depending on the measurement distance of the optical cable.
The laser diode 11 is excited by generating the pulse c). The pulsed light output from the laser diode 11 is turned into parallel light by a lens and enters the directional coupler 12, and the output light is condensed by the lens and connected to the optical fiber 2 to be measured.
incident on . The return light from the optical fiber 2 to be measured is converted into parallel light by a lens, and then enters the optical directional coupler 12.

光方向性結合器12の出力はレンズを介して受光素子1
3で検出される。受光素子13の出力はプリアンプ31
で増幅された後、可変ゲイン増幅部32に入力する。
The output of the optical directional coupler 12 is sent to the light receiving element 1 via a lens.
Detected at 3. The output of the light receiving element 13 is sent to the preamplifier 31.
After being amplified, the signal is input to the variable gain amplification section 32.

第2図は被測定ファイバ2からの後方散乱光の時間変化
を示すタイムチャートで、遅延時間が長い遠方からの信
号となるにつれて戻り光の強度は落ちてゆく。可変ゲイ
ン増幅部32はO−A区間では制御回路35からの制御
信号により、スイッチS W oのみをオンにする。こ
の信号をA−B。
FIG. 2 is a time chart showing the time change of the backscattered light from the fiber 2 to be measured, in which the intensity of the returned light decreases as the signal comes from a distance with a longer delay time. The variable gain amplification section 32 turns on only the switch S W o in response to a control signal from the control circuit 35 during the OA interval. This signal is A-B.

B−C,C−Dの区間では遅延回路D1,02゜D3に
よりそ魁ぞれ遅延してスイッチSW+、SW2 、SW
3をオンにする(各区間が等間隔の場合)。その結果遅
延時間が長くなるにつれて戻り光は大きな増幅度で増幅
される。図で71+ T 21T3はそれぞれ遅延回路
D1.02.[)3が発生する遅延時間である。
In the sections B-C and CD, the switches SW+, SW2, and SW are delayed by delay circuits D1 and D3, respectively.
Turn on 3 (if each section is equally spaced). As a result, as the delay time becomes longer, the returned light is amplified to a greater degree. In the figure, 71+T21T3 are respectively delay circuits D1.02. [)3 is the delay time that occurs.

増幅器へ2の出力はA/D変換器41でデジタル信号と
なった後信号処理回路42に送られる。
The output of the amplifier 2 is converted into a digital signal by an A/D converter 41 and then sent to a signal processing circuit 42 .

信号処理回路42は平均化処理などの信号処理等の他に
、各区間の境界A、B、Cにおける値が等しくなるよう
な処理を行う。
In addition to signal processing such as averaging processing, the signal processing circuit 42 performs processing to make the values at boundaries A, B, and C of each section equal.

このような構成の光ファイバ測定器によれば、測定距離
が長(なるにつれて、受光系の増幅度を高めているので
、広範囲の測定距離を高い分解能で測定できる。例えば
第2図のD点付近は、0−へ区間のゲインのままでは増
幅器△2の出力がA/D変換器の分解能以下になってし
ま−うが、上記の実施例ではC−D区間用の大きなゲイ
ンを用いているので、障害の様子を詳しく知ることがで
きる。これはA/D変換器のピット数を有効に使用する
ことにもなる。
According to an optical fiber measuring instrument with such a configuration, since the amplification of the light receiving system is increased as the measurement distance becomes longer, it is possible to measure a wide range of measurement distances with high resolution.For example, point D in Figure 2 In the vicinity, if the gain in the 0- section remains unchanged, the output of amplifier △2 will be below the resolution of the A/D converter, but in the above example, a large gain for the C-D section is used. This allows us to know the details of the failure.This also makes effective use of the number of pits in the A/D converter.

またO−A区間で信号が飽和することもなく、広いダイ
ナミックレンジで観測を行うことができる。
Furthermore, the signal does not become saturated in the OA section, allowing observation over a wide dynamic range.

なお上記の実施例では遅延時間を4つの区間に分けてゲ
インを切換えているが、任意の区間数を用いることがで
きる。また各区間の長さは任意に選ぶことができる。
In the above embodiment, the delay time is divided into four sections and the gain is switched, but any number of sections can be used. Further, the length of each section can be arbitrarily selected.

また第1図の実施例では増幅器の帰還mを変化させる例
を示したが、増幅器の前段で減衰機を変化させてもよい
Further, although the embodiment shown in FIG. 1 shows an example in which the feedback m of the amplifier is changed, an attenuator may be changed in the stage before the amplifier.

また戻り光の遅延時間に対応して連続的にゲインを増加
させてもよい。
Alternatively, the gain may be continuously increased in accordance with the delay time of the returned light.

