JPWO2008114341A1 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JPWO2008114341A1
JPWO2008114341A1 JP2009504941A JP2009504941A JPWO2008114341A1 JP WO2008114341 A1 JPWO2008114341 A1 JP WO2008114341A1 JP 2009504941 A JP2009504941 A JP 2009504941A JP 2009504941 A JP2009504941 A JP 2009504941A JP WO2008114341 A1 JPWO2008114341 A1 JP WO2008114341A1
Authority
JP
Japan
Prior art keywords
gate electrode
sidewall
semiconductor device
gate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009504941A
Other languages
Japanese (ja)
Other versions
JP5110079B2 (en
Inventor
奥野 昌樹
昌樹 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Publication of JPWO2008114341A1 publication Critical patent/JPWO2008114341A1/en
Application granted granted Critical
Publication of JP5110079B2 publication Critical patent/JP5110079B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823468MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/90MOSFET type gate sidewall insulating spacer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/903FET configuration adapted for use as static memory cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

半導体装置の製造方法は、半導体基板上にゲート電極材料膜を成膜し、前記ゲート電極材料膜を線状にパタニングし、前記線状のゲート電極材料膜パタンの長辺に沿ってサイドウォールを形成し、その後に、前記直線を所定の箇所で切断して、複数のゲート電極に分断する工程を含む。A method of manufacturing a semiconductor device includes forming a gate electrode material film on a semiconductor substrate, patterning the gate electrode material film in a linear shape, and forming a sidewall along a long side of the linear gate electrode material film pattern. And forming a plurality of gate electrodes by cutting the straight line at a predetermined location.

Description

本発明は、半導体装置とその製造方法に関し、特に、MOS型半導体装置の微細化を実現するゲート構造とその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly, to a gate structure for realizing miniaturization of a MOS type semiconductor device and a manufacturing method thereof.

SRAMは、図1に示すように、活性領域18に対して垂直に延びるように、破線状に並んだゲートパタン15を有することを特徴とする。図1の例では、点対称型のセル構造を有し、セル100内に2つの転送トランジスタと、2組のCMOSインバータが点対称に配置されている。   As shown in FIG. 1, the SRAM has a gate pattern 15 arranged in a broken line shape so as to extend perpendicularly to the active region 18. In the example of FIG. 1, it has a point-symmetric cell structure, and two transfer transistors and two sets of CMOS inverters are arranged point-symmetrically in a cell 100.

SRAMを微細化するにあたって、破線の枠Aで示すように、活性領域18からのゲート突き出し量Bをどこまで詰められるか、というのが大きな鍵となる。ここで、図1のSRAMの中の、例えばドライバトランジスタに注目して、現状の課題を説明する。   When miniaturizing the SRAM, as shown by the broken line A, the key is how far the gate protrusion amount B from the active region 18 can be reduced. Here, focusing on, for example, driver transistors in the SRAM of FIG. 1, current problems will be described.

図2は、図1の領域Aの拡大図であり、ゲートエッチングによるゲート先端部の後退を説明するための図である。一般にゲート25の先端部は、実際のゲートエッチング工程により、レジストパタン(ゲートパタン)15から後退する。そのため、レジストパタン形成時のゲート突き出し量Bは、あらかじめゲートエッチングの後退量を見越して充分に確保する必要がある。そうすると、活性領域18間の間隔"d"も、ゲートエッチングによる後退量を見越した数値を確保する必要があり、SRAM素子の微細化の妨げになる。   FIG. 2 is an enlarged view of the region A in FIG. 1 and is a diagram for explaining the receding of the gate tip due to gate etching. Generally, the tip of the gate 25 is retracted from the resist pattern (gate pattern) 15 by an actual gate etching process. For this reason, it is necessary to sufficiently secure the gate protrusion amount B at the time of forming the resist pattern in advance in anticipation of the gate etching retreat amount. As a result, the distance “d” between the active regions 18 also needs to be a value that allows for the amount of recession due to gate etching, which hinders miniaturization of the SRAM element.

図3は、ゲートエッチング後のゲート先端部の後退と、デバイス不良について説明する図である。ゲート突き出し量B(図1参照)が充分に確保されている場合は、図3(a)に示すように、ソース・ドレインがゲートによって分離されて、良品のトランジスタとなる。ゲート突き出し量が不十分であると、パタニングの際のポリシリコンの露光、エッチングによりゲート先端が後退し、図3(b)あるいは、図3(c)のように、ゲート先端部が活性領域(ソース・ドレイン)と充分に重ならなくなる。特に、図3(c)の場合は、ソース・ドレインがゲートで分離されておらず、ショートしており、デバイスは完全に不良品となる。図3(b)の場合は、ソース・ドレインがゲートおよびサイドウォールで分離されてはいるが、ゲート長が良品の場合(図3(a))と異なるため、デバイス特性が異なり、やはり不良と判断される。   FIG. 3 is a diagram for explaining the receding of the gate tip after gate etching and device defects. When the gate protruding amount B (see FIG. 1) is sufficiently secured, the source and drain are separated by the gate as shown in FIG. If the gate protrusion is insufficient, the gate tip is retracted by polysilicon exposure and etching during patterning, and the gate tip is the active region (see FIG. 3B or 3C). It will not overlap with the source / drain. In particular, in the case of FIG. 3C, the source and drain are not separated by the gate and are short-circuited, and the device is completely defective. In the case of FIG. 3B, the source and drain are separated by the gate and the side wall, but the gate length is different from that of the non-defective product (FIG. 3A). To be judged.

