JPWO2008153001A1 - Metal recovery device - Google Patents

Metal recovery device Download PDF

Info

Publication number
JPWO2008153001A1
JPWO2008153001A1 JP2009519247A JP2009519247A JPWO2008153001A1 JP WO2008153001 A1 JPWO2008153001 A1 JP WO2008153001A1 JP 2009519247 A JP2009519247 A JP 2009519247A JP 2009519247 A JP2009519247 A JP 2009519247A JP WO2008153001 A1 JPWO2008153001 A1 JP WO2008153001A1
Authority
JP
Japan
Prior art keywords
rotating cathode
cathode
experimental example
metal
cylindrical rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009519247A
Other languages
Japanese (ja)
Other versions
JP5651332B2 (en
Inventor
広宣 小久保
広宣 小久保
光 阿部
光 阿部
敏郎 下房
敏郎 下房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Pretec Corp
Original Assignee
Asahi Pretec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Pretec Corp filed Critical Asahi Pretec Corp
Priority to JP2009519247A priority Critical patent/JP5651332B2/en
Publication of JPWO2008153001A1 publication Critical patent/JPWO2008153001A1/en
Application granted granted Critical
Publication of JP5651332B2 publication Critical patent/JP5651332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/20Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/007Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells comprising at least a movable electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

金属含有溶液から金属を電気分解によって回収する際に用いられる装置として、従来から知られている回収装置よりも省スペース化・設備負荷の低減化を実現でき、しかも短時間で金属を回収できる金属回収効率に極めて優れた装置を提供する。上記装置は、軸を中心として回転する柱状または筒状の回転陰極と、該回転陰極と対向するように配置された陽極と、網状または多孔質状の導電体とを有し、前記陽極と対向する前記回転陰極の面の少なくとも一部は、前記導電体で被覆されているように構成すればよい。また、上記装置は、軸を中心として回転する柱状または筒状の回転陰極と、該回転陰極と対向するように配置された陽極とを有し、前記陽極と対向する前記回転陰極の面の少なくとも一部に、凹凸加工して構成してもよい。As a device used for recovering metals from metal-containing solutions by electrolysis, a metal that can save space and reduce equipment load compared to conventional recovery devices, and can recover metals in a short time An apparatus with extremely excellent recovery efficiency is provided. The apparatus includes a columnar or cylindrical rotating cathode that rotates about an axis, an anode disposed so as to face the rotating cathode, and a net-like or porous conductor, and faces the anode. What is necessary is just to comprise at least one part of the surface of the said rotating cathode covered with the said conductor. In addition, the apparatus includes a columnar or cylindrical rotating cathode that rotates about an axis, and an anode disposed to face the rotating cathode, and at least a surface of the rotating cathode facing the anode A part may be processed by uneven processing.

Description

本発明は、金属を含有する溶液から電気分解法により金属を回収する金属回収装置に関するものである。   The present invention relates to a metal recovery apparatus that recovers metal from a solution containing metal by electrolysis.

工場等から排出される廃液(例えば、処理液など)には、例えば、AuやAg、Cu、白金族元素等の金属を含有しているものがあり、これらの金属は廃液から回収して再利用される。廃液から金属を回収する方法としては、電気分解法が知られている。   Some waste liquids (for example, treatment liquids) discharged from factories contain metals such as Au, Ag, Cu, and platinum group elements. These metals are recovered from the waste liquid and recycled. Used. An electrolysis method is known as a method for recovering metal from waste liquid.

電気分解法を用いた金属の回収装置として、例えば、特許文献1には、陰極として円筒状の内電極と、陽極として該内電極の周囲に外電極を設け、前記陰極は回転可能に構成されており、金属が析出する陰極の表面近傍には、陰極の表面に析出した金属を削ぎ落とすように接触または近接した状態でプラスチック回収板を設けた回収装置が提案されている。特許文献1の方法によれば、陰極表面に析出した金属を電極に付着させることなくプラスチック回収板を用いて削ぎ落として陰極の下方に堆積させた後、金属を回収できると記載されている。   As a metal recovery device using an electrolysis method, for example, in Patent Document 1, a cylindrical inner electrode is provided as a cathode, and an outer electrode is provided around the inner electrode as an anode, and the cathode is configured to be rotatable. In the vicinity of the surface of the cathode on which the metal is deposited, there has been proposed a collection device provided with a plastic collection plate in contact with or close to the metal deposited on the surface of the cathode. According to the method of Patent Document 1, it is described that metal deposited on the cathode surface is scraped off using a plastic recovery plate and deposited below the cathode without being attached to the electrode, and then the metal can be recovered.

ところで、廃液から金属を工業的に回収するには、金属をできるだけ短時間で回収できるように、回収効率を高めることが望まれる。しかし上記特許文献1に開示されている回収装置では、金属の回収効率が悪く、金属の回収に長時間かかっていた。また、上記特許文献1では、陰極表面に電着した金属をプラスチック回収板を用いて削ぎ落とすことで金属を陰極の下方に堆積させて回収しているため、回収装置を省スペース化できなかった。また、廃液の種類によっては、陰極の下方に堆積した金属が廃液中に再溶解することがあり、廃液から金属を充分に回収できなかった。   By the way, in order to recover metals from waste liquid industrially, it is desired to increase the recovery efficiency so that the metals can be recovered in as short a time as possible. However, the recovery apparatus disclosed in Patent Document 1 has a poor metal recovery efficiency and takes a long time to recover the metal. Moreover, in the said patent document 1, since the metal electrodeposited on the cathode surface was scraped off using a plastic recovery plate, and the metal was deposited under the cathode and collect | recovered, the collection | recovery apparatus was not able to save space. . Further, depending on the type of waste liquid, the metal deposited under the cathode may be redissolved in the waste liquid, and the metal cannot be sufficiently recovered from the waste liquid.

金属の回収効率を高める方法としては、例えば、特許文献2や特許文献3には、陰極円板を用いる方法が提案されている。   As a method for improving the metal recovery efficiency, for example, Patent Document 2 and Patent Document 3 propose a method using a cathode disk.

上記特許文献2には、円板状の陰極を回転させながら電気分解を行うことによって、陰極と電解液との接触を良好にして金属の回収効率を高めることが記載されている。また、上記特許文献3には、電解槽内の溶液を効率的に攪拌して金属の回収効率を向上させるために、陽極または陰極のいずれか一方を回転させる回転駆動機構を備えた態様や、陽極または陰極に攪拌羽根を設けた態様が記載されている。   Patent Document 2 describes that electrolysis is performed while rotating a disk-shaped cathode, thereby improving the contact efficiency between the cathode and the electrolyte and improving the metal recovery efficiency. In addition, in Patent Document 3, in order to improve the metal recovery efficiency by efficiently stirring the solution in the electrolytic cell, an aspect including a rotation drive mechanism that rotates either the anode or the cathode, A mode in which stirring blades are provided on the anode or the cathode is described.

しかしながら、上記特許文献2のように陰極円板を用いた場合、金属の回収効率を高めるには陰極の回転数を過度に高める必要があり、設備負荷が大きくなるなどの問題がある。   However, when the cathode disk is used as in Patent Document 2, it is necessary to excessively increase the number of rotations of the cathode in order to increase the metal recovery efficiency, and there is a problem that the equipment load increases.

一方、金属の回収効率を高めるために提案された技術ではないが、特許文献4には、パイプ状の陽極と筒状の陰極とを備え、該陰極の内周に、陰極と電気的に接続される網状またはラス状の筒体を配置した金属回収装置が提案されている。   On the other hand, although it is not a technique proposed to increase the metal recovery efficiency, Patent Document 4 includes a pipe-shaped anode and a cylindrical cathode, and is electrically connected to the cathode on the inner periphery of the cathode. There has been proposed a metal recovery device in which a net-like or lath-like cylinder is arranged.

特許文献4の回収装置において、陰極の内周に配置された網状またはラス状の筒体は、電気分解が進行して陰極に電着した金属が陰極から剥離したときに、電着金属と陽極の接触による短絡発生防止のために配置されている。特許文献4の図1によれば、網状またはラス状の筒体は、陰極と密着することなく空間(スペース)を設けて配置されている。また、陰極表面に電着した金属の一部は、陰極から剥離し、陰極の下方に堆積している。   In the collection device of Patent Document 4, the net-like or lath-like cylinder disposed on the inner periphery of the cathode is formed by the electrodeposition metal and the anode when electrolysis proceeds and the metal electrodeposited on the cathode peels from the cathode. It is arranged to prevent the occurrence of short circuit due to contact. According to FIG. 1 of Patent Document 4, the net-like or lath-like cylinders are arranged with spaces (spaces) without being in close contact with the cathode. Further, a part of the metal electrodeposited on the cathode surface is peeled off from the cathode and deposited below the cathode.

特許文献1:特開昭61−104096号公報
特許文献2:特開2006−70364号公報
特許文献3:特開2005−314742号公報
特許文献4:特開2006−28555号公報
Patent Document 1: Japanese Patent Laid-Open No. 61-104096 Patent Document 2: Japanese Patent Laid-Open No. 2006-70364 Patent Document 3: Japanese Patent Laid-Open No. 2005-314742 Patent Document 4: Japanese Patent Laid-Open No. 2006-28555

本発明の目的は、金属含有溶液から金属を電気分解によって回収する際に用いられる装置であって、省スペース化・設備負荷の低減化を実現でき、しかも短時間で金属を回収できる回収効率に極めて優れた装置を提供することにある。   An object of the present invention is an apparatus used for recovering metal from a metal-containing solution by electrolysis, which can realize space saving and reduction in equipment load, and can recover metal in a short time. It is to provide an extremely excellent device.

上記課題を解決することのできた本発明に係る金属回収装置とは、金属含有溶液を電気分解して金属を回収する装置であり、該装置は、軸を中心として回転する柱状または筒状の回転陰極と、該回転陰極と対向するように配置された陽極と、網状または多孔質状の導電体と、を有しており、前記陽極と対向する前記回転陰極の面の少なくとも一部は、前記導電体で被覆されている点に要旨を有している。   The metal recovery apparatus according to the present invention that has solved the above problems is an apparatus that recovers metal by electrolyzing a metal-containing solution, and the apparatus rotates in a columnar or cylindrical shape that rotates about an axis. A cathode, an anode arranged to face the rotating cathode, and a mesh-like or porous conductor, and at least a part of the surface of the rotating cathode facing the anode is The point is that it is covered with a conductor.

本発明の金属回収装置では、例えば、貴金属含有水溶液から貴金属を回収することができる。   In the metal recovery apparatus of the present invention, for example, a noble metal can be recovered from a noble metal-containing aqueous solution.

前記導電体としては、例えば、平均目開きが0.5〜3mmの金属網や、平均線径が0.3〜0.5mmの金属網を用いることが好ましい。より好ましくは、平均目開きが0.5〜3mmで、且つ平均線径が0.3〜0.5mmの金属網を用いることが望ましい。なお、前記導電体として、上記範囲の平均目開きや平均線径に相当する開口部を有する多孔質状体を用いることも好ましい。   As the conductor, for example, a metal net having an average aperture of 0.5 to 3 mm or a metal net having an average wire diameter of 0.3 to 0.5 mm is preferably used. More preferably, it is desirable to use a metal net having an average aperture of 0.5 to 3 mm and an average wire diameter of 0.3 to 0.5 mm. In addition, it is also preferable to use the porous body which has an opening part equivalent to the average opening and average wire diameter of the said range as said conductor.

本発明の他の金属回収装置は、軸を中心として回転する柱状または筒状の回転陰極と、該回転陰極と対向するように配置された陽極とを有し、前記陽極と対向する前記回転陰極の面の少なくとも一部は、凹凸に加工されている点に要旨を有している。また、前記陽極と対向する前記回転陰極の面の少なくとも一部は、網状または多孔質状の導電体で被覆されていることが好ましい。   Another metal recovery apparatus of the present invention includes a columnar or cylindrical rotating cathode that rotates about an axis, and an anode disposed so as to face the rotating cathode, and the rotating cathode facing the anode. At least a part of the surface has a gist in that it is processed into irregularities. Moreover, it is preferable that at least a part of the surface of the rotating cathode facing the anode is covered with a net-like or porous conductor.

本発明によれば、陽極と対向する回転陰極の面の少なくとも一部が、網状・多孔質の導電体で密着して被覆されているか、当該回転陰極自体が加工されて表面に凹凸を有しているため、回転陰極の採用による金属回収効率向上効果に加えて、以下の効果が顕著に発揮される。
(1)陰極の表面積が大きくなり、金属の回収効率が飛躍的に向上する。
(2)陰極での金属の電着性が向上するため、陰極に一旦電着した金属の剥離を防止できる。そのため、陰極から剥れ落ちた金属を回収するための特別な機構を別途設ける必要がなくなり、回収装置の省スペース化を実現できる。
(3)それ自体が加工された陰極を用いれば、陰極に導電体を被覆した態様に比べ、繰り返し使用による導電体の劣化や剥離等の問題がないため耐久性が高められる。
According to the present invention, at least a part of the surface of the rotating cathode facing the anode is covered and covered with a net-like / porous conductor, or the rotating cathode itself is processed to have irregularities on the surface. Therefore, in addition to the effect of improving the metal recovery efficiency by adopting the rotating cathode, the following effects are remarkably exhibited.
(1) The surface area of the cathode is increased, and the metal recovery efficiency is dramatically improved.
(2) Since the electrodeposition property of the metal on the cathode is improved, the metal once electrodeposited on the cathode can be prevented from peeling. Therefore, it is not necessary to separately provide a special mechanism for collecting the metal peeled off from the cathode, and the space saving of the collecting device can be realized.
(3) If a cathode that has been processed per se is used, the durability can be improved because there is no problem of deterioration or peeling of the conductor due to repeated use, as compared to the case where the cathode is coated with the conductor.

図1は、第一の実施形態の金属回収装置の断面を示す概略説明図である。FIG. 1 is a schematic explanatory view showing a cross section of the metal recovery apparatus of the first embodiment. 図2は、電解時間(hr)に対する処理液のAu濃度(mg/L)の変化を示すグラフである。FIG. 2 is a graph showing a change in the Au concentration (mg / L) of the treatment liquid with respect to the electrolysis time (hr). 図3は、電解時間(hr)に対する処理液のAu濃度(mg/L)の変化を示すグラフである。FIG. 3 is a graph showing a change in Au concentration (mg / L) of the treatment liquid with respect to electrolysis time (hr). 図4の(A)は、第二の実施形態の金属回収装置に用いる円筒状回転陰極を示す斜視図であり、(B)は、(A)に示した円筒状回転陰極の表面断面を一部拡大した図である。FIG. 4A is a perspective view showing a cylindrical rotating cathode used in the metal recovery apparatus of the second embodiment, and FIG. 4B is a cross-sectional view of the surface of the cylindrical rotating cathode shown in FIG. FIG.

