JPWO2008133100A1 - Diaphragm pump - Google Patents

Diaphragm pump Download PDF

Info

Publication number
JPWO2008133100A1
JPWO2008133100A1 JP2009511803A JP2009511803A JPWO2008133100A1 JP WO2008133100 A1 JPWO2008133100 A1 JP WO2008133100A1 JP 2009511803 A JP2009511803 A JP 2009511803A JP 2009511803 A JP2009511803 A JP 2009511803A JP WO2008133100 A1 JPWO2008133100 A1 JP WO2008133100A1
Authority
JP
Japan
Prior art keywords
discharge
suction
diaphragm
chamber
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009511803A
Other languages
Japanese (ja)
Other versions
JP4966373B2 (en
Inventor
道夫 上村
道夫 上村
駒井 栄一
栄一 駒井
中島 二郎
二郎 中島
佐藤 昭
昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2009511803A priority Critical patent/JP4966373B2/en
Publication of JPWO2008133100A1 publication Critical patent/JPWO2008133100A1/en
Application granted granted Critical
Publication of JP4966373B2 publication Critical patent/JP4966373B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive

Abstract

平面円形でその中心部の振幅が最も大きくなるように振動するダイヤフラム;このダイヤフラムとハウジングとの間に形成したポンプ室;ハウジングに、ダイヤフラムの平面中心に対する偏心対称位置に設けた吸入側液溜室と吐出側液溜室;この一対の液溜室とポンプ室との間にそれぞれ設けた、吸入側液溜室からポンプ室への流体流を許しその逆方向の流体流を許さない吸入側逆止弁と、ポンプ室から上記吐出側液溜室への流体流を許しその逆方向の流体流を許さない吐出側逆止弁;及び互いに平行をなし、吸入側液溜室と吐出側液溜室にそれぞれ開口する吸入ポートと吐出ポート;を有するダイヤフラムポンプにおいて、吸入ポートの吸入側液溜室への開口端と吐出ポートの吐出側液溜室への開口端の中心間隔を、吸入側逆止弁と吐出側逆止弁の中心間隔より大きく設定し、流路抵抗及び圧力損失を小さくしたダイヤフラムポンプ。Diaphragm which is flat and vibrates so that the amplitude of the central part becomes the largest; pump chamber formed between the diaphragm and the housing; suction side liquid reservoir chamber provided in the housing at an eccentric symmetry position with respect to the plane center of the diaphragm And a discharge side liquid storage chamber; a suction side reverse that is provided between the pair of liquid storage chambers and the pump chamber, and allows fluid flow from the suction side liquid storage chamber to the pump chamber and does not allow fluid flow in the opposite direction. A check valve, a discharge-side check valve that allows fluid flow from the pump chamber to the discharge-side reservoir, and does not allow fluid flow in the opposite direction; and a suction-side reservoir and discharge-side reservoir that are parallel to each other; In a diaphragm pump having a suction port and a discharge port respectively opened in the chamber, the center distance between the opening end of the suction port to the suction side liquid reservoir chamber and the opening end of the discharge port to the discharge side liquid reservoir chamber is reversed to the suction side. Stop valve and discharge side Larger set than the center spacing of stop valve, reduced the diaphragm pump flow resistance and pressure loss.

Description

本発明は、ダイヤフラムポンプに関する。   The present invention relates to a diaphragm pump.

振動するダイヤフラムによってポンプ作用を得るポンプとして、例えば圧電ポンプがある。圧電ポンプは、平面円形の圧電振動子とハウジングによってポンプ室を形成する。ハウジングには、ダイヤフラムの平面中心に対する偏心対称位置に位置させて、吸入ポートと吐出ポートがそれぞれ開口する吸入側液溜室と吐出側液溜室を設け、この一対の液溜室とポンプ室との間には、吸入側液溜室からポンプ室への流体流を許しその逆方向の流体流を許さない吸入側逆止弁と、ポンプ室から吐出側液溜室への流体流を許しその逆方向の流体流を許さない吐出側逆止弁とを設けている。圧電振動子が振動すると、ポンプ室の容積が大きくなる行程では、流入側逆止弁が開き吐出側逆止弁が閉じて吸入ポート、吸入側液溜室からポンプ室内に流体が流入し、逆にポンプ室の容積が小さくなる行程では、吐出側逆止弁が開き吸入側逆止弁が閉じてポンプ室から吐出側液溜室、吐出ポートに流体が吐出され、ポンプ作用が得られる。   An example of a pump that obtains a pump action by a vibrating diaphragm is a piezoelectric pump. The piezoelectric pump forms a pump chamber by a planar circular piezoelectric vibrator and a housing. The housing is provided with a suction-side liquid storage chamber and a discharge-side liquid storage chamber, each of which is located at an eccentric symmetry position with respect to the plane center of the diaphragm. The suction side check valve that allows fluid flow from the suction side liquid reservoir chamber to the pump chamber and not reverse fluid flow, and permits fluid flow from the pump chamber to the discharge side liquid reservoir chamber. A discharge-side check valve that does not allow fluid flow in the reverse direction is provided. When the volume of the pump chamber increases when the piezoelectric vibrator vibrates, the inflow side check valve opens and the discharge side check valve closes, and the fluid flows into the pump chamber from the suction port and the suction side liquid storage chamber. In the process of reducing the volume of the pump chamber, the discharge-side check valve is opened and the suction-side check valve is closed, and fluid is discharged from the pump chamber to the discharge-side reservoir and discharge port to obtain a pump action.

特開2006-253477号公報JP 2006-253477 A 特開2003-120548号公報JP2003-120548 実公平06-18076号公報No. 06-18076

このダイヤフラムポンプでは、圧電振動子(ダイヤフラム)の変位で高吐出量を確保するため、流路抵抗及び圧力損失をできるだけ小さくすることが臨まれている。   In this diaphragm pump, in order to ensure a high discharge rate by the displacement of the piezoelectric vibrator (diaphragm), it is expected to reduce the flow path resistance and the pressure loss as much as possible.

本発明は、流路抵抗及び圧力損失をできるだけ小さくするという観点から、従来のダイヤフラムポンプの一対の逆止弁(吸入側逆止弁と吐出側逆止弁)と一対のポート(吸入ポートと吐出ポート)の位置関係を見直した結果、円形のダイヤフラムはその中心部の変位が最大であるのに、従来品では、一対の逆止弁の間隔と一対のポートの間隔が同一であり(一対のポートの延長線上に一対の逆止弁が位置しており)、これが流路抵抗及び圧力損失を高めている原因であるとの結論に達して本発明に至ったものである。   The present invention has a pair of check valves (a suction-side check valve and a discharge-side check valve) and a pair of ports (a suction port and a discharge port) of a conventional diaphragm pump from the viewpoint of minimizing the flow resistance and pressure loss. As a result of reviewing the positional relationship of the port), the circular diaphragm has the largest displacement at the center, but the conventional product has the same distance between the pair of check valves and the distance between the pair of ports (a pair of ports). A pair of check valves is located on the extended line of the port), and the present inventors have reached the conclusion that this is the cause of increasing the flow resistance and the pressure loss.

本発明は、平面円形でその中心部の振幅が最も大きくなるように振動するダイヤフラム;このダイヤフラムとハウジングとの間に形成したポンプ室;ハウジングに、ダイヤフラムの平面中心に対する偏心対称位置に設けた吸入側液溜室と吐出側液溜室;この一対の液溜室とポンプ室との間にそれぞれ設けた、吸入側液溜室からポンプ室への流体流を許しその逆方向の流体流を許さない吸入側逆止弁と、ポンプ室から上記吐出側液溜室への流体流を許しその逆方向の流体流を許さない吐出側逆止弁;及び互いに平行をなし、吸入側液溜室と吐出側液溜室にそれぞれ開口する吸入ポートと吐出ポート;を有するダイヤフラムポンプにおいて、吸入ポートの吸入側液溜室への開口端と吐出ポートの吐出側液溜室への開口端の中心間隔を、吸入側逆止弁と吐出側逆止弁の中心間隔より広く設定したことを特徴としている。   The present invention relates to a diaphragm that is circular and vibrates so that the amplitude of the central portion thereof is maximized; a pump chamber formed between the diaphragm and the housing; a suction provided in the housing at an eccentric symmetry position with respect to the plane center of the diaphragm Side liquid storage chamber and discharge side liquid storage chamber; fluid flow from the suction side liquid storage chamber to the pump chamber, which is provided between the pair of liquid storage chambers and the pump chamber, respectively, and reverse fluid flow is allowed. A suction-side check valve, a discharge-side check valve that allows fluid flow from the pump chamber to the discharge-side reservoir and does not allow fluid flow in the opposite direction; and a suction-side reservoir that is parallel to each other; In a diaphragm pump having a suction port and a discharge port that respectively open to the discharge side liquid reservoir chamber, the center distance between the opening end of the suction port to the suction side liquid reservoir chamber and the opening end of the discharge port to the discharge side liquid reservoir chamber is determined. , Suction side check Is characterized broadly that set than the center spacing of the discharge side check valve and.

吸入ポート、吸入側液溜室、吸入側逆止弁、ポンプ室、吐出側逆止弁、吐出側液溜室及び吐出ポートを通る流路は、吸入ポートと吐出ポートの軸線を含む平面と直交する方向から見たとき、U字状をなすように配置することが好ましい。   The flow path passing through the suction port, suction side liquid reservoir, suction side check valve, pump chamber, discharge side check valve, discharge side liquid reservoir and discharge port is orthogonal to the plane including the axes of the suction port and discharge port. When viewed from the direction to do, it is preferably arranged so as to form a U-shape.

吸入側と吐出側の逆止弁はそれぞれ、軸部と傘部を有するアンブレラと、このアンブレラの軸部の回りに形成され傘部によって覆われる流路孔とから構成するのがよい。そして、吸入側と吐出側の一対のアンブレラの軸部は、ダイヤフラムの中心軸線に対して非平行かつ対称で、ダイヤフラムに向かって互いに接近する方向に傾斜していることが望ましい。   Each of the suction side and discharge side check valves is preferably composed of an umbrella having a shaft portion and an umbrella portion, and a flow path hole formed around the shaft portion of the umbrella and covered by the umbrella portion. The shafts of the pair of umbrellas on the suction side and the discharge side are preferably non-parallel and symmetrical with respect to the central axis of the diaphragm, and are inclined in a direction toward each other toward the diaphragm.

本発明は、少なくともダイヤフラムとして圧電振動子を用いた圧電ポンプに適用できる。   The present invention can be applied to a piezoelectric pump using a piezoelectric vibrator as at least a diaphragm.

本発明のダイヤフラムポンプは、中心部の変位が最大である円形のダイヤフラムに対し、吸入側逆止弁と吐出側逆止弁の間隔を、吸入ポートと吐出ポートの間隔より狭く設定した(一対のポートの間隔を一対の逆止弁の間隔より広く設定した)から、吸入ポート、吸入側液溜室、吸入側逆止弁、ダイヤフラムの変位が最大のポンプ室中央、吐出側逆止弁、吐出側液溜室、吐出ポートの順に、滑らかな流路を形成することができ、流路抵抗及び圧力損失を減らした効率のよいポンプを得ることができる。   In the diaphragm pump of the present invention, the distance between the suction side check valve and the discharge side check valve is set to be smaller than the distance between the suction port and the discharge port with respect to the circular diaphragm having the maximum displacement at the center (a pair of pairs). Since the interval between the ports is set wider than the interval between the pair of check valves), the suction port, the suction side reservoir, the suction side check valve, the center of the pump chamber where the displacement of the diaphragm is maximum, the discharge side check valve, the discharge A smooth flow path can be formed in the order of the side liquid reservoir and the discharge port, and an efficient pump with reduced flow path resistance and pressure loss can be obtained.

本発明を圧電ポンプに適用した一実施形態を示す分解斜視図である。It is a disassembled perspective view which shows one Embodiment which applied this invention to the piezoelectric pump. 同カバー及び圧電振動子を除いて描いた平面図である。It is the top view drawn except the cover and the piezoelectric vibrator. 同側面図である。It is the same side view. 図2のIV-IV線に沿う断面図である。It is sectional drawing which follows the IV-IV line of FIG. 図4から圧電振動子及び逆止弁ユニットを除いて描いた断面図である。FIG. 5 is a cross-sectional view drawn from FIG. 4 excluding a piezoelectric vibrator and a check valve unit. 逆止弁間隔の広狭が流量特性に与える影響を調べたグラフ図である。It is the graph which investigated the influence which the width of a non-return valve interval has on flow characteristics. 逆止弁間隔の広狭が閉鎖圧に与える影響を調べたグラフ図である。It is the graph which investigated the influence which the width of a non-return valve interval has on closing pressure.

符号の説明Explanation of symbols

10 圧電振動子
10a シム
10b 圧電体
10c 給電端子
11 ガイドリング
12 Oリング
20 アッパハウジング
30 ロアハウジング
31 円形凹部
32 吸入側液溜室
33 吐出側液溜室
34 吸入ポート
35 吐出ポート
34a 35a 開口端
36 吸入側アンブレラ
37 吐出側アンブレラ
40 駆動基板
50 下蓋
P ポンプ室
DESCRIPTION OF SYMBOLS 10 Piezoelectric vibrator 10a Shim 10b Piezoelectric body 10c Power supply terminal 11 Guide ring 12 O-ring 20 Upper housing 30 Lower housing 31 Circular recess 32 Suction side liquid reservoir chamber 33 Discharge side liquid reservoir chamber 34 Suction port 35 Discharge port 34a 35a Open end 36 Suction-side umbrella 37 Discharge-side umbrella 40 Drive substrate 50 Lower lid P Pump chamber

図1ないし図5は、本発明を圧電ポンプに適用した実施形態を示している。本圧電ポンプ100は、平面円形の圧電振動子10、アッパハウジング(上蓋)20、ロアハウジング30、駆動基板40及び下蓋50を備えている。ロアハウジング30には、圧電振動子10を受け入れる円形凹部31が形成されている。円形凹部31内に収納される圧電振動子10は、その表裏にガイドリング11とOリング12を当接させた状態で、アッパハウジング20とロアハウジング30の間に挟着され、ポンプ室P(図4)を構成している。   1 to 5 show an embodiment in which the present invention is applied to a piezoelectric pump. The piezoelectric pump 100 includes a planar circular piezoelectric vibrator 10, an upper housing (upper lid) 20, a lower housing 30, a drive substrate 40, and a lower lid 50. The lower housing 30 is formed with a circular recess 31 that receives the piezoelectric vibrator 10. The piezoelectric vibrator 10 accommodated in the circular recess 31 is sandwiched between the upper housing 20 and the lower housing 30 with the guide ring 11 and the O-ring 12 in contact with the front and back surfaces thereof, and the pump chamber P ( 4).

圧電振動子10は、図1、図4に示すように、ポンプ室P側に臨むシム10aと、大気室(アッパハウジング20)側に臨む圧電体10bとを備えたユニモルフタイプである。シム10aは、導電性の金属薄板材料、例えば厚さ50μm程度のステンレス、42アロイ等の薄板からなっている。圧電体10bは、例えば厚さ50〜300μm程度のPZT(Pb(Zr、Ti)O3)等の圧電材料から構成されるもので、その表裏方向に分極処理が施されている。このような圧電振動子は周知である。この圧電体10bの表裏にはそれぞれ電極が形成されており、この表裏電極間に、給電端子10c(図1)及び駆動基板40を介して、交番電界を印加することにより、圧電振動子10は平面円形の中央部分の振幅が最も大きくなるように振動する。   As shown in FIGS. 1 and 4, the piezoelectric vibrator 10 is a unimorph type including a shim 10a facing the pump chamber P side and a piezoelectric body 10b facing the atmosphere chamber (upper housing 20) side. The shim 10a is made of a conductive metal thin plate material, for example, a thin plate such as stainless steel having a thickness of about 50 μm or 42 alloy. The piezoelectric body 10b is made of a piezoelectric material such as PZT (Pb (Zr, Ti) O3) having a thickness of about 50 to 300 [mu] m, for example, and is polarized in the front and back directions. Such a piezoelectric vibrator is well known. Electrodes are formed on the front and back sides of the piezoelectric body 10b. By applying an alternating electric field between the front and back electrodes via the power supply terminal 10c (FIG. 1) and the drive substrate 40, the piezoelectric vibrator 10 is It vibrates so that the amplitude of the central portion of the planar circle becomes the largest.

ロアハウジング30には、円形凹部31内に、圧電振動子10(円形凹部31)の平面中心に対する偏心対称位置に位置させて、吸入側液溜室32と吐出側液溜室33が形成されている。また、ロアハウジング30には、この吸入側液溜室32と吐出側液溜室33に連通する吸入ポート34と吐出ポート35が形成されている。吸入ポート34と吐出ポート35は、互いに平行をなしていて、ロアハウジング30の一つの側面から突出している。34aと35aは、吸入ポート34と吐出ポート35の吸入側液溜室32と吐出側液溜室33に対する開口端であり、圧電振動子10(円形凹部31)の中心から離れた側に偏心させて、吸入側液溜室32と吐出側液溜室33に開口している。   In the lower housing 30, a suction side liquid storage chamber 32 and a discharge side liquid storage chamber 33 are formed in a circular recess 31 so as to be positioned at an eccentric symmetry position with respect to the plane center of the piezoelectric vibrator 10 (circular recess 31). Yes. The lower housing 30 is formed with a suction port 34 and a discharge port 35 communicating with the suction-side liquid reservoir chamber 32 and the discharge-side liquid reservoir chamber 33. The suction port 34 and the discharge port 35 are parallel to each other and protrude from one side surface of the lower housing 30. Reference numerals 34a and 35a denote opening ends of the suction port 34 and the discharge port 35 with respect to the suction-side liquid reservoir chamber 32 and the discharge-side liquid reservoir chamber 33, which are eccentric to the side away from the center of the piezoelectric vibrator 10 (circular recess 31). The suction side liquid reservoir chamber 32 and the discharge side liquid reservoir chamber 33 are opened.

この吸入側液溜室32とポンプ室P、吐出側液溜室33とポンプ室Pとの間にはそれぞれ、吸入側アンブレラ(吸入側逆止弁)36と吐出側アンブレラ(吐出側逆止弁)37が設けられている。吸入側アンブレラ36は、吸入側液溜室32からポンプ室Pへの流体流を許してその逆の流体流を許さない吸入側逆止弁であり、吐出側アンブレラ37は、ポンプ室Pから吐出側液溜室33への流体流を許してその逆の流体流を許さない吐出側逆止弁である。吸入側と吐出側のアンブレラ36と37は、平面円形の圧電振動子10の平面中心に関し偏心した対称位置にある。   Between the suction side liquid reservoir chamber 32 and the pump chamber P, and between the discharge side liquid reservoir chamber 33 and the pump chamber P, a suction side umbrella (suction side check valve) 36 and a discharge side umbrella (discharge side check valve), respectively. ) 37 is provided. The suction-side umbrella 36 is a suction-side check valve that allows a fluid flow from the suction-side liquid reservoir chamber 32 to the pump chamber P and does not allow the reverse fluid flow. The discharge-side umbrella 37 discharges from the pump chamber P. This is a discharge-side check valve that allows fluid flow to the side liquid storage chamber 33 but not vice versa. The suction-side and discharge-side umbrellas 36 and 37 are in symmetrical positions that are decentered with respect to the planar center of the planar circular piezoelectric vibrator 10.

吸入側と吐出側のアンブレラ36、37は、同一(対称)構造であり、平面円形の傘部36a、37aと、この傘部の中心の軸部36b、37bとを備えている。弁座基板36c、37cには、この軸部36b、37bを受け入れて支持する軸孔36d、37dと、この軸孔36d、37dの周囲に位置する流路孔36e、37eが穿設されており、これらの流路孔36e、37eが傘部36a、37aによって覆われている。   The suction-side and discharge-side umbrellas 36 and 37 have the same (symmetric) structure, and include planar circular umbrella portions 36a and 37a and shaft portions 36b and 37b at the centers of the umbrella portions. The valve seat substrates 36c and 37c are provided with shaft holes 36d and 37d for receiving and supporting the shaft portions 36b and 37b and flow passage holes 36e and 37e positioned around the shaft holes 36d and 37d. These channel holes 36e and 37e are covered with umbrella portions 36a and 37a.

吸入側アンブレラ36(軸部36b)と吐出側アンブレラ37(軸部37b)の軸線は、圧電振動子10の軸線と非平行であり、圧電振動子10に向かって互いに接近する方向に傾斜している(図4)。すなわち、閉弁状態の吸入側、吐出側のアンブレラ36、37の傘部36a、37aは、休止状態の圧電振動子10と非平行である。   The axes of the suction-side umbrella 36 (shaft portion 36b) and the discharge-side umbrella 37 (shaft portion 37b) are not parallel to the axis of the piezoelectric vibrator 10 and are inclined toward the piezoelectric vibrator 10 toward each other. (Fig. 4). In other words, the umbrella portions 36 a and 37 a of the intake side and discharge side umbrellas 36 and 37 in the valve-closed state are non-parallel to the piezoelectric vibrator 10 in the inactive state.

この吸入側アンブレラ36(軸部36b)と吐出側アンブレラ37(軸部37b)は、図2に示すように、その中心距離dが、吸入ポート34の開口端34aと吐出ポート35の開口端35aとの中心距離Dより短くなるように設定されている。その結果、吸入ポート34(開口端34a)、吸入側液溜室32、吸入側アンブレラ36、ポンプ室P、吐出側アンブレラ37、吐出側液溜室33及び吐出ポート35(開口端35a)を通る流路は、吸入ポート34と吐出ポート35の軸線を含む平面と直交する方向から見たとき、U字状なしている。吸入ポート34の延長線がぶつかる吸入側液溜室32の壁面、及び吐出ポート35の延長線がぶつかる吐出側液溜室33の壁面はそれぞれ、滑らかなU字状流路を構成するように、略四分の一の円筒面からなっている。   As shown in FIG. 2, the suction-side umbrella 36 (shaft portion 36 b) and the discharge-side umbrella 37 (shaft portion 37 b) have a center distance d such that the opening end 34 a of the suction port 34 and the opening end 35 a of the discharge port 35. Is set to be shorter than the center distance D. As a result, the suction port 34 (opening end 34a), the suction side liquid reservoir chamber 32, the suction side umbrella 36, the pump chamber P, the discharge side umbrella 37, the discharge side liquid reservoir chamber 33, and the discharge port 35 (open end 35a) are passed. The flow path is U-shaped when viewed from a direction orthogonal to a plane including the axis of the suction port 34 and the discharge port 35. The wall surface of the suction-side liquid reservoir chamber 32 where the extension line of the suction port 34 collides and the wall surface of the discharge-side liquid reservoir chamber 33 where the extension line of the discharge port 35 hit each constitute a smooth U-shaped flow path. It consists of approximately a quarter cylindrical surface.

以上の圧電ポンプは、圧電振動子10が正逆に弾性変形(振動)すると、ポンプ室Pの容積が拡大する行程では、吸入側アンブレラ36の傘部36aが弁座基板36cから離れる方向に弾性変形して流路孔36eが開き、吐出側アンブレラ36の傘部36aが弁座基板36cに密着して流路孔36eを閉じるため、吸入ポート34、吸入側液溜室32からポンプ室P内に液体が流入する。一方、ポンプ室Pの容積が縮小する行程では、吐出側アンブレラ36の傘部36aが流路孔36eを開き、吸入側アンブレラ36の傘部36aが流路孔36eを閉じるため、ポンプ室Pから吐出側液溜室33、吐出ポート35に液体が流出する。したがって、圧電振動子10を正逆に連続させて弾性変形させる(振動させる)ことで、ポンプ作用が得られる。   In the above-described piezoelectric pump, when the piezoelectric vibrator 10 is elastically deformed (vibrated) in the forward and reverse directions, the umbrella portion 36a of the suction-side umbrella 36 is elastically moved away from the valve seat substrate 36c in the process of expanding the volume of the pump chamber P. Since the flow passage hole 36e is deformed and the umbrella portion 36a of the discharge-side umbrella 36 is in close contact with the valve seat substrate 36c to close the flow passage hole 36e, the suction port 34 and the suction-side liquid reservoir chamber 32 are connected to the inside of the pump chamber P. Liquid flows into the. On the other hand, in the process of reducing the volume of the pump chamber P, the umbrella portion 36a of the discharge-side umbrella 36 opens the flow path hole 36e, and the umbrella portion 36a of the suction-side umbrella 36 closes the flow path hole 36e. The liquid flows out to the discharge side liquid storage chamber 33 and the discharge port 35. Accordingly, the pump action can be obtained by elastically deforming (vibrating) the piezoelectric vibrator 10 continuously in the forward and reverse directions.

そして、本実施形態の圧電ポンプは、吸入ポート34の開口端34aと吐出ポート35の開口端35aとの中心距離Dが、吸入側アンブレラ36と吐出側アンブレラ37の中心距離dより大きい。このため、中心部の変形量が最も大きい圧電振動子10が振動するに際し、圧電振動子10の周辺から中央へ、中央から周辺へと向かう滑らかな流路が構成される。この作用効果は、上記中心距離Dが中心距離dより小さい場合あるいは等しい場合(従来例)を想定すると理解しやすい。この想定では、滑らかな流体流が得にくく、流路抵抗及び圧力損失が大きい。   In the piezoelectric pump of this embodiment, the center distance D between the opening end 34 a of the suction port 34 and the opening end 35 a of the discharge port 35 is larger than the center distance d between the suction side umbrella 36 and the discharge side umbrella 37. For this reason, when the piezoelectric vibrator 10 having the largest deformation amount in the center portion vibrates, a smooth flow path is formed from the periphery of the piezoelectric vibrator 10 to the center and from the center to the periphery. This effect can be easily understood by assuming that the center distance D is smaller than or equal to the center distance d (conventional example). In this assumption, it is difficult to obtain a smooth fluid flow, and flow path resistance and pressure loss are large.

また、吸入側、吐出側のアンブレラ36、37の軸線が圧電振動子10に向かって互いに接近する方向に傾斜している点も流路を滑らかにする。さらに、閉弁状態の吸入側、吐出側のアンブレラ36、37の傘部36a、37aは、休止状態の圧電振動子10と非平行であるため、休止状態で傘部36a、37aが圧電振動子10と接触することがなく、長期間運転を休止しても付着現象が生じるおそれがない。   The flow path is also smoothed by the fact that the axes of the suction-side and discharge-side umbrellas 36 and 37 are inclined toward each other toward the piezoelectric vibrator 10. Further, since the umbrella portions 36a and 37a of the suction side and discharge side umbrellas 36 and 37 in the closed state are not parallel to the piezoelectric vibrator 10 in the resting state, the umbrella parts 36a and 37a are in the resting state. 10 does not come into contact, and even if the operation is stopped for a long period of time, there is no possibility of causing an adhesion phenomenon.

本実施形態による作用効果は、特に圧電振動子10の駆動周波数が高くなったときに顕著に表れる。図6は、シム10の直径を26mm、厚さ0.15mmとして中心距離d=10mm、中心距離D=16mm(D>d)とした本発明実施例における圧電ポンプと、シムの直径を同じく26mm、厚さ0.15mmとして中心距離d及びDを10mm(D=d)とした比較例における圧電ポンプを作成し、負荷10kP、駆動電圧120Vにて圧電体10bの駆動周波数(Hz)に対する単位時間当たりの流量ml/minを測定したものである。この比較実験によれば、D=dでは駆動周波数50〜60Hzの領域を除く全ての周波数領域で流量が増大しているのが分かる。さらに、流量のピークも比較例が189ml/minであるのに対し、実施例においては232ml/minと大幅に増大していることが分かる。   The effect by this embodiment appears notably when the drive frequency of the piezoelectric vibrator 10 becomes high. FIG. 6 shows a piezoelectric pump according to an embodiment of the present invention in which the diameter of the shim 10 is 26 mm, the thickness is 0.15 mm, the center distance d = 10 mm, and the center distance D = 16 mm (D> d). A piezoelectric pump in a comparative example with a thickness of 0.15 mm and a center distance d and D of 10 mm (D = d) was created, and a unit time with respect to the driving frequency (Hz) of the piezoelectric body 10b with a load of 10 kP and a driving voltage of 120 V The flow rate per unit is measured as ml / min. According to this comparative experiment, it can be seen that at D = d, the flow rate increases in all frequency regions except the region of the drive frequency of 50 to 60 Hz. Further, it can be seen that the peak of the flow rate is significantly increased to 232 ml / min in the example, while the comparative example is 189 ml / min.

次に図7は、上記実施例と比較例と同じ圧電ポンプを使用して、それぞれの圧電ポンプの駆動周波数に対する閉鎖圧を比較したものである。図7によれば30〜120Hzの全ての駆動周波数において、実施例の閉鎖圧は比較例の閉鎖圧を上回っていることがわかる。   Next, FIG. 7 compares the closing pressure with respect to the drive frequency of each piezoelectric pump using the same piezoelectric pump as the said Example and a comparative example. According to FIG. 7, it can be seen that the closing pressure of the example exceeds the closing pressure of the comparative example at all driving frequencies of 30 to 120 Hz.

以上の実施形態のユニモルフ型の圧電振動子10は、ポンプ室Pとは反対の面に圧電体102を積層しているが、原理的にはポンプ室P側に圧電体10bを積層してもよい。また、シム10aの両側に圧電体10bを積層するバイモルフ型でも良いし、シム10aのポンプ室Pとは反対側に圧電体10bを複数枚積層するマルチモルフタイプでも良い。しかし、ポンプ室Pとは反対の面に圧電体102を積層すると、圧電体10bに液体が触れるおそれがないため、例えば腐食性液体や水溶液等の液送用に好ましい。また、ポンプ室P側に圧電体10bを積層する場合、保護フィルム等で圧電体10bを覆い、液体と圧電体10bが直接接するのを防止することはできるが、長期間の使用により保護フィルムを液体が透湿する場合があり、この観点からもポンプ室Pと反対側に圧電体10bを積層するのが好ましい。   In the unimorph type piezoelectric vibrator 10 of the above embodiment, the piezoelectric body 102 is laminated on the surface opposite to the pump chamber P. However, in principle, the piezoelectric body 10b may be laminated on the pump chamber P side. Good. Further, a bimorph type in which the piezoelectric bodies 10b are stacked on both sides of the shim 10a, or a multimorph type in which a plurality of piezoelectric bodies 10b are stacked on the opposite side of the pump chamber P of the shim 10a may be used. However, if the piezoelectric body 102 is laminated on the surface opposite to the pump chamber P, there is no risk of the liquid touching the piezoelectric body 10b, which is preferable for feeding liquids such as corrosive liquids and aqueous solutions. In addition, when the piezoelectric body 10b is laminated on the pump chamber P side, the piezoelectric body 10b can be covered with a protective film or the like to prevent direct contact between the liquid and the piezoelectric body 10b. The liquid may be permeable to moisture. From this viewpoint, it is preferable to laminate the piezoelectric body 10b on the side opposite to the pump chamber P.

本発明のダイヤフラムポンプは、少なくとも圧電ポンプに適用することができ、同圧電ポンプは、小型のポンプとして例えばノートPCの水冷システムに用いることができる。   The diaphragm pump of the present invention can be applied to at least a piezoelectric pump, and the piezoelectric pump can be used as a small pump, for example, in a water cooling system of a notebook PC.

Claims (5)

平面円形でその中心部の振幅が最も大きくなるように振動するダイヤフラム;
このダイヤフラムとハウジングとの間に形成したポンプ室;
上記ハウジングに、上記ダイヤフラムの平面中心に対する偏心対称位置に設けた吸入側液溜室と吐出側液溜室;
この一対の液溜室とポンプ室との間にそれぞれ設けた、上記吸入側液溜室からポンプ室への流体流を許しその逆方向の流体流を許さない吸入側逆止弁と、ポンプ室から上記吐出側液溜室への流体流を許しその逆方向の流体流を許さない吐出側逆止弁;及び
互いに平行をなし、上記吸入側液溜室と吐出側液溜室にそれぞれ開口する吸入ポートと吐出ポート;を有するダイヤフラムポンプにおいて、
上記吸入ポートの吸入側液溜室への開口端と吐出ポートの吐出側液溜室への開口端の中心間隔を、吸入側逆止弁と吐出側逆止弁の中心間隔より広く設定したことを特徴とするダイヤフラムポンプ。
Diaphragm that is flat and oscillates so that its center part has the largest amplitude;
A pump chamber formed between the diaphragm and the housing;
A suction-side liquid storage chamber and a discharge-side liquid storage chamber provided in the housing at a position that is eccentrically symmetric with respect to the plane center of the diaphragm;
A suction-side check valve provided between the pair of liquid reservoir chambers and the pump chamber, allowing a fluid flow from the suction-side liquid reservoir chamber to the pump chamber and not allowing a fluid flow in the opposite direction; and a pump chamber A discharge-side check valve that allows fluid flow to the discharge-side reservoir and does not allow fluid flow in the opposite direction; and is parallel to each other and opens to the suction-side reservoir and the discharge-side reservoir, respectively. A diaphragm pump having a suction port and a discharge port;
The center distance between the opening end of the suction port to the suction side liquid reservoir and the opening end of the discharge port to the discharge side liquid reservoir is set wider than the center distance between the suction side check valve and the discharge side check valve. Diaphragm pump characterized by
請求の範囲1記載のダイヤフラムポンプにおいて、上記吸入ポート、吸入側液溜室、吸入側逆止弁、ポンプ室、吐出側逆止弁、吐出側液溜室及び吐出ポートを通る流路は、該吸入ポートと吐出ポートの軸線を含む平面と直交する方向から見たとき、U字状をなしているダイヤフラムポンプ。 In the diaphragm pump according to claim 1, the flow path passing through the suction port, the suction side liquid reservoir chamber, the suction side check valve, the pump chamber, the discharge side check valve, the discharge side liquid reservoir chamber and the discharge port includes: A diaphragm pump having a U-shape when viewed from a direction perpendicular to a plane including the suction port and discharge port axes. 請求の範囲1または2記載のダイヤフラムポンプにおいて、上記吸入側と吐出側の逆止弁はそれぞれ、軸部と傘部を有するアンブレラと、このアンブレラの軸部の回りに形成され傘部によって覆われる流路孔とを備えているダイヤフラムポンプ。 The diaphragm pump according to claim 1 or 2, wherein the check valves on the suction side and the discharge side are each formed with an umbrella having a shaft portion and an umbrella portion, and are formed around the shaft portion of the umbrella and covered with the umbrella portion. A diaphragm pump having a flow path hole. 請求の範囲1ないし3のいずれか1項記載のダイヤフラムポンプにおいて、上記吸入側と吐出側の一対のアンブレラの軸部は、ダイヤフラムの中心軸線に対して非平行で、上記ダイヤフラムに向かって互いに接近する方向に傾斜しているダイヤフラムポンプ。 The diaphragm pump according to any one of claims 1 to 3, wherein the shaft portions of the pair of suction side and discharge side umbrellas are non-parallel to a central axis of the diaphragm and approach each other toward the diaphragm. Diaphragm pump that is inclined in the direction of 請求の範囲1ない4のいずれか1項記載のダイヤフラムポンプにおいて、上記ダイヤフラムは圧電振動子であるダイヤフラムポンプ。 The diaphragm pump according to any one of claims 1 to 4, wherein the diaphragm is a piezoelectric vibrator.
JP2009511803A 2007-04-20 2008-04-15 Diaphragm pump Expired - Fee Related JP4966373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009511803A JP4966373B2 (en) 2007-04-20 2008-04-15 Diaphragm pump

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007111438 2007-04-20
JP2007111438 2007-04-20
JP2009511803A JP4966373B2 (en) 2007-04-20 2008-04-15 Diaphragm pump
PCT/JP2008/057318 WO2008133100A1 (en) 2007-04-20 2008-04-15 Diaphragm pump

Publications (2)

Publication Number Publication Date
JPWO2008133100A1 true JPWO2008133100A1 (en) 2010-07-22
JP4966373B2 JP4966373B2 (en) 2012-07-04

Family

ID=39925558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009511803A Expired - Fee Related JP4966373B2 (en) 2007-04-20 2008-04-15 Diaphragm pump

Country Status (2)

Country Link
JP (1) JP4966373B2 (en)
WO (1) WO2008133100A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171891A (en) * 1985-01-25 1986-08-02 Nec Corp Piezo-electric pump
JP2003013861A (en) * 2001-04-24 2003-01-15 Matsushita Electric Works Ltd Pump and method for manufacturing the same
JP3460301B2 (en) * 1994-05-02 2003-10-27 東ソー株式会社 Piezo pump
JP2007071099A (en) * 2005-09-07 2007-03-22 Alps Electric Co Ltd Diaphragm pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171891A (en) * 1985-01-25 1986-08-02 Nec Corp Piezo-electric pump
JP3460301B2 (en) * 1994-05-02 2003-10-27 東ソー株式会社 Piezo pump
JP2003013861A (en) * 2001-04-24 2003-01-15 Matsushita Electric Works Ltd Pump and method for manufacturing the same
JP2007071099A (en) * 2005-09-07 2007-03-22 Alps Electric Co Ltd Diaphragm pump

Also Published As

Publication number Publication date
WO2008133100A1 (en) 2008-11-06
JP4966373B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4873014B2 (en) Piezoelectric micro blower
KR101033077B1 (en) Piezoelectric pump
US20080038125A1 (en) Piezoelectric pump and piezoelectric vibrator
US8523538B2 (en) Piezoelectric pump
JP4405997B2 (en) Diaphragm pump and low-profile channel structure of diaphragm pump
JPWO2009050990A1 (en) Piezoelectric micro blower
JP4957480B2 (en) Piezoelectric micro pump
WO2005012729A1 (en) Diaphragm pump and cooling system with the diaphragm pump
JP5429317B2 (en) Piezoelectric micro pump
WO2007111049A1 (en) Micropump
US11085434B2 (en) Liquid pump
JP2010242501A (en) Piezoelectric pump
US20070071615A1 (en) Diaphragm pump
JP2008180104A (en) Diaphragm pump
JP2006200524A (en) Diaphragm pump liquid discharge control apparatus
JP4966373B2 (en) Diaphragm pump
JP2009097393A (en) Piezoelectric micro blower
JP5003154B2 (en) Piezoelectric pump
JP4976202B2 (en) Diaphragm pump
JP2009079482A (en) Piezoelectric pump
JP2005248713A (en) Fluid pump
JP2009041501A (en) Diaphragm pump
JP2003139064A (en) Small pump
JP5169693B2 (en) Piezoelectric pump
JP2003322085A (en) Small-sized pump

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120330

R150 Certificate of patent or registration of utility model

Ref document number: 4966373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees