JPWO2008123242A1 - Epitaxial growth substrate and epitaxial growth method - Google Patents

Epitaxial growth substrate and epitaxial growth method Download PDF

Info

Publication number
JPWO2008123242A1
JPWO2008123242A1 JP2009509112A JP2009509112A JPWO2008123242A1 JP WO2008123242 A1 JPWO2008123242 A1 JP WO2008123242A1 JP 2009509112 A JP2009509112 A JP 2009509112A JP 2009509112 A JP2009509112 A JP 2009509112A JP WO2008123242 A1 JPWO2008123242 A1 JP WO2008123242A1
Authority
JP
Japan
Prior art keywords
substrate
epitaxial growth
back surface
reflection density
major axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009509112A
Other languages
Japanese (ja)
Other versions
JP5520045B2 (en
Inventor
鈴木 健二
健二 鈴木
佐藤 努
努 佐藤
立一 平野
立一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2009509112A priority Critical patent/JP5520045B2/en
Publication of JPWO2008123242A1 publication Critical patent/JPWO2008123242A1/en
Application granted granted Critical
Publication of JP5520045B2 publication Critical patent/JP5520045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)

Abstract

InP等のIII−V族系化合物半導体基板上にエピタキシャル層を成長させたときに、エピタキシャル層のPL特性を一定とすることができるエピタキシャル成長用基板及びエピタキシャル成長方法を提供する。InP等のIII−V族系半導体基板上にInGaAsP層等の化合物半導体からなるエピタキシャル層を気相成長させる過程において、基板裏面の楕円形エッチピットの大きさ(長径)に起因して基板温度(成長温度)が変化することを考慮して設定温度を適切に制御するようにした。Provided are an epitaxial growth substrate and an epitaxial growth method capable of making the PL characteristics of an epitaxial layer constant when an epitaxial layer is grown on a III-V group compound semiconductor substrate such as InP. In the process of vapor-phase growth of an epitaxial layer made of a compound semiconductor such as an InGaAsP layer on a III-V group semiconductor substrate such as InP, the substrate temperature (long diameter) is caused by the size (major axis) of the elliptical etch pits on the back surface of the substrate. The set temperature was appropriately controlled in consideration of the change in the growth temperature.

Description

本発明は、エピタキシャル成長用基板及び該基板上にエピタキシャル層を成長させるエピタキシャル成長方法に関し、特に、成長させたエピタキシャル層のフォトルミネッセンス(以下、PL(Photoluminescence)と略する)特性を改善する技術に関する。   The present invention relates to an epitaxial growth substrate and an epitaxial growth method for growing an epitaxial layer on the substrate, and more particularly to a technique for improving photoluminescence (hereinafter abbreviated as PL (Photoluminescence)) characteristics of the grown epitaxial layer.

従来、光デバイス用の半導体素子の用途には、InP基板上にInGaAs層、AlGaAs層、AlInAs層、AlInGaAs層、InGaAsP層等の化合物半導体からなるエピタキシャル層を有機金属気相成長法(MOCVD法)等により成長させた半導体素子が広く用いられている。この中でも、In1-xGaxAsy1-yはInP基板と比較的容易に格子整合させることができるため、素子特性に優れた半導体素子を得るのに適しているといえる。Conventionally, for semiconductor device applications for optical devices, an epitaxial layer made of a compound semiconductor such as an InGaAs layer, an AlGaAs layer, an AlInAs layer, an AlInGaAs layer, or an InGaAsP layer is formed on an InP substrate by metal organic chemical vapor deposition (MOCVD method). Semiconductor devices grown by the above are widely used. Among these, In 1-x Ga x As y P 1-y can be lattice-matched with the InP substrate relatively easily, and thus can be said to be suitable for obtaining a semiconductor element having excellent element characteristics.

上述したIII−V族系化合物半導体からなる半導体素子をレーザ等の用途に用いるためには、PLピーク波長やPL発光強度が一定であることが望ましい。しかしながら、まったく同一の条件でエピタキシャル成長を行っても、エピタキシャル成長に用いられる基板の特性によって、エピタキシャル成長後のPL特性はばらつくことが知られている。   In order to use the semiconductor element made of the above-described III-V group compound semiconductor for a laser or the like, it is desirable that the PL peak wavelength and the PL emission intensity are constant. However, it is known that even if epitaxial growth is performed under exactly the same conditions, PL characteristics after epitaxial growth vary depending on the characteristics of the substrate used for epitaxial growth.

また、これまでの実験等で、エピタキシャル成長層のPL特性を一定にするためには、エピタキシャル成長に用いる基板の厚さやキャリア濃度を一定にすることが重要であることがわかっている。   Further, it has been found by experiments so far that it is important to make the substrate thickness and carrier concentration used for epitaxial growth constant in order to make the PL characteristics of the epitaxial growth layer constant.

例えば、特許文献1では、予め半導体基板の室温におけるキャリア濃度を測定し、該半導体基板のキャリア濃度に関わらず、実際の基板の表面温度が所望の温度となるように、室温におけるキャリア濃度に応じて基板の設定温度を制御し、エピタキシャル層を成長させるようにしている。
特開2005−231909号公報
For example, in Patent Document 1, a carrier concentration at a room temperature of a semiconductor substrate is measured in advance, and the actual substrate surface temperature becomes a desired temperature regardless of the carrier concentration of the semiconductor substrate. Thus, the set temperature of the substrate is controlled to grow the epitaxial layer.
JP-A-2005-231909

しかしながら、上記先願技術のように、基板の厚さや基板のキャリア濃度を統一しても、なお得られる半導体素子のPL特性がばらつくという問題があった。   However, there is a problem that even if the substrate thickness and the carrier concentration of the substrate are unified as in the prior application technique, the PL characteristics of the obtained semiconductor elements vary.

本発明は、InP等のIII−V族系化合物半導体基板上にエピタキシャル層を成長させたときに、エピタキシャル層のPL特性を一定とすることができるエピタキシャル成長用基板及びエピタキシャル成長方法を提供することを目的とする。   An object of the present invention is to provide an epitaxial growth substrate and an epitaxial growth method capable of making the PL characteristics of an epitaxial layer constant when an epitaxial layer is grown on a III-V group compound semiconductor substrate such as InP. And

本発明は、上記課題を解決するためになされたもので、III−V族化合物半導体からなるエピタキシャル成長用基板であって、[011]方向で測定した反射濃度の最大値が0.5から2.0で、[0−11]方向で測定した反射濃度の最大値が0.5から1.5の範囲であり、かつ、それぞれの測定方向での測定値の標準偏差が平均値の10%以内であることを特徴とする。
好ましくは、[011]方向で測定した反射濃度の最大値が0.5から1.6で、[0−11]方向で測定した反射濃度の最大値が0.5から1.3の範囲であるようにする。
The present invention has been made to solve the above problems, and is a substrate for epitaxial growth made of a III-V group compound semiconductor, wherein the maximum value of the reflection density measured in the [011] direction is 0.5 to 2. 0, the maximum value of the reflection density measured in the [0-11] direction is in the range of 0.5 to 1.5, and the standard deviation of the measured value in each measurement direction is within 10% of the average value. It is characterized by being.
Preferably, the maximum value of the reflection density measured in the [011] direction is from 0.5 to 1.6, and the maximum value of the reflection density measured in the [0-11] direction is from 0.5 to 1.3. To be.

このような基板を用いてエピタキシャル成長させることにより、エピタキシャル層のPL発光強度のバラツキを所定の範囲にそろえることができる。特に、基板裏面の反射濃度(測定値)のバラツキの指標として標準偏差を規定することにより、この基板を用いてエピタキシャル成長させたときのエピタキシャル成長層のPL発光強度のバラツキを効果的に小さくすることができる。   By epitaxial growth using such a substrate, variations in the PL emission intensity of the epitaxial layer can be made within a predetermined range. In particular, by defining the standard deviation as an index of the variation in the reflection density (measured value) on the back surface of the substrate, it is possible to effectively reduce the variation in the PL emission intensity of the epitaxial growth layer when epitaxially growing using this substrate. it can.

ここで、「反射濃度」とは、反射率の逆数の常用対数で定義されるもので、JIS B9622で規定されている。   Here, the “reflection density” is defined by a common logarithm of the reciprocal of the reflectance, and is defined by JIS B9622.

なお、本願に示す反射濃度データは、大日本スクリーン社製のDM−400「カラー・白黒両用反射濃度計」(測定範囲:0.5〜2.5、測定面積:4mmφ)の白黒モードで測定した数値である。例えば、基板中心部と、周縁部の数カ所(例えば、90°刻みで4カ所)における反射濃度を測定し、これらの測定値から最大値、平均値、標準偏差を算出する。   The reflection density data shown in the present application is measured in a monochrome mode of DM-400 “Color / monochrome reflection densitometer” (measurement range: 0.5 to 2.5, measurement area: 4 mmφ) manufactured by Dainippon Screen. It is a numerical value. For example, the reflection density is measured at several locations (for example, four locations in 90 ° increments) at the central portion of the substrate and the peripheral portion, and the maximum value, average value, and standard deviation are calculated from these measured values.

また、方向の表し方について、値が負の場合、一般には数字の上に“−”を付して表すが、本明細書および特許請求の範囲においては数字の前に“−”を付して表すこととする。   In addition, when the value is negative, the direction is generally expressed by adding “-” on the number, but in this specification and the claims, “-” is added before the number. It shall be expressed as

また、基板裏面に存在する楕円形状のエッチピットの長径が5μmから40μmの範囲であって、かつ、各エッチピットの長径の標準偏差が平均値の20%以内であることを特徴とする。この基板裏面の楕円形エッチピットの長径の大きさの程度とエピタキシャル成長時の設定温度と実際の基板温度との差に相関があり、その関係を用いることによって所望の成長温度とするための成長条件(設定温度)の決定が容易となる。また、基板裏面に存在する楕円形状のエッチピットの長径のバラツキの指標として長径の標準偏差を規定することにより、この基板を用いてエピタキシャル成長させたときのエピタキシャル成長層のPL波長のバラツキを小さくすることができる。   In addition, the major axis of the elliptical etch pits existing on the back surface of the substrate is in the range of 5 to 40 μm, and the standard deviation of the major axis of each etch pit is within 20% of the average value. There is a correlation between the degree of the major axis of the elliptical etch pit on the back side of the substrate and the difference between the set temperature during epitaxial growth and the actual substrate temperature, and the growth conditions for achieving the desired growth temperature by using this relationship (Setting temperature) can be easily determined. In addition, by defining the standard deviation of the major axis as an index of the major axis variation of the elliptical etch pits existing on the back surface of the substrate, the PL wavelength variation of the epitaxial growth layer when this substrate is epitaxially grown can be reduced. Can do.

上述した性質を有するエピタキシャル成長用基板は、基板裏面を、リン酸1〜10部、過酸化水素水1〜10部、水0〜10部からなるエッチング液により、温度15〜100℃でエッチングすることにより得ることができる。   In the epitaxial growth substrate having the above-described properties, the back surface of the substrate is etched at a temperature of 15 to 100 ° C. with an etching solution comprising 1 to 10 parts of phosphoric acid, 1 to 10 parts of hydrogen peroxide solution, and 0 to 10 parts of water. Can be obtained.

また、エピタキシャル成長方法において、基板裏面の反射濃度と楕円形状のエッチピットの長径に応じてエピタキシャル成長条件を制御し、エピタキシャル層を成長させるようにした。これにより、エピタキシャル層のPL発光強度のバラツキを所定の範囲にそろえることができる。   Further, in the epitaxial growth method, the epitaxial growth conditions are controlled according to the reflection density on the back surface of the substrate and the long diameter of the elliptical etch pits to grow the epitaxial layer. Thereby, the variation in the PL emission intensity of the epitaxial layer can be made within a predetermined range.

さらに、同一炉で2枚以上のエピタキシャル成長用基板を用いて同時にエピタキシャル成長を行うとき、前記エピタキシャル成長用基板として、上述した性質を有する基板であって、それぞれの基板の裏面の反射濃度の平均値が全投入基板の平均の±10%以内であり、かつ、基板裏面に存在する楕円形状のエッチピットの長径の平均値が、全投入基板の平均の±20%以内である基板を用いてエピタキシャル成長を行うようにした。これにより、複数の基板に同時にエピタキシャル成長させた場合でも、エピタキシャル層のPL特性を一定に保つことができる。   Further, when two or more epitaxial growth substrates are simultaneously epitaxially grown in the same furnace, the epitaxial growth substrate is a substrate having the above-described properties, and the average value of the reflection density on the back surface of each substrate is all. Epitaxial growth is performed using a substrate that is within ± 10% of the average of the input substrates and whose average length of elliptical etch pits existing on the back surface of the substrate is within ± 20% of the average of all input substrates. I did it. Thereby, even when epitaxial growth is simultaneously performed on a plurality of substrates, the PL characteristics of the epitaxial layer can be kept constant.

以下に、本発明を完成するに至った経緯について簡単に説明する。
まず、上記特許文献1には、基板のキャリア濃度が高いと同一の設定温度であっても基板の表面温度が低くなるため、その結果PLピーク波長は長くなることが開示されている。また、基板のキャリア濃度とPLピーク波長との間に良い相関関係があることが開示されている。すなわち、エピタキシャル成長条件(具体的には設定温度)を決めるための基板特性として基板のキャリア濃度が重要であることは公知である。
The following is a brief description of how the present invention was completed.
First, Patent Document 1 discloses that when the carrier concentration of the substrate is high, the surface temperature of the substrate becomes low even at the same set temperature, and as a result, the PL peak wavelength becomes long. It is also disclosed that there is a good correlation between the carrier concentration of the substrate and the PL peak wavelength. That is, it is known that the carrier concentration of the substrate is important as a substrate characteristic for determining the epitaxial growth conditions (specifically, the set temperature).

しかしながら、基板のキャリア濃度に基づいて成長条件を制御してエピタキシャル成長させた場合でも、得られた半導体素子のPL特性にばらつきがあることが判明した。そこで、本発明者等は、基板のキャリア濃度の他にもエピタキシャル成長条件に影響を与える基板特性があると推測し、基板裏面特性について検討した。   However, it has been found that even when epitaxial growth is performed by controlling the growth conditions based on the carrier concentration of the substrate, the PL characteristics of the obtained semiconductor elements vary. Therefore, the present inventors have speculated that there are substrate characteristics that affect the epitaxial growth conditions in addition to the carrier concentration of the substrate, and studied the substrate back surface characteristics.

具体的には、基板裏面の反射濃度、裏面エッチピットの形状及び大きさの測定により基板裏面性状を定量的に把握し、これらとエピタキシャル成長により得られた半導体素子のPL特性(PL発光強度、PL波長)との関係を調査した。   Specifically, the substrate back surface properties are quantitatively grasped by measuring the reflection density on the back surface of the substrate, the shape and size of the back surface etch pits, and the PL characteristics (PL emission intensity, PL of the semiconductor element obtained by epitaxial growth). Wavelength).

その結果を図1〜8に示す。
図1は、基板裏面の反射濃度(最大値)と、エピタキシャル成長により得られた半導体素子のPL発光強度の関係を示す説明図である。なお、図1には、[011]方向から測定した反射濃度の最大値を示している。
The results are shown in FIGS.
FIG. 1 is an explanatory diagram showing the relationship between the reflection density (maximum value) on the back surface of a substrate and the PL emission intensity of a semiconductor element obtained by epitaxial growth. FIG. 1 shows the maximum value of the reflection density measured from the [011] direction.

図1に示すように、基板裏面の反射濃度の最大値とPL発光強度の間には良好な相関関係がある。これより、基板裏面の反射濃度の最大値が所定の範囲(例えば、0.5〜)にある基板を用いて、該基板上にエピタキシャル層を成長させることにより、PL発光強度のバラツキを所定の範囲にそろえられることがわかった。   As shown in FIG. 1, there is a good correlation between the maximum value of the reflection density on the back surface of the substrate and the PL emission intensity. Thus, by using a substrate having a maximum reflection density on the back surface of the substrate in a predetermined range (for example, 0.5 to) and growing an epitaxial layer on the substrate, the variation in the PL emission intensity is predetermined. It turned out to be in range.

さらに実験を重ねたところ、[011]方向で測定した反射濃度の最大値が0.5から2.0で、[0−11]方向で測定した反射濃度の最大値が0.5から1.5の範囲にある基板を用いた場合に、エピタキシャル層のPL発光強度のバラツキを極めて小さくできることがわかった。   Furthermore, when the experiment was repeated, the maximum value of the reflection density measured in the [011] direction was 0.5 to 2.0, and the maximum value of the reflection density measured in the [0-11] direction was 0.5 to 1. It was found that when the substrate in the range of 5 is used, the variation in PL emission intensity of the epitaxial layer can be extremely reduced.

図2は、基板裏面の反射濃度のバラツキと、エピタキシャル成長により得られた半導体素子のPL発光強度の関係を示す説明図である。図2では、反射濃度のバラツキの指標として[011]方向から測定した反射濃度の最小値/最大値を用いており、図2中、“■”は反射濃度の最小値/最大値が0.85(標準偏差/平均値は7%、バラツキ小)程度、“◆”は反射濃度の最小値/最大値が0.65(標準偏差/平均値は17%、バラツキ大)程度の基板を用いたときの規格化PL発光強度を示している。   FIG. 2 is an explanatory diagram showing the relationship between the variation in the reflection density on the back surface of the substrate and the PL emission intensity of the semiconductor element obtained by epitaxial growth. In FIG. 2, the minimum / maximum value of the reflection density measured from the [011] direction is used as an index of the variation in reflection density. In FIG. 85 (standard deviation / average value is 7%, small variation), “♦” uses a substrate having a reflection density minimum / maximum value of 0.65 (standard deviation / average value is 17%, large variation) The normalized PL light emission intensity when it is present is shown.

なお、反射濃度の最小値/最大値が0.85程度のものと、最小値/最大値が0.65程度のもののサンプル数は同じである。   The number of samples is the same when the minimum value / maximum value of the reflection density is about 0.85 and when the minimum value / maximum value is about 0.65.

図2に示すように、反射濃度の最小値/最大値が0.85程度である場合はPL発光強度のバラツキ(標準偏差/平均値)は7%となり、反射濃度の最小値/最大値が0.65程度である場合はPL発光強度のバラツキ(標準偏差/平均値)は17%となっている。すなわち、反射濃度のバラツキが小さい方が、PL発光強度のバラツキは格段に改善されることがわかる。   As shown in FIG. 2, when the minimum value / maximum value of the reflection density is about 0.85, the PL emission intensity variation (standard deviation / average value) is 7%, and the minimum / maximum value of the reflection density is In the case of about 0.65, the PL emission intensity variation (standard deviation / average value) is 17%. That is, it can be seen that the variation in the PL emission intensity is remarkably improved when the variation in the reflection density is small.

さらに実験を重ねた結果、反射濃度の標準偏差/平均値が10%以内となる場合に、半導体素子のPL発光強度のバラツキを効果的に小さくすることができ、具体的にはPL発光強度の標準偏差/平均値を10%以下とできることがわかった。   Further, as a result of repeated experiments, when the standard deviation / average value of the reflection density is within 10%, the variation in the PL emission intensity of the semiconductor element can be effectively reduced. Specifically, the PL emission intensity is reduced. It was found that the standard deviation / average value could be 10% or less.

図3は、基板の裏面エッチピットの長径と、エピタキシャル成長温度(基板温度)との関係を示す説明図である。なお、図3には、成長温度を640℃に設定したときの実際の基板温度を示している。   FIG. 3 is an explanatory diagram showing the relationship between the major axis of the back surface etch pits of the substrate and the epitaxial growth temperature (substrate temperature). FIG. 3 shows the actual substrate temperature when the growth temperature is set to 640 ° C.

図3に示すように、基板の裏面エッチピットの大きさ(具体的には楕円形エッチピットの長径)と成長時の実際の基板温度との間には、所定の範囲(例えば、エッチピットの長径が5〜40μmの範囲)において良好な相関関係がある。これより、基板の裏面エッチピットの形状(楕円形エッチピットの長径)を制御することで、所望の成長温度とするための温度を正確に設定することができるようになる。   As shown in FIG. 3, there is a predetermined range (for example, etch pits) between the size of the back surface etch pit of the substrate (specifically, the major axis of the elliptical etch pit) and the actual substrate temperature during growth. There is a good correlation between the major axis and the major axis. Thus, by controlling the shape of the back surface etch pit of the substrate (the major diameter of the elliptical etch pit), it becomes possible to accurately set the temperature for obtaining the desired growth temperature.

図4は、エピタキシャル成長温度と、エピタキシャル成長により得られた半導体素子のPLピーク波長との関係を示す説明図である。図4に示すように、エピタキシャル成長温度(実際の基板温度)とPLピーク波長との間には、良好な相関関係がある。   FIG. 4 is an explanatory diagram showing the relationship between the epitaxial growth temperature and the PL peak wavelength of the semiconductor element obtained by epitaxial growth. As shown in FIG. 4, there is a good correlation between the epitaxial growth temperature (actual substrate temperature) and the PL peak wavelength.

したがって、基板の裏面エッチピットの形状を制御して所望の成長温度でエピタキシャル成長させることで、所望のPLピーク波長を有する半導体素子を得ることができるようになる。なお、基板の表面温度は、基板厚みや加熱方法(使用する気相成長装置)によって変化するので、それぞれについて、半導体基板の裏面エッチピットの形状に対する設定温度と実際の基板温度との関係を把握しておけば、基板温度を所望の温度とするための温度設定が容易となる。   Therefore, a semiconductor element having a desired PL peak wavelength can be obtained by controlling the shape of the back surface etch pits of the substrate and performing epitaxial growth at a desired growth temperature. Since the surface temperature of the substrate changes depending on the substrate thickness and heating method (vapor phase growth apparatus used), the relationship between the set temperature and the actual substrate temperature for the backside etch pit shape of the semiconductor substrate is grasped for each. If this is done, it is easy to set the temperature to bring the substrate temperature to a desired temperature.

図5は、基板裏面のピット長径のバラツキと、エピタキシャル成長により得られた半導体素子のPLピーク波長の関係を示す説明図である。図5では、ピット長径のバラツキの指標としてピット長径の最小値/最大値を用いており、図5中、“■”はピット長径の最小値/最大値が0.65(標準偏差/平均値は17%、バラツキ小)程度、“◆”はピット長径の最小値/最大値が0.33(標準偏差/平均値は34%、バラツキ大)程度の基板を用いたときのPLピーク波長を示している。   FIG. 5 is an explanatory diagram showing the relationship between the variation in the pit major axis on the back surface of the substrate and the PL peak wavelength of the semiconductor element obtained by epitaxial growth. In FIG. 5, the minimum / maximum value of the pit long diameter is used as an index of variation in the pit long diameter. In FIG. 5, “■” indicates that the minimum / maximum value of the pit long diameter is 0.65 (standard deviation / average value). Is the peak wavelength when using a substrate with a minimum / maximum pit length of 0.33 (standard deviation / average is 34%, large variation). Show.

なお、ピット長径の最小値/最大値が0.65程度のものと、最小値/最大値が0.33程度のもののサンプル数は同じである。   Note that the number of samples is the same when the minimum / maximum value of the pit major axis is about 0.65 and when the minimum / maximum value is about 0.33.

図5に示すように、ピット長径の最小値/最大値が0.65程度である場合はPLピーク波長のバラツキ(標準偏差/平均値)は0.07%となり、ピット長径の最小値/最大値が0.33程度である場合はPLピーク波長のバラツキ(標準偏差/平均値)は0.15%となっている。すなわちピット長径のバラツキが小さい方が、PLピーク波長のバラツキは格段に改善されることがわかる。   As shown in FIG. 5, when the minimum value / maximum value of the pit major axis is about 0.65, the PL peak wavelength variation (standard deviation / average value) is 0.07%, and the minimum / maximum pit major axis value is 0.07%. When the value is about 0.33, the PL peak wavelength variation (standard deviation / average value) is 0.15%. That is, it can be seen that the variation in the PL peak wavelength is remarkably improved when the variation in the pit major axis is smaller.

具体的には、ピット長径の最小値/最大値が0.33程度の場合は、PLピーク波長が1547〜1555nmであるのに対して、ピット長径の最小値/最大値が0.65程度の場合は、PLピーク波長は1548〜1551nmであった。   Specifically, when the minimum / maximum pit length is about 0.33, the PL peak wavelength is 1547 to 1555 nm, whereas the minimum / maximum pit length is about 0.65. In the case, the PL peak wavelength was 1548 to 1551 nm.

さらに実験を重ねた結果、ピット長径の標準偏差/平均値が20%以内となる場合に、エピタキシャル層のPLピーク波長のバラツキを効果的に小さくすることができ、具体的にはPLピーク波長の標準偏差/平均値を0.1%以下とできることがわかった。   Further, as a result of repeated experiments, when the standard deviation / average value of the pit major axis is within 20%, it is possible to effectively reduce the variation in the PL peak wavelength of the epitaxial layer. It was found that the standard deviation / average value could be 0.1% or less.

次いで、基板の裏面特性(反射濃度、エッチピットの長径)と、エッチング条件について検討した。   Next, the back surface characteristics (reflection density, etch pit major axis) of the substrate and etching conditions were examined.

図6、7は、リン酸系エッチング液を用いたときのエッチング量と基板裏面の反射濃度との関係を示す説明図であり、使用したエッチング液の組成(混合比率)が異なる。つまり、図6には、リン酸:過酸化水素水:水=20:3:20で混合したエッチング液1を用いたときの結果を、図7には、リン酸:過酸化水素水:水=1:1:1で混合したエッチング液2を用いたときの結果を示している。
なお、図6、7では、[011]方向(測定方向1)と[0−11]方向(測定方向2)から測定した反射濃度を示している。また、ピット長径の最小値/最大値が0.65の場合のデータである。
FIGS. 6 and 7 are explanatory views showing the relationship between the etching amount when using a phosphoric acid-based etching solution and the reflection density on the back surface of the substrate, and the composition (mixing ratio) of the used etching solution is different. That is, FIG. 6 shows the results when the etching solution 1 mixed with phosphoric acid: hydrogen peroxide water: water = 20: 3: 20 is used, and FIG. 7 shows phosphoric acid: hydrogen peroxide water: water. The result when using the etching solution 2 mixed at = 1: 1: 1 is shown.
6 and 7 show the reflection densities measured from the [011] direction (measurement direction 1) and the [0-11] direction (measurement direction 2). Further, this is data when the minimum value / maximum value of the pit major axis is 0.65.

図6、7に示すように、エッチング量と基板裏面の反射濃度との間には良好な相関関係があり、エッチング量が増加するに伴い反射濃度は高くなる。これより、エッチング量によって反射濃度を調整できることがわかる。   As shown in FIGS. 6 and 7, there is a good correlation between the etching amount and the reflection density on the back surface of the substrate, and the reflection density increases as the etching amount increases. This shows that the reflection density can be adjusted by the etching amount.

ただし、測定方向が異なるとエッチング量が同じでも反射濃度が若干変化することを注意する必要がある。また、エッチング液の組成比が異なると、エッチング量が同じでも反射濃度が変化するが、リン酸:過酸化水素:水=1〜10:1〜10:0〜10の割合で混合したエッチング液を用いることで、所望の反射濃度とエッチピットの範囲を実現することができる上、エッチピット長径の大きさを制御することもできる。   However, it should be noted that if the measurement direction is different, the reflection density slightly changes even if the etching amount is the same. Moreover, when the composition ratio of the etching solution is different, the reflection density is changed even when the etching amount is the same, but the etching solution is mixed in a ratio of phosphoric acid: hydrogen peroxide: water = 1 to 10: 1 to 10: 0 to 10. By using this, it is possible to realize a desired reflection density and range of etch pits, and also to control the length of the etch pit major axis.

図8は、リン酸系エッチング液1,2を用いたときのエッチング量と基板裏面のエッチピットの長径との関係を示す説明図である。図8に示すように、エッチング量と基板裏面のエッチピットの長径との間には良好な相関関係がある。これより、エッチング量によって、基板裏面のエッチピットの長径を調整できることがわかる。   FIG. 8 is an explanatory diagram showing the relationship between the etching amount when using the phosphoric acid-based etching solutions 1 and 2 and the major diameter of the etch pits on the back surface of the substrate. As shown in FIG. 8, there is a good correlation between the etching amount and the major axis of the etch pit on the back surface of the substrate. This shows that the major axis of the etch pit on the back surface of the substrate can be adjusted by the etching amount.

以上説明したように、エピタキシャル成長により得られる半導体素子の重要特性であるPL発光強度とPLピーク波長は、基板裏面の反射濃度と、基板裏面の楕円形エッチピットの長径を調整することにより最適化できるという知見を得て、本発明を完成するに至った。   As described above, the PL emission intensity and the PL peak wavelength, which are important characteristics of a semiconductor element obtained by epitaxial growth, can be optimized by adjusting the reflection density on the back surface of the substrate and the major axis of the elliptical etch pit on the back surface of the substrate. As a result, the present invention has been completed.

本発明によれば、InP等のIII−V族系半導体基板上にInGaAsP層等の化合物半導体からなるエピタキシャル層を気相成長させる過程において、基板の裏面エッチピットの形状及び大きさに起因して基板温度(成長温度)が変化することを考慮し、加熱条件を適切に設定することで基板温度を所望の温度で一定とすることができるので、PLピーク波長が一定の半導体素子を安定して製造することができるという効果を奏する。   According to the present invention, in the process of vapor-phase growth of an epitaxial layer made of a compound semiconductor such as an InGaAsP layer on a III-V group semiconductor substrate such as InP, it is caused by the shape and size of the back surface etch pit of the substrate. Considering that the substrate temperature (growth temperature) changes, the substrate temperature can be kept constant at a desired temperature by appropriately setting the heating conditions, so that a semiconductor device having a constant PL peak wavelength can be stably There exists an effect that it can manufacture.

また、基板裏面の反射濃度が所定の範囲にある基板を用いるので、所定の範囲のPL発光強度を有する半導体素子を実現することができる。   Further, since a substrate having a reflection density on the back surface of the substrate in a predetermined range is used, a semiconductor element having a PL emission intensity in a predetermined range can be realized.

さらに、2枚以上の基板上に同時にエピタキシャル層を成長させる際には、上記基板裏面の反射濃度及び楕円形エッチピットの大きさ(長径)を一定の範囲にそろえるようにしたので、これら複数の基板にエピタキシャル成長させて得られた半導体素子のPL特性は一定となる。   Furthermore, when the epitaxial layer is grown on two or more substrates at the same time, the reflection density on the back surface of the substrate and the size (major axis) of the elliptical etch pits are set within a certain range. The PL characteristic of the semiconductor element obtained by epitaxial growth on the substrate is constant.

基板裏面の反射濃度と、エピタキシャル成長により得られた半導体素子のPL発光強度の関係を示す説明図である。It is explanatory drawing which shows the relationship between the reflective density | concentration of a substrate back surface, and PL light emission intensity of the semiconductor element obtained by epitaxial growth. 基板裏面の反射濃度のバラツキと規格化PL発光強度の関係を示す説明図である。It is explanatory drawing which shows the relationship between the variation in the reflection density of a board | substrate back surface, and normalized PL light emission intensity. 基板裏面のエッチピットの長径とエピタキシャル成長温度(基板温度)との関係を示す説明図である。It is explanatory drawing which shows the relationship between the major axis of the etch pit of a substrate back surface, and epitaxial growth temperature (substrate temperature). エピタキシャル成長温度とPLピーク波長との関係を示す説明図である。It is explanatory drawing which shows the relationship between epitaxial growth temperature and PL peak wavelength. 基板裏面のピット長径のバラツキとPLピーク波長の関係を示す説明図である。It is explanatory drawing which shows the relationship between the variation of the pit major axis of a substrate back surface, and PL peak wavelength. リン酸系エッチング液1を用いたときのエッチング量と基板裏面の反射濃度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the etching amount at the time of using the phosphoric acid type etching liquid 1, and the reflection density of a board | substrate back surface. リン酸系エッチング液2を用いたときのエッチング量と基板裏面の反射濃度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the etching amount at the time of using the phosphoric acid type etching liquid 2, and the reflection density of a board | substrate back surface. リン酸系エッチング液1,2を用いたときのエッチング量と基板裏面のエッチピットの長径との関係を示す説明図である。It is explanatory drawing which shows the relationship between the etching amount when using the phosphoric acid type etching liquids 1 and 2, and the major axis of the etch pit of a substrate back surface.

以下、本発明の好適な実施の形態として、III−V族系化合物半導体をエピタキシャル成長させて半導体装置を製造する場合について説明する。なお、製造する半導体装置の目標PLピーク波長を1285nmとする。   Hereinafter, as a preferred embodiment of the present invention, a case where a semiconductor device is manufactured by epitaxially growing a group III-V compound semiconductor will be described. Note that the target PL peak wavelength of the semiconductor device to be manufactured is set to 1285 nm.

はじめに、液体封止チョクラルスキー法(Liquid Encapsulated Czochralski;LEC)法により、所定のキャリア濃度(例えば、1〜2×1018cm-3)の(100)InP基板を作製した。First, a (100) InP substrate having a predetermined carrier concentration (for example, 1 to 2 × 10 18 cm −3 ) was manufactured by a liquid encapsulated Czochralski (LEC) method.

次いで、このInP基板にリン酸系エッチング液によりエッチング処理を施した。具体的には、リン酸:過酸化水素水:水=1:1:1の組成比で混合したエッチング液を使用し、80℃、12分間のエッチング処理とした。このとき、エッチング量は10μmであった。なお、エッチング量は、エッチング温度とエッチング時間によって調整できるが、エッチング温度は15〜100℃とするのが望ましい。   Next, the InP substrate was etched with a phosphoric acid-based etchant. Specifically, an etching solution mixed at a composition ratio of phosphoric acid: hydrogen peroxide water: water = 1: 1: 1 was used, and etching treatment was performed at 80 ° C. for 12 minutes. At this time, the etching amount was 10 μm. Although the etching amount can be adjusted by the etching temperature and the etching time, the etching temperature is preferably 15 to 100 ° C.

このエッチング処理後のInP基板について、裏面の複数箇所の反射濃度を測定したところ、[011]方向からの反射濃度の最大値は0.9で、[0−11]方向からの反射濃度の最大値は0.7であった。また、測定反射濃度の標準偏差は平均反射濃度の10%以内となっていた。   With respect to the InP substrate after the etching treatment, when the reflection density at a plurality of positions on the back surface was measured, the maximum value of the reflection density from the [011] direction was 0.9, and the maximum reflection density from the [0-11] direction was measured. The value was 0.7. In addition, the standard deviation of the measured reflection density was within 10% of the average reflection density.

また、基板裏面には楕円形のエッチピットが形成されており、その長径は平均22μmであり、標準偏差は平均値の20%以内となっていた。   Further, elliptical etch pits are formed on the back surface of the substrate, the major axis is 22 μm on average, and the standard deviation is within 20% of the average value.

そして、該基板上に有機金属気相成長法によりアンドープInP層(膜厚0.3μm)、アンドープIn1-xGaxAsy1-y層(膜厚0.3μm)及びアンドープInP層(膜厚0.3μm)を順次成長させ、半導体素子を製造した。また、このときの成長圧力は40torr、基板の目標表面温度は650℃とした。Then, an undoped InP layer (film thickness: 0.3 μm), an undoped In 1-x Ga x As y P 1-y layer (film thickness: 0.3 μm), and an undoped InP layer (film thickness: 0.3 μm) are formed on the substrate by metal organic chemical vapor deposition. A semiconductor element was manufactured by sequentially growing a film thickness of 0.3 μm. The growth pressure at this time was 40 torr, and the target surface temperature of the substrate was 650 ° C.

本実施形態では、InP基板に対し、予め基板裏面の楕円形エッチピットの長径を測定し、このエッチピットの平均長径に基づいて、実際の基板温度が650℃で一定になるように設定温度を調整してInGaAsP層を成長させた。   In this embodiment, for the InP substrate, the major axis of the elliptical etch pit on the back surface of the substrate is measured in advance, and the set temperature is set so that the actual substrate temperature is constant at 650 ° C. based on the average major axis of the etch pit. An InGaAsP layer was grown by adjusting.

具体的には、基板裏面の楕円形エッチピットの平均長径が22μm程度であるInP基板を用いているので、基板の加熱条件を660℃に設定した。   Specifically, since an InP substrate having an average major axis of elliptical etch pits on the back surface of the substrate of about 22 μm is used, the substrate heating condition was set to 660 ° C.

なお、この温度設定は本実施形態において有効であって、例えば、使用する気相成長装置によっては異なる設定温度となることはいうまでもない。つまり、使用する気相成長装置について、基板裏面の楕円形エッチピットの長径に対する設定温度と実際の基板温度との関係を把握しておけば、基板温度を所望の温度とするための温度設定は容易に決定することができる。また、基板厚みについても同様のことがいえる。   Note that this temperature setting is effective in the present embodiment, and it goes without saying that the temperature setting varies depending on, for example, the vapor phase growth apparatus to be used. In other words, with regard to the vapor phase growth apparatus to be used, if the relationship between the set temperature for the major axis of the elliptical etch pit on the back surface of the substrate and the actual substrate temperature is known, the temperature setting for setting the substrate temperature to the desired temperature is Can be easily determined. The same applies to the substrate thickness.

上述した方法により得られた半導体素子についてPL特性を測定したところ、PL発光強度は4300CUで、PLピーク波長は1.3μmであり、目標とするPL特性を達成することができた。   When PL characteristics of the semiconductor element obtained by the above-described method were measured, the PL emission intensity was 4300 CU and the PL peak wavelength was 1.3 μm, and the target PL characteristics could be achieved.

また、2枚以上の基板上に同時にエピタキシャル層を成長させる際には、基板裏面の反射濃度及び楕円形エッチピットの大きさ(長径)を一定の範囲、具体的には、22μmにそろえることで、これら複数の基板にエピタキシャル成長させて得られた半導体素子のPL特性は一定となった。   When epitaxial layers are simultaneously grown on two or more substrates, the reflection density on the back surface of the substrate and the size (major axis) of the elliptical etch pits are adjusted to a certain range, specifically 22 μm. The PL characteristics of the semiconductor elements obtained by epitaxial growth on these substrates were constant.

このように、本実施形態では、InP等のIII−V族系半導体基板上にInGaAsP層等の化合物半導体からなるエピタキシャル層を気相成長させる過程において、基板の裏面エッチピットの形状及び大きさに起因する基板温度(成長温度)の変化を考慮して成長温度を設定している。これにより、実際の基板温度を所望の温度で一定とすることができ、その結果、所望のPL特性を有する半導体素子を安定して製造することができた。   As described above, in this embodiment, in the process of vapor-phase growth of an epitaxial layer made of a compound semiconductor such as an InGaAsP layer on a III-V group semiconductor substrate such as InP, the shape and size of the back surface etch pits of the substrate are set. The growth temperature is set in consideration of the resulting change in the substrate temperature (growth temperature). As a result, the actual substrate temperature can be kept constant at a desired temperature, and as a result, a semiconductor element having a desired PL characteristic can be stably manufactured.

また、基板裏面の反射濃度が所定の範囲にある基板を用いたので、所定の範囲のPL発光強度を有する半導体素子を実現することができる。   Further, since a substrate having a reflection density on the back surface of the substrate in a predetermined range is used, a semiconductor element having a PL emission intensity in a predetermined range can be realized.

以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。   As mentioned above, although the invention made by this inventor was concretely demonstrated based on embodiment, this invention is not limited to the said embodiment, It can change in the range which does not deviate from the summary.

例えば、本実施形態では有機金属気相成長法によりInP基板上にInGaAsP層を成長させた例について説明したが、基板裏面の楕円形エッチピットの大きさに応じて加熱条件を設定し、実際の基板温度が所望の温度で一定となるようにしてエピタキシャル成長させる方法は、成長させるエピタキシャル層の種類によらず同様の効果が期待できる。また、使用する基板の種類、成長方法も限定されず、その他の基板や成長方法においても適用できることは上述した説明から明らかである。   For example, in this embodiment, an example in which an InGaAsP layer is grown on an InP substrate by metal organic vapor phase epitaxy has been described, but the heating conditions are set according to the size of the elliptical etch pits on the back surface of the substrate, A method of epitaxial growth with the substrate temperature being constant at the desired temperature can be expected to have the same effect regardless of the type of epitaxial layer to be grown. Also, the type of substrate used and the growth method are not limited, and it is apparent from the above description that the present invention can be applied to other substrates and growth methods.

Claims (5)

III−V族化合物半導体からなるエピタキシャル成長用基板であって、
[011]方向で測定した反射濃度の最大値が0.5から2.0で、[0−11]方向で測定した反射濃度の最大値が0.5から1.5の範囲であり、
かつ、
それぞれの測定方向での測定値の標準偏差が平均値の10%以内であることを特徴とするエピタキシャル成長用基板。
An epitaxial growth substrate made of a III-V compound semiconductor,
The maximum value of reflection density measured in the [011] direction is 0.5 to 2.0, and the maximum value of reflection density measured in the [0-11] direction is in the range of 0.5 to 1.5.
And,
A substrate for epitaxial growth, wherein a standard deviation of measured values in each measuring direction is within 10% of an average value.
基板裏面に存在する楕円形状のエッチピットの長径が5μmから40μmの範囲であって、
かつ、
各エッチピットの長径の標準偏差が平均値の20%以内であることを特徴とする請求項1に記載のエピタキシャル成長用基板。
The major axis of the elliptical etch pit present on the back surface of the substrate is in the range of 5 μm to 40 μm,
And,
2. The epitaxial growth substrate according to claim 1, wherein the standard deviation of the major axis of each etch pit is within 20% of the average value.
基板裏面を、リン酸1〜10部、過酸化水素水1〜10部、水0〜10部からなるエッチング液により、温度15〜100℃でエッチングすることにより得られる請求項1または2に記載のエピタキシャル成長用基板。   The substrate back surface obtained by etching at a temperature of 15 to 100 ° C with an etching solution comprising 1 to 10 parts of phosphoric acid, 1 to 10 parts of hydrogen peroxide, and 0 to 10 parts of water. Epitaxial growth substrate. 基板裏面の反射濃度と楕円形状のエッチピットの長径に応じてエピタキシャル成長条件を制御し、エピタキシャル層を成長させることを特徴とするエピタキシャル成長方法。   An epitaxial growth method comprising growing an epitaxial layer by controlling epitaxial growth conditions in accordance with a reflection density on the back surface of a substrate and a major axis of an elliptical etch pit. 同一炉で2枚以上のエピタキシャル成長用基板を用いて同時にエピタキシャル成長を行うとき、
前記エピタキシャル成長用基板として、請求項1から3のいずれか一項に記載の基板であって、
それぞれの基板の裏面の反射濃度の平均値が全投入基板の平均反射濃度の±10%以内であり、
かつ、
基板裏面に存在する楕円形状のエッチピットの長径の平均値が、全投入基板の平均長径の±20%以内である基板を用いてエピタキシャル成長を行うことを特徴とする請求項4に記載のエピタキシャル成長方法。
When simultaneously performing epitaxial growth using two or more epitaxial growth substrates in the same furnace,
As the epitaxial growth substrate, the substrate according to any one of claims 1 to 3,
The average value of the reflection density on the back side of each substrate is within ± 10% of the average reflection density of all input substrates,
And,
5. The epitaxial growth method according to claim 4, wherein epitaxial growth is performed using a substrate in which an average value of the major axis of the elliptical etch pits existing on the back surface of the substrate is within ± 20% of an average major axis of all input substrates. .
JP2009509112A 2007-03-27 2008-03-25 Epitaxial growth substrate and epitaxial growth method Active JP5520045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009509112A JP5520045B2 (en) 2007-03-27 2008-03-25 Epitaxial growth substrate and epitaxial growth method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007082203 2007-03-27
JP2007082203 2007-03-27
PCT/JP2008/055561 WO2008123242A1 (en) 2007-03-27 2008-03-25 Substrate for epitaxial growth and epitaxial growth process
JP2009509112A JP5520045B2 (en) 2007-03-27 2008-03-25 Epitaxial growth substrate and epitaxial growth method

Publications (2)

Publication Number Publication Date
JPWO2008123242A1 true JPWO2008123242A1 (en) 2010-07-15
JP5520045B2 JP5520045B2 (en) 2014-06-11

Family

ID=39830735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009509112A Active JP5520045B2 (en) 2007-03-27 2008-03-25 Epitaxial growth substrate and epitaxial growth method

Country Status (3)

Country Link
JP (1) JP5520045B2 (en)
TW (1) TWI406981B (en)
WO (1) WO2008123242A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109290875B (en) * 2017-07-25 2021-06-22 北京通美晶体技术股份有限公司 Indium phosphide wafer with pits on back surface, preparation method and etching solution for preparing indium phosphide wafer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187339A (en) * 1984-10-05 1986-05-02 Toshiba Corp Method of etching indium phosphide crystal
JPS62252140A (en) * 1986-04-25 1987-11-02 Nippon Mining Co Ltd Cleaning method for inp wafer
JPH05166785A (en) * 1991-12-18 1993-07-02 Nikko Kyodo Co Ltd Storing method for semiconductor wafer
JPH0632699A (en) * 1992-07-14 1994-02-08 Japan Energy Corp Production of semi-insulating inp single crystal
JPH07211688A (en) * 1993-05-17 1995-08-11 Japan Energy Corp Production of compound semiconductor substrate
JPH08301697A (en) * 1995-05-09 1996-11-19 Japan Energy Corp Production of semiinsulating indium-phosphorus single crystal

Also Published As

Publication number Publication date
JP5520045B2 (en) 2014-06-11
TWI406981B (en) 2013-09-01
WO2008123242A1 (en) 2008-10-16
TW200902776A (en) 2009-01-16

Similar Documents

Publication Publication Date Title
US8142566B2 (en) Method for producing Ga-containing nitride semiconductor single crystal of BxAlyGazIn1-x-y-zNsPtAs1-s-t (0<=x<=1, 0<=y<1, 0<z<=1, 0<s<=1 and 0<=t<1) on a substrate
US20120267603A1 (en) Method for fabricating quantum dot and semiconductor structure containing quantum dot
FR2769924A1 (en) Epitaxial gallium nitride layer, especially for an optoelectronic component, is formed using a dielectric mask
Omori et al. Reduction of dislocation density in lattice-relaxed Al0. 68Ga0. 32N film grown on periodical 1 μm spacing AlN pillar concave-convex patterns and its effect on the performance of UV-B laser diodes
Yin et al. Molecular beam epitaxial growth of AlN thin films on Si through exploiting low Al adatom migration and the nitrogen-rich environment on a nanowire template
Hönl et al. Highly selective dry etching of GaP in the presence of AlxGa1–xP with a SiCl4/SF6 plasma
Gîrgel et al. Investigation of indium gallium nitride facet-dependent nonpolar growth rates and composition for core–shell light-emitting diodes
Gong et al. High efficiency green-yellow emission from InGaN/GaN quantum well structures grown on overgrown semi-polar (11-22) GaN on regularly arrayed micro-rod templates
Tan et al. Highly uniform zinc blende GaAs nanowires on Si (111) using a controlled chemical oxide template
Zhang et al. Study on the effects of growth rate on GaN films properties grown by plasma-assisted molecular beam epitaxy
Kuyyalil et al. Nitrogen–phosphorus competition in the molecular beam epitaxy of GaPN
JP5520045B2 (en) Epitaxial growth substrate and epitaxial growth method
JPH1154847A (en) Crystal growth method for gallium nitride-based semiconductor layer containing ingan layer, gallium nitride-based light-emitting element, and manufacture thereof
Fernández et al. High-quality distributed Bragg reflectors based on Al x Ga 1− x N/GaN multilayers grown by molecular-beam epitaxy
JP2010232622A (en) AlxGa(1-x)As SUBSTRATE, EPITAXIAL WAFER FOR INFRARED LED, INFRARED LED, METHOD FOR PRODUCTION OF AlxGa(1-x)As SUBSTRATE, METHOD FOR PRODUCTION OF EPITAXIAL WAFER FOR INFRARED LED, AND METHOD FOR PRODUCTION OF INFRARED LED
JP4696070B2 (en) Epitaxial crystal growth method
Nemeth et al. Compositional dependence of AlAsySb1− y ternaries on the ratio of Sb/As fluxes and on the substrate temperature
JP2000012467A (en) Method for forming gaas layer
JP4499444B2 (en) Vapor growth method
JPH0745909A (en) Vapor growth method for deformation quantum well semiconductor lasor
Chu et al. Grating overgrowth and defect structures in distributed-feedback-buried heterostructure laser diodes
Wang et al. Large-area uniform OMVPE growth for GaAs/AIGaAs quantum-well diode lasers with controlled emission wavelength
JP2756949B2 (en) Semiconductor mesa and V-groove side surface epitaxial layer growth rate adjustment method
US20220393431A1 (en) Monolithic micro-pillar photonic cavities based on iii-nitride semiconductors
Shi et al. Monolithic InGaAs/GaAs multi-QWs DFB nano-ridge laser directly grown on 300 mm Si Wafer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140404

R150 Certificate of patent or registration of utility model

Ref document number: 5520045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250