ここでは、セル境界近傍のドライバトランジスタを例にとって説明したが、図1のセル内のトランスファゲートの突き出し量についても、同様の問題が起こり得る。   Here, a driver transistor near the cell boundary has been described as an example, but the same problem can occur with respect to the amount of protrusion of the transfer gate in the cell of FIG.

ゲートエッチングの先端部の後退を抑え、図2の活性領域18間の間隔"d"を詰めてSRAMのセルサイズを低減する手法として、ゲートのダブルパタニングという手法が、最近注目されている(たとえば、非特許文献1参照)。この方法は、図4で示すように、最初に隣り合うゲート同士を繋げた1本の長いゲートパタンを作成し、次にゲート分離用の開口21を有するマスク20を用いてエッチングを行い、ゲートを分離する手法である。この方法ではゲート先端部の後退が起こらないので、図2の活性領域18間の間隔"d"を詰めることができる。
M. Kanda, et al, "Highly Stable 65 nm Node (CMOS5) 0.56 μm2 SRAM Cell Design for Very Low Operation Voltage", 2003 Symposium on VLSI Technology Digest of Technical Papers, at 13-14
A technique called gate double patterning has recently attracted attention as a technique for reducing the cell size of the SRAM by suppressing the receding of the tip of the gate etching and reducing the distance “d” between the active regions 18 in FIG. Non-Patent Document 1). In this method, as shown in FIG. 4, first, a long gate pattern in which adjacent gates are connected to each other is formed, and then etching is performed using a mask 20 having an opening 21 for gate separation. Is a technique for separating In this method, the gate tip does not retract, so that the distance “d” between the active regions 18 in FIG. 2 can be reduced.
M. Kanda, et al, "Highly Stable 65 nm Node (CMOS5) 0.56 μm2 SRAM Cell Design for Very Low Operation Voltage", 2003 Symposium on VLSI Technology Digest of Technical Papers, at 13-14

ところが、図4のゲートのダブルパタニングでも問題が発生することを、発明者らは見出した。それは図5(a)に示すように、ゲート分離用マスク20の露光時の位置ずれに起因して、活性領域(ソース・ドレイン領域)のぎりぎりの位置でゲート25が切断された場合、その後に通常のプロセスに従ってデバイスを作成すると、ゲート先端部での電流特性が変わってくるという問題である。   However, the inventors have found that a problem also occurs in the double patterning of the gate of FIG. As shown in FIG. 5A, when the gate 25 is cut at the last position of the active region (source / drain region) due to the positional deviation at the time of exposure of the gate isolation mask 20, When a device is fabricated according to a normal process, the current characteristic at the gate tip changes.

例えば図5(b)に示すように、ポケット26を形成するための4方向の斜め注入を行い、図5(c)に示すように、エクステンション注入を行ってサイドウォール(SW)27を形成し、ソース・ドレイン17を形成すると、ゲート先端部に沿ったエッジ近傍と、それ以外の領域とでは、イオン注入特性が変わってしまう。そのため、ゲートのエッジに沿った部分での電流特性(矢印bで示す)と、内側での電流特性(矢印aで示す)とに、ばらつきが生じる。   For example, as shown in FIG. 5B, oblique implantation in four directions for forming the pocket 26 is performed, and as shown in FIG. 5C, extension implantation is performed to form the sidewall (SW) 27. When the source / drain 17 is formed, the ion implantation characteristics change between the vicinity of the edge along the gate tip and the other region. For this reason, there is a variation in the current characteristic (indicated by arrow b) along the edge of the gate and the current characteristic in the inside (indicated by arrow a).

こうして出来上がったデバイスは特性変動を引き起こし、不良要因となる。これを避けるためには、ゲートのダブルパタニングを行う場合でも、ゲート分離用のマスクの露光位置ずれマージンや、注入マージンを考慮して、図2の活性領域18間の間隔"d"を十分に確保する必要がでてくる。   The resulting device causes characteristic fluctuations and becomes a cause of failure. In order to avoid this, even when performing double patterning of the gate, the gap “d” between the active regions 18 in FIG. 2 is sufficiently set in consideration of the exposure position deviation margin of the mask for gate separation and the implantation margin. It is necessary to secure it.

そこで、本発明は、MOS型素子を含むセル構造において、デバイスの動作特性の安定性を維持しつつ微細化を実現することのできるゲート構造と、その製造方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide a gate structure capable of realizing miniaturization while maintaining stability of device operation characteristics in a cell structure including a MOS type element, and a manufacturing method thereof.

上記の課題を解決するために、本発明の第1の側面では、半導体装置は、
(a)半導体基板上に配置される複数のゲート電極パタンと、
(b)前記各ゲート電極の側壁に設けられるサイドウォールスペーサと、
を有し、前記サイドウォールスペーサの厚さは、前記ゲート電極の長辺に沿った側壁において、前記ゲート電極の短辺に沿った側壁よりも厚く構成される、ことを特徴とする。
In order to solve the above problems, in a first aspect of the present invention, a semiconductor device includes:
(A) a plurality of gate electrode patterns disposed on the semiconductor substrate;
(B) sidewall spacers provided on the side walls of the gate electrodes;
The sidewall spacer is configured such that a thickness of the sidewall spacer along the long side of the gate electrode is greater than that of the sidewall along the short side of the gate electrode.