符号の説明Explanation of symbols

1 電解槽
2 陽極
3 回転軸
4 円筒状回転陰極
5 モーター
6 循環槽
7 ポンプ
8 導電体(チタン製網)
DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 Anode 3 Rotating shaft 4 Cylindrical rotating cathode 5 Motor 6 Circulating tank 7 Pump 8 Conductor (titanium net)

本発明者らは、装置の省スペース化、設備負荷の低減化を実現でき、しかも金属の回収効率に優れた回収装置を提供すべく鋭意検討を行ってきた。その結果、回転陰極の表面積を増大させるために、陽極と対向する回転陰極の面の少なくとも一部に、網状または多孔質状の導電体を被覆するか、または陽極と対向する回転陰極の面の少なくとも一部を凹凸に加工すれば、当該回転陰極に電着される金属の電着性が向上し、当該回転陰極に一旦電着した金属の剥離を有効に防止できること、その結果、金属の回収効率が著しく向上することを見出し、本発明を完成した。   The inventors of the present invention have been intensively studied to provide a recovery device that can save the space of the device and reduce the equipment load and is excellent in metal recovery efficiency. As a result, in order to increase the surface area of the rotating cathode, at least a part of the surface of the rotating cathode facing the anode is coated with a net-like or porous conductor, or the surface of the rotating cathode facing the anode is covered. If at least a part is processed into irregularities, the electrodeposition property of the metal electrodeposited on the rotating cathode can be improved, and peeling of the metal once electrodeposited on the rotating cathode can be effectively prevented. The inventors found that the efficiency was remarkably improved and completed the present invention.

以下、説明の便宜上、陽極と対向する面の少なくとも一部に、網状または多孔質状の導電体が被覆された回転陰極を用いた回収装置を「第一の実施形態」、陽極と対向する面の少なくとも一部が凹凸に加工された回転陰極を用いた回収装置を「第二の実施形態」と呼ぶ場合がある。   Hereinafter, for convenience of explanation, a recovery device using a rotating cathode in which at least a part of the surface facing the anode is coated with a net-like or porous conductor is referred to as “first embodiment”, the surface facing the anode. A recovery device using a rotating cathode in which at least a part of the surface is processed to be uneven may be referred to as a “second embodiment”.

第一の実施形態も第二の実施形態も、回転陰極の表面積を好ましくは3.0倍以上に高めて金属の回収効率を高めている点では共通している。また、いずれの実施形態も、結果的に回転陰極の表面に凹凸が生じるため、金属の電着性や耐剥離性が向上する点でも共通している。しかし、両者は、その具体的手段が相違しており、第一の実施形態では、回転陰極に導電体を被覆する「外的手段」を施したのに対し、第二の実施形態では、回転陰極自体を加工して表面に凹凸を形成する「内的手段」を施した点で、相違する。但し、本発明の回収装置はこれらの実施形態に限定されるものではなく、本発明の趣旨を損なわない範囲で設計変更することはもちろん可能である。   The first embodiment and the second embodiment are common in that the surface area of the rotating cathode is preferably increased by 3.0 times or more to increase the metal recovery efficiency. In addition, since all the embodiments result in unevenness on the surface of the rotating cathode, they are common in that the electrodeposition property and peeling resistance of the metal are improved. However, the specific means of both are different, and in the first embodiment, the “external means” for covering the rotating cathode with a conductor is applied, whereas in the second embodiment, the rotating means is rotated. The difference is that “internal means” for forming irregularities on the surface by processing the cathode itself is applied. However, the recovery device of the present invention is not limited to these embodiments, and it is of course possible to change the design within a range that does not impair the gist of the present invention.

《第一の実施形態》
本実施形態に係る金属の回収装置は、軸を中心として回転する柱状または筒状の回転陰極と、該回転陰極と対向するように配置された陽極と、網状または多孔質状の導電体と、を有し、前記陽極と対向する前記回転陰極の面の少なくとも一部は、前記導電体で被覆されている。
First embodiment
The metal recovery apparatus according to the present embodiment includes a columnar or cylindrical rotating cathode that rotates about an axis, an anode disposed so as to face the rotating cathode, a net-like or porous conductor, And at least a part of the surface of the rotating cathode facing the anode is covered with the conductor.

はじめに、本実施形態を最も特徴付ける「網状または多孔質状の導電体」について説明する。本実施形態に用いられる導電体の形状は、網状(格子状を含む)または多孔質状である(以下、「網状・多孔質状」ということがある)。網状や格子状の形態は特に限定されず、垂直方向と水平方向に伸びている線材が交差した形態であってもよいし、垂直方向に対して斜め方向に伸びている線材が交差した形態であってもよい。網状や格子状の開口部の間隔も特に限定されず、導電体を構成する線材のうち、一方向が密で他方が疎となるように組んで開口部の形状が矩形となるように構成してもよいし、網状または格子状の開口部の形状が菱形や正方形となるように構成してもよい。また、パンチングメタル、エキスパンドメタルなどのように複数の孔が貫通している多孔質状の形状も用いられる。   First, a “network-like or porous conductor” that characterizes this embodiment most will be described. The shape of the conductor used in the present embodiment is a net shape (including a lattice shape) or a porous shape (hereinafter, sometimes referred to as “net-like / porous shape”). The net-like or grid-like form is not particularly limited, and may be a form in which the wires extending in the vertical direction and the horizontal direction intersect, or a form in which the wires extending in the oblique direction with respect to the vertical direction intersect. There may be. There is no particular limitation on the interval between the mesh-like or grid-like openings, and the conductors are configured so that one direction is dense and the other is sparse so that the shape of the openings is rectangular. Alternatively, the shape of the mesh-like or lattice-like opening may be a rhombus or a square. Further, a porous shape having a plurality of holes passing therethrough such as punching metal and expanded metal is also used.

また、「導電体」とは、電気分解可能な程度に導電性を有し、且つ金属含有溶液(即ち、電解液)に溶解せず、且つ電解時にも溶出しない不溶性である必要がある。具体的には、例えば、チタンやステンレス、或いは回収対象とする金属自体等が挙げられる。   In addition, the “conductor” needs to be insoluble so as to be electrolyzed and not to be dissolved in a metal-containing solution (that is, an electrolytic solution) and to be eluted during electrolysis. Specifically, for example, titanium or stainless steel, or the metal itself to be collected may be used.

上記「網状または多孔質状の導電体」は、回転陰極の少なくとも一部を覆うように被覆されており、当該被覆された回転陰極面は、陽極と対向するように配置される。上記の導電体と回転陰極が接する部分には、前述した特許文献4のように空間(スペース)はない。このように、陽極と対向する回転陰極表面の一部が網状・多孔質状の導電体で隙間なく覆われることによって、回転陰極の表面に凹凸ができ、該凹凸の表面に金属が電着して互いに凝集し、電着した金属が回転陰極の表面から剥れ難くなるようになるため、金属の電着性が著しく向上する。また、上記構成を採用することによって回転陰極の表面積が増大するため、電解効率が向上し、金属の回収効率が高められる。   The “network-like or porous conductor” is coated so as to cover at least a part of the rotating cathode, and the coated rotating cathode surface is disposed so as to face the anode. There is no space in the portion where the conductor and the rotating cathode are in contact as in Patent Document 4 described above. In this way, a part of the surface of the rotating cathode facing the anode is covered with a net-like or porous conductor without gaps, so that the surface of the rotating cathode is uneven, and metal is electrodeposited on the uneven surface. Thus, the electrodeposited metal is remarkably improved because it is difficult to peel off from the surface of the rotating cathode. Moreover, since the surface area of a rotating cathode increases by employ | adopting the said structure, electrolysis efficiency improves and the collection | recovery efficiency of a metal is raised.

なお、上記導電体は、陽極と対向する回転陰極の全面に設ける必要はなく、電解効率が低下して金属回収効率が阻害されない範囲内であれば、当該回転陰極の少なくとも一部に設けられていれば良い。   The conductor does not need to be provided on the entire surface of the rotating cathode facing the anode, and is provided on at least a part of the rotating cathode as long as the electrolytic efficiency is reduced and the metal recovery efficiency is not hindered. Just do it.

上記網状または多孔質状の導電体が、金属網である場合には、平均目開きが0.5〜3mmであるか、平均線径が0.3〜0.5mmであることが好ましい。なお、平均とは、金属網の複数個所における目開きと線径を測定してこれを平均して求めた値である。   When the mesh-like or porous conductor is a metal mesh, it is preferable that the average aperture is 0.5 to 3 mm or the average wire diameter is 0.3 to 0.5 mm. In addition, an average is the value calculated | required by measuring the opening and wire diameter in several places of a metal net | network, and averaging this.

金属網の平均目開きが0.5mm未満であると、目が詰まり過ぎており、また平均目開きが3mmを超えると、目が粗過ぎるため、処理液の攪拌効果が低減したり、回転陰極の面積を増大させることができず、電解効率を高めて金属の回収効率を改善する効果が発揮されにくい。   If the average opening of the metal mesh is less than 0.5 mm, the eyes are clogged too much, and if the average opening exceeds 3 mm, the eyes are too coarse, so that the stirring effect of the treatment liquid is reduced, or the rotating cathode Therefore, the effect of increasing the electrolysis efficiency and improving the metal recovery efficiency is hardly exhibited.

金属網を構成する線材の平均線径が0.3mm未満では、線径が小さ過ぎ、また平均線径が0.5mmを超えると、線径が大き過ぎるため、処理液の攪拌効果が低減したり、回転陰極の面積を増大させることができず、電解効率を高めて金属の回収効率を改善する効果が発揮されにくい。   When the average wire diameter of the wire constituting the metal net is less than 0.3 mm, the wire diameter is too small, and when the average wire diameter exceeds 0.5 mm, the wire diameter is too large, so that the stirring effect of the treatment liquid is reduced. In addition, the area of the rotating cathode cannot be increased, and the effect of improving electrolysis efficiency and improving metal recovery efficiency is hardly exhibited.

上記金属網は、特に、平均目開きが0.5〜3mmで、且つ平均線径が0.3〜0.5mmであることが好ましい。   In particular, the metal mesh preferably has an average opening of 0.5 to 3 mm and an average wire diameter of 0.3 to 0.5 mm.

なお、上記網状または多孔質状の導電体が、多孔質状体である場合には、上記範囲の平均目開きや平均線径に相当する開口部を有している多孔質体を用いることが好ましい。   When the mesh-like or porous conductor is a porous body, a porous body having openings corresponding to the average openings and average wire diameters in the above range should be used. preferable.

上記金属網は、回転陰極の表面に、2〜4重となるように着接することが好ましい。金属網の巻き数を2重巻き以上とすることで、回転陰極の面積を充分に増大させることができ、金属の回収効率を一層高めることができる。但し、金属網を4重を超えて巻き付けても、金属網を着接する効果が飽和して金属の回収効率は殆んど変化しないため、金属網の巻き数は4重以下とすることが好ましい。   The metal mesh is preferably attached to the surface of the rotating cathode so as to be two to four layers. By setting the number of windings of the metal net to two or more turns, the area of the rotating cathode can be sufficiently increased, and the metal recovery efficiency can be further increased. However, even if the metal mesh is wound more than four times, the effect of attaching the metal mesh is saturated and the recovery efficiency of the metal hardly changes. Therefore, the number of turns of the metal mesh is preferably four or less. .

網状・多孔質状の導電体を回転陰極の表面に被覆する方法は特に規定されないが、例えば、回転陰極の表面に金属網を等間隔でスポット溶接して回転陰極の表面と金属網の間に隙間が空かないように固定すればよい。   A method for coating the surface of the rotating cathode with a mesh-like or porous conductor is not particularly defined. Fix it so that there is no gap.

《第二の実施形態》
本実施形態に係る金属の回収装置は、軸を中心として回転する柱状または筒状の回転陰極と、該回転陰極と対向するように配置された陽極とを有し、前記陽極と対向する前記回転陰極の面の少なくとも一部が、凹凸に加工されているところに特徴がある。回転陰極自体の表面に凹凸を設けて回転陰極の表面積を増大させることで、金属の回収効率を高めることができるほか、回転陰極を長期に亘って繰り返し使用することが可能となる。即ち、上記第一の実施形態のように、回転陰極の表面に導電体を被覆する構成では、回転陰極を長期間使用することによって、表面に被覆した導電体が、回転陰極の表面から剥離する恐れがある。長期間使用することで、導電体の線径が細くなって網目が緩んだり、溶接部が外れることがあるからである。これに対し、第二の実施形態では、回転陰極自体を加工して導電体を使用することなく表面積を増大させているため、導電体に起因する上記問題は生じない。そのため長期間に亘っての安定操業が可能となる。
<< Second Embodiment >>
The metal recovery apparatus according to the present embodiment includes a columnar or cylindrical rotary cathode that rotates about an axis, and an anode that is disposed so as to face the rotary cathode, and the rotation that faces the anode. It is characterized in that at least a part of the surface of the cathode is processed into irregularities. By providing irregularities on the surface of the rotating cathode itself to increase the surface area of the rotating cathode, it is possible to increase the metal recovery efficiency, and it is possible to repeatedly use the rotating cathode over a long period of time. That is, in the configuration in which the conductor is coated on the surface of the rotating cathode as in the first embodiment, the conductor coated on the surface is separated from the surface of the rotating cathode by using the rotating cathode for a long time. There is a fear. This is because, when used for a long period of time, the wire diameter of the conductor is reduced, the mesh is loosened, and the welded part may come off. On the other hand, in the second embodiment, since the surface area is increased without processing the rotating cathode itself and using the conductor, the above-described problem caused by the conductor does not occur. Therefore, stable operation over a long period of time is possible.

上記の凹凸は、回転陰極の表面の少なくとも一部に有していれば良く、必ずしも、全面に有している必要はない。前述したように本実施形態では、凹凸に加工した後の表面積が加工前に比べておおむね3.0倍以上となるように凹凸が形成されていれば良いからである。また、表面に形成される凹凸の形態は、後述する加工手段などによって変化し得、例えば、ショットブラストによれば微細な凹凸が形成され、切削加工によれば溝や孔の凹部が形成される。あるいは、特殊加工によって鮫肌模様などに加工されていても良い。また、凹凸の平均間隔や凹凸の平均高さ(凸部と凹部の差)の好ましい範囲は、使用する回転陰極の形状や大きさなどによっても相違するが、いずれも、おおむね、0.5mm以上であることが好ましい。凹部の好ましい形態については、後記する図4の装置を用いて詳しく説明する。   The unevenness may be provided on at least a part of the surface of the rotating cathode, and is not necessarily provided on the entire surface. This is because, as described above, in this embodiment, it is sufficient that the unevenness is formed so that the surface area after processing into the unevenness is approximately 3.0 times or more compared to before processing. Further, the shape of the unevenness formed on the surface can be changed by a processing means to be described later, for example, fine unevenness is formed by shot blasting, and recesses of grooves and holes are formed by cutting. . Alternatively, it may be processed into a skin pattern or the like by special processing. Moreover, although the preferable range of the uneven | corrugated average space | interval and the average height of unevenness (difference between a convex part and a recessed part) changes with shapes, sizes, etc. of the rotating cathode to be used, all are 0.5 mm or more in general. It is preferable that A preferred form of the recess will be described in detail using the apparatus shown in FIG.

回転陰極の表面に加工される凹凸の形態は特に限定されない。例えば、凹部は断続的に浅く形成された凹み(以下、孔と呼ぶことがある)であってもよいし、陰極表面に沿って連続的に形成された溝であってもよい。或いは孔と溝を適宜組合せて回転陰極の表面に凹凸を形成してもよい。   The form of the unevenness processed on the surface of the rotating cathode is not particularly limited. For example, the recess may be a recess formed intermittently shallowly (hereinafter may be referred to as a hole) or a groove formed continuously along the cathode surface. Or you may form an unevenness | corrugation in the surface of a rotating cathode by combining a hole and a groove | channel suitably.

凹凸部の断面形状は特に限定されず、陰極表面に対して垂直となる断面を観察したときの形状が、例えば、矩形、多角形、U形、V形、W形、波形等のいずれであってもよい。   The cross-sectional shape of the concavo-convex portion is not particularly limited, and the shape when the cross-section perpendicular to the cathode surface is observed is any of, for example, a rectangle, a polygon, a U shape, a V shape, a W shape, and a waveform. May be.

凹凸部の外観も特に限定されず、例えば、直線状、曲線状、矩形、多角形、円形、或いは鮫肌のような模様を呈していてもよい。また、これらを適宜組み合わせて回転陰極の表面に凹凸を形成してもよい。   The appearance of the concavo-convex part is not particularly limited, and may be, for example, a linear shape, a curved shape, a rectangular shape, a polygonal shape, a circular shape, or a skin-like pattern. Moreover, you may form an unevenness | corrugation in the surface of a rotating cathode combining these suitably.

凹凸の加工方法は特に限定されず、回転陰極の表面に公知の粗面化処理を施して凹凸を形成すればよい。粗面化処理としては、例えば、切削加工、ブラスト加工、放電加工、レーザー加工、エッチング加工等が挙げられる。また、回転陰極の素材となる板をプレス成形加工し、断面形状が、例えば、V形、W形、波形等となるように加工し、これを円筒状に丸めて回転陰極としてもよい。また、回転陰極の素材となる金属として、例えば、粉末冶金により空隙の大きいスポンジ状Tiを焼結したものを回転陰極としてもよい。   The processing method of the unevenness is not particularly limited, and the unevenness may be formed by performing a known roughening treatment on the surface of the rotating cathode. Examples of the roughening treatment include cutting, blasting, electric discharge machining, laser machining, and etching. Alternatively, a plate as a material for the rotating cathode may be press-molded and processed so that the cross-sectional shape is, for example, V-shaped, W-shaped, corrugated, and the like, and this may be rounded into a cylindrical shape to form a rotating cathode. Moreover, as a metal used as the material of the rotating cathode, for example, a material obtained by sintering sponge-like Ti having a large void by powder metallurgy may be used as the rotating cathode.

第二の実施形態では、凹凸を有する回転陰極の表面に、上述した網状または多孔質状の導電体を更に被覆してもよい。導電体を被覆することで、回転陰極の表面積を一段と増大できる。例えば、後記する実験例23は、図4に示す溝付回転陰極の表面にチタン製網を1回巻きつけた例であるが、図1に示す溝なし回転陰極の表面にチタン製網を1回巻きつけた実験例9に比べて表面積が増大し、金属を短時間で回収することができた。溝を設けた回転陰極の表面に導電体を被覆する実施形態では、導電体を1回巻いただけでも回転陰極の表面に凹凸を設けることによる表面積増大効果と相まって回転陰極の表面積を増大させることができる。その結果、短時間で金属を回収することが可能となる。   In the second embodiment, the surface of the rotating cathode having irregularities may be further coated with the above-described net-like or porous conductor. By covering the conductor, the surface area of the rotating cathode can be further increased. For example, Experimental Example 23 to be described later is an example in which a titanium mesh is wound around the surface of the grooved rotary cathode shown in FIG. 4, but the titanium mesh is 1 on the surface of the grooveless rotary cathode shown in FIG. The surface area increased as compared with Experimental Example 9 wound around, and the metal could be recovered in a short time. In the embodiment in which the conductor is coated on the surface of the rotating cathode provided with the groove, the surface area of the rotating cathode can be increased in combination with the effect of increasing the surface area by providing irregularities on the surface of the rotating cathode even if the conductor is wound once. it can. As a result, the metal can be recovered in a short time.

上記第一の実施形態および上記第二の実施形態に用いられる回転陰極の表面積は、導電体による被覆前、または凹凸加工前の回転陰極の表面積に対して、3.0倍程度以上であることが好ましい。より好ましくは3.3倍以上であり、更に好ましくは3.5倍以上である。回転陰極の表面積はできるだけ大きい方が好ましいが、網状・多孔質状の導電体を巻き過ぎると回転陰極が重くなり過ぎて回転に負荷がかかり過ぎるし、凹凸形成手段による表面積の増大も限界があるため、多く見積もっても上限は10倍程度である。より好ましくは8倍以下であり、さらに好ましくは6倍以下である。   The surface area of the rotating cathode used in the first embodiment and the second embodiment is about 3.0 times or more of the surface area of the rotating cathode before coating with a conductor or before processing the unevenness. Is preferred. More preferably, it is 3.3 times or more, and further preferably 3.5 times or more. The surface area of the rotating cathode is preferably as large as possible. However, if a mesh-like or porous conductor is wound too much, the rotating cathode becomes too heavy and the rotation is overloaded, and the increase in surface area due to the unevenness forming means is limited. Therefore, even if many estimates are made, the upper limit is about 10 times. More preferably, it is 8 times or less, More preferably, it is 6 times or less.

上記第一の実施形態および上記第二の実施形態に用いられる回転陰極は、軸を中心として回転する柱状または筒状の回転陰極である。このような回転陰極を用いることにより、電解効率が向上して金属の回収効率が一層高められる。本発明では、上記特許文献2や特許文献3のような円板状の回転陰極を用いた場合に比べ、少ない回転数で電解液を充分に攪拌できるため、設備負荷の低減化も実現できる。   The rotating cathode used in the first embodiment and the second embodiment is a columnar or cylindrical rotating cathode that rotates about an axis. By using such a rotating cathode, the electrolysis efficiency is improved and the metal recovery efficiency is further enhanced. In the present invention, compared with the case where the disk-shaped rotating cathode as in Patent Document 2 and Patent Document 3 is used, the electrolytic solution can be sufficiently stirred at a lower number of revolutions, so that the equipment load can be reduced.

ここで、「柱状」とは中実体であるか、もしくは外部に通じない空間を内部に保有する形状を意味し、「筒状」とは外部に通じる空間を内部に保有する中空体であることを意味する。本発明では、いずれの態様も好適に用いられる。本発明に用いられる回転陰極は、代表的には、略円柱状または略円筒状である。回転陰極の断面形状は円に限定されず、例えば、円に極めて近い「多角状」の態様であってもよい。但し、回転陰極の断面形状が、矩形(例えば、四角)であると、該陰極を回転させたときに溶液から受ける抵抗が大きくなるため、陰極を回転させるために設けるモーター等の動力に負荷がかかり過ぎることや、電解液が飛散することがあるため、設備負荷などを考慮して適切に選択すれば良い。   Here, “columnar” means a solid body or a shape that internally holds a space that does not communicate with the outside, and “tubular” refers to a hollow body that internally possesses a space that communicates with the outside. Means. In the present invention, any aspect is preferably used. The rotating cathode used in the present invention is typically substantially columnar or cylindrical. The cross-sectional shape of the rotating cathode is not limited to a circle, and may be, for example, a “polygonal” form extremely close to a circle. However, if the cross-sectional shape of the rotating cathode is a rectangle (for example, a square), the resistance received from the solution when the cathode is rotated increases, so a load is applied to the power of the motor or the like provided to rotate the cathode. Since it may take too much or the electrolytic solution may scatter, it may be selected appropriately in consideration of equipment load.

上記回転陰極の素材は、電気分解可能な程度に導電性を有し、且つ金属含有溶液(即ち、電解液)に溶解せず、且つ電解時にも溶出しない不溶性であればよい。具体的には、例えば、チタンやステンレス、或いは回収対象とする金属自体等が挙げられる。   The material of the rotating cathode may be insoluble so long as it has electroconductivity to the extent that it can be electrolyzed and does not dissolve in the metal-containing solution (that is, the electrolytic solution) and does not dissolve during electrolysis. Specifically, for example, titanium or stainless steel, or the metal itself to be collected may be used.

上記の回転陰極と、陽極とは、以下のように配置することができる。   The rotating cathode and the anode can be arranged as follows.

まず、柱状の回転陰極を用いる場合、陽極は、当該柱状回転陰極の外側(外周)に配置する。柱状回転陰極の周囲に配置される陽極の形状は特に限定されず、金属の回収装置に通常用いられるものを採用することができる。従って、板状、筒状のいずれの陽極も使用できる。具体的には、柱状回転陰極の周囲(外周)を囲むように、板状あるいは筒状の陽極を配置すればよい。板状の陽極を用いる場合、網状・多孔質状の導電体が被覆された柱状回転陰極の面、或いは凹凸が設けられた柱状回転陰極の面に対向するように板状陽極を配置する。このような板状陽極は、柱状回転陰極の周囲を囲むように複数枚配置すればよい。   First, when a columnar rotating cathode is used, the anode is disposed outside (outer periphery) of the columnar rotating cathode. The shape of the anode arranged around the columnar rotating cathode is not particularly limited, and those commonly used in metal recovery devices can be employed. Accordingly, either a plate-like or cylindrical anode can be used. Specifically, a plate-like or cylindrical anode may be disposed so as to surround the periphery (outer periphery) of the columnar rotating cathode. When a plate-like anode is used, the plate-like anode is disposed so as to face the surface of the columnar rotary cathode coated with a net-like or porous conductor or the surface of the columnar rotary cathode provided with irregularities. A plurality of such plate-like anodes may be arranged so as to surround the periphery of the columnar rotary cathode.

一方、筒状の回転陰極を用いる場合、陽極は、当該筒状回転陰極の外側に配置しても良いし、筒状回転陰極の内側に配置してもよい。   On the other hand, when a cylindrical rotating cathode is used, the anode may be disposed outside the cylindrical rotating cathode or may be disposed inside the cylindrical rotating cathode.

筒状回転陰極の周囲(外側・内側)に配置される陽極の形状および配置方法は、上記の柱状回転陰極を用いたときと実質的に同じである。   The shape and arrangement method of the anode arranged around (outside / inside) the cylindrical rotating cathode is substantially the same as when the above-described columnar rotating cathode is used.

なお、筒状陰極の内側に陽極を配置する場合は、第一の実施形態では、前述した網状・多孔質状の導電体を筒状回転陰極の少なくとも内面に設ければよいし、必要に応じて、筒状回転陰極の外表面にも設けてもよい。また、第二の実施形態では、筒状回転陰極の少なくとも内面に凹凸を設ければよいし、必要に応じて、筒状回転陰極の外表面にも凹凸を設けてもよい。また、陽極は、筒状回転陰極の中心軸近傍に配置してもよいし、筒状回転陰極の中心軸近傍を避けて配置してもよい。   When the anode is disposed inside the cylindrical cathode, in the first embodiment, the above-described network / porous conductor may be provided on at least the inner surface of the cylindrical rotating cathode, and if necessary. In addition, it may be provided on the outer surface of the cylindrical rotating cathode. Moreover, in 2nd embodiment, what is necessary is just to provide an unevenness | corrugation in the at least inner surface of a cylindrical rotating cathode, and you may provide an unevenness | corrugation also in the outer surface of a cylindrical rotating cathode as needed. Further, the anode may be arranged near the central axis of the cylindrical rotating cathode, or may be arranged avoiding the vicinity of the central axis of the cylindrical rotating cathode.

本発明では、柱状または筒状の陰極が、該陰極の軸を中心として回転可能に構成されている回転陰極を用いる。陰極を回転させつつ電気分解を行うことによって、電解槽中の溶液(電解液)が攪拌されるため、溶液と陰極との接触が効果的に行われ、金属の回収効率が向上して短時間で金属を回収することができる。   In the present invention, a rotary cathode is used in which a columnar or cylindrical cathode is configured to be rotatable around the axis of the cathode. By performing the electrolysis while rotating the cathode, the solution (electrolyte) in the electrolytic cell is agitated, so that the contact between the solution and the cathode is effectively performed, the metal recovery efficiency is improved, and the time is shortened. The metal can be recovered.

上記の回転陰極は、装置内に設置されたモーター等の動力に接続し、回転させることができる。上記回転陰極の周速(回転速度)は、使用する電解槽のサイズ、電解槽に供給する溶液量、或いは回収対象とする金属の種類などによって変化するため一義的に定めることは困難であるが、例えば、貴金属を回収する場合は、おおむね、周速を0.5〜1.8m/secの範囲内に制御することが好ましい。   The rotating cathode can be connected to power such as a motor installed in the apparatus and rotated. The peripheral speed (rotational speed) of the rotating cathode varies depending on the size of the electrolytic cell to be used, the amount of solution supplied to the electrolytic cell, or the type of metal to be collected, but it is difficult to uniquely determine it. For example, when recovering precious metals, it is preferable to generally control the peripheral speed within a range of 0.5 to 1.8 m / sec.

陰極の周速が0.5m/sec未満では、電解槽内の処理液が攪拌されずに、処理液が回転陰極の表面近傍に滞留し、電解効率を高めることができ難いからである。従って陰極の周速は0.5m/sec以上とすることが好ましい。より好ましくは0.7m/sec以上である。   This is because if the peripheral speed of the cathode is less than 0.5 m / sec, the treatment liquid in the electrolytic cell is not stirred and the treatment liquid stays in the vicinity of the surface of the rotating cathode, and it is difficult to increase the electrolysis efficiency. Therefore, the peripheral speed of the cathode is preferably 0.5 m / sec or more. More preferably, it is 0.7 m / sec or more.

しかし陰極の周速が1.8m/secを超えると、処理液に泡立ちが起こり、回転陰極での電気分解反応が阻害され、電解効率が却って低下する。また、陰極の周速を上げ過ぎると、処理溶液に波立ちが起こり、処理液が電解槽から溢れて安全性が悪くなる。従って陰極の周速は1.8m/sec以下とすることが好ましい。より好ましくは1.6m/sec以下、更に好ましくは1.5m/sec以下である。   However, if the peripheral speed of the cathode exceeds 1.8 m / sec, bubbling occurs in the treatment liquid, the electrolysis reaction at the rotating cathode is inhibited, and the electrolysis efficiency is lowered. Further, if the peripheral speed of the cathode is increased too much, the processing solution will be rippled and the processing solution will overflow from the electrolytic cell, resulting in poor safety. Therefore, the peripheral speed of the cathode is preferably 1.8 m / sec or less. More preferably, it is 1.6 m / sec or less, More preferably, it is 1.5 m / sec or less.

本発明の装置を適用して回収できる金属元素としては、例えば、貴金属元素やCu、Niなどが挙げられる。貴金属元素としては、例えば、AuやAg、或いは白金族元素(Pd、Pt、Ir、RuおよびRh)が挙げられる。特に、本発明の回収装置を用いれば、Auなどの高価な貴金属元素を、従来に比べて短時間で低コストで回収することができるため、本発明の回収装置は、溶液からの貴金属回収装置として極めて有用である。   Examples of metal elements that can be recovered by applying the apparatus of the present invention include noble metal elements, Cu, Ni, and the like. Examples of the noble metal element include Au and Ag, or platinum group elements (Pd, Pt, Ir, Ru, and Rh). In particular, if the recovery device of the present invention is used, an expensive noble metal element such as Au can be recovered in a shorter time and at a lower cost than conventional ones. Therefore, the recovery device of the present invention is a precious metal recovery device from a solution. As extremely useful.

本発明に用いられる金属含有溶液は、上記の金属を含有していればよく、代表的には、メッキ廃液や、写真の現像廃液、メッキ品を水洗した液、剥離液の廃液などが挙げられる。   The metal-containing solution used in the present invention is only required to contain the above-mentioned metal, and typically includes plating waste liquid, photographic development waste liquid, liquid obtained by washing a plated product, stripping liquid waste liquid, and the like. .

上記回収装置を用いて金属含有溶液を電気分解するときの電解条件は特に限定されず、例えば、電圧を1〜10V、電流を10〜25A程度として行えばよい。   The electrolysis conditions for electrolyzing the metal-containing solution using the recovery device are not particularly limited. For example, the voltage may be 1 to 10 V and the current may be about 10 to 25 A.

電気分解して金属含有溶液から金属を陰極表面に電着させた後は、回収装置から陰極を取り出し、この陰極を回収対象とする金属が溶解する液中に浸漬して金属を溶出させて回収すればよい。   After electrolysis and electrodeposition of the metal from the metal-containing solution onto the cathode surface, the cathode is taken out of the recovery device, and the cathode is immersed in a solution in which the metal to be recovered is dissolved to elute the metal and recover it. do it.

次に、本発明の金属回収装置について、図面を用いて一層具体的に説明する。   Next, the metal recovery apparatus of the present invention will be described more specifically with reference to the drawings.

図1は、本発明に係る第一の実施形態の金属回収装置の断面図である。表面に網状または多孔質状の導電体8が密着するように被覆された円筒状の回転陰極4を用い、当該回転陰極4の外側を囲むように陽極2が配置された回収装置の断面図である。図1中、1は電解槽、3は回転軸、5はモーター、6は循環槽、7はポンプを示している。なお、図1に示す金属回収装置は、本発明の一例を示す実施形態であり、これに限定する趣旨では決してない。   FIG. 1 is a sectional view of a metal recovery apparatus according to a first embodiment of the present invention. FIG. 6 is a cross-sectional view of a recovery device in which a cylindrical rotating cathode 4 coated so that a net-like or porous conductor 8 is in close contact with the surface and the anode 2 is disposed so as to surround the outer side of the rotating cathode 4. is there. In FIG. 1, 1 is an electrolytic cell, 3 is a rotating shaft, 5 is a motor, 6 is a circulation tank, and 7 is a pump. Note that the metal recovery apparatus shown in FIG. 1 is an embodiment showing an example of the present invention, and is not intended to be limited to this.

図1に示す金属回収装置は、軸を中心として回転する円筒状の回転陰極4と、該円筒状回転陰極4と対向するように配置された4枚の板状陽極2と、網状または多孔質状の導電体(チタン製網)8とを有している。板状陽極2と対向する回転陰極4の面の少なくとも一部が、チタン製網8で被覆されている。後記する実験例1〜20では、この回収装置を用いて実験を行なった。   The metal recovery apparatus shown in FIG. 1 includes a cylindrical rotating cathode 4 that rotates about an axis, four plate-like anodes 2 disposed so as to face the cylindrical rotating cathode 4, and a net-like or porous material. And an electric conductor (titanium net) 8. At least a part of the surface of the rotating cathode 4 facing the plate-like anode 2 is covered with a titanium mesh 8. In Experimental Examples 1 to 20 to be described later, experiments were performed using this recovery apparatus.

図4の(A)は、本発明に係る金属回収装置のうち、第二の実施形態で用いる円筒状の回転陰極4aを示した斜視図である。図4の(B)は、(A)に示した円筒状回転陰極4aの四角で囲んだ部分を拡大した図である。(A)に示した円筒状回転陰極4aの表面には、一定形状の凹部(溝)が全面に規則正しく設けられている。この溝は、(B)に示すように、幅がx、溝と溝の間隔y、溝の深さzである。   FIG. 4A is a perspective view showing a cylindrical rotating cathode 4a used in the second embodiment of the metal recovery apparatus according to the present invention. FIG. 4B is an enlarged view of a portion surrounded by a square of the cylindrical rotating cathode 4a shown in FIG. On the surface of the cylindrical rotating cathode 4a shown in (A), concave portions (grooves) having a fixed shape are regularly provided on the entire surface. As shown in (B), the groove has a width x, a groove-to-groove interval y, and a groove depth z.

溝は、回転陰極の円周に沿って水平方向に溝を形成してもよいし、回転陰極の軸に平行となるように垂直方向に溝を形成してもよい。垂直方向と水平方向の両方に溝を形成した格子状であってもよいし、垂直方向に対して斜め方向に溝を形成して菱形の格子状であってもよい。   The grooves may be formed in the horizontal direction along the circumference of the rotating cathode, or may be formed in the vertical direction so as to be parallel to the axis of the rotating cathode. A lattice shape in which grooves are formed in both the vertical direction and the horizontal direction may be used, or a groove may be formed in a diagonal direction with respect to the vertical direction to form a rhombus lattice shape.

凹部の大きさxは、0.5mm以上であることが好ましく、より好ましくは1mm以上、更に好ましくは1.5mm以上である。なお、凹部の大きさは、凹部が溝の場合は溝の幅を意味し、孔の場合は開口部の円相当径を意味する。溝の幅は、陰極表面に対して垂直となる断面を観察したときに、水平方向の壁面間距離を測定したときの最大値を測定すればよい。   The size x of the recess is preferably 0.5 mm or more, more preferably 1 mm or more, and still more preferably 1.5 mm or more. The size of the recess means the width of the groove when the recess is a groove, and the equivalent circle diameter of the opening when the recess is a hole. The width of the groove may be the maximum value when the distance between the wall surfaces in the horizontal direction is measured when a cross section perpendicular to the cathode surface is observed.

凹部の間隔yは、0.5mm以上であることが好ましく、より好ましくは1mm以上、更に好ましくは1.5mm以上である。なお、凹部の間隔とは、溝と溝の間隔、孔と孔の間隔、溝と孔の間隔を意味する。   The interval y between the recesses is preferably 0.5 mm or more, more preferably 1 mm or more, and further preferably 1.5 mm or more. In addition, the space | interval of a recessed part means the space | interval of a groove | channel, a space | interval of a hole, a space | interval of a groove | channel, and a space | interval of a groove | channel.

凹凸部の深さzは、0.5mm以上であることが好ましく、より好ましくは1mm以上、更に好ましくは1.5mm以上である。なお、凹凸部の深さとは、陰極表面に対して垂直となる断面を観察したときに、開口部から垂直方向の距離を測定したときの最大値を意味する。   The depth z of the concavo-convex portion is preferably 0.5 mm or more, more preferably 1 mm or more, and further preferably 1.5 mm or more. The depth of the concavo-convex portion means the maximum value when the distance in the vertical direction from the opening is measured when a cross section perpendicular to the cathode surface is observed.

後記する実験例21〜24では、図4に示した円筒状回転陰極4aを取り付けた金属回収装置を用いて実験を行った。なお、後記する実験例23では、溝を形成した円筒状回転陰極4aの表面を、チタン製網で更に被覆した円筒状回転陰極(図示せず)を用いて実験を行った。   In Experimental Examples 21 to 24 to be described later, experiments were performed using a metal recovery apparatus to which the cylindrical rotating cathode 4a illustrated in FIG. 4 was attached. In Experimental Example 23 to be described later, an experiment was performed using a cylindrical rotating cathode (not shown) in which the surface of the cylindrical rotating cathode 4a in which the groove was formed was further covered with a titanium mesh.

以下、本発明を実験例によって更に詳細に説明するが、下記実験例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to experimental examples, but the following experimental examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

(実験例1)
実験例1および後記する実験例2〜10は、Au含有シアン系メッキ品水洗水からAuを回収したときの回収効率を調べるために行なった。
(Experimental example 1)
Experimental Example 1 and Experimental Examples 2 to 10 described later were performed in order to examine the recovery efficiency when Au was recovered from the Au-containing cyan plating product washing water.

実験例1では、前述した図1に示す金属回収装置を用い、以下のようにしてAuを回収した。   In Experimental Example 1, Au was recovered as follows using the metal recovery apparatus shown in FIG. 1 described above.

電解槽1(容量は10L)の中心に配置された回転軸3には、円筒状回転陰極4が取り付けられており、該円筒状回転陰極4は、モーター5を動作させることで回転軸3を中心として周方向に回転させることができる。   A cylindrical rotating cathode 4 is attached to a rotating shaft 3 disposed at the center of the electrolytic cell 1 (capacity is 10 L). The cylindrical rotating cathode 4 operates the motor 5 to operate the rotating shaft 3. It can be rotated in the circumferential direction as the center.

円筒状回転陰極4は、チタン製で、直径160mm、長さ200mmの円筒状で、外表面には、導電体8として、平均目開きが1mm、平均線径が0.3mm(20メッシュ)のチタン製網が2重に巻かれている。チタン製網は、円筒状回転陰極4の表面に密着するように、スポット溶接で着接されている。   The cylindrical rotating cathode 4 is made of titanium and has a cylindrical shape having a diameter of 160 mm and a length of 200 mm. The outer surface has an average opening of 1 mm and an average wire diameter of 0.3 mm (20 mesh) as the conductor 8. Titanium mesh is wound twice. The titanium mesh is attached by spot welding so as to be in close contact with the surface of the cylindrical rotating cathode 4.

なお、円筒状回転陰極4とチタン製網とが接触する部分などを考慮せずに表面積を計算すると、円筒状回転陰極4の表面に上記チタン製網を着接した場合の表面積は、チタン製網を着接しない円筒状回転陰極4の表面積と比べて約3.9倍増加した。   When the surface area is calculated without considering the portion where the cylindrical rotating cathode 4 and the titanium mesh contact, the surface area when the titanium mesh is attached to the surface of the cylindrical rotating cathode 4 is titanium. The surface area of the cylindrical rotating cathode 4 not attached to the net increased by about 3.9 times.

電解槽1の内壁面には、各壁面に板状の不溶性陽極(100mm×250mm)が1枚ずつ、計4枚設けられている。   The inner wall surface of the electrolytic cell 1 is provided with a total of four plate-like insoluble anodes (100 mm × 250 mm) on each wall surface.

電解槽1内に、処理液としてAu濃度が97mg/LのAu含有シアン系メッキ品水洗水30Lを充填し、電解槽1からオーバーフローして溢れた処理液は、循環槽6に貯留された後、ポンプ7により循環槽6から電解槽1の底付近へ供給し、電解槽1内を循環させた。   The electrolytic bath 1 is filled with 30 L of an Au-containing cyan plating product washing water having an Au concentration of 97 mg / L as a treatment liquid, and the treatment liquid overflowing from the electrolytic tank 1 is stored in the circulation tank 6. The pump 7 was supplied from the circulation tank 6 to the vicinity of the bottom of the electrolytic cell 1 and circulated in the electrolytic cell 1.

電解槽1内を循環する液量は10L/分とし、電圧を4〜6V、電流を12A、円筒状回転陰極4の周速を1.0m/sec(回転数120rpm)として電気分解を行った。   The amount of liquid circulating in the electrolytic cell 1 was 10 L / min, the voltage was 4 to 6 V, the current was 12 A, and the peripheral speed of the cylindrical rotating cathode 4 was 1.0 m / sec (rotation speed 120 rpm). .

電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表1に示す。また、電解時間(hr)に対する処理液のAu濃度(mg/L)の変化を図2に■で示す。   Table 1 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis. Further, the change in Au concentration (mg / L) of the treatment liquid with respect to the electrolysis time (hr) is shown by ▪ in FIG.

下記表1から明らかなように、電気分解を3時間行った時点で、処理液のAu濃度は1mg/Lまで低下し、処理液中のAuは円筒状回転陰極4の表面に電着した。   As is apparent from Table 1 below, when the electrolysis was performed for 3 hours, the Au concentration of the treatment liquid decreased to 1 mg / L, and the Au in the treatment liquid was electrodeposited on the surface of the cylindrical rotating cathode 4.

(実験例2)
実験例2では、チタン製網がAuの回収効率に及ぼす影響を調べた。具体的には、上記実験例1において、円筒状回転陰極4として表面にチタン製網を設けていない直径160mm、長さ200mmの円筒状回転陰極4を用いた点以外は、上記実験例1と同じ条件で処理液を電気分解した。電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表1に示す。また、電解時間(hr)に対する処理液のAu濃度(mg/L)の変化を図2に◆で示す。
(Experimental example 2)
In Experimental Example 2, the influence of the titanium mesh on Au recovery efficiency was examined. Specifically, in Example 1 above, except that the cylindrical rotating cathode 4 having a diameter of 160 mm and a length of 200 mm in which the surface of the cylindrical rotating cathode 4 is not provided with a titanium mesh is used, The treatment solution was electrolyzed under the same conditions. Table 1 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis. Further, the change in Au concentration (mg / L) of the treatment liquid with respect to the electrolysis time (hr) is shown by ♦ in FIG.

下記表1から明らかなように、処理液のAu濃度を1mg/Lにまで低下するには、15時間必要であった。   As apparent from Table 1 below, it took 15 hours to reduce the Au concentration of the treatment liquid to 1 mg / L.

実験例2の結果と上記実験例1の結果を比べると、実験例2の結果は、処理液のAu濃度を1mg/Lにまで低下させるのに要する時間が約5倍となる。従って円筒状回転陰極4の表面にチタン製網を設けて表面積を約3.9倍増加させるだけで、Auの回収効率を約5倍に向上できることがわかる。   Comparing the results of Experimental Example 2 with the results of Experimental Example 1, the result of Experimental Example 2 shows that the time required to reduce the Au concentration of the treatment liquid to 1 mg / L is about five times. Therefore, it can be seen that the recovery efficiency of Au can be improved by about 5 times only by providing a titanium mesh on the surface of the cylindrical rotating cathode 4 to increase the surface area by about 3.9 times.

(実験例3)
実験例3では、回転陰極の周速がAuの回収効率に及ぼす影響を調べた。
(Experimental example 3)
In Experimental Example 3, the influence of the peripheral speed of the rotating cathode on the Au recovery efficiency was examined.

上記実験例2において、円筒状回転陰極4の周速を2.0m/sec(回転数240rpm)と2倍に高めた点以外は、上記実験例2と同じ条件で処理液を電気分解した。電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表1に示す。また、電解時間(hr)に対する処理液のAu濃度(mg/L)の変化を図2に▲で示す。   In Experimental Example 2, the treatment liquid was electrolyzed under the same conditions as in Experimental Example 2 except that the peripheral speed of the cylindrical rotating cathode 4 was increased to 2.0 m / sec (rotational speed 240 rpm). Table 1 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis. Further, the change in Au concentration (mg / L) of the treatment liquid with respect to the electrolysis time (hr) is shown by ▲ in FIG.

下記表1から明らかなように、処理液のAu濃度を1mg/Lにまで低下するには、12時間必要であった。   As apparent from Table 1 below, it took 12 hours to reduce the Au concentration of the treatment liquid to 1 mg / L.

実験例3の結果と上記実験例2の結果を比べると、円筒状回転陰極4の周速を2倍にしても、電解時間は3時間短縮できるに留まり、Auの回収効率は20%程しか改善しなかった。   Comparing the results of Experimental Example 3 with the results of Experimental Example 2 above, even if the peripheral speed of the cylindrical rotating cathode 4 is doubled, the electrolysis time can be shortened by 3 hours, and the Au recovery efficiency is only about 20%. It did not improve.

なお、円筒状回転陰極4の周速は、2.0m/sec(回転数240rpm)程度が限界で、これ以上周速を上げると処理液の波立ちが大きくなり、安全操業できなかった。   The peripheral speed of the cylindrical rotating cathode 4 is limited to about 2.0 m / sec (rotation speed 240 rpm). If the peripheral speed is increased beyond this, the spilling of the treatment liquid increases, and safe operation cannot be performed.

図2から明らかなように、円筒状回転陰極4の表面にチタン製網を設けない場合(図2中の◆と▲)よりも、円筒状回転陰極4の表面にチタン製網を設けることによって(図2中の■)、電解時間が著しく短くなり、Auの回収効率が格段に向上していることが分かる。   As can be seen from FIG. 2, by providing a titanium mesh on the surface of the cylindrical rotating cathode 4 rather than providing a titanium mesh on the surface of the cylindrical rotating cathode 4 (♦ and ▲ in FIG. 2). (■ in FIG. 2), it can be seen that the electrolysis time is remarkably shortened, and the Au recovery efficiency is remarkably improved.

(実験例4)
実験例4と後述する実験例5は、回転陰極の周速がAuの回収効率に及ぼす影響を調べた他の実験である。
(Experimental example 4)
Experimental Example 4 and Experimental Example 5 described later are other experiments in which the influence of the peripheral speed of the rotating cathode on the Au recovery efficiency was examined.

上記実験例1において、円筒状回転陰極4の周速を0.3m/sec(回転数40rpm)と1/3に低減した点以外は、上記実験例1と同じ条件で処理液を電気分解した。電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表1に示す。   In the above experimental example 1, the treatment liquid was electrolyzed under the same conditions as in the above experimental example 1 except that the peripheral speed of the cylindrical rotating cathode 4 was reduced to 1/3, 0.3 m / sec (rotation speed 40 rpm). . Table 1 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis.

下記表1から明らかなように、処理液のAu濃度を1mg/Lにまで低下させるには、6時間必要であった。   As apparent from Table 1 below, it took 6 hours to reduce the Au concentration of the treatment liquid to 1 mg / L.

実験例4の結果と上記実験例1の結果を比べると、円筒状回転陰極4の周速を小さくし過ぎると、電解時間が長くなり、Auの回収効率があまり改善できていないことが分かった。回収効率が改善できていない理由は、処理液の攪拌不足によるものと考えられ、電気分解反応が進み難くなったためと考えられる。   Comparing the results of Experimental Example 4 with the results of Experimental Example 1, it was found that if the peripheral speed of the cylindrical rotating cathode 4 is made too small, the electrolysis time becomes longer and the Au recovery efficiency cannot be improved much. . The reason why the recovery efficiency cannot be improved is thought to be due to insufficient stirring of the treatment liquid, and it is considered that the electrolysis reaction has become difficult to proceed.

(実験例5)
上記実験例1において、円筒状回転陰極4の周速を2.0m/sec(回転数240rpm)と2倍に高めた点以外は、上記実験例1と同じ条件で処理液を電気分解した。電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表1に示す。
(Experimental example 5)
In Experimental Example 1, the treatment liquid was electrolyzed under the same conditions as in Experimental Example 1 except that the peripheral speed of the cylindrical rotating cathode 4 was increased to 2.0 m / sec (rotational speed 240 rpm). Table 1 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis.

下記表1から明らかなように、処理液のAu濃度を1mg/Lにまで低下させるには、5時間必要であった。   As apparent from Table 1 below, it took 5 hours to reduce the Au concentration of the treatment liquid to 1 mg / L.

実験例5の結果と上記実験例1の結果を比べると、実験例5の結果は、処理液のAu濃度を1mg/Lにまで低下させるために要する時間が約1.7倍となり、円筒状回転陰極4の周速が大き過ぎる場合には、Auの回収効率が却って悪くなることが分かった。Auの回収効率が悪くなったのは、周速が大き過ぎることにより、処理液の泡立ちが発生し、発生した気泡によって円筒状回転陰極4と処理液との接触面積が減少して電気分解反応が進み難くなったためと考えられる。   Comparing the result of Experimental Example 5 with the result of Experimental Example 1, the result of Experimental Example 5 shows that the time required to reduce the Au concentration of the treatment liquid to 1 mg / L is about 1.7 times, and is cylindrical. It has been found that when the peripheral speed of the rotating cathode 4 is too high, the Au recovery efficiency deteriorates. The recovery efficiency of Au deteriorated because the peripheral speed was too high, the bubbling of the processing liquid was generated, and the contact area between the cylindrical rotating cathode 4 and the processing liquid was reduced by the generated bubbles, resulting in an electrolysis reaction. This is thought to be because it became difficult to proceed.

下記表1から明らかなように、円筒状回転陰極4の周速を小さくし過ぎても、高くし過ぎても、上記実験例1の結果よりもAuの回収時間は長くなり、Auの回収効率はあまり向上していないことが分かる。   As is clear from Table 1 below, the Au recovery time becomes longer than the result of Experimental Example 1 and the Au recovery efficiency, regardless of whether the peripheral speed of the cylindrical rotating cathode 4 is too small or too high. It turns out that there is not much improvement.

(実験例6)
実験例6および後述する実験例7、8は、チタン製網の目開きや線径がAuの回収効率に及ぼす影響を調べた実験である。
(Experimental example 6)
Experimental Example 6 and Experimental Examples 7 and 8 to be described later are experiments in which the influence of the titanium mesh opening and wire diameter on Au recovery efficiency was examined.

上記実験例1において、チタン製網として、平均目開きが5mm、平均線径が1mm(4メッシュ)の網を用いた点以外は、上記実験例1と同じ条件で処理液を電気分解した。なお、円筒状回転陰極4とチタン製網とが接触する部分などを考慮せずに表面積を計算すると、円筒状回転陰極4の表面に上記チタン製網を着接した場合の表面積は、チタン製網を着接しない円筒状回転陰極4の表面積と比べて3.1倍程度の増加であった。   In Experimental Example 1, the treatment solution was electrolyzed under the same conditions as in Experimental Example 1 except that a mesh having an average opening of 5 mm and an average wire diameter of 1 mm (4 mesh) was used as the titanium mesh. When the surface area is calculated without considering the portion where the cylindrical rotating cathode 4 and the titanium mesh contact, the surface area when the titanium mesh is attached to the surface of the cylindrical rotating cathode 4 is titanium. The increase was about 3.1 times the surface area of the cylindrical rotating cathode 4 not attached to the net.

電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表1に示す。   Table 1 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis.

下記表1から明らかなように、処理液のAu濃度を1mg/Lにまで低下させるには、6時間必要であった。   As apparent from Table 1 below, it took 6 hours to reduce the Au concentration of the treatment liquid to 1 mg / L.

実験例6の結果と上記実験例1の結果を比べると、チタン製網として目が粗過ぎる網を用いると、Auの回収に時間がかかり、Auの回収効率はあまり改善できていないことが分かった。   Comparing the results of Experimental Example 6 with the results of Experimental Example 1 described above, it was found that when a mesh with too coarse mesh was used as the titanium mesh, it took time to recover Au and the recovery efficiency of Au was not improved much. It was.

(実験例7)
上記実験例1において、チタン製網として、平均目開きが2mm、平均線径が0.5mm(10メッシュ)の網を用いた点以外は、上記実験例1と同じ条件で処理液を電気分解した。なお、円筒状回転陰極4とチタン製網とが接触する部分などを考慮せずに表面積を計算すると、円筒状回転陰極4の表面に上記チタン製網を着接した場合の表面積は、チタン製網を着接しない円筒状回転陰極4の表面積と比べて3.5倍程度の増加であった。
(Experimental example 7)
In Experimental Example 1, the treatment liquid was electrolyzed under the same conditions as in Experimental Example 1 except that a mesh having an average opening of 2 mm and an average wire diameter of 0.5 mm (10 mesh) was used as the titanium mesh. did. When the surface area is calculated without considering the portion where the cylindrical rotating cathode 4 and the titanium mesh contact, the surface area when the titanium mesh is attached to the surface of the cylindrical rotating cathode 4 is titanium. The increase was about 3.5 times the surface area of the cylindrical rotating cathode 4 that was not attached to the net.

電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表1に示す。   Table 1 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis.

下記表1から明らかなように、電気分解を4時間行った時点で、処理液のAu濃度は1mg/L未満にまで低下した。   As is apparent from Table 1 below, when the electrolysis was performed for 4 hours, the Au concentration of the treatment liquid decreased to less than 1 mg / L.

実験例7の結果と上記実験例1の結果を比べると、チタン製網が10メッシュでも20メッシュでも処理液のAu濃度が1mg/L程度に到達するまでの時間はほぼ同じで、Auの回収効率はほぼ同じであった。   Comparing the results of Experimental Example 7 with the results of Experimental Example 1 above, the time required for the Au concentration of the processing solution to reach about 1 mg / L is almost the same regardless of whether the titanium mesh is 10 mesh or 20 mesh. The efficiency was almost the same.

(実験例8)
上記実験例1において、チタン製網として、平均目開きが0.3mm、平均線径が0.1mm(60メッシュ)の網を用いた点以外は、上記実験例1と同じ条件で処理液を電気分解した。なお、円筒状回転陰極4とチタン製網とが接触する部分などを考慮せずに表面積を計算すると、円筒状回転陰極4の表面に上記チタン製網を着接した場合の表面積は、チタン製網を着接しない円筒状回転陰極4の表面積と比べて4.1倍程度の増加であった。
(Experimental example 8)
In Experimental Example 1, the treatment liquid was used under the same conditions as in Experimental Example 1 except that a mesh having an average aperture of 0.3 mm and an average wire diameter of 0.1 mm (60 mesh) was used as the titanium mesh. Electrolyzed. When the surface area is calculated without considering the portion where the cylindrical rotating cathode 4 and the titanium mesh contact, the surface area when the titanium mesh is attached to the surface of the cylindrical rotating cathode 4 is titanium. The increase was about 4.1 times the surface area of the cylindrical rotating cathode 4 not attached to the net.

電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表1に示す。   Table 1 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis.

下記表1から明らかなように、処理液のAu濃度を1mg/Lにまで低下させるには、5時間必要であった。   As apparent from Table 1 below, it took 5 hours to reduce the Au concentration of the treatment liquid to 1 mg / L.

実験例8の結果と上記実験例1の結果を比べると、チタン製網として目が細か過ぎる網を用いても電解時間をあまり短縮できず、Auの回収効率は改善できないことが分かった。   Comparing the results of Experimental Example 8 with the results of Experimental Example 1, it was found that even when a mesh with too fine mesh was used as the titanium mesh, the electrolysis time could not be shortened much and the Au recovery efficiency could not be improved.

下記表1から明らかなように、チタン製網の目を粗くし過ぎても、細かくし過ぎても、上記実験例1の結果や上記実験例7の結果よりもAuの回収に時間がかかり、Auの回収効率は改善できていないことが分かる。   As apparent from Table 1 below, even if the mesh of the titanium mesh is too coarse or too fine, it takes longer to recover Au than the results of Experimental Example 1 and Experimental Example 7, It can be seen that the recovery efficiency of Au has not been improved.

(実験例9)
実験例9および後述する実験例10は、チタン製網の巻数がAuの回収効率に及ぼす影響を調べた実験である。
(Experimental example 9)
Experimental Example 9 and Experimental Example 10 described later are experiments in which the influence of the number of turns of the titanium net on the Au recovery efficiency was examined.

上記実験例1において、円筒状回転陰極4の表面に巻くチタン製網の巻き数を1重にする点以外は、上記実験例1と同じ条件で処理液を電気分解した。なお、円筒状回転陰極4とチタン製網とが接触する部分などを考慮せずに表面積を計算すると、円筒状回転陰極4の表面に上記チタン製網を着接した場合の表面積は、チタン製網を着接しない円筒状回転陰極4の表面積と比べて2.4倍程度の増加であった。   In Experimental Example 1, the treatment solution was electrolyzed under the same conditions as in Experimental Example 1 except that the number of turns of the titanium mesh wound around the surface of the cylindrical rotating cathode 4 was single. When the surface area is calculated without considering the portion where the cylindrical rotating cathode 4 and the titanium mesh contact, the surface area when the titanium mesh is attached to the surface of the cylindrical rotating cathode 4 is titanium. The increase was about 2.4 times the surface area of the cylindrical rotating cathode 4 not attached to the net.

電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表1に示す。   Table 1 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis.

下記表1から明らかなように、処理液のAu濃度を1mg/Lにまで低下するには、5時間必要であった。   As apparent from Table 1 below, it took 5 hours to reduce the Au concentration of the treatment liquid to 1 mg / L.

実験例9の結果と上記実験例1の結果を比べると、円筒状回転陰極4の表面に巻くチタン製網の巻き数を減らし過ぎると、チタン製網を巻き付ける効果が充分に得られ難いことがわかる。   Comparing the result of Experimental Example 9 with the result of Experimental Example 1 described above, if the number of turns of the titanium mesh wound around the surface of the cylindrical rotating cathode 4 is excessively reduced, it is difficult to sufficiently obtain the effect of winding the titanium mesh. Recognize.

(実験例10)
上記実験例1において、円筒状回転陰極4の表面に巻くチタン製網の巻き数を4重にする点以外は、上記実験例1と同じ条件で処理液を電気分解した。なお、円筒状回転陰極4とチタン製網とが接触する部分などを考慮せずに表面積を計算すると、円筒状回転陰極4の表面に上記チタン製網を着接した場合の表面積は、チタン製網を着接しない円筒状回転陰極4の表面積と比べて6.8倍程度の増加であった。
(Experimental example 10)
In Experimental Example 1, the treatment solution was electrolyzed under the same conditions as in Experimental Example 1 except that the number of turns of the titanium mesh wound around the surface of the cylindrical rotating cathode 4 was quadrupled. When the surface area is calculated without considering the portion where the cylindrical rotating cathode 4 and the titanium mesh contact, the surface area when the titanium mesh is attached to the surface of the cylindrical rotating cathode 4 is titanium. The increase was about 6.8 times the surface area of the cylindrical rotating cathode 4 not attached to the net.

電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表1に示す。   Table 1 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis.

下記表1から明らかなように、電気分解を3時間行った時点で、処理液のAu濃度は1mg/Lまで低下した。   As is clear from Table 1 below, when the electrolysis was performed for 3 hours, the Au concentration of the treatment liquid decreased to 1 mg / L.

実験例10の結果と上記実験例1の結果を比べると、円筒状回転陰極4の表面に巻くチタン製網の巻き数を増やし過ぎてもチタン製網を巻き付ける効果は飽和することがわかる。   Comparing the results of Experimental Example 10 with the results of Experimental Example 1, it can be seen that the effect of winding the titanium mesh is saturated even if the number of turns of the titanium mesh wound around the surface of the cylindrical rotating cathode 4 is increased excessively.

下記表1から明らかなように、チタン製網の巻き数を少なくし過ぎると、上記実験例1の結果や上記実験例10の結果よりも電解時間が長くなり、Auの回収効率を改善し難いことが分かる。   As is clear from Table 1 below, if the number of turns of the titanium mesh is reduced too much, the electrolysis time becomes longer than the results of Experimental Example 1 and Experimental Example 10, and it is difficult to improve the Au recovery efficiency. I understand that.

Figure 2008153001
Figure 2008153001

(実験例11)
実験例11および後記する実験例12、13では、Au回収工程を繰返し行なったときのチタン製網の影響を調べた。
(Experimental example 11)
In Experimental Example 11 and Experimental Examples 12 and 13 to be described later, the influence of the titanium net when the Au recovery process was repeatedly performed was examined.

上記実験例1において、処理液としてAu含有シアン系メッキ品水洗水30Lを図1に示した金属回収装置に充填し、該廃液のAu濃度が1mg/Lになるまで電気分解した後、円筒状回転陰極4に電着したAuを回収せずに新たなAu含有シアン系メッキ品水洗水30Lを充填する工程を繰返して30回行った。当該Au含有シアン系メッキ品水洗水のAu濃度は97mg/Lである。円筒状回転陰極4に電着したAuが剥離して電解槽1の底に堆積したAu量を測定した。測定結果を下記表2に示す。   In the experimental example 1, 30L of Au-containing cyan plating product washing water as a treatment liquid is filled in the metal recovery apparatus shown in FIG. 1, and electrolysis is performed until the Au concentration of the waste liquid becomes 1 mg / L, and then cylindrical. The process of filling a new Au-containing cyan plating product washing water 30 L without collecting Au electrodeposited on the rotating cathode 4 was repeated 30 times. The Au concentration of the Au-containing cyan plating product washing water is 97 mg / L. The amount of Au deposited on the bottom of the electrolytic cell 1 after the electrodeposited Au on the cylindrical rotating cathode 4 was measured. The measurement results are shown in Table 2 below.

なお、Au含有シアン系メッキ品水洗水としては、合計で900L用いた。該廃液に含まれている総Au量は87.3gであった。   In addition, 900 L was used in total as the Au-containing cyan plating product washing water. The total amount of Au contained in the waste liquid was 87.3 g.

下記表2から明らかなように、30回繰返して電気分解を行った後、円筒状回転陰極4に電着しているAu量は86.1gであり、電解槽の底に堆積したAu量は0.3gであった。従って円筒状回転陰極4から剥離したAu率は0.3%であった。   As is clear from Table 2 below, after 30 times of electrolysis, the amount of Au electrodeposited on the cylindrical rotating cathode 4 is 86.1 g, and the amount of Au deposited on the bottom of the electrolytic cell is It was 0.3 g. Therefore, the rate of Au peeled from the cylindrical rotating cathode 4 was 0.3%.

(実験例12)
上記実験例11において、円筒状回転陰極4として表面にチタン製網を設けていない直径160mm、長さ200mmの円筒状回転陰極4を用いた点以外は、上記実験例11と同じ条件で処理液を電気分解した。
(Experimental example 12)
In the experimental example 11, the treatment liquid was used under the same conditions as in the experimental example 11 except that the cylindrical rotating cathode 4 having a diameter of 160 mm and a length of 200 mm without a titanium mesh on the surface was used as the cylindrical rotating cathode 4. Was electrolyzed.

下記表2から明らかなように、30回繰返して電気分解を行った後、円筒状回転陰極4に電着しているAu量は81.3gであり、電解槽の底に堆積したAu量は5.1gであった。従って円筒状回転陰極4から剥離したAu率は5.8%であった。   As is clear from Table 2 below, after 30 times of electrolysis, the amount of Au electrodeposited on the cylindrical rotating cathode 4 is 81.3 g, and the amount of Au deposited on the bottom of the electrolytic cell is It was 5.1 g. Therefore, the Au ratio peeled from the cylindrical rotating cathode 4 was 5.8%.

(実験例13)
上記実験例11において、円筒状回転陰極4の表面にチタン製網を巻き付ける際に、チタン製網と円筒状回転陰極の上部複数ヶ所を導線でつなぎ、チタン製網が円筒状回転陰極4の表面に密着しないように、スペーサーを入れて1mm程度の隙間をあけてから2重となるように巻き付けた円筒状回転陰極4を用いた点以外は、上記実験例11と同じ条件で処理液を電気分解した。
(Experimental example 13)
In the experimental example 11, when the titanium mesh is wound around the surface of the cylindrical rotating cathode 4, the titanium mesh and the upper portion of the cylindrical rotating cathode are connected by a conductive wire, and the titanium mesh is the surface of the cylindrical rotating cathode 4. In order to prevent the treatment liquid from being discharged under the same conditions as in Experimental Example 11, except that a cylindrical rotating cathode 4 wound in a double space after a spacer was inserted and a gap of about 1 mm was used. Disassembled.

下記表2から明らかなように、30回繰返して電気分解を行った後、円筒状回転陰極4に電着しているAu量は85.0gであり、電解槽の底に堆積したAu量は1.4gであった。従って円筒状回転陰極4から剥離したAu率は1.6%であった。   As is apparent from Table 2 below, the amount of Au electrodeposited on the cylindrical rotating cathode 4 after 30 times of electrolysis was 85.0 g, and the amount of Au deposited on the bottom of the electrolytic cell was It was 1.4 g. Therefore, the rate of Au peeled from the cylindrical rotating cathode 4 was 1.6%.

上記実験例11〜13の結果を比べると、円筒状回転陰極4の表面にチタン製網を着接させることで、円筒状回転陰極4への電着性を高めることができ、円筒状回転陰極4の表面からAuを剥離させることなく回収できることがわかる。そのため、円筒状回転陰極4の表面から剥れ落ちた金属を回収するための特別な機構を別途設ける必要がなくなり、回収装置の省スペース化を実現できる。   Comparing the results of the above experimental examples 11 to 13, the electrodeposition on the cylindrical rotating cathode 4 can be improved by attaching a titanium mesh to the surface of the cylindrical rotating cathode 4. It can be seen that Au can be recovered from the surface of 4 without peeling off. Therefore, it is not necessary to separately provide a special mechanism for recovering the metal peeled off from the surface of the cylindrical rotating cathode 4, and space saving of the recovery device can be realized.

Figure 2008153001
Figure 2008153001

(実験例14)
実験例14および後記する実験例15、16は、Au含有王水剥離液の廃液からAuを回収したときの回収効率を調べた実験である。
(Experimental example 14)
Experimental Example 14 and Experimental Examples 15 and 16 to be described later are experiments in which the recovery efficiency when Au was recovered from the waste liquid of the Au-containing aqua repellent liquid was investigated.

上記実験例1において、処理液としてAu含有王水剥離液の廃液を用いた点と、電圧を1.0〜2.0V、電流を20Aとして電気分解を行った点以外は、上記実験例1と同じ条件で処理液を電気分解した。当該Au含有王水剥離液の廃液のAu濃度は80mg/Lである。電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表3に示す。また、電解時間(hr)に対する処理液のAu濃度(mg/L)の変化を図3に■で示す。   In Experimental Example 1, except that the waste liquid of Au-containing aqua repellent liquid was used as the treatment liquid, and electrolysis was performed with a voltage of 1.0 to 2.0 V and a current of 20 A, the Experimental Example 1 The treatment liquid was electrolyzed under the same conditions. The Au concentration of the waste liquid of the Au-containing aqua repellent liquid is 80 mg / L. Table 3 below shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis. Further, the change in Au concentration (mg / L) of the treatment liquid with respect to the electrolysis time (hr) is shown by ■ in FIG.

下記表3から明らかなように、電気分解を6時間行った時点で、処理液のAu濃度は3mg/Lまで低下した。6時間経過する間、円筒状回転陰極4に電着したAuが剥離した様子は認められなかった。   As is clear from Table 3 below, when the electrolysis was performed for 6 hours, the Au concentration of the treatment liquid decreased to 3 mg / L. During the lapse of 6 hours, it was not observed that Au electrodeposited on the cylindrical rotating cathode 4 was peeled off.

(実験例15)
上記実験例14において、円筒状回転陰極4として表面にチタン製網を設けていない直径160mm、長さ200mmの円筒状回転陰極4を用いた点以外は、上記実験例14と同じ条件で処理液を電気分解した。電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表3に示す。また、電解時間(hr)に対する処理液のAu濃度(mg/L)の変化を図3に◆で示す。
(Experimental example 15)
In the experimental example 14, the treatment liquid was used under the same conditions as in the experimental example 14 except that the cylindrical rotating cathode 4 having a diameter of 160 mm and a length of 200 mm was used as the cylindrical rotating cathode 4. Was electrolyzed. Table 3 below shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis. Further, the change in Au concentration (mg / L) of the treatment liquid with respect to the electrolysis time (hr) is shown by ♦ in FIG.

下記表3から明らかなように、電気分解を12時間行った時点で、処理液のAu濃度は10mg/Lまで低下したが、その後、円筒状回転陰極4に電着したAuが剥離して再溶解が起きたため、Au濃度の上昇が認められた。   As is apparent from Table 3 below, when the electrolysis was performed for 12 hours, the Au concentration of the treatment liquid decreased to 10 mg / L. Thereafter, the electrodeposited Au on the cylindrical rotating cathode 4 was peeled off and re-applied. Since dissolution occurred, an increase in Au concentration was observed.

なお、円筒状回転陰極4から剥離したAuは、しばらくすると王水に溶解してしまうため、剥離したAu量は測定できなかった。   In addition, since Au peeled from the cylindrical rotating cathode 4 was dissolved in aqua regia after a while, the amount of peeled Au could not be measured.

(実験例16)
上記実験例14において、円筒状回転陰極4の表面にチタン製網を巻き付ける際に、チタン製網と円筒状回転陰極の上部複数ヶ所を導線でつなぎ、チタン製網が円筒状回転陰極4の表面に密着しないように、スペーサーを入れて1mm程度の隙間をあけてから2重となるように巻き付けた円筒状回転陰極4を用いた点以外は、上記実験例14と同じ条件で処理液を電気分解した。電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表3に示す。また、電解時間(hr)に対する処理液のAu濃度(mg/L)の変化を図3に▲で示す。
(Experimental example 16)
In the experimental example 14, when the titanium mesh is wound around the surface of the cylindrical rotating cathode 4, the titanium mesh and the upper part of the cylindrical rotating cathode are connected by a conductive wire, and the titanium mesh is the surface of the cylindrical rotating cathode 4 In order to prevent the treatment liquid from being discharged under the same conditions as in Experimental Example 14, except that a cylindrical rotating cathode 4 wound in a double space after a spacer is inserted and a gap of about 1 mm is used is used. Disassembled. Table 3 below shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis. Further, the change in Au concentration (mg / L) of the treatment liquid with respect to the electrolysis time (hr) is shown by ▲ in FIG.

下記表3から明らかなように、電気分解を3時間行った時点で、円筒状回転陰極4に電着したAuが剥離して再溶解が起きた。処理液のAu濃度は、20mg/L前後で推移し、Au濃度はこれ以上低下しなかった。   As is apparent from Table 3 below, when the electrolysis was performed for 3 hours, Au electrodeposited on the cylindrical rotating cathode 4 was peeled off and redissolved. The Au concentration of the treatment liquid changed around 20 mg / L, and the Au concentration did not decrease any more.

なお、円筒状回転陰極4から剥離したAuは、しばらくすると王水に溶解してしまうため、剥離したAu量は測定できなかった。   In addition, since Au peeled from the cylindrical rotating cathode 4 was dissolved in aqua regia after a while, the amount of peeled Au could not be measured.

実験例14〜16の結果をプロットした図3から明らかなように、処理液としてAu含有王水剥離液の廃液を用いた場合であっても、チタン製網を表面に着接させた円筒状回転陰極4を用いることで(図3の■)、電解時間を短くすることができ、Auの回収効率が高くなることが分かる。また、チタン製網を表面に着接させた円筒状回転陰極4を用いることで(図3の■)、処理液のAu濃度を3mg/Lまで低下させることができている。   As is apparent from FIG. 3 in which the results of Experimental Examples 14 to 16 are plotted, even when the waste liquid of the Au-containing aqua repellent liquid is used as the processing liquid, a cylindrical shape in which a titanium net is attached to the surface It can be seen that by using the rotating cathode 4 (■ in FIG. 3), the electrolysis time can be shortened and the Au recovery efficiency is increased. Further, by using the cylindrical rotating cathode 4 having a titanium mesh attached to the surface (■ in FIG. 3), the Au concentration of the treatment liquid can be reduced to 3 mg / L.

Figure 2008153001
Figure 2008153001

(実験例17)
実験例17および後記する実験例18では、Pd含有廃液からPdを回収したときの回収効率を調べた。
(Experimental example 17)
In Experimental Example 17 and Experimental Example 18 described below, the recovery efficiency when Pd was recovered from the Pd-containing waste liquid was examined.

上記実験例1において、処理液としてPd含有廃液(Pd濃度は113mg/L、pH=8)を用いた点と、電圧を7〜8Vとして電気分解を行った点以外は、上記実験例1と同じ条件で処理液を電気分解した。電気分解を開始してから数時間経過毎に処理液のPd濃度を測定した結果を下記表4に示す。   In the experimental example 1, except that the Pd-containing waste liquid (Pd concentration is 113 mg / L, pH = 8) is used as the treatment liquid and the electrolysis is performed at a voltage of 7 to 8 V, the above experimental example 1 The treatment solution was electrolyzed under the same conditions. Table 4 shows the results of measuring the Pd concentration of the treatment liquid every several hours after the start of electrolysis.

下記表4から明らかなように、電気分解を6時間行った時点で、処理液のPd濃度は1mg/Lまで低下した。   As is clear from Table 4 below, when the electrolysis was performed for 6 hours, the Pd concentration of the treatment liquid decreased to 1 mg / L.

(実験例18)
上記実験例17において、円筒状回転陰極4として表面にチタン製網を設けていない直径160mm、長さ200mmの円筒状回転陰極4を用いた点以外は、上記実験例17と同じ条件で処理液を電気分解した。電気分解を開始してから数時間経過毎に処理液のPd濃度を測定した結果を下記表4に示す。
(Experiment 18)
In the experimental example 17, the treatment liquid was used under the same conditions as in the experimental example 17 except that the cylindrical rotating cathode 4 having a diameter of 160 mm and a length of 200 mm without a titanium mesh on the surface was used as the cylindrical rotating cathode 4. Was electrolyzed. Table 4 shows the results of measuring the Pd concentration of the treatment liquid every several hours after the start of electrolysis.

下記表4から明らかなように、処理液のPd濃度を1mg/Lにまで低下するには、27時間必要であった。   As apparent from Table 4 below, it took 27 hours to reduce the Pd concentration of the treatment liquid to 1 mg / L.

実験例18の結果と上記実験例17の結果を比べると、実験例18の電解時間は約4.5倍に増加しているため、本発明によれば、円筒状回転陰極4の表面にチタン製網を設けて表面積を約3.9倍増加させるだけで、Pdの回収効率を約4.5倍に向上できることがわかる。   Comparing the result of Experimental Example 18 with the result of Experimental Example 17, the electrolysis time of Experimental Example 18 is increased by about 4.5 times. Therefore, according to the present invention, titanium is formed on the surface of the cylindrical rotating cathode 4. It can be seen that the recovery efficiency of Pd can be improved by about 4.5 times simply by providing a net and increasing the surface area by about 3.9 times.

下記表4から明らかなように、Pd含有廃液からPdを回収する場合であっても、円筒状回転陰極4の表面にチタン製網を設けないときよりも、円筒状回転陰極4の表面にチタン製網を設けることによって、電解時間が著しく短くなり、Pdの回収効率が高くなっていることが分かる。   As is apparent from Table 4 below, even when Pd is recovered from the Pd-containing waste liquid, titanium is formed on the surface of the cylindrical rotating cathode 4 more than when no titanium mesh is provided on the surface of the cylindrical rotating cathode 4. It can be seen that by providing the net, the electrolysis time is remarkably shortened and the recovery efficiency of Pd is increased.

Figure 2008153001
Figure 2008153001

(実験例19)
実験例19および後記する実験例20では、Cu含有硫酸廃液からCuを回収したときの回収効率を調べた。
(Experimental example 19)
In Experimental Example 19 and Experimental Example 20 described later, the recovery efficiency when Cu was recovered from the Cu-containing sulfuric acid waste liquid was examined.

上記実験例1において、処理液としてCu含有硫酸廃液(Cu濃度は166mg/L、酸濃度は1mol/L)を用いた点と、電圧を3〜4Vとして電気分解を行った点以外は、上記実験例1と同じ条件で処理液を電気分解した。電気分解を開始してから数時間経過毎に処理液のCu濃度を測定した結果を下記表5に示す。   In the above experimental example 1, except that the Cu-containing sulfuric acid waste liquid (Cu concentration is 166 mg / L, acid concentration is 1 mol / L) is used as the treatment liquid, and the electrolysis is performed at a voltage of 3 to 4 V. The treatment liquid was electrolyzed under the same conditions as in Experimental Example 1. Table 5 below shows the results of measuring the Cu concentration of the treatment liquid every several hours after the start of electrolysis.

下記表5から明らかなように、電気分解を3時間行った時点で、処理液のCu濃度は5mg/Lに低下し、6時間行った時点で、処理液のCu濃度は1mg/L未満にまで低下した。   As is apparent from Table 5 below, when the electrolysis is performed for 3 hours, the Cu concentration of the treatment liquid decreases to 5 mg / L, and when the electrolysis is performed for 6 hours, the Cu concentration of the treatment liquid is less than 1 mg / L. It dropped to.

(実験例20)
上記実験例19において、円筒状回転陰極4として表面にチタン製網を設けていない直径160mm、長さ200mmの円筒状回転陰極4を用いた点以外は、上記実験例19と同じ条件で処理液を電気分解した。電気分解を開始してから数時間経過毎に処理液のCu濃度を測定した結果を下記表5に示す。
(Experiment 20)
In the experimental example 19, the treatment liquid was used under the same conditions as in the experimental example 19 except that the cylindrical rotating cathode 4 having a diameter of 160 mm and a length of 200 mm was used as the cylindrical rotating cathode 4. Was electrolyzed. Table 5 below shows the results of measuring the Cu concentration of the treatment liquid every several hours after the start of electrolysis.

下記表5から明らかなように、処理液のCu濃度を1mg/L未満にまで低下するには、24時間必要であった。   As apparent from Table 5 below, it took 24 hours to reduce the Cu concentration of the treatment liquid to less than 1 mg / L.

実験例20の結果と上記実験例19の結果を比べると、実験例20では電解時間が約4倍に長くなっており、円筒状回転陰極4の表面にチタン製網を設けて表面積を約3.9倍増加させるだけで、Cuの回収効率を約4倍に向上できることがわかる。   Comparing the results of Experimental Example 20 with the results of Experimental Example 19, in Experimental Example 20, the electrolysis time is about four times longer, and a titanium mesh is provided on the surface of the cylindrical rotating cathode 4 to provide a surface area of about 3 times. It can be seen that the Cu recovery efficiency can be improved by a factor of about 4 only by increasing it by .9 times.

下記表5から明らかなように、円筒状回転陰極4の表面にチタン製網を設けない場合よりも、円筒状回転陰極4の表面にチタン製網を設けることによって、電解時間が著しく短くなり、Cuの回収効率が向上していることが分かる。   As is apparent from Table 5 below, by providing a titanium mesh on the surface of the cylindrical rotating cathode 4 than when no titanium mesh is provided on the surface of the cylindrical rotating cathode 4, the electrolysis time is significantly shortened. It can be seen that the recovery efficiency of Cu is improved.

Figure 2008153001
Figure 2008153001

(実験例21)
実験例21および後記する実験例22〜24は、前述した図1に示す金属回収装置において、図4に示す円筒状回転陰極4aを取り付けた回収装置を用い、Au含有シアン系メッキ品水洗水からAuを回収したときの回収効率を調べるために行なった。円筒状回転陰極4aの表面には、切削加工にて溝が全面に形成されている。溝の形状は規則正しく加工されており、溝の幅xは1mm、溝と溝の間隔yは1mm、溝の深さzは3mmである。回転陰極の表面に形成した溝の断面形状は矩形であり、溝の外観は、図4に示すように、垂直方向に形成された溝が円周方向に等間隔で並んでいる。
(Experimental example 21)
Experimental Example 21 and Experimental Examples 22 to 24 to be described later use the recovery device provided with the cylindrical rotating cathode 4a shown in FIG. 4 in the metal recovery device shown in FIG. This was performed in order to examine the recovery efficiency when Au was recovered. Grooves are formed on the entire surface of the cylindrical rotating cathode 4a by cutting. The shape of the groove is regularly processed, the width x of the groove is 1 mm, the distance y between the grooves is 1 mm, and the depth z of the groove is 3 mm. The cross-sectional shape of the groove formed on the surface of the rotating cathode is rectangular, and as shown in FIG. 4, the grooves formed in the vertical direction are arranged at equal intervals in the circumferential direction.

実験条件は、上記実験例1と同じ条件で行なった。なお、凹凸を設けた円筒状回転陰極4aの表面積は、凹凸を設けない場合の表面積と比べて4.0倍増加した。表面積の増加率は上記実験例1と同じである。   The experimental conditions were the same as in Experimental Example 1 above. In addition, the surface area of the cylindrical rotating cathode 4a provided with unevenness increased by 4.0 times compared to the surface area when no unevenness was provided. The increase rate of the surface area is the same as in Experimental Example 1.

電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表6に示す。   Table 6 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis.

下記表6から明らかなように、電気分解を3時間行った時点で、処理液のAu濃度は1mg/Lまで低下した。処理液中のAuは円筒状回転陰極4aの表面に電着した。   As is apparent from Table 6 below, when the electrolysis was performed for 3 hours, the Au concentration of the treatment liquid decreased to 1 mg / L. Au in the treatment liquid was electrodeposited on the surface of the cylindrical rotating cathode 4a.

実験例21と上記実験例1から明らかなように、Auの回収効率は、表面に深さ3mmの溝を設けた円筒状回転陰極4aを用いた場合と、円筒状回転陰極4の表面にチタン製網を2重に被覆した場合で変わらず、同等であった。   As is clear from Experimental Example 21 and Experimental Example 1, Au recovery efficiency is achieved when the cylindrical rotating cathode 4a having a groove with a depth of 3 mm is used on the surface and when the surface of the cylindrical rotating cathode 4 is titanium. It was the same when the nets were double coated.

(実験例22)
実験例22では、溝の深さがAuの回収効率に及ぼす影響を調べた。具体的には、上記実験例21において、溝の深さzを1.5mmと浅く形成した円筒状回転陰極4aを用いた点以外は、上記実験例21と同じ条件で処理液を電気分解した。なお、凹凸を設けた円筒状回転陰極4aの表面積は、凹凸を設けない場合の表面積と比べて2.5倍の増加に留まった。
(Experimental example 22)
In Experimental Example 22, the influence of the groove depth on the Au recovery efficiency was examined. Specifically, in Example 21 above, the treatment liquid was electrolyzed under the same conditions as in Example 21 except that the cylindrical rotating cathode 4a formed with a groove depth z as shallow as 1.5 mm was used. . In addition, the surface area of the cylindrical rotating cathode 4a provided with the unevenness only increased by 2.5 times compared to the surface area when the unevenness was not provided.

電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表6に示す。下記表6から明らかなように、処理液のAu濃度を1mg/Lにまで低下させるには、5時間必要であった。   Table 6 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis. As apparent from Table 6 below, it took 5 hours to reduce the Au concentration of the treatment liquid to 1 mg / L.

実験例22の結果と上記実験例21の結果から明らかなように、溝を深くして回転陰極の表面積を大きくした方が、Auの回収効率を改善できることが分かる。   As is apparent from the results of Experimental Example 22 and the results of Experimental Example 21, it can be seen that the Au recovery efficiency can be improved by increasing the surface area of the rotating cathode by deepening the groove.

(実験例23)
実験例23は、第一の実施形態と第二の実施形態を組合せることにより、円筒状回転陰極4aの表面に被覆した導電体がAuの回収効率に及ぼす影響を調べた。具体的には、上記実験例22で用いた円筒状回転陰極4a(溝の深さzは1.5mm)の表面に、導電体として、平均目開きが1mm、平均線径が0.3mm(20メッシュ)のチタン製網を1重に巻きつけた点以外は、上記実験例21と同じ条件で処理液を電気分解した。チタン製網は、円筒状回転陰極4aの表面に密着するようにスポット溶接で着接されている。なお、本実験例で用いた円筒状回転陰極4a(凹凸形成+導電体被覆)の表面積は、凹凸を形成せず、且つ導電体で被覆しない場合の表面積と比べて3.9倍増加した。
(Experimental example 23)
In Experimental Example 23, the effect of the conductor coated on the surface of the cylindrical rotating cathode 4a on the Au recovery efficiency was examined by combining the first embodiment and the second embodiment. Specifically, on the surface of the cylindrical rotating cathode 4a (groove depth z is 1.5 mm) used in Experimental Example 22, the conductor has an average opening of 1 mm and an average wire diameter of 0.3 mm ( The treatment solution was electrolyzed under the same conditions as in Experimental Example 21 except that a 20 mesh) titanium mesh was wound in a single layer. The titanium mesh is attached by spot welding so as to be in close contact with the surface of the cylindrical rotating cathode 4a. In addition, the surface area of the cylindrical rotating cathode 4a (unevenness formation + conductor coating) used in this experimental example was increased by 3.9 times compared to the surface area when the unevenness was not formed and the conductor was not covered with the conductor.

電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表6に示す。下記表6から明らかなように、処理液のAu濃度を1mg/Lにまで低下させるには、3時間必要であった。   Table 6 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis. As apparent from Table 6 below, it took 3 hours to reduce the Au concentration of the treatment liquid to 1 mg / L.

実験例23と上記実験例22から明らかなように、円筒状回転陰極の表面に形成した凹部の深さが比較的浅く、1.5mmの場合でも、該表面に更に導電体を被覆すれば、表面積が高められるため円筒状回転陰極の表面に凹部を3.0mmと深く形成した上記実験例21と同程度のAu回収効率改善効果が発揮されることが分かる。   As is clear from Experimental Example 23 and Experimental Example 22 described above, even when the depth of the recess formed on the surface of the cylindrical rotating cathode is relatively shallow and 1.5 mm, if the surface is further covered with a conductor, Since the surface area is increased, it can be seen that the Au recovery efficiency improvement effect is similar to that of Experimental Example 21 in which the concave portion is formed as deep as 3.0 mm on the surface of the cylindrical rotating cathode.

(実験例24)
実験例24では、上記実験例21において、ブラスト処理を施すことによって円筒状回転陰極4aの表面に凹凸を形成した点以外は、上記実験例21と同じ条件で処理液を電気分解した。ブラスト処理は、粒子径が120μm程度のアルミナ粒子を用いた。ブラスト処理後における円筒状回転陰極4aの凸部と凹部の高さの差は最大で0.01mm程度であり、凹部と凸部の間隔は0.05〜0.06mm程度であった。なお、表面にブラスト処理を施した円筒状回転陰極4aの表面積は、ブラスト処理を行なわない場合の表面積と比べて1.1〜1.2倍程度の増加に留まった。
(Experimental example 24)
In Experimental Example 24, the treatment liquid was electrolyzed under the same conditions as in Experimental Example 21 except that unevenness was formed on the surface of the cylindrical rotating cathode 4a by performing blasting in Experimental Example 21. For the blast treatment, alumina particles having a particle size of about 120 μm were used. The difference in height between the convex portion and the concave portion of the cylindrical rotating cathode 4a after the blasting process was about 0.01 mm at the maximum, and the distance between the concave portion and the convex portion was about 0.05 to 0.06 mm. In addition, the surface area of the cylindrical rotating cathode 4a subjected to the blasting process was increased by about 1.1 to 1.2 times as compared with the surface area when the blasting process was not performed.

電気分解を開始してから数時間経過毎に処理液のAu濃度を測定した結果を下記表6に示す。下記表6から明らかなように、処理液のAu濃度を1mg/Lにまで低下させるには、15時間必要であった。   Table 6 shows the results of measuring the Au concentration of the treatment liquid every several hours after the start of electrolysis. As apparent from Table 6 below, it took 15 hours to reduce the Au concentration of the treatment liquid to 1 mg / L.

実験例24と上記実験例21から明らかなように、本実験例24によるブラスト処理では、表面積の増加が所望レベルに達しなかったため、表面積を約4倍に増加させた上記実験例21に比べ、処理液のAu濃度を1mg/Lにまで低下させるのに要する時間が5倍になった。   As is clear from Experimental Example 24 and Experimental Example 21, in the blast treatment according to Experimental Example 24, the increase in surface area did not reach the desired level, so compared with Experimental Example 21 in which the surface area was increased about four times, The time required to reduce the Au concentration of the treatment liquid to 1 mg / L has increased 5 times.

Figure 2008153001
Figure 2008153001

(実験例25)
実験例25と後記する実験例26は、円筒状回転陰極の耐久性を評価するために行なった。
(Experimental example 25)
Experimental Example 25 and Experimental Example 26 described later were performed in order to evaluate the durability of the cylindrical rotating cathode.

実験例25では、上記実験例21において、Auが電着した円筒状回転陰極4aを装置から取り外し、加熱した王水10Lに600時間浸漬させた。王水は70〜90℃となるように加熱した。また、時間経過と共に、溶媒の一部が蒸発して王水の液量が減るため、新しい王水を適宜添加した。   In Experimental Example 25, the cylindrical rotating cathode 4a electrodeposited with Au in the Experimental Example 21 was removed from the apparatus and immersed in 10 L of heated aqua regia for 600 hours. Aqua regia was heated to 70-90 ° C. Moreover, since a part of solvent evaporates with time and the amount of aqua regia decreases, new aqua regia was added appropriately.

600時間経過後、王水から円筒状回転陰極4aを取り出し、水洗、乾燥した後に、陰極表面を目視で観察し、浸漬前後における円筒状回転陰極4a表面の形状変化を評価した。600時間経過後、円筒状回転陰極4aの表面形状には、殆んど変化は認められなかった。   After the elapse of 600 hours, the cylindrical rotating cathode 4a was taken out from aqua regia, washed with water and dried, and then the surface of the cathode was visually observed to evaluate the shape change of the surface of the cylindrical rotating cathode 4a before and after immersion. After 600 hours, almost no change was observed in the surface shape of the cylindrical rotating cathode 4a.

(実験例26)
実験例26では、上記実験例1において、Auが電着した円筒状回転陰極4を装置から取り外し、上記実験例25と同じ条件で円筒状回転陰極4を王水に浸漬させて形状変化を評価した。600時間経過後、円筒状回転陰極4表面の形状変化を目視で観察したところ、円筒状回転陰極4の表面に被覆したチタン製網の一部が、円筒状回転陰極4の表面から剥離していた。
(Experimental example 26)
In Experimental Example 26, the cylindrical rotating cathode 4 electrodeposited with Au in Example 1 was removed from the apparatus, and the cylindrical rotating cathode 4 was immersed in aqua regia under the same conditions as in Experimental Example 25 to evaluate the shape change. did. After 600 hours, when the shape change of the surface of the cylindrical rotating cathode 4 was visually observed, a part of the titanium mesh coated on the surface of the cylindrical rotating cathode 4 was peeled off from the surface of the cylindrical rotating cathode 4. It was.

実験例26と上記実験例25の結果を比較すると、Auの回収効率は同程度であるが、Ti製網の代わりに溝付回転陰極を用いることにより、円筒状回転陰極の耐久性を向上できることが分かる。   Comparing the results of Experimental Example 26 and Experimental Example 25, the Au recovery efficiency is comparable, but the durability of the cylindrical rotating cathode can be improved by using a grooved rotating cathode instead of a Ti net. I understand.

本発明によれば、金属含有溶液から金属を電気分解によって回収する際に用いられる装置であって、省スペース化・設備負荷の低減化を実現でき、しかも短時間で金属を回収できる回収効率に極めて優れた装置を提供できる。   According to the present invention, it is an apparatus used when recovering metal from a metal-containing solution by electrolysis, and can realize space saving and reduction of equipment load, and can recover metal in a short time. An extremely excellent device can be provided.

Claims (6)

金属含有溶液を電気分解して金属を回収する装置であって、
該装置は、
軸を中心として回転する柱状または筒状の回転陰極と、
該回転陰極と対向するように配置された陽極と、
網状または多孔質状の導電体と、を有し、
前記陽極と対向する前記回転陰極の面の少なくとも一部は、前記導電体で被覆されていることを特徴とする金属の回収装置。
An apparatus for recovering metal by electrolyzing a metal-containing solution,
The device
A columnar or cylindrical rotating cathode that rotates about an axis; and
An anode disposed to face the rotating cathode;
A net-like or porous conductor, and
At least a part of the surface of the rotating cathode facing the anode is covered with the conductor.
前記金属は、貴金属である請求項1に記載の回収装置。   The recovery device according to claim 1, wherein the metal is a noble metal. 前記導電体は、平均目開きが0.5〜3mmの金属網である請求項1または2に記載の回収装置。   The recovery device according to claim 1, wherein the conductor is a metal net having an average opening of 0.5 to 3 mm. 前記導電体は、平均線径が0.3〜0.5mmの金属網である請求項1〜3のいずれかに記載の回収装置。   The recovery apparatus according to claim 1, wherein the conductor is a metal net having an average wire diameter of 0.3 to 0.5 mm. 金属含有溶液を電気分解して金属を回収する装置であって、
該装置は、
軸を中心として回転する柱状または筒状の回転陰極と、
該回転陰極と対向するように配置された陽極とを有し、
前記陽極と対向する前記回転陰極の面の少なくとも一部は、凹凸に加工されていることを特徴とする金属の回収装置。
An apparatus for recovering metal by electrolyzing a metal-containing solution,
The device
A columnar or cylindrical rotating cathode that rotates about an axis; and
An anode arranged to face the rotating cathode;
At least a part of the surface of the rotating cathode facing the anode is processed into a concavo-convex shape.
前記陽極と対向する前記回転陰極の面の少なくとも一部は、網状または多孔質状の導電体で被覆されている請求項5に記載の回収装置。   The recovery device according to claim 5, wherein at least a part of the surface of the rotating cathode facing the anode is coated with a net-like or porous conductor.
JP2009519247A 2007-06-11 2008-06-09 Precious metal recovery equipment Active JP5651332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009519247A JP5651332B2 (en) 2007-06-11 2008-06-09 Precious metal recovery equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007154459 2007-06-11
JP2007154459 2007-06-11
PCT/JP2008/060542 WO2008153001A1 (en) 2007-06-11 2008-06-09 Metal recovering device
JP2009519247A JP5651332B2 (en) 2007-06-11 2008-06-09 Precious metal recovery equipment

Publications (2)

Publication Number Publication Date
JPWO2008153001A1 true JPWO2008153001A1 (en) 2010-08-26
JP5651332B2 JP5651332B2 (en) 2015-01-14

Family

ID=40129606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009519247A Active JP5651332B2 (en) 2007-06-11 2008-06-09 Precious metal recovery equipment

Country Status (7)

Country Link
JP (1) JP5651332B2 (en)
KR (2) KR20080108886A (en)
CN (2) CN101323957A (en)
HK (1) HK1138335A1 (en)
MY (1) MY157686A (en)
TW (1) TWI435953B (en)
WO (1) WO2008153001A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2479316A1 (en) * 2009-09-14 2012-07-25 Sangyoup Suk Electrolytic bath for recovering valuable metals, with increased contact specific surface area
KR100992716B1 (en) * 2009-10-13 2010-11-05 석상엽 Electrolyzer for withdrawing valuable metal which having more contact specific surface area
KR200448283Y1 (en) * 2009-10-27 2010-03-30 고병산 The precious metals recovery apparatus of rotating disc type to be equipped double electrodes
KR101151564B1 (en) * 2009-11-16 2012-05-31 신동만 Electroanalysis gold recovery apparatus with cathode filler
JP5558232B2 (en) * 2010-07-05 2014-07-23 株式会社東芝 Rare metal recovery method and recovery equipment from high radioactive level waste liquid
JP4666418B1 (en) * 2010-07-07 2011-04-06 田中貴金属工業株式会社 Precious metal recovery device and recovery method
JP5507502B2 (en) * 2011-07-15 2014-05-28 松田産業株式会社 Gold electrolysis recovery method
JP5848571B2 (en) * 2011-10-04 2016-01-27 Dowaエコシステム株式会社 Electrolytic recovery device
CN103215615B (en) * 2013-04-10 2016-08-03 东莞市华生电镀机械设备有限公司 A kind of recovery method of noble metal
CN105164317B (en) * 2013-05-31 2016-11-02 朝日浦力环境科技有限公司 Processing method and processing means containing Au iodine system etching solution
EP3192519A4 (en) * 2014-06-20 2018-03-14 Joint Center For Biosciences Composition containing pseudomonas aeruginosa culture solution extract having antibiotic and antiseptic activities, and use thereof
CN110306206A (en) * 2019-07-16 2019-10-08 深圳市鑫鸿发环保设备有限公司 A kind of electrolytic recovery device
KR102244502B1 (en) * 2019-11-29 2021-04-27 한국생산기술연구원 Cathode apparatus and method for plasma electrolytic polishing of inner surface of pipe
JP7337676B2 (en) 2019-12-05 2023-09-04 アサヒプリテック株式会社 Metal electrolytic recovery equipment
WO2022085610A1 (en) 2020-10-21 2022-04-28 アサヒプリテック株式会社 Condition monitoring system for metal recovery device
CN112877538A (en) * 2021-01-11 2021-06-01 中南大学 Device and method for recycling cadmium sponge by enhanced replacement of self-rotating current electric field
JP6975871B1 (en) * 2021-09-06 2021-12-01 松田産業株式会社 Electrolytic recovery device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134932Y1 (en) * 1970-01-09 1976-08-28
JPS62161979A (en) * 1986-01-08 1987-07-17 Showa Denko Kk Manufacture of electrolytic iron
JPS63186887A (en) * 1987-01-28 1988-08-02 Mitsui Mining & Smelting Co Ltd Electrode for electrolysis
JPH071070U (en) * 1993-02-16 1995-01-10 株式会社フジプレシャス Laminated mesh electrode
JP3990483B2 (en) * 1997-09-24 2007-10-10 松田産業株式会社 Gold electrolysis recovery equipment

Also Published As

Publication number Publication date
JP5651332B2 (en) 2015-01-14
MY157686A (en) 2016-07-15
KR20080108886A (en) 2008-12-16
CN101323957A (en) 2008-12-17
CN101646808A (en) 2010-02-10
TW200912046A (en) 2009-03-16
HK1138335A1 (en) 2010-08-20
WO2008153001A1 (en) 2008-12-18
TWI435953B (en) 2014-05-01
CN101646808B (en) 2012-10-24
KR20100015659A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JPWO2008153001A1 (en) Metal recovery device
EP2176451B1 (en) Anode assembly for electroplating
EP2592177B1 (en) Precious metal recovery device and recovery method
JP2010163699A (en) Apparatus for producing metal powder by electrowinning
WO2004024996A1 (en) Method for operating a metal particle electrolyzer
JP2617496B2 (en) Permanent anode for high current density galvanizing process
Kim et al. Fabrication of Ti/Ir-Ru electrode by spin coating method for electrochemical removal of copper
KR102657685B1 (en) Rotary-type surface treatment apparatus
KR101073369B1 (en) An anode for oxygen evolution, a relevant substrate, a method for the preparation of the substrate and an electroplating cell comprising the anode
CA2533450A1 (en) Metal electrowinning cell with electrolyte purifier
JP3191315U (en) Metal electrolytic recovery equipment
JP4151904B2 (en) Metal recovery device
JP5848571B2 (en) Electrolytic recovery device
JP4397961B1 (en) Silver electrolytic recovery equipment
JP4198161B2 (en) Barrel plating method
JP5507502B2 (en) Gold electrolysis recovery method
JP4742728B2 (en) Barrel plating method
CN219099371U (en) Insoluble anode device for cylindrical pulse electroplating
JP3161827U (en) Insoluble anode structure
KR200448367Y1 (en) The precious metals recovery apparatus of rotating disc type
JP2010090467A (en) Plating apparatus
JP2007100185A (en) Plating device and method for producing semiconductor device
JP2003171788A (en) Equipment for fractional recovery of metallic base material from object to be plated and method for fractional recovery of the same
JP2005314742A (en) Metal recovery device and metal recovery method
RU68496U1 (en) ELECTROCOAGULATOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140108

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5651332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250