(発明の効果) 以上述べたように本発明によれば、広範囲の測定距離を
高分解能に測定できる光ファイバ測定器を簡単な構成で
実現することができる。
(Effects of the Invention) As described above, according to the present invention, an optical fiber measuring instrument capable of measuring a wide range of measurement distances with high resolution can be realized with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる光ファイバ測定器の一実施例を
示す構成ブロック図、第2因は第1図装置の動作を説明
するための特性曲線図である。 2・・・被測定ファイバ、4・・・信号処理手段、11
・・・光源、13・・・受光手段、32・・・増幅手段
FIG. 1 is a block diagram showing an embodiment of the optical fiber measuring device according to the present invention, and the second factor is a characteristic curve diagram for explaining the operation of the device shown in FIG. 2... Fiber under test, 4... Signal processing means, 11
. . . light source, 13 . . . light receiving means, 32 . . . amplifying means.

Claims (1)

【特許請求の範囲】[Claims] (1)光源からの光を被測定ファイバに入射し被測定フ
ァイバからの戻り光を受光手段で検出することにより被
測定ファイバの状態を観測する光ファイバ測定器におい
て、 受光手段からの検出信号を入力し戻り光の遅延時間に対
応して増幅度を変化させる増幅手段と、この増幅手段の
出力を入力する信号処理手段とを備えたことを特徴とす
る光ファイバ測定器。
(1) In an optical fiber measuring instrument that observes the state of the fiber under test by inputting light from a light source into the fiber under test and detecting the return light from the fiber under test with a light receiving means, the detection signal from the light receiving means is detected. An optical fiber measuring instrument comprising: amplification means that changes the degree of amplification in accordance with the delay time of input and returned light; and signal processing means that inputs the output of the amplification means.
JP61047080A 1986-03-04 1986-03-04 Optical fiber measuring instrument Expired - Lifetime JPH0781930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61047080A JPH0781930B2 (en) 1986-03-04 1986-03-04 Optical fiber measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61047080A JPH0781930B2 (en) 1986-03-04 1986-03-04 Optical fiber measuring instrument

Publications (2)

Publication Number Publication Date
JPS62204138A true JPS62204138A (en) 1987-09-08
JPH0781930B2 JPH0781930B2 (en) 1995-09-06

Family

ID=12765195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61047080A Expired - Lifetime JPH0781930B2 (en) 1986-03-04 1986-03-04 Optical fiber measuring instrument

Country Status (1)

Country Link
JP (1) JPH0781930B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194236A (en) * 1987-10-07 1989-04-12 Anritsu Corp Light pulse tester
JPH02208533A (en) * 1989-02-08 1990-08-20 Ando Electric Co Ltd Dynamic range expanding circuit for otdr

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223265A (en) * 1975-08-18 1977-02-22 Hitachi Ltd Method of processing semiconductor materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223265A (en) * 1975-08-18 1977-02-22 Hitachi Ltd Method of processing semiconductor materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194236A (en) * 1987-10-07 1989-04-12 Anritsu Corp Light pulse tester
JPH02208533A (en) * 1989-02-08 1990-08-20 Ando Electric Co Ltd Dynamic range expanding circuit for otdr

Also Published As

Publication number Publication date
JPH0781930B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
WO2020258933A1 (en) Lidarreceiving apparatus, lidar system and laser ranging method
JPH09199750A (en) Optical pulse detector from plural fields of view and detecting method
RU193690U1 (en) Coherent Pulse Doppler Lidar
US5319266A (en) Differential boxcar integrator with auto-zero function
CN211348623U (en) Laser radar signal noise reduction device
JPH04218744A (en) Optical time domain reflectometer
JPS62204138A (en) Optical fiber measuring instrument
JPH09318492A (en) Otdr measuring device
JPH10339667A (en) Optical measuring apparatus
JP2644328B2 (en) Optical fiber distribution type temperature measuring device
EP3296761B1 (en) Distance measuring device
JP2500733B2 (en) Laser distance measuring device
JPH05129857A (en) Gain control method for avalanche photodiode
JPH03189584A (en) Distance measuring instrument
JP2757638B2 (en) Inter-vehicle distance detection device
JP2000056017A (en) Method and device for measuring distance
JPH01257289A (en) Laser distance measuring apparatus
US20220206115A1 (en) Detection and ranging operation of close proximity object
JPH04307387A (en) Range finder device
KR0120489Y1 (en) Device for measuring the distance using ultrasonic wave
JPH03130691A (en) Laser distance measuring apparatus
JPH07306266A (en) Distance measuring equipment
SU888032A1 (en) Device for testing articles with aid of acoustic emission
JPH06109840A (en) Distance detection apparatus
CN110687519A (en) Laser radar signal noise reduction device and method