ひとつの構成例として、サイドウォールは、前記複数のゲート電極の長辺に沿って、分離することなく連続して位置する。あるいは、前記複数のゲート電極の長辺にのみ形成される構成であってもよい。   As one configuration example, the sidewalls are continuously located without being separated along the long sides of the plurality of gate electrodes. Or the structure formed only in the long side of these gate electrodes may be sufficient.

別の構成例では、複数のゲート電極の短辺に沿った側壁には、第1の膜厚のサイドウォールが設けられ、長辺に沿った側壁には、前記第1の膜厚よりも厚い第2の膜厚を有するサイドウォールが設けられる構造としてもよい。   In another configuration example, a sidewall having a first film thickness is provided on the sidewall along the short side of the plurality of gate electrodes, and the sidewall along the long side is thicker than the first film thickness. A structure in which a sidewall having the second film thickness is provided may be employed.

本発明の第2の側面では、半導体装置の製造方法を提供する。この製造方法は、
(a)半導体基板上に、ゲート電極材料膜を成膜し、
(b)前記ゲート電極材料膜を、線状にパタニングし、
(c)前記線状のゲート電極材料膜パタンの長辺に沿ってサイドウォールを形成し、
(d)その後に、前記線状のゲート電極材料膜パタンを所定の箇所で切断して、複数のゲート電極に分断する
工程を含む。
In a second aspect of the present invention, a method for manufacturing a semiconductor device is provided. This manufacturing method is
(A) forming a gate electrode material film on the semiconductor substrate;
(B) patterning the gate electrode material film linearly;
(C) forming a sidewall along the long side of the linear gate electrode material film pattern;
(D) After that, the process includes a step of cutting the linear gate electrode material film pattern at a predetermined location and dividing it into a plurality of gate electrodes.

好ましくは、前記サイドウォールを形成した後であって、前記複数のゲート電極に分断する前に、前記半導体基板に不純物を注入してソース・ドレイン領域を形成する工程、をさらに含む。   Preferably, the method further includes a step of implanting impurities into the semiconductor substrate to form source / drain regions after forming the sidewalls and before dividing into the plurality of gate electrodes.

良好な製造例では、ゲート電極の分断工程は、前記線状のゲート電極材料膜パタンと、前記サイドウォールの双方を分断する。あるいは、前記線状のゲート電極材料膜パタンを分断し、前記サイドウォールは、連続した状態で残すこととしてもよい。   In a good manufacturing example, the gate electrode dividing step divides both the linear gate electrode material film pattern and the sidewall. Alternatively, the linear gate electrode material film pattern may be divided and the sidewalls may be left in a continuous state.

好ましくは、前記ゲート電極の分断後に、前記サイドウォールの厚さよりも薄い第2のサイドウォールを、分断したゲート電極の短辺および長辺に沿って形成する工程、をさらに含む。   Preferably, the method further includes a step of forming, after the gate electrode is divided, a second sidewall that is thinner than the sidewall along the short side and the long side of the divided gate electrode.

上述した構成および方法により、ゲート先端直下の基板領域での不純物特性のばらつきを防止するとともに、活性領域間の距離を短縮することができる。   With the above-described configuration and method, it is possible to prevent variations in impurity characteristics in the substrate region immediately below the gate tip and to shorten the distance between the active regions.

その結果、半導体装置のセル構造の微細化が実現するとともに、動作の安定化も達成できる。   As a result, the miniaturization of the cell structure of the semiconductor device can be realized and the operation can be stabilized.

一般的なSRAMのゲート電極と活性領域のマスク配置図である。It is a mask arrangement diagram of a gate electrode and an active region of a general SRAM. エッチングによるゲート先端部の後退を説明するための図である。It is a figure for demonstrating receding of the gate front-end | tip part by an etching. ゲートエッチング後のゲート先端部の後退とデバイス不良について説明するための図である。It is a figure for demonstrating receding of the gate front-end | tip part after gate etching, and a device defect. 公知のゲート電極ダブルパタニングの手法を示す図である。It is a figure which shows the method of the well-known gate electrode double patterning. 従来のゲート電極ダブルパタニングの問題点を説明するための図である。It is a figure for demonstrating the problem of the conventional gate electrode double patterning. 本発明の基本概念を示す図である。It is a figure which shows the basic concept of this invention. 本発明の一実施形態の半導体装置の製造工程図である。It is a manufacturing-process figure of the semiconductor device of one Embodiment of this invention. 本発明の一実施形態の半導体装置の製造工程図である。It is a manufacturing-process figure of the semiconductor device of one Embodiment of this invention. 本発明の一実施形態の半導体装置の製造工程図である。It is a manufacturing-process figure of the semiconductor device of one Embodiment of this invention. 本発明の一実施形態の半導体装置の製造工程図である。It is a manufacturing-process figure of the semiconductor device of one Embodiment of this invention. 本発明の一実施形態の半導体装置の製造工程図である。It is a manufacturing-process figure of the semiconductor device of one Embodiment of this invention. 本発明の一実施形態の半導体装置の製造工程図である。It is a manufacturing-process figure of the semiconductor device of one Embodiment of this invention. 本発明の半導体装置の変形例を示す図である。It is a figure which shows the modification of the semiconductor device of this invention. 本発明の半導体装置の別の変形例を示す図である。It is a figure which shows another modification of the semiconductor device of this invention. 本発明の効果を説明するための図である。It is a figure for demonstrating the effect of this invention.

符号の説明Explanation of symbols

15 ゲートパタン(レジストパタン)
18 活性領域
20 マスク
21 開口
25 ゲート電極
26 ポケット
27 サイドウォールスペーサ
28 ソース・ドレイン
29 薄いサイドウォール
31 シリサイド
15 Gate pattern (resist pattern)
18 Active region 20 Mask 21 Opening 25 Gate electrode 26 Pocket 27 Side wall spacer 28 Source / drain 29 Thin side wall 31 Silicide

以下、図面を参照して、本発明の良好な実施の形態について説明する。図6は、本発明の基本概念を説明する図である。ここでは、図1の領域Aにおけるドライバトランジスタを例にとって説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described with reference to the drawings. FIG. 6 is a diagram for explaining the basic concept of the present invention. Here, a driver transistor in the region A in FIG. 1 will be described as an example.

本発明では、従来のダブルパタニングよりさらに微細化を実現する方法として、まず、図6(a)に示すように、従来と異なり、ゲートパタンが一直線に繋がったパタンに基づいてゲート電極25のエッチングを行い、図6(b)に示すように、ゲート電極25がつながったままの状態でポケット注入を行い、ポケット領域26を形成する。さらに、図6(c)に示すように、ゲート電極25がつながったままの状態で、エクステンションの注入を行い、サイドウォールスペーサ(以下、単に「サイドウォール」あるいは「SW」と称する)27を形成し、ソース・ドレイン注入を行ってソース・ドレイン領域(以下、単に「ソース・ドレイン」と称する)28を形成する。最後に、図6(d)に示すように、不純物注入を終えた状態でゲート全体を切断して、ゲート電極を設計された形状に分離する。   In the present invention, as a method for realizing further miniaturization than the conventional double patterning, first, as shown in FIG. 6A, unlike the conventional method, the gate electrode 25 is etched based on a pattern in which the gate patterns are connected in a straight line. Then, as shown in FIG. 6B, pocket implantation is performed while the gate electrode 25 remains connected to form a pocket region 26. Further, as shown in FIG. 6C, the extension is injected while the gate electrode 25 remains connected to form a side wall spacer (hereinafter simply referred to as “side wall” or “SW”) 27. Then, source / drain implantation is performed to form a source / drain region (hereinafter simply referred to as “source / drain”) 28. Finally, as shown in FIG. 6D, the entire gate is cut after the impurity implantation is completed, and the gate electrode is separated into the designed shape.

この方法では、最後にゲート電極25とサイドウォール27を切断、分離するので、ゲートパタンが除去された部分の基板領域にはもともと不純物の注入はない。したがって、ゲート電極先端部直下での不純物特性が非対称になることはない。その結果、動作特性が安定する。   In this method, since the gate electrode 25 and the side wall 27 are finally cut and separated, no impurity is originally implanted into the substrate region where the gate pattern is removed. Therefore, the impurity characteristics directly under the gate electrode tip are not asymmetric. As a result, the operating characteristics are stabilized.

また、最後にゲートを切断、分離するので、従来と異なり、サイドウォール27はゲートの長手方向(ゲート幅方向)にのみついており、対向する2つのドライバトランジスタ間(ゲート長方向)には存在しない(図6(d))。したがって、図2に示す活性領域18間の距離"d"を縮めることが可能になり、微細化に貢献することができる。   Further, since the gate is finally cut and separated, unlike the conventional case, the side wall 27 is provided only in the longitudinal direction of the gate (gate width direction), and does not exist between the two opposing driver transistors (gate length direction). (FIG. 6 (d)). Therefore, the distance “d” between the active regions 18 shown in FIG. 2 can be reduced, which can contribute to miniaturization.

これらの構成上、作製上の特徴は、図1のセル内のトランスファゲートとロードゲートを形成する際の構成、手法にも当てはまる。   In terms of these configurations, the manufacturing characteristics also apply to the configuration and method for forming the transfer gate and the load gate in the cell of FIG.

図7A〜図7Fは、本発明の一実施形態に係る半導体装置の製造工程図である。ここでも、図1の領域Aのように、SRAMMのセル境界近傍で隣り合うドライバトランジスタを例にとって説明する。   7A to 7F are manufacturing process diagrams of the semiconductor device according to the embodiment of the present invention. Here, as in the region A of FIG. 1, a description will be given taking as an example a driver transistor adjacent in the vicinity of the SRAMM cell boundary.

まず、図7Aに示すように、シリコン基板上にSTI等の素子分離領(不図示)を形成してSRAMの活性領域を区画し、ウェル注入、チャネル注入、活性化アニール、ゲート酸化膜堆積、ポリシリコン膜を堆積するところまでは、従来どおりの方法で作成する。図1のようなSRAMセルの場合は、1つのセル内に、Pウェル、Nウェル、Pウェルが並ぶようにウェル形成を行う。   First, as shown in FIG. 7A, an element isolation region (not shown) such as STI is formed on a silicon substrate to partition the active region of the SRAM, and well injection, channel injection, activation annealing, gate oxide film deposition, The conventional method is used until the polysilicon film is deposited. In the case of the SRAM cell as shown in FIG. 1, well formation is performed so that a P well, an N well, and a P well are arranged in one cell.

その後、従来なら、図1のようにSRAMのゲートパタンに合わせて点線状に分離されたマスクでゲートのパタニングを行うが、本発明では図7Aのように直線上に繋がったゲート電極25のパタンを作成する。なお、図7Aの例では、上側のゲート電極25は、後工程で切断されてトランスファゲートとなり、下側のゲート電極25は、後工程で切断されてドライバゲートとなる。   Thereafter, conventionally, gate patterning is performed using a mask separated into dotted lines in accordance with the SRAM gate pattern as shown in FIG. 1, but in the present invention, the pattern of the gate electrode 25 connected in a straight line as shown in FIG. 7A. Create In the example of FIG. 7A, the upper gate electrode 25 is cut in a later process to become a transfer gate, and the lower gate electrode 25 is cut in a later process to become a driver gate.

次に、図7Bに示すように、従来と同じようにポケット注入、エクステンション注入を行い、例えばCVD酸化膜で幅が30nm〜80nmのサイドウォール27を形成し、ソース・ドレイン注入を行って、ソース・ドレイン領域28を形成する。   Next, as shown in FIG. 7B, pocket implantation and extension implantation are performed in the same manner as in the prior art. For example, a sidewall 27 having a width of 30 nm to 80 nm is formed by a CVD oxide film, and source / drain implantation is performed. -The drain region 28 is formed.

次に、図7Cに示すように、全面にレジスト(不図示)を塗布し、所定の開口21を有するマスク20を用いて、ゲート切断部のみを露光し、エッチングを行う。エッチングは例えば、HBrと酸素を含む混合ガスを用いて、圧力1〜100Pa、周波数13.56MHzでRIEを行う。また、レジストを塗布する前に、エッチングのハードマスクとして、例えばCVD窒化膜を10nm〜40nmの膜厚で堆積してもよい。   Next, as shown in FIG. 7C, a resist (not shown) is applied to the entire surface, and only the gate cut portion is exposed and etched using a mask 20 having a predetermined opening 21. For example, the etching is performed by RIE using a mixed gas containing HBr and oxygen at a pressure of 1 to 100 Pa and a frequency of 13.56 MHz. Further, before applying the resist, for example, a CVD nitride film may be deposited with a thickness of 10 nm to 40 nm as an etching hard mask.

次に、図7Dに示すように、レジストを除去して、所定の形状に切断、分離されたゲート構造を得る。図7Cの工程でハードマスクを用いた場合は、レジスト除去後に、リン酸によりCVD窒化膜を除去する。ここまでで、本発明の基本構造が出来上がる。ただ、引き続いて行うシリサイド工程の条件によっては、切断したゲート端25aからシリサイドが横方向(ゲート幅方向)に侵食することが予想される。その場合は以下に続く工程を行うことによって、ゲート端25aからのシリサイド侵食を押さえることができる。   Next, as shown in FIG. 7D, the resist is removed to obtain a gate structure cut and separated into a predetermined shape. When a hard mask is used in the step of FIG. 7C, the CVD nitride film is removed with phosphoric acid after removing the resist. Thus far, the basic structure of the present invention has been completed. However, depending on the conditions of the subsequent silicide process, the silicide is expected to erode in the lateral direction (gate width direction) from the cut gate end 25a. In that case, silicide erosion from the gate end 25a can be suppressed by performing the following steps.

すなわち、図7Eに示すように、ゲート電極25の分離後に、CVD酸化膜で幅が5nm〜20nm程度の薄いサイドウォール29を形成する。この薄いサイドウォール29で、切断、分離により露出していたゲート電極25のゲート端25aが覆われる。   That is, as shown in FIG. 7E, after the gate electrode 25 is separated, a thin sidewall 29 having a width of about 5 nm to 20 nm is formed by a CVD oxide film. The thin sidewall 29 covers the gate end 25a of the gate electrode 25 exposed by cutting and separation.

最後に、図7Fに示すように、シリサイド処理を行う。NiまたはCoなどのシリサイド金属を膜厚2〜30nmにスパッタし、200℃〜600℃の温度で一次アニールを行い、未反応の金属を酸溶液処理により除去し、次に300℃〜900℃度の二次アニールを行い、NiSiまたはCoSiのシリサイドをゲート電極25とソース・ドレイン28上に形成する。   Finally, as shown in FIG. 7F, silicide processing is performed. A silicide metal such as Ni or Co is sputtered to a film thickness of 2 to 30 nm, primary annealing is performed at a temperature of 200 ° C. to 600 ° C., unreacted metal is removed by acid solution treatment, and then 300 ° C. to 900 ° C. Secondary annealing is performed to form NiSi or CoSi silicide on the gate electrode 25 and the source / drain 28.

図8および図9は、本発明のゲート構造の変形例を示す図である。図8では、ゲート電極25のみを切断部33で切断して、サイドウォール27は切断せずに連続したままの状態で残す。このような構成は、図7Cの工程で、ゲート切断部のエッチング条件や、サイドウォール27の膜質を制御することによって、実現できる。隣り合うゲート電極25が切断部33で電気的に絶縁されていればトランジスタは適正に動作をするので、このような形態の素子も考えられる。   8 and 9 are diagrams showing modifications of the gate structure of the present invention. In FIG. 8, only the gate electrode 25 is cut at the cutting portion 33, and the sidewall 27 is left in a continuous state without being cut. Such a configuration can be realized by controlling the etching conditions of the gate cut portion and the film quality of the sidewall 27 in the step of FIG. 7C. Since the transistor operates properly if the adjacent gate electrodes 25 are electrically insulated by the cut portion 33, an element of this form is also conceivable.

さらに、図9に示すように、ゲートの横方向にシリサイド拡散を押さえるために、図8の構造の作成後に、薄いサイドウォール29を形成してゲート端面を覆ってから、シリサイド化する。   Further, as shown in FIG. 9, in order to suppress silicide diffusion in the lateral direction of the gate, after the structure shown in FIG. 8 is formed, a thin sidewall 29 is formed to cover the gate end face and then silicided.

いずれの構成においても、ゲート電極25の側壁に設けられるサイドウォール構成に関して、ゲートの長辺に沿った(ゲート幅方向の)側壁において、ゲートの短辺(ゲート長方向)に沿った側壁よりも厚いサイドウォールを有することになる。   In any configuration, regarding the sidewall configuration provided on the sidewall of the gate electrode 25, the sidewall along the long side of the gate (in the gate width direction) is more than the sidewall along the short side of the gate (in the gate length direction). It will have a thick sidewall.

図10は、本発明の微細化の効果を説明するための図である。ゲート電極をマスクとするポケット注入、エクステンション注入の入り込み量を約10nmと見積もると、図4、5に示す通常のダブパタニングの方法でも、安定したデバイスを作成するには、ゲートエッチング後の突き出し量は、(露光の位置ずれマージン量)+10nmの余裕が必要となる。ところが、本発明によると、ゲート端25aからのポケット注入、エクステンション注入の入り込み量が無いために、同じ性能のデバイスを作成するのにゲートエッチング後の突き出し量を10nm削減できる。   FIG. 10 is a diagram for explaining the effect of miniaturization of the present invention. If the amount of pocket implantation and extension implantation entering the gate electrode as a mask is estimated to be about 10 nm, the amount of protrusion after gate etching can be used to create a stable device even with the usual dub patterning method shown in FIGS. Requires a margin of (exposure misalignment margin) +10 nm. However, according to the present invention, since there is no amount of pocket injection and extension injection from the gate end 25a, the amount of protrusion after gate etching can be reduced by 10 nm to produce a device having the same performance.

本発明の構成を45nmノードのSRAMに応用した場合の効果を見積もる。例えば、ゲートのダブルパタニング法を用いて、セルのX方向760nm、Y方向340nmのセル(面積は0.2584μm2)を作成したとする。ここで、本発明の構成を用いると、図10のa、b、c、dがそれぞれ10nm短縮できることになり、X方向720nm、Y方向340nm、面積は0.2448μm2となり、約5%の面積縮小が可能である。The effect when the configuration of the present invention is applied to a 45 nm node SRAM is estimated. For example, it is assumed that a cell having an X direction of 760 nm and a Y direction of 340 nm (area is 0.2584 μm 2 ) is created by using a gate double patterning method. Here, when the configuration of the present invention is used, a, b, c, and d in FIG. 10 can be reduced by 10 nm, the X direction is 720 nm, the Y direction is 340 nm, the area is 0.2448 μm 2 , and the area is about 5%. Reduction is possible.

この構成を32nmノードのSRAMに応用した場合は、リファレンスX方向530nm、Y方向240nm、面積0.1272μm2の従来構造に対して、X方向490nm、Y方向240nm、面積0.1176μm2となり、約8%の面積縮小が可能となる。If applying this configuration SRAM of 32nm node, reference X-direction 530 nm, Y-direction 240 nm, the conventional structure of the area 0.1272Myuemu 2, X-direction 490 nm, Y-direction 240 nm, the area 0.1176Myuemu 2 becomes about The area can be reduced by 8%.

以上本発明を良好な実施形態に基づいて説明したが、本発明はこれに限定されず、当業者にとって、クレームの範囲内で多様な変形、変更が可能である。   Although the present invention has been described based on the preferred embodiments, the present invention is not limited thereto, and various modifications and changes can be made by those skilled in the art within the scope of the claims.

Claims (16)

半導体基板上に配置される複数のゲート電極パタンと、
前記各ゲート電極の側壁に設けられるサイドウォールスペーサと、
を有し、前記サイドウォールスペーサの厚さは、前記ゲート電極の長辺に沿った側壁において、前記ゲート電極の短辺に沿った側壁よりも厚く構成される
ことを特徴とする半導体装置。
A plurality of gate electrode patterns disposed on a semiconductor substrate;
A sidewall spacer provided on a sidewall of each gate electrode;
The sidewall spacer is configured such that the sidewall spacer is thicker on the side wall along the longer side of the gate electrode than on the side wall along the shorter side of the gate electrode.
前記サイドウォールは、前記複数のゲート電極の長辺に沿って、分離することなく連続して位置する、ことを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the sidewall is continuously located without being separated along a long side of the plurality of gate electrodes. 前記サイドウォールは、前記複数のゲート電極の長辺にのみ形成されていることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the sidewall is formed only on long sides of the plurality of gate electrodes. 前記ゲート電極の短辺に沿った側壁には、第1の膜厚のサイドウォールが設けられ、
前記ゲート電極の長辺に沿った側壁には、前記第1の膜厚よりも厚い第2の膜厚を有するサイドウォールが設けられる、
ことを特徴とする請求項1に記載の半導体装置。
A sidewall having a first film thickness is provided on the sidewall along the short side of the gate electrode,
A sidewall having a second film thickness larger than the first film thickness is provided on the sidewall along the long side of the gate electrode.
The semiconductor device according to claim 1.
前記第1のサイドウォールの膜厚は、5nm〜20nmであることを特徴とする請求項4に記載の半導体装置。   The semiconductor device according to claim 4, wherein a film thickness of the first sidewall is 5 nm to 20 nm. 前記第2のサイドウォールの膜厚は、30nm〜80nmであることを特徴とする請求項4に記載の半導体装置。   The semiconductor device according to claim 4, wherein a film thickness of the second sidewall is 30 nm to 80 nm. 半導体基板上に、ゲート電極材料膜を成膜し、
前記ゲート電極材料膜を、線状にパタニングし、
前記線状パタンの長辺に沿ってサイドウォールを形成し、
その後に、前記線状のゲート電極材料膜パタンを所定の箇所で切断して、複数のゲート電極に分断する、
工程を含むことを特徴とする半導体装置の製造方法。
A gate electrode material film is formed on a semiconductor substrate,
The gate electrode material film is patterned in a linear shape,
Forming a sidewall along the long side of the linear pattern;
Thereafter, the linear gate electrode material film pattern is cut at a predetermined location to be divided into a plurality of gate electrodes.
The manufacturing method of the semiconductor device characterized by including a process.
前記サイドウォールを形成した後であって、前記複数のゲート電極に分断する前に、前記半導体基板に不純物を注入してソース・ドレイン領域を形成する工程、
をさらに含むことを特徴とする請求項7に記載の半導体装置の製造方法。
A step of forming a source / drain region by implanting impurities into the semiconductor substrate after forming the sidewalls and before dividing into the plurality of gate electrodes;
The method of manufacturing a semiconductor device according to claim 7, further comprising:
前記ゲート電極の分断工程は、前記線状のゲート電極材料膜パタンと、前記サイドウォールの双方を分断することを特徴とする請求項7又は8に記載の半導体装置の製造方法。   9. The method of manufacturing a semiconductor device according to claim 7, wherein the step of dividing the gate electrode divides both the linear gate electrode material film pattern and the sidewall. 前記ゲート電極の分断工程は、前記線状のゲート電極材料膜パタンを分断し、前記サイドウォールは連続した状態で残すことを特徴とする請求項7又は8に記載の半導体装置の製造方法。   9. The method of manufacturing a semiconductor device according to claim 7, wherein the step of dividing the gate electrode divides the linear gate electrode material film pattern and leaves the sidewalls in a continuous state. 前記サイドウォール形成前に、前記半導体基板の前記線状のゲート電極材料膜パタンの長辺に沿った領域にポケット領域および/またはエクステンション領域を形成する工程、
をさらに含むことを特徴とする請求項7に記載の半導体装置の製造方法。
Forming a pocket region and / or an extension region in a region along the long side of the linear gate electrode material film pattern of the semiconductor substrate before forming the sidewall;
The method of manufacturing a semiconductor device according to claim 7, further comprising:
前記ゲート電極の分断後に、前記サイドウォールの厚さよりも薄い第2のサイドウォールを、分断したゲート電極の短辺および長辺に沿って形成する工程、
をさらに含むことを特徴とする請求項7に記載の半導体装置の製造方法。
Forming a second side wall that is thinner than the side wall after dividing the gate electrode along the short side and the long side of the divided gate electrode;
The method of manufacturing a semiconductor device according to claim 7, further comprising:
前記第2のサイドウォールの膜厚は、5nm〜20nmであることを特徴とする請求項12に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 12, wherein a film thickness of the second sidewall is 5 nm to 20 nm. 前記第2のサイドウォール形成後に、シリサイド処理を行って、前記分断されたゲート電極上と、前記ソース・ドレイン上に金属シリサイドを形成する工程、
をさらに含むことを特徴とする請求項12又は13に記載の半導体装置の製造方法。
A step of performing a silicide treatment after forming the second sidewall to form a metal silicide on the divided gate electrode and on the source / drain;
The method of manufacturing a semiconductor device according to claim 12, further comprising:
前記半導体装置は、SRAMであることを特徴とする請求項7に記載の半導体装置。   The semiconductor device according to claim 7, wherein the semiconductor device is an SRAM. 前記サイドウォールの膜厚は、30nm〜80nmであることを特徴とする請求項7に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 7, wherein the sidewall has a thickness of 30 nm to 80 nm.
JP2009504941A 2007-03-16 2007-03-16 Manufacturing method of semiconductor device Expired - Fee Related JP5110079B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/055351 WO2008114341A1 (en) 2007-03-16 2007-03-16 Semiconductor device and process for manufacturing the same

Publications (2)

Publication Number Publication Date
JPWO2008114341A1 true JPWO2008114341A1 (en) 2010-06-24
JP5110079B2 JP5110079B2 (en) 2012-12-26

Family

ID=39765463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009504941A Expired - Fee Related JP5110079B2 (en) 2007-03-16 2007-03-16 Manufacturing method of semiconductor device

Country Status (3)

Country Link
US (3) US8071448B2 (en)
JP (1) JP5110079B2 (en)
WO (1) WO2008114341A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5525249B2 (en) * 2009-12-08 2014-06-18 ラピスセミコンダクタ株式会社 Semiconductor device and manufacturing method thereof
TWI552230B (en) * 2010-07-15 2016-10-01 聯華電子股份有限公司 Metal-oxide semiconductor transistor and method for fabricating the same
US8610176B2 (en) * 2011-01-11 2013-12-17 Qualcomm Incorporated Standard cell architecture using double poly patterning for multi VT devices
JP5746881B2 (en) * 2011-02-22 2015-07-08 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP5699826B2 (en) * 2011-06-27 2015-04-15 富士通セミコンダクター株式会社 Layout method and semiconductor device manufacturing method
US8735972B2 (en) * 2011-09-08 2014-05-27 International Business Machines Corporation SRAM cell having recessed storage node connections and method of fabricating same
JP5798502B2 (en) * 2012-01-31 2015-10-21 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US8836040B2 (en) * 2012-11-07 2014-09-16 Qualcomm Incorporated Shared-diffusion standard cell architecture
US9633906B2 (en) * 2014-01-24 2017-04-25 International Business Machines Corporation Gate structure cut after formation of epitaxial active regions

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127866A (en) * 1983-01-13 1984-07-23 Toshiba Corp Manufacture of semiconductor device
JPH0265213A (en) * 1988-08-31 1990-03-05 Taiyo Yuden Co Ltd Porcelain composition and porcelain for reduction reoxidation type semiconductor capacitor
JPH0265235A (en) 1988-08-31 1990-03-05 Mitsubishi Electric Corp Semiconductor integrated circuit device
US5217913A (en) 1988-08-31 1993-06-08 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing an MIS device having lightly doped drain structure and conductive sidewall spacers
US5146291A (en) 1988-08-31 1992-09-08 Mitsubishi Denki Kabushiki Kaisha MIS device having lightly doped drain structure
US5021354A (en) * 1989-12-04 1991-06-04 Motorola, Inc. Process for manufacturing a semiconductor device
KR0170311B1 (en) * 1995-06-23 1999-02-01 김광호 Static random access memory and its fabrication
JPH09289153A (en) * 1996-04-23 1997-11-04 Oki Electric Ind Co Ltd Manufacture of semiconductor device and mask used therefor
KR100223832B1 (en) * 1996-12-27 1999-10-15 구본준 Method of manufacturing semiconductor device
TW417253B (en) * 1998-07-27 2001-01-01 Seiko Epson Corp Semiconductor memory device and its manufacturing method
JP2000091448A (en) * 1998-09-12 2000-03-31 Toshiba Corp Manufacture of semiconductor device
TW480735B (en) * 2001-04-24 2002-03-21 United Microelectronics Corp Structure and manufacturing method of polysilicon thin film transistor
JP4255836B2 (en) * 2001-12-19 2009-04-15 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Composite spacer liner for improved transistor performance
JP2004039705A (en) * 2002-07-01 2004-02-05 Toshiba Corp Semiconductor device
US6936528B2 (en) 2002-10-17 2005-08-30 Samsung Electronics Co., Ltd. Method of forming cobalt silicide film and method of manufacturing semiconductor device having cobalt silicide film
EP1411146B1 (en) * 2002-10-17 2010-06-09 Samsung Electronics Co., Ltd. Method of forming cobalt silicide film and method of manufacturing semiconductor device having cobalt silicide film
JP2004140315A (en) 2002-10-17 2004-05-13 Samsung Electronics Co Ltd Manufacturing method for semiconductor device using salicide process
TW591741B (en) * 2003-06-09 2004-06-11 Taiwan Semiconductor Mfg Fabrication method for multiple spacer widths
US7718482B2 (en) * 2007-10-10 2010-05-18 Texas Instruments Incorporated CD gate bias reduction and differential N+ poly doping for CMOS circuits

Also Published As

Publication number Publication date
US20130292749A1 (en) 2013-11-07
US8692331B2 (en) 2014-04-08
US20090309141A1 (en) 2009-12-17
US8071448B2 (en) 2011-12-06
US20120043613A1 (en) 2012-02-23
WO2008114341A1 (en) 2008-09-25
US8507990B2 (en) 2013-08-13
JP5110079B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5110079B2 (en) Manufacturing method of semiconductor device
JP5613506B2 (en) Semiconductor device
JP2005039270A (en) Memory device and manufacturing method therefor
JP2008251826A (en) Method for manufacturing semiconductor device
KR20050037938A (en) Non-volatile semiconductor memory device and method for fabricating the same
JP2007335559A (en) Manufacturing method of semiconductor device
US20150243654A1 (en) Semiconductor structure and method for manufacturing the same
KR100510541B1 (en) High voltage transistor and method for manufacturing the same
JP4395871B2 (en) Manufacturing method of MOSFET element in peripheral region
JP2007053362A (en) Manufacture method of nonvolatile memory device
JP2007273759A (en) Method of manufacturing semiconductor device
JP2010258224A (en) Nonvolatile semiconductor memory device and method of forming the same
KR20110138521A (en) Methods of forming patterns and methods of manufacturing semiconductor devices using the same
JP2007088403A (en) Semiconductor device and manufacturing method thereof
JP2004228575A (en) Eeprom cell and manufacturing method for the same
US7012003B2 (en) Memory for producing a memory component
US8076729B2 (en) Semiconductor device having a dual gate electrode and methods of making the same
JP2014049460A (en) Nonvolatile semiconductor memory device, and method of manufacturing the same
KR20050027381A (en) Method of forming recess channel of transistor
KR20000043890A (en) Fabrication method of flash memory device
KR100376271B1 (en) Method of manufacturing a split gate type flash memory device
JP2008010483A (en) Semiconductor device, and its fabrication process
KR20070001590A (en) Method for forming recessed gate of semiconductor device
JPH0366171A (en) Manufacture of semiconductor integrated circuit device
KR100604570B1 (en) Method of manufacturing NAND flash memory device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5110079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees