JPWO2008107933A1 - Cleaning apparatus and cleaning method - Google Patents

Cleaning apparatus and cleaning method Download PDF

Info

Publication number
JPWO2008107933A1
JPWO2008107933A1 JP2009502348A JP2009502348A JPWO2008107933A1 JP WO2008107933 A1 JPWO2008107933 A1 JP WO2008107933A1 JP 2009502348 A JP2009502348 A JP 2009502348A JP 2009502348 A JP2009502348 A JP 2009502348A JP WO2008107933 A1 JPWO2008107933 A1 JP WO2008107933A1
Authority
JP
Japan
Prior art keywords
cleaning
cleaned
ultrasonic
wafer
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009502348A
Other languages
Japanese (ja)
Other versions
JP4731622B2 (en
Inventor
佐々木 真
真 佐々木
井谷 司
司 井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2008107933A1 publication Critical patent/JPWO2008107933A1/en
Application granted granted Critical
Publication of JP4731622B2 publication Critical patent/JP4731622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles

Abstract

本発明により、平坦な表面を有する洗浄対象物の当該表面を洗浄するための新規な洗浄技術が提供される。本発明は、表面に壊れやすい微細な構造物が形成された、ウエハ等の洗浄対象物の洗浄に特に適する。平坦な表面を有する洗浄対象物の当該表面を洗浄するための洗浄装置において、超音波と紫外線とを伝播し得る構造体であって、前記表面に対向する平坦な表面を有する構造体と、前記洗浄対象物の前記表面を照射するための超音波振動子および紫外線照射装置と、前記構造体の前記表面を前記洗浄対象物の前記表面に対して一定の間隔を設けて平行に保持するための機構と、前記二つの表面間の空間に洗浄液を供給するための洗浄液供給機構とを備える。The present invention provides a novel cleaning technique for cleaning a surface of an object to be cleaned having a flat surface. The present invention is particularly suitable for cleaning an object to be cleaned such as a wafer in which a fine structure that is fragile is formed on the surface. In a cleaning apparatus for cleaning a surface of an object to be cleaned having a flat surface, a structure capable of propagating ultrasonic waves and ultraviolet rays, the structure having a flat surface facing the surface, and An ultrasonic vibrator and an ultraviolet irradiation device for irradiating the surface of the object to be cleaned, and for holding the surface of the structure parallel to the surface of the object to be cleaned with a certain distance A mechanism and a cleaning liquid supply mechanism for supplying the cleaning liquid to the space between the two surfaces.

Description

本発明は、平坦な表面を有する洗浄対象物の当該表面を洗浄するための洗浄技術に関するものである。より具体的には、各種電子デバイスの製造工程で行われる半導体装置等の薄板状基板の表面の洗浄に用いられる洗浄装置と洗浄方法とに関するものである。  The present invention relates to a cleaning technique for cleaning a surface of an object to be cleaned having a flat surface. More specifically, the present invention relates to a cleaning apparatus and a cleaning method used for cleaning the surface of a thin plate substrate such as a semiconductor device performed in the manufacturing process of various electronic devices.

近年、半導体素子の製造では、ウエハサイズの大口径化が進んでいる。これに伴い、ウエハの洗浄工程においても、大型の洗浄槽を用いて行うディップ式洗浄と比べて、ウエハ面内で均一な洗浄処理が行いやすい、ウエハ表面から除去した微粒子等の汚染物質がウエハ表面に再付着しにくい、洗浄液やリンス用純水の使用量を抑制できる、洗浄装置の立ち上げが短時間で行える、等の有利な点が多いため、枚葉式洗浄が主流になりつつある。枚葉式洗浄は、液晶パネル等の表示デバイスの製造工程におけるガラス基板等のその他の電子材料にも使用されている。  In recent years, in the manufacture of semiconductor elements, the wafer size has been increased. As a result, even in the wafer cleaning process, contaminants such as fine particles removed from the wafer surface are easier to perform a uniform cleaning process within the wafer surface compared to dip cleaning performed using a large cleaning tank. Single-wafer cleaning is becoming mainstream because it has many advantages such as being less likely to re-adhere to the surface, reducing the amount of cleaning liquid and rinsing water used, and starting up the cleaning device in a short time. . Single wafer cleaning is also used for other electronic materials such as glass substrates in the manufacturing process of display devices such as liquid crystal panels.

なお、本明細書では、微粒子等の汚染物質を単に微粒子とも言う。たとえば、「汚染物質の除去」を単に「微粒子除去」ともいう。  In the present specification, contaminants such as fine particles are also simply referred to as fine particles. For example, “pollutant removal” is also simply referred to as “fine particle removal”.

半導体素子の製造工程におけるウエハや、液晶パネル等の表示デバイスの製造工程におけるガラス基板等の電子材料には、高度に清浄な表面が要求されるが、その洗浄方法として、従来の高濃度の薬品を高温で用いる洗浄技術に代わって、特定の気体を溶解させた超純水(ガス溶解水ともいう)を用いる超音波洗浄技術が開発され、近年、各種デバイスの製造工程において急速に採用されるようになってきた(たとえば特許文献1参照。)。  Electronic materials such as wafers in the manufacturing process of semiconductor elements and glass substrates in the manufacturing process of display devices such as liquid crystal panels are required to have a highly clean surface. Ultrasonic cleaning technology using ultrapure water (also referred to as gas-dissolved water) in which a specific gas is dissolved has been developed instead of cleaning technology that uses water at high temperatures, and has been rapidly adopted in the manufacturing process of various devices in recent years. (For example, refer to Patent Document 1).

その中でも特に、超純水に高濃度の水素ガスを溶解させた水素溶解水(水素水ともいう)は、超音波の照射との併用によって、極めて優れた微粒子除去効果を発揮することが知られている。  Among them, hydrogen-dissolved water (also referred to as hydrogen water) in which high-concentration hydrogen gas is dissolved in ultrapure water is known to exhibit an extremely excellent particulate removal effect when used in combination with ultrasonic irradiation. ing.

水素水と超音波の照射を併用することで優れた微粒子除去の効果が得られる理由としては、従来の超音波洗浄と同様の超音波による物理的な洗浄効果に加えて、超音波の作用によって水素水中に非常に活性な水素ラジカルが、水素を含まない水に比べて過剰に存在するようになり、その水素ラジカルが被洗浄物や付着している異物の表面と化学反応を起こすためであるとの説明が与えられている。  The reason why an excellent particle removal effect can be obtained by using hydrogen water and ultrasonic irradiation in combination is due to the action of ultrasonic waves in addition to the physical cleaning effect of ultrasonic waves similar to conventional ultrasonic cleaning. This is because very active hydrogen radicals exist in hydrogen water in excess compared to water that does not contain hydrogen, and the hydrogen radicals cause a chemical reaction with the surface of the object to be cleaned or attached foreign matter. The explanation is given.

ガス溶解水を用いた超音波洗浄技術の公知例として、特許文献1が挙げられる。また、水素水と超音波の照射の併用により微粒子が除去される効果についての研究報告の例としては、非特許文献1を挙げることができる。  Patent document 1 is mentioned as a well-known example of the ultrasonic cleaning technique using gas-dissolved water. Non-patent document 1 can be cited as an example of a research report on the effect of removing fine particles by the combined use of hydrogen water and ultrasonic irradiation.

超音波洗浄によりウエハを洗浄する枚葉式のスピン洗浄装置においては、ウエハの表面に超音波ノズルから洗浄液を噴射し、同時に、超音波ノズル内部の振動子を発振させて超音波を発生させ、超音波ノズルから噴射される洗浄液を媒体として超音波をウエハ表面に伝播させ、超音波のエネルギーを利用してウエハ表面の洗浄を行う。図1に、超音波ノズルを用いて行うスピン洗浄の概略を示す。超音波ノズル2からウエハ1に向けて洗浄液3を噴射する。超音波ノズル2に内蔵された超音波振動子を動作させると、発生した超音波が洗浄液3を媒体としてウエハ表面に伝播する。ウエハ1を回転させた状態で、超音波ノズル2から噴射された洗浄液3がウエハ表面に当たる点である照射点4が、ウエハの回転の中心と外周の間を往復運動するように超音波ノズル2に往復運動をさせれば、照射点4がウエハの全面を通過し、ウエハの全面が洗浄される。  In a single wafer type spin cleaning apparatus that cleans a wafer by ultrasonic cleaning, a cleaning liquid is sprayed from the ultrasonic nozzle onto the surface of the wafer, and at the same time, an ultrasonic wave is generated by oscillating a vibrator inside the ultrasonic nozzle, Ultrasonic waves are propagated to the wafer surface using the cleaning liquid ejected from the ultrasonic nozzle as a medium, and the wafer surface is cleaned using ultrasonic energy. FIG. 1 shows an outline of spin cleaning performed using an ultrasonic nozzle. A cleaning liquid 3 is sprayed from the ultrasonic nozzle 2 toward the wafer 1. When the ultrasonic vibrator built in the ultrasonic nozzle 2 is operated, the generated ultrasonic wave propagates to the wafer surface using the cleaning liquid 3 as a medium. The ultrasonic nozzle 2 so that the irradiation point 4, which is the point at which the cleaning liquid 3 ejected from the ultrasonic nozzle 2 hits the wafer surface while the wafer 1 is rotated, reciprocates between the rotation center and the outer periphery of the wafer. , The irradiation point 4 passes through the entire surface of the wafer, and the entire surface of the wafer is cleaned.

洗浄液3として水素水を用いれば、ウエハ1の表面から、極めて効率よく付着微粒子が洗浄、除去される。  If hydrogen water is used as the cleaning liquid 3, the attached fine particles are cleaned and removed from the surface of the wafer 1 very efficiently.

これまで説明した水素水洗浄においては、超音波の作用によって水素水中に活性な水素ラジカルが存在する状態を作り出し、その化学的な作用によって、微粒子を除去する効果が得られていた。その一方、超音波の照射と同様の効果が、紫外線の照射によっても得られることが知られている。水素水に紫外線を照射すると、紫外線のエネルギーによって水分子が励起されて分解し、その結果、超音波を照射した場合と同様に、水素水中に活性な水素ラジカルが存在する状態が作り出されると考えられる。  In the hydrogen water cleaning described so far, a state where active hydrogen radicals exist in the hydrogen water is created by the action of ultrasonic waves, and the effect of removing fine particles is obtained by the chemical action. On the other hand, it is known that the same effect as that of ultrasonic irradiation can be obtained by irradiation with ultraviolet rays. When hydrogen water is irradiated with ultraviolet rays, water molecules are excited and decomposed by the energy of ultraviolet rays, and as a result, a state in which active hydrogen radicals exist in hydrogen water is created, as in the case of ultrasonic irradiation. It is done.

従って、水素水洗浄において、超音波と紫外線を同時に水素水に照射すれば、超音波のみを照射した場合に比べて、より効率よく水素水中に水素ラジカルが生成し、その結果、超音波を単独で照射する場合よりも優れた微粒子除去の効果が得られる可能性がある。
特許公報第2821887号(特許請求の範囲) 公開特許第2003−181394号(特許請求の範囲) 公開公報第2003−31540号(特許請求の範囲) モリタ等、「水素化された超純水とメガソニック照射による粒子の除去機構(Particle Removal Mechanism of Hydrogenated Ultrapure Water with Megasonic Irradiation)」,シリコン表面の超清浄化プロセスについてのの第5回国際シンポジウム(Fifth International Symposium on Ultra Clean Processing of Silicon Surfaces),UCPSS2000,Solid State Phenomena Vols.76−77(2001)pp.245−250,Ostende,Belgium,September 2000
Therefore, in hydrogen water cleaning, if ultrasonic water and ultraviolet light are simultaneously irradiated to hydrogen water, hydrogen radicals are generated in hydrogen water more efficiently than when only ultrasonic waves are irradiated. There is a possibility that an effect of removing fine particles superior to the case of irradiating with 1 is obtained.
Japanese Patent Publication No. 2821887 (Claims) Published Patent No. 2003-181394 (Claims) Publication No. 2003-31540 (Claims) Morita et al., "Particle Removable Mechanism of Hydrogen Water Megalogical Irradiation", 5th International Symposium on Silicon Surface Ultracleaning Process Fifth International Symposium on Ultra Clean Processing of Silicon Surfaces), UCPSS2000, Solid State Phenomena Vols. 76-77 (2001) pp. 245-250, Ostende, Belgium, September 2000

最近の半導体素子では、その配線幅および間隔の微細化が進んでいるため、製造工程の途中において、表面に非常に壊れやすい微細な構造物(パターン)が形成された洗浄対象物を洗浄しなければならない場合が増えてきている。例えば、比誘電率の値を下げる目的でポアと呼ばれる微細な空孔を内部に一様に分布させた、多孔質シリカ(ポーラスシリカともいう)からなる絶縁材料からなる層間絶縁膜を有する半導体装置に対して、反応性のドライエッチング等によって溝と溝との間の凸部の幅が100nm以下のような微細なパターンが形成されている場合がこの場合に該当する。  In recent semiconductor devices, the wiring width and interval have been miniaturized. Therefore, in the middle of the manufacturing process, the object to be cleaned in which a fine structure (pattern) that is very fragile is formed must be cleaned. The number of cases that must be increased is increasing. For example, a semiconductor device having an interlayer insulating film made of an insulating material made of porous silica (also referred to as porous silica) in which fine pores called pores are uniformly distributed inside for the purpose of reducing the value of relative dielectric constant On the other hand, this case corresponds to a case where a fine pattern having a width of 100 nm or less between the grooves is formed by reactive dry etching or the like.

このような洗浄対象物に対して超音波ノズルを用いて超音波洗浄を行うと、超音波が与えるエネルギーによって、洗浄対象物表面のパターンが破壊される、いわゆるパターン倒れと呼ばれる現象が起きることがある。この現象は、水素水洗浄と超音波照射とを組み合わせた場合にも発生する。このような問題を回避するためには、洗浄対象物表面に形成されたパターンの構造的な強度に応じて、洗浄対象物表面の単位面積当たりに照射される超音波のエネルギーを小さくすることが必要となる。  When ultrasonic cleaning is performed on such an object to be cleaned using an ultrasonic nozzle, the pattern of the surface of the object to be cleaned is destroyed by the energy given by the ultrasonic wave, and a phenomenon called pattern collapse may occur. is there. This phenomenon also occurs when hydrogen water cleaning and ultrasonic irradiation are combined. In order to avoid such a problem, it is possible to reduce the energy of the ultrasonic wave irradiated per unit area of the surface of the object to be cleaned according to the structural strength of the pattern formed on the surface of the object to be cleaned. Necessary.

図1に示したような超音波ノズルを利用した洗浄装置においては、超音波がウエハ表面の構造物に与えるダメージを低減させられるように、超音波ノズルに内蔵されている超音波振動子を駆動させるための超音波発振器に、駆動出力を調整できる機構が備えられていることが多く、ある範囲内であれば、駆動出力を小さく設定することができる。それでも駆動出力が大き過ぎるような場合には、更に小さい出力での駆動が可能となるように、超音波発振器の電子回路を改造することが考えられる。  In the cleaning apparatus using the ultrasonic nozzle as shown in FIG. 1, the ultrasonic vibrator built in the ultrasonic nozzle is driven so that damage to the structure on the wafer surface by the ultrasonic wave can be reduced. In many cases, the ultrasonic oscillator for adjusting the output is provided with a mechanism capable of adjusting the drive output, and the drive output can be set small within a certain range. If the drive output is still too large, it is conceivable to modify the electronic circuit of the ultrasonic oscillator so that it can be driven with a smaller output.

しかしながら、超音波発振器の電子回路の改造によって駆動出力を小さくできたとしても、超音波ノズルに内蔵されている超音波振動子には形状や構造によって決まる固有の振動条件があり、駆動出力がある下限を下回ると、安定した振動が成立しないという問題がある。また、高い周波数の場合、超音波振動子の駆動出力が一定の大きさを下回ると、超音波ノズルから噴射された洗浄液中での超音波の減衰が急激に激しくなるため、超音波がウエハ表面に到達しない場合が出てくる。このように、超音波ノズルを使用する場合には、非常に小さな駆動出力で振動子を動作させて、ウエハ表面に超音波を照射することは一般的に困難である。  However, even if the drive output can be reduced by modifying the electronic circuit of the ultrasonic oscillator, the ultrasonic vibrator built in the ultrasonic nozzle has inherent vibration conditions determined by the shape and structure, and there is a drive output. Below the lower limit, there is a problem that stable vibration is not established. In the case of a high frequency, if the drive output of the ultrasonic transducer falls below a certain level, the attenuation of the ultrasonic wave in the cleaning liquid ejected from the ultrasonic nozzle becomes abruptly intense. The case that does not reach will come out. As described above, when the ultrasonic nozzle is used, it is generally difficult to irradiate the wafer surface with the ultrasonic wave by operating the vibrator with a very small driving output.

一方、最近になって、このような問題に対して、ウエハに与える超音波のダメージをできるだけ低減させる目的で、振動体を利用した超音波の照射方法が提案された。  On the other hand, recently, for such a problem, an ultrasonic irradiation method using a vibrating body has been proposed in order to reduce ultrasonic damage to the wafer as much as possible.

図2に、振動体を利用した超音波洗浄の例を示す。図2の上側は模式的斜視図、下側は模式的横断面図である。図2に示した例では、三角柱の形状をした部材である振動体5の平坦な面の一つに超音波振動子6が設置されている。振動体5の別の平坦な面が、ウエハ1の被洗浄面と平行にかつわずかな距離を隔てて向かい合うように、振動体5を保持する。ノズル7から洗浄液3を供給し、振動体5とウエハ1の間に生じたすき間が洗浄液3によって完全に満たされるようにする。この状態で超音波振動子6を駆動させると、発生した超音波は、振動体5の内部を伝播し、ウエハ1に向かい合う振動体5の面の全体から洗浄液3へと伝えられ、洗浄液3中を伝播して、被洗浄面であるウエハ1の表面へと届く。ウエハ1と向かい合う面の振動の仕方は、超音波振動子6の振動の仕方や振動体5の形状や材質で決まるので、これらは事前にシミュレーションによって予測され、目的に応じて振動体5の設計に反映される。図2には、三角柱の形状をしたセラミックスの振動体を採用した例を示したが、振動体の材質、形状(構造)は、様々である。  FIG. 2 shows an example of ultrasonic cleaning using a vibrating body. The upper side of FIG. 2 is a schematic perspective view, and the lower side is a schematic cross-sectional view. In the example shown in FIG. 2, the ultrasonic transducer 6 is installed on one of the flat surfaces of the vibrating body 5 that is a triangular prism-shaped member. The vibrating body 5 is held so that another flat surface of the vibrating body 5 faces the surface to be cleaned of the wafer 1 in parallel with a small distance. The cleaning liquid 3 is supplied from the nozzle 7 so that the gap generated between the vibrating body 5 and the wafer 1 is completely filled with the cleaning liquid 3. When the ultrasonic transducer 6 is driven in this state, the generated ultrasonic wave propagates through the vibrating body 5 and is transmitted to the cleaning liquid 3 from the entire surface of the vibrating body 5 facing the wafer 1. And reaches the surface of the wafer 1 to be cleaned. The manner of vibration of the surface facing the wafer 1 is determined by the manner of vibration of the ultrasonic vibrator 6 and the shape and material of the vibrator 5, and these are predicted by simulation in advance, and the design of the vibrator 5 according to the purpose. It is reflected in. FIG. 2 shows an example in which a ceramic vibrating body having a triangular prism shape is employed, but the material and shape (structure) of the vibrating body are various.

このような振動体を利用する方法では、超音波振動子で発生した超音波振動によって振動体の広い面の全体が振動するため、振動のエネルギーが分散し、被洗浄面の単位面積当たりに照射される超音波のエネルギーが、超音波ノズルの場合に比べて大幅に小さくなり、洗浄対象物表面に与える超音波のダメージを低減させる効果が得られる。  In the method using such a vibrating body, the entire surface of the vibrating body vibrates due to the ultrasonic vibration generated by the ultrasonic vibrator, so that the vibration energy is dispersed and irradiated per unit area of the surface to be cleaned. The energy of the ultrasonic wave is greatly reduced compared to the case of the ultrasonic nozzle, and the effect of reducing the ultrasonic damage given to the surface of the object to be cleaned can be obtained.

このような振動体を使用する洗浄方法においても、洗浄液3として水素水を用いれば、水素ガスを溶解させていない超純水を用いる場合に比べて、非常に優れた微粒子除去の効果を得ることができる(特許文献2,3参照。)。  Even in such a cleaning method using a vibrating body, if hydrogen water is used as the cleaning liquid 3, a very excellent particle removal effect can be obtained as compared with the case of using ultrapure water in which hydrogen gas is not dissolved. (See Patent Documents 2 and 3).

このように、超音波ノズルを使用して水素水洗浄を行った場合には、パターン倒れが発生してしまうような、構造的な強度が非常に小さいパターンが形成されている洗浄対象物であっても、振動体を使用して単位面積当たりに照射される超音波のエネルギーを小さくして、穏やかに水素水洗浄を行えば、パターン倒れを発生させることなく洗浄が行えることが判明した。しかしながら、パターンに与えるダメージと微粒子除去の効果は、互いにトレードオフの関係にあり、単位面積当たりに照射される超音波のエネルギーを小さくすれば、パターン倒れは発生しなくなるものの、微粒子除去の効果は不充分な水準にまで小さくなってしまうことも明らかになった。  As described above, when hydrogen water cleaning is performed using an ultrasonic nozzle, the object to be cleaned has a pattern with a very small structural strength that causes pattern collapse. However, it has been found that the cleaning can be performed without causing pattern collapse if the vibrating body is used to reduce the energy of the ultrasonic wave irradiated per unit area and gently perform the hydrogen water cleaning. However, the damage to the pattern and the effect of particle removal are in a trade-off relationship with each other, and if the ultrasonic energy irradiated per unit area is reduced, pattern collapse will not occur, but the effect of particle removal is It became clear that it would be reduced to an insufficient level.

このため、パターン倒れが発生しない範囲でできるだけ強い超音波を洗浄対象物に照射するための、超音波のエネルギーの強さの繊細な調節が必要となる。しかしながら、振動体にも材質や構造から決まる固有の振動条件があるため、超音波振動子の駆動出力を調節するだけでは、振動体から照射される超音波のエネルギーの強さを連続的に変化させて微調整を行うことは非常に難しいことが判明した。振動体を利用して、パターン倒れを発生させることなく最も高い微粒子除去効果を得ようとするならば、その洗浄対象物に最適な強さのエネルギーで超音波を照射できるように最適化された材質や構造を備えた振動体を新たに設計し、用意することが必要となるが、そのような対応は現実的には不可能である。  For this reason, it is necessary to delicately adjust the intensity of the ultrasonic energy in order to irradiate the object to be cleaned with the strongest possible ultrasonic wave within a range in which pattern collapse does not occur. However, since the vibrating body also has specific vibration conditions determined by the material and structure, simply adjusting the drive output of the ultrasonic vibrator will continuously change the intensity of the ultrasonic energy emitted from the vibrating body. It turned out to be very difficult to make fine adjustments. Optimized to irradiate ultrasonic waves with the energy of the optimal strength for the object to be cleaned if the highest particle removal effect is to be obtained without causing pattern collapse using a vibrating body. Although it is necessary to newly design and prepare a vibrating body having a material and a structure, such a response is impossible in practice.

そこで注目されたのが、水素水に対し、振動体を用いて超音波を照射し、更に同時に紫外線を照射する方法である。このようにすると、同時に照射される紫外線の作用で、より多くの水素ラジカルが水素水中に発生し、それによって、超音波のみを照射する場合と比べて、より高い微粒子除去の効果が得られることが期待されるため、振動体から照射される超音波の単位面積当たりのエネルギーの大きさは、パターン倒れを発生させない程度にとどめておくことがより容易になることが期待される。パターン倒れの発生の有無は、あくまでも照射する超音波のエネルギーの強さによって決まるので、紫外線の照射を追加することによってパターン倒れが発生することはないと考えられる。  Therefore, attention has been focused on a method of irradiating hydrogen water with ultrasonic waves using a vibrating body and simultaneously irradiating with ultraviolet rays. In this way, more hydrogen radicals are generated in the hydrogen water by the action of the ultraviolet rays that are irradiated at the same time, and as a result, a higher particle removal effect can be obtained compared to the case of irradiating only ultrasonic waves. Therefore, it is expected that the magnitude of the energy per unit area of the ultrasonic wave irradiated from the vibrating body can be more easily kept to a level that does not cause pattern collapse. The presence or absence of occurrence of pattern collapse is determined only by the intensity of the energy of ultrasonic waves to be irradiated. Therefore, it is considered that pattern collapse does not occur by adding ultraviolet irradiation.

しかしながら、実験の結果、図2において、ノズル7から供給されてウエハ1の表面に広がった水素水(すなわち、洗浄液3)のうち、超音波を照射している振動体5によって隠されていない部分の水素水に対しては、様々な波長、強度の紫外線を照射しても、振動体5によって超音波のみを照射した場合と比較して、微粒子除去の効果を高めることは不可能であることが判明した。すなわち、振動体5から離れた位置の水素水に紫外線を照射した場合はもちろん、振動体5の外縁部分で振動体5に接している水素水に紫外線を照射しても微粒子除去の効果は変化しなかった。紫外線を通過しない(すなわち伝播しない)振動体5によって隠されている部分についても紫外線の効果はなかった。  However, as a result of the experiment, in FIG. 2, a portion of the hydrogen water (that is, the cleaning liquid 3) that is supplied from the nozzle 7 and spreads on the surface of the wafer 1 that is not hidden by the vibrating body 5 that radiates ultrasonic waves. It is impossible to enhance the effect of removing fine particles even when irradiated with ultraviolet rays of various wavelengths and intensities compared to the case where only the ultrasonic waves are irradiated by the vibrator 5. There was found. That is, not only when the hydrogen water at a position away from the vibrating body 5 is irradiated with ultraviolet rays, but also when the ultraviolet water is irradiated on the hydrogen water that is in contact with the vibrating body 5 at the outer edge portion of the vibrating body 5, the effect of removing fine particles changes I didn't. There was no effect of the ultraviolet ray on the portion hidden by the vibrating body 5 that does not pass through the ultraviolet ray (that is, does not propagate).

この結果より、紫外線を照射して水分子を励起することにより、水素水中に水素ラジカルを生成させることは可能であるが、水素ラジカルの作用だけでは、洗浄対象物表面に付着している微粒子を引き離すことはできないものと推定される。また、紫外線の照射により得られた水素ラジカルは、紫外線が直接照射されない部分(すなわち紫外線を通過させない振動体5によって隠されている部分)について影響を及ぼすほどの力または寿命がないものと推定される。  From this result, it is possible to generate hydrogen radicals in hydrogen water by irradiating ultraviolet rays to excite water molecules. However, the fine particles adhering to the surface of the object to be cleaned can be obtained only by the action of hydrogen radicals. It is estimated that they cannot be separated. In addition, it is estimated that the hydrogen radical obtained by the irradiation of ultraviolet rays does not have a force or a lifetime that affects the portion that is not directly irradiated with ultraviolet rays (that is, the portion hidden by the vibrating body 5 that does not allow the passage of ultraviolet rays). The

本発明は、このような状況に鑑み、表面に壊れやすい微細な構造物(パターンともいう)が形成された場合であっても、洗浄対象物を効果的に洗浄できる技術を提供することを目的としている。本発明の更に他の目的および利点は、以下の説明から明らかになるであろう。  In view of such a situation, the present invention aims to provide a technique capable of effectively cleaning an object to be cleaned even when a fine structure (also referred to as a pattern) that is fragile is formed on the surface. It is said. Still other objects and advantages of the present invention will become apparent from the following description.

本発明の一態様によれば、平坦な表面を有する洗浄対象物の当該表面を洗浄するための洗浄装置において、超音波と紫外線とを伝播し得る構造体であって、前記表面に対向する平坦な表面を有する構造体と、前記洗浄対象物の前記表面を照射するための超音波振動子および紫外線照射装置と、前記構造体の前記表面を前記洗浄対象物の前記表面に対して一定の間隔を設けて平行に保持するための機構と、前記二つの表面間の空間に洗浄液を供給するための洗浄液供給機構とを含んでなる洗浄装置が提供される。  According to one aspect of the present invention, in a cleaning apparatus for cleaning a surface of an object to be cleaned having a flat surface, the structure is capable of propagating ultrasonic waves and ultraviolet rays, and is a flat surface facing the surface. A structure having a smooth surface, an ultrasonic vibrator and an ultraviolet irradiation device for irradiating the surface of the object to be cleaned, and a predetermined distance between the surface of the structure and the surface of the object to be cleaned And a cleaning liquid supply mechanism for supplying a cleaning liquid to the space between the two surfaces.

本発明態様により、平坦な表面を有する洗浄対象物の当該表面を洗浄するための新規な洗浄装置が提供される。  According to the aspect of the present invention, a novel cleaning apparatus for cleaning the surface of an object to be cleaned having a flat surface is provided.

前記洗浄液供給機構が、前記構造体の内部を通り、前記構造体の前記表面に開口する導通管部を有すること、前記間隔が1mm以下であること、前記洗浄液が、水素、酸素、希ガス物質およびこれらの混合物からなる群から選ばれた物質を水に溶解させたガス溶解水であること、前記構造体が石英ガラスであること、前記紫外線照射装置から照射される紫外線の波長が170〜250nmの範囲にあること、前記超音波振動子から照射される超音波の振動周波数が1MHz以上であること、洗浄装置が、前記間隔を保持したまま、前記洗浄対象物を回転させる機構を有すること、洗浄装置が、前記間隔を保持したまま、前記構造体を運動させる機構を有すること、前記洗浄対象物が半導体装置であること、および、前記洗浄対象物の表面が、溝と溝との間の凸部の幅が100nm以下である凹凸を有すること、が好ましい。  The cleaning liquid supply mechanism has a conducting tube portion that passes through the structure and opens on the surface of the structure, the interval is 1 mm or less, the cleaning liquid is hydrogen, oxygen, or a noble gas substance. And a gas-dissolved water obtained by dissolving a substance selected from the group consisting of these in water, the structure is quartz glass, and the wavelength of ultraviolet rays irradiated from the ultraviolet irradiation device is 170 to 250 nm. The vibration frequency of the ultrasonic wave emitted from the ultrasonic vibrator is 1 MHz or more, and the cleaning device has a mechanism for rotating the cleaning object while maintaining the interval. The cleaning device has a mechanism for moving the structure while maintaining the interval, the cleaning target is a semiconductor device, and the surface of the cleaning target is It has an uneven width of the convex portion is 100nm or less between the grooves, are preferred.

本発明の更に他の一態様によれば、請求項に記載の洗浄装置を用いて、平坦な表面を有する洗浄対象物の当該表面を洗浄する方法であって、前記空間に前記洗浄液を供給しつつ、前記超音波振動子からの超音波と前記紫外線照射装置からの紫外線とを、前記構造体の前記表面を通して、前記洗浄対象物の前記表面に照射する、洗浄方法が提供される。前記空間が前記洗浄液で満たされた状態において前記洗浄を行うことが好ましい。  According to still another aspect of the present invention, there is provided a method for cleaning a surface of an object to be cleaned having a flat surface using the cleaning device according to the claim, wherein the cleaning liquid is supplied to the space. Meanwhile, there is provided a cleaning method in which the surface of the object to be cleaned is irradiated with ultrasonic waves from the ultrasonic transducer and ultraviolet rays from the ultraviolet irradiation device through the surface of the structure. The cleaning is preferably performed in a state where the space is filled with the cleaning liquid.

本発明態様により、平坦な表面を有する洗浄対象物の当該表面を洗浄するための新規な洗浄方法が提供される。  According to the aspect of the present invention, a novel cleaning method for cleaning a surface of an object to be cleaned having a flat surface is provided.

本発明により、平坦な表面を有する洗浄対象物の当該表面を洗浄するための新規な洗浄技術が提供される。本発明は、表面に壊れやすい微細な構造物が形成された、半導体装置等の洗浄対象物の洗浄に特に適する。  The present invention provides a novel cleaning technique for cleaning a surface of an object to be cleaned having a flat surface. The present invention is particularly suitable for cleaning an object to be cleaned such as a semiconductor device in which a fine structure that is fragile is formed on the surface.

超音波ノズルを用いて行うスピン洗浄の様子を示す模式図である。It is a schematic diagram which shows the mode of the spin cleaning performed using an ultrasonic nozzle. 振動体を利用した超音波洗浄の様子を示す模式図である。It is a schematic diagram which shows the mode of the ultrasonic cleaning using a vibrating body. 本発明の一実施例である洗浄装置の基本的な構成を説明する模式図である。It is a schematic diagram explaining the fundamental structure of the washing | cleaning apparatus which is one Example of this invention. 本発明の一実施例である洗浄装置による洗浄の様子を説明する模式図である。It is a schematic diagram explaining the mode of washing | cleaning by the washing | cleaning apparatus which is one Example of this invention.

符号の説明Explanation of symbols

1 ウエハ
2 超音波ノズル
3 洗浄液
4 照射点
5 振動体
6 超音波振動子
7 ノズル
11 構造体
12 照射面
13 ケーブル
14 紫外線照射装置
15 紫外線ランプ
16 ランプハウス
17 窒素ガス
18 貫通孔
19 開口部
20 チューブ
DESCRIPTION OF SYMBOLS 1 Wafer 2 Ultrasonic nozzle 3 Cleaning liquid 4 Irradiation point 5 Vibrating body 6 Ultrasonic vibrator 7 Nozzle 11 Structure 12 Irradiation surface 13 Cable 14 Ultraviolet irradiation apparatus 15 Ultraviolet lamp 16 Lamp house 17 Nitrogen gas 18 Through-hole 19 Opening 20 Tube

以下に、本発明の実施の形態を図、表、実施例等を使用して説明する。なお、これらの図、表、実施例等および説明は本発明を例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。図中、同一の符号は同一の要素を表す。  Hereinafter, embodiments of the present invention will be described with reference to the drawings, tables, examples and the like. In addition, these figures, tables, examples, etc., and explanations are only examples of the present invention, and do not limit the scope of the present invention. It goes without saying that other embodiments may belong to the category of the present invention as long as they match the gist of the present invention. In the drawings, the same reference numeral represents the same element.

なお、本発明ではウエハについて主に説明するが、基板上に各種の構造を設けた半導体装置についても本発明を適用できることはいうを待たない。半導体装置においては、特にその多層構造中に、層間絶縁膜を設け、そこに設けられた溝に配線パターンを埋め込むことが多いが、そのような配線パターンは超音波洗浄によりダメージを受けやすいので、本発明の好適な洗浄対象物と言える。  In the present invention, the wafer will be mainly described. However, it is needless to say that the present invention can be applied to a semiconductor device in which various structures are provided on a substrate. In a semiconductor device, in particular, an interlayer insulating film is provided in the multilayer structure, and a wiring pattern is often embedded in a groove provided therein, but such a wiring pattern is easily damaged by ultrasonic cleaning. It can be said that it is a suitable cleaning object of the present invention.

検討の結果、上記のごとく、洗浄対象物上の離れた位置で別々に、それぞれ超音波と紫外線とを同時に水素水に照射しても、相乗効果は得られないことが明らかになった。このことは、洗浄対象物上の同じ位置で、同時に超音波と紫外線を水素水に照射することが必要であることを意味していると思われる。  As a result of the study, as described above, it has been clarified that the synergistic effect cannot be obtained even when the ultrasonic water and the ultraviolet light are separately irradiated at different positions on the object to be cleaned. This seems to mean that it is necessary to simultaneously irradiate hydrogen water with ultrasonic waves and ultraviolet rays at the same position on the object to be cleaned.

すなわち、超音波と紫外線とを組み合わせて使用する技術による洗浄(たとえは水素水洗浄)において、微粒子を洗浄対象物表面から離脱させるためには、微粒子に対して、たとえ微弱なものであってもよいので超音波等の物理的な力が作用して、微粒子を揺り動かし、洗浄対象物表面から浮かせることが前提となると考えられる。そのうえで、超音波や紫外線によって生成された活性な水素ラジカルが、洗浄対象物と微粒子の両者の表面に化学的に作用して不活性化し、両者の間の相互作用を小さくすることによって、微粒子が洗浄対象物表面から離脱しやすくなるものと推定される。  That is, in cleaning by a technique using a combination of ultrasonic waves and ultraviolet rays (for example, hydrogen water cleaning), in order to separate fine particles from the surface of the object to be cleaned, even if they are weak against fine particles, Since it is good, it is considered that the premise is that the physical force such as the ultrasonic wave acts and the fine particles are shaken and floated from the surface of the object to be cleaned. In addition, the active hydrogen radicals generated by ultrasonic waves and ultraviolet rays chemically inactivate both the surface of the object to be cleaned and the fine particles to inactivate them, thereby reducing the interaction between the two. It is estimated that it becomes easy to detach from the surface of the object to be cleaned.

本発明は、このような検討結果を踏まえて完成されたものである。ただし、上記はあくまで推論であり、その正否は本発明の内容とは無関係である。  The present invention has been completed based on such examination results. However, the above is only an inference, and the correctness is irrelevant to the contents of the present invention.

本発明に係る洗浄装置は、平坦な表面を有する洗浄対象物の当該表面(この表面を本明細書では、「洗浄面」ともいう)を洗浄するために使用される。この洗浄装置は、超音波と紫外線とを伝播し得る構造体であって、前記洗浄面に対向する平坦な表面(この表面を本明細書では、「照射面」ともいう)を有する構造体と、前記洗浄面を照射するための超音波振動子および紫外線照射装置と、前記照射面を前記洗浄面に対して一定の間隔を設けて平行に保持するための機構と、前記二つの表面間の空間(この空間を本明細書では、「洗浄空間」ともいう)に洗浄液を供給するための洗浄液供給機構とを含んでなる。なお、本発明において、「紫外線を伝播し得る」とは「紫外線とを通過し得る」と同義である。  The cleaning apparatus according to the present invention is used for cleaning the surface of an object to be cleaned having a flat surface (this surface is also referred to as “cleaning surface” in the present specification). This cleaning apparatus is a structure capable of propagating ultrasonic waves and ultraviolet rays, and has a flat surface (this surface is also referred to as an “irradiation surface” in this specification) opposite to the cleaning surface. An ultrasonic vibrator and an ultraviolet irradiation device for irradiating the cleaning surface, a mechanism for holding the irradiation surface parallel to the cleaning surface with a certain distance, and between the two surfaces And a cleaning liquid supply mechanism for supplying a cleaning liquid to a space (this space is also referred to as a “cleaning space” in the present specification). In the present invention, “can transmit ultraviolet rays” is synonymous with “can transmit ultraviolet rays”.

本発明により、超音波振動子を動作させることで発生した超音波は、構造体の内部を伝播し、照射面から洗浄液に向かって照射され、その下にある洗浄面に伝わる。このとき、照射面の全体が振動するため、振動のエネルギーが分散し、洗浄対象物の単位面積当たりに照射される超音波のエネルギーを小さくすることができ、これによって、洗浄対象物表面に形成された壊れやすい微細なパターンを超音波のダメージによって損傷させることを防止することができる。  According to the present invention, the ultrasonic wave generated by operating the ultrasonic vibrator propagates through the structure, is irradiated from the irradiation surface toward the cleaning liquid, and is transmitted to the underlying cleaning surface. At this time, since the entire irradiation surface vibrates, the vibration energy is dispersed, and the ultrasonic energy irradiated per unit area of the object to be cleaned can be reduced, thereby forming on the surface of the object to be cleaned. It is possible to prevent the fragile fine pattern thus formed from being damaged by ultrasonic damage.

また、構造体に接続してあるいは近接して設置された紫外線照射装置を動作させて発生させた紫外線は、構造体の内部を透過して、照射面から洗浄液に向かって、超音波と同時に同じ位置に照射される。この洗浄液にガス溶解水、特に水素水を使用すれば、超音波のみを照射した場合に比べて微粒子除去の効果を高めることが可能となる。また、紫外線の照射を追加することによって、パターン倒れを防止または抑制することができる。  In addition, ultraviolet rays generated by operating an ultraviolet irradiation device that is connected to or close to the structure are transmitted through the structure and the same as the ultrasonic wave from the irradiation surface toward the cleaning liquid. The position is irradiated. If gas-dissolved water, particularly hydrogen water, is used for this cleaning liquid, the effect of removing fine particles can be enhanced as compared with the case where only ultrasonic waves are irradiated. Moreover, pattern collapse can be prevented or suppressed by adding ultraviolet irradiation.

本発明において、「洗浄装置」は、上記要件が満たされる限りどのようなものであってもよい。公知の洗浄装置を改造して使用することができる。  In the present invention, the “cleaning device” may be any device as long as the above requirements are satisfied. A known cleaning apparatus can be modified and used.

本発明に係る洗浄対象物は平坦な表面を有するが、それ以外に特に制限はなく、半導体産業において、清浄な表面が要求され、洗浄を要する場合に、一般的に採用し得る。しかしながら、特に清浄な表面が要求される半導体装置に本発明の適用に特に適している。なお、本発明では、本発明の趣旨に反せず、あるいは特に注記しない限り、半導体装置にはウエハも含まれる。  The object to be cleaned according to the present invention has a flat surface, but there is no particular limitation, and it can be generally adopted when a clean surface is required and cleaning is required in the semiconductor industry. However, it is particularly suitable for application of the present invention to a semiconductor device that requires a particularly clean surface. In the present invention, the semiconductor device includes a wafer unless it departs from the spirit of the present invention or unless otherwise noted.

本発明に係る洗浄対象物の「平坦な表面」とはその表面における微細な凹凸を排除するものではない。この「平坦」の度合いは、上記構成における洗浄に際して、照射面から超音波を伝播し、本発明に係る洗浄の効果を発揮できる限度内において非平坦であってもよい。具体的には、例えば、ウエハの表面は平坦であると言われるが、パターンと呼ばれる微細な凹凸を持つのが一般的であり、そのような凹凸のある場合の洗浄に本発明は特に優れた効果を発揮する。すなわち、このような凹凸は、上記「平坦」を否定するものではない。なお、上記構造体も「平坦な表面」を有するが、洗浄対象物の「平坦な表面」と同様に考えることができる。  The “flat surface” of the object to be cleaned according to the present invention does not exclude fine irregularities on the surface. The degree of “flatness” may be non-flat within a limit where ultrasonic waves can be propagated from the irradiation surface and the effect of the cleaning according to the present invention can be exhibited during the cleaning in the above configuration. Specifically, for example, the surface of the wafer is said to be flat, but generally has fine unevenness called a pattern, and the present invention is particularly excellent for cleaning when such unevenness is present. Demonstrate the effect. That is, such irregularities do not deny the above-mentioned “flatness”. The above structure also has a “flat surface”, but can be considered in the same manner as the “flat surface” of the object to be cleaned.

本発明に係る構造体は、超音波と紫外線とを伝播し得る限りどのような材料から構成してもよい。実際には、超音波を伝播し得る材料は多くあるので、紫外線とを伝播し得る(すなわち、通過し得る)材料であることが重要である。超音波と紫外線とを伝播し得る程度は、実情に応じて適宜決めることができる。更に、本発明に係る構造体は洗浄液とも接触するので、洗浄液により溶解する等の影響を受けるものであってはならない。  The structure according to the present invention may be made of any material as long as it can propagate ultrasonic waves and ultraviolet rays. Actually, since there are many materials that can propagate ultrasonic waves, it is important to be a material that can propagate (that is, pass through) ultraviolet rays. The degree to which ultrasonic waves and ultraviolet rays can be propagated can be appropriately determined according to the actual situation. Furthermore, since the structure according to the present invention also comes into contact with the cleaning liquid, it should not be affected by being dissolved by the cleaning liquid.

このような材料としては、いわゆる透明なガラス様の無機物を考えることができる。この中でも、超音波と紫外線とを伝播し得る程度が高く、同時に、耐薬品性にも優れているため、特に石英ガラスが好ましい。  As such a material, a so-called transparent glass-like inorganic substance can be considered. Among these, quartz glass is particularly preferable because it has a high degree of propagation of ultrasonic waves and ultraviolet rays and at the same time has excellent chemical resistance.

石英ガラスは石英(SiO)から作製されるガラスで、SiO純度が高いものをいう。合成石英ガラス、溶融石英、溶融シリカ、シリカガラスなどとも呼ばれる。古典的な製造法では水晶の粉末を2000℃以上で溶融、冷却しガラス化する方法で得られるが、現在では、一般に、四塩化珪素の気体から化学的気相蒸着法(CVD)等によって製造されている。Quartz glass is a glass made of quartz (SiO 2 ) and means a material having high SiO 2 purity. It is also called synthetic quartz glass, fused silica, fused silica, silica glass or the like. In classical manufacturing methods, crystal powder is obtained by melting, cooling, and vitrifying at 2000 ° C or higher, but now it is generally manufactured from silicon tetrachloride gas by chemical vapor deposition (CVD). Has been.

これらの石英ガラスは不純物含有量がppbレベルと極めて高純度であるため、紫外線(特に波長170nm程度までの紫外線)であれば、大きな吸収を生じることがない。これより更に短い波長の紫外線に対しては、石英ガラスは著しい吸収を示すようになる。そのような場合には、フッ化カルシウムやフッ化マグネシウム等のフッ化物結晶の使用が適するが、これらの材料は機械加工が困難であるうえに、石英ガラスに比べて耐薬品性が劣っており、本発明のごとき洗浄液と接触させるような使用法には向いていない。なお、ホウ素などの不純物を加えたものも本発明に係る石英ガラスの範疇に属する。  Since these quartz glasses have an impurity content of ppb level and extremely high purity, they do not cause large absorption if they are ultraviolet rays (especially ultraviolet rays having a wavelength of about 170 nm). Quartz glass shows significant absorption for ultraviolet rays with wavelengths shorter than this. In such cases, the use of fluoride crystals such as calcium fluoride and magnesium fluoride is suitable, but these materials are difficult to machine and have poor chemical resistance compared to quartz glass. However, it is not suitable for use in contact with a cleaning liquid as in the present invention. In addition, those added with impurities such as boron also belong to the category of quartz glass according to the present invention.

本発明に係る構造体の形状は任意に選択することができる。超音波振動子、紫外線照射装置および洗浄面の配置との関係から最適なものを選べばよい。たとえば図2に示すような三角柱の形状や後述する図3に示すような円柱の形状を例示することができる。照射面の面積も任意に定めることができる。たとえばウエハの場合には、一般的に400〜2500mm程度の範囲である。The shape of the structure according to the present invention can be arbitrarily selected. What is necessary is just to choose an optimal thing from the relationship with an ultrasonic transducer | vibrator, an ultraviolet irradiation device, and arrangement | positioning of a cleaning surface. For example, a triangular prism shape as shown in FIG. 2 or a cylindrical shape as shown in FIG. The area of the irradiated surface can also be determined arbitrarily. For example, in the case of a wafer, it is generally in the range of about 400 to 2500 mm 2 .

本発明に係る超音波振動子の構造、形状、エネルギーの強さ等についても、本発明に適用できる限り、特に制限はない。本超音波振動子から照射される超音波の振動周波数は、壊れやすい微細なパターンを形成した洗浄対象物(たとえばウエハ)を洗浄する場合は、パターンに与えるダメージの観点から、できるだけ高い周波数とすることが好ましい。周波数は、具体的には少なくとも1MHz以上であることが好ましく、更には、3MHz以上とすることがより好ましい。1MHz以上の領域であれば、例えばウエハ表面に形成された壊れやすい微細なパターンに与えるダメージを低減させて洗浄することが容易になる。本発明に係る超音波振動子は上記構造体に直接取り付けられるのが一般的であるが、上記構造体内に部分的に埋め込まれていてもよい。  The structure, shape, energy strength, and the like of the ultrasonic transducer according to the present invention are not particularly limited as long as they can be applied to the present invention. The vibration frequency of the ultrasonic wave irradiated from this ultrasonic vibrator is set to the highest possible frequency from the viewpoint of damage to the pattern when cleaning an object to be cleaned (for example, a wafer) on which a fragile fine pattern is formed. It is preferable. Specifically, the frequency is preferably at least 1 MHz or more, and more preferably 3 MHz or more. In the region of 1 MHz or higher, for example, it is easy to clean by reducing damage to a fragile fine pattern formed on the wafer surface. The ultrasonic transducer according to the present invention is generally directly attached to the structure, but may be partially embedded in the structure.

本発明に係る紫外線照射装置の構造、形状、エネルギーの強さ等についても、本発明に適用できる限り、特に制限はない。本紫外線照射装置から照射される紫外線の波長は170〜250nmの範囲にあることが好ましい。この範囲であれば、石英ガラス等からなる構造体への透過率が高く、また、水分子の分解に必要なエネルギーを十分供給することが可能となる。波長が250nmよりも長くなると、光子のエネルギーが水分子を分解するために不充分となり、水素ラジカルの生成に寄与できなくなると考えられる。  The structure, shape, energy strength, and the like of the ultraviolet irradiation apparatus according to the present invention are not particularly limited as long as they can be applied to the present invention. It is preferable that the wavelength of the ultraviolet rays irradiated from the present ultraviolet irradiation device is in the range of 170 to 250 nm. If it is this range, the transmittance | permeability to the structure which consists of quartz glass etc. will be high, and it will become possible to supply sufficient energy required for decomposition | disassembly of a water molecule. When the wavelength is longer than 250 nm, it is considered that the energy of photons becomes insufficient for decomposing water molecules and cannot contribute to the generation of hydrogen radicals.

本発明に係る、「照射面を洗浄面に対して一定の間隔を設けて平行に保持するための機構」についても特に制限はなく、公知の機構を採用できる。「一定の間隔」は実情に応じて決定されるが、超音波のエネルギー減衰を抑え、効率よく洗浄面に伝えるため、一般的にmmオーダーと微小である。たとえば、この「一定の間隔」を1mm以下にすることが好ましい。下限については、洗浄液が洗浄空間内に流れ込み流れ出ることが阻害されず、照射面と洗浄面とが接触しない限り特に制限はない。  There is no particular limitation on the “mechanism for holding the irradiation surface parallel to the cleaning surface with a certain interval” according to the present invention, and a known mechanism can be adopted. The “certain interval” is determined in accordance with the actual situation, but is generally in the order of mm in order to suppress the attenuation of ultrasonic energy and efficiently transmit it to the cleaning surface. For example, it is preferable to set the “certain interval” to 1 mm or less. The lower limit is not particularly limited as long as it does not hinder the cleaning liquid from flowing into and out of the cleaning space and the irradiation surface and the cleaning surface are not in contact with each other.

本発明に係る、「洗浄空間に洗浄液を供給するための洗浄液供給機構」についても特に制限はなく、公知の機構を採用できる。一般的には、本発明に係る構造体の近くに洗浄液を供給し、洗浄対象物の移動により、洗浄液が洗浄空間内に移動する方式が採用できる。  The “cleaning liquid supply mechanism for supplying the cleaning liquid to the cleaning space” according to the present invention is not particularly limited, and a known mechanism can be employed. In general, a method in which a cleaning liquid is supplied near the structure according to the present invention and the cleaning liquid moves into the cleaning space by moving the object to be cleaned can be adopted.

そのような方式より優れた方式として、洗浄液供給機構が、上記構造体の内部を通り、照射面に開口する導通管部を有するようにする方式を挙げることができる。  As a method superior to such a method, there can be mentioned a method in which the cleaning liquid supply mechanism has a conducting tube portion that passes through the inside of the structure and opens to the irradiation surface.

一般的に、洗浄面と照射面との間の間隔は非常に小さく設定されるので、両者に挟まれた洗浄空間の内部にまで、構造体の外側から効率よく洗浄液を流し込むことは難しく、周辺部から気泡が巻き込むことも多い。しかしながら、このような構造にすれば、洗浄液を確実に洗浄空間に送り込むことができると共に、その供給量の調整も容易になる。このため、洗浄対象物の移動により、洗浄液を洗浄空間内に移動する方式に比べ、上記「一定の間隔」をより狭くでき、従って、超音波や紫外線の効果をより大きくすることができる。具体的には、0.1mm程度まで狭くすることが容易である。  In general, since the distance between the cleaning surface and the irradiation surface is set to be very small, it is difficult to efficiently flow the cleaning liquid from the outside of the structure into the cleaning space sandwiched between the two. There are many cases where air bubbles are caught from the part. However, with such a structure, the cleaning liquid can be reliably fed into the cleaning space, and the supply amount can be easily adjusted. For this reason, compared with the method of moving the cleaning liquid into the cleaning space by moving the object to be cleaned, the “certain interval” can be made narrower, and therefore the effect of ultrasonic waves and ultraviolet rays can be further increased. Specifically, it is easy to narrow down to about 0.1 mm.

導通管部の形状はどのようなものでもよく、円形の断面を有する筒状体であることが実際的である。導通管部の断面面積は適宜定めればよいが、一般的には、照射面の面積が、ウエハの場合のように、400〜2500mm程度である場合には、4〜25mm程度であることが好ましい。Any shape may be sufficient as a conduction | electrical_connection pipe part, and it is practical that it is a cylindrical body which has a circular cross section. The cross-sectional area of the conducting tube portion may be determined as appropriate. In general, when the area of the irradiation surface is about 400 to 2500 mm 2 as in the case of a wafer, it is about 4 to 25 mm 2. It is preferable.

本発明に係る洗浄液についても特に制限はなく、公知の洗浄液を適用することができるが、水素、酸素、希ガス物質およびこれらの混合物からなる群から選ばれた物質を水に溶解させたガス溶解水であることが、洗浄効果を向上させる上で好ましい。特に水素水が好ましい。これらのガス溶解水を作製する方法、ガス溶解水中におけるガス濃度等の各種条件は、実状に合わせて適宜選択することができるが、一般的には、できるだけ高いほうが、良好な微粒子除去の効果が得られ易い。例えば、水素水の場合は、20℃において水への水素ガスの飽和溶解度は1.6mg/Lであるが、1.2mg/L以上の濃度があれば、非常に良好な微粒子除去の効果を得ることができる。なお、本発明における「水」については、できるだけ不純物を含まないものが好ましい。このようなものは、純水や超純水と呼ばれるものから選択することができる。  There is no particular limitation on the cleaning liquid according to the present invention, and a known cleaning liquid can be applied. However, a gas dissolution in which a substance selected from the group consisting of hydrogen, oxygen, a rare gas substance, and a mixture thereof is dissolved in water. Water is preferable for improving the cleaning effect. Hydrogen water is particularly preferable. Various conditions such as the method for preparing these gas-dissolved water and the gas concentration in the gas-dissolved water can be appropriately selected according to the actual conditions, but in general, the higher the possible, the better the effect of removing fine particles. It is easy to obtain. For example, in the case of hydrogen water, the saturation solubility of hydrogen gas in water at 20 ° C. is 1.6 mg / L. However, if the concentration is 1.2 mg / L or more, a very good effect of removing fine particles can be obtained. Obtainable. The “water” in the present invention preferably contains as little impurities as possible. Such a thing can be selected from what is called pure water or ultrapure water.

本発明に係る洗浄液の供給は、洗浄面に常に新鮮な洗浄液が接触しているように、滞ることなく絶えず流れていればよく、その供給速度は、照射面と洗浄面との間の間隔等の実状に合わせて適宜定めることができる。ウエハの場合には一般的に、100〜1000mL/分程度である場合が多い。  The supply of the cleaning liquid according to the present invention only needs to flow continuously without delay so that the fresh cleaning liquid is always in contact with the cleaning surface, and the supply speed is the interval between the irradiation surface and the cleaning surface, etc. It can be determined appropriately according to the actual situation. In the case of a wafer, generally it is often about 100 to 1000 mL / min.

本発明に係る洗浄装置では、洗浄対象物と構造体との少なくともいずれか一方を移動させることにより、洗浄対象物の所望の表面領域を洗浄する。一般的には、上記間隔を保ったまま、洗浄対象物を回転させる機構と、更に構造体を運動させる機構とが採用される。機構の簡略化のため、洗浄対象物の回転を一定の回転速度で行い、構造体の運動を一定速度で行うことが多いが、回転の周辺部位では、その移動速度が回転の中心近傍に比べ大きくなるので、それに合わせ、回転の周辺部位では構造体の運動を小さくするようにしてもよい。構造体の運動は、回転の中心を通る運動である場合が一般的である。このような構成により、例えばウエハの全面を均質に洗浄することができる。なお、これらの場合における、「間隔の保持」の程度は、洗浄対象物に応じて適宜定めることができる。  In the cleaning apparatus according to the present invention, a desired surface region of the cleaning object is cleaned by moving at least one of the cleaning object and the structure. In general, a mechanism for rotating the object to be cleaned and a mechanism for moving the structure are employed while maintaining the above-mentioned interval. In order to simplify the mechanism, the object to be cleaned is rotated at a constant rotational speed, and the structure is often moved at a constant speed. Accordingly, the motion of the structure may be reduced at the peripheral part of the rotation. The movement of the structure is generally a movement through the center of rotation. With such a configuration, for example, the entire surface of the wafer can be cleaned uniformly. In these cases, the degree of “maintaining the interval” can be appropriately determined according to the object to be cleaned.

本発明に係る洗浄装置は、洗浄面が、溝と溝との間の凸部の幅が100nm以下である凹凸を有する場合に特に好ましく使用することができる。このような場合に、従来の洗浄装置では、洗浄面がダメージを受けやすいが、本発明に係る洗浄装置では、超音波と紫外線との組合せにより、洗浄面にダメージを与えることなく、良好に洗浄面を洗浄することができる。なお、溝と溝との間の凸部の高さと幅とのアスペクト比が大きければ大きいほど、一般的には洗浄面がダメージを受けやすくなるので、本発明の効果が発揮されやすい。その意味からこのアスペクト比は2以上であることが好ましい。上限は、実際に必要とされる洗浄効果によって制限されるものと考えられる。なお、上記の「凸部の高さ」は凹凸が繰り返される場合には、凸部の頂部から凹部の底までの長さである。  The cleaning apparatus according to the present invention can be particularly preferably used when the cleaning surface has irregularities in which the width of the convex portion between the grooves is 100 nm or less. In such a case, with the conventional cleaning device, the cleaning surface is easily damaged, but with the cleaning device according to the present invention, it is possible to clean well without damaging the cleaning surface by a combination of ultrasonic waves and ultraviolet rays. The surface can be cleaned. Note that the larger the aspect ratio between the height and the width of the convex portion between the grooves, the more easily the cleaning surface is easily damaged, and thus the effect of the present invention is easily exhibited. In this sense, this aspect ratio is preferably 2 or more. The upper limit is considered to be limited by the actually required cleaning effect. In addition, said "height of a convex part" is the length from the top part of a convex part to the bottom of a recessed part, when an unevenness | corrugation is repeated.

本発明に係る洗浄装置を用いて、上記洗浄面を洗浄する場合には、洗浄空間に洗浄液を供給しつつ、超音波振動子からの超音波と紫外線照射装置からの紫外線とを、上記照射面を通して、上記洗浄面に照射する。この方法により、洗浄面が、上記のように細い凸部を含む凹凸を持つ洗浄対象物であっても好適に洗浄を行うことができる。  When cleaning the cleaning surface using the cleaning device according to the present invention, while supplying the cleaning liquid to the cleaning space, the ultrasonic wave from the ultrasonic vibrator and the ultraviolet light from the ultraviolet irradiation device are applied to the irradiation surface. The cleaning surface is irradiated through. By this method, even if the cleaning surface is an object to be cleaned having unevenness including thin protrusions as described above, cleaning can be suitably performed.

なお、均質な洗浄効果を発揮させるためには、洗浄空間が洗浄液で満たされた状態において洗浄を行うことが好ましい。ここで「洗浄空間が洗浄液で満たされている」とは、洗浄空間に気泡が巻き込まれていないことを意味する。この状態は目視で確認する程度で十分であるが、より確実には、洗浄液量の供給速度等の条件を変え、斑のない(すなわち均質な)洗浄が可能となる供給速度を選択することで達成することができる。  In order to exhibit a uniform cleaning effect, it is preferable to perform cleaning in a state where the cleaning space is filled with the cleaning liquid. Here, “the cleaning space is filled with the cleaning liquid” means that no bubbles are involved in the cleaning space. In this state, it is sufficient to check visually, but more reliably, by changing the conditions such as the supply rate of the cleaning liquid amount, and selecting a supply rate that enables spotless (ie, homogeneous) cleaning. Can be achieved.

次に本発明の実施例を詳述する。  Next, examples of the present invention will be described in detail.

[実施例1]
図3は、本発明の一実施例である洗浄装置の基本的な構成を説明する図である。図3の上側は装置を水平方向に切断した模式的断面図、下側は装置を垂直方向に切断した模式的断面図である。本実施例においては、構造体11は円柱状の形状をしており、直径は約50mm、高さは約30mmである。構造体11の材質には、透明な合成石英ガラスを選び、合成石英ガラスによる著しい吸収が生じない波長170nm以上の紫外線を利用することとした。
[Example 1]
FIG. 3 is a diagram illustrating a basic configuration of a cleaning apparatus according to an embodiment of the present invention. The upper side of FIG. 3 is a schematic cross-sectional view of the device cut in the horizontal direction, and the lower side is a schematic cross-sectional view of the device cut in the vertical direction. In this embodiment, the structure 11 has a cylindrical shape, and has a diameter of about 50 mm and a height of about 30 mm. As the material of the structure 11, transparent synthetic quartz glass was selected, and ultraviolet rays having a wavelength of 170 nm or more that do not cause significant absorption by the synthetic quartz glass were used.

本実施例で使用した高さ約30mmの円柱状の構造体11においては、波長170nm以上の紫外線であれば、光源の強度に対して約60%の透過率が得られることが測定で確認された。  In the columnar structure 11 having a height of about 30 mm used in this example, it was confirmed by measurement that a transmittance of about 60% with respect to the intensity of the light source can be obtained if the wavelength is 170 nm or more. It was.

本実施例では、円柱状の構造体11の片方の面(照射面12の反対側の面)に、紫外線照射装置14が接続されていた。また、構造体11のもう片方の面が照射面12であり、紫外線照射装置14で発生した紫外線は、構造体11の内部を透過して、照射面12から洗浄面に向けて照射された。  In this embodiment, the ultraviolet irradiation device 14 is connected to one surface of the columnar structure 11 (the surface opposite to the irradiation surface 12). The other surface of the structure 11 is the irradiation surface 12, and the ultraviolet rays generated by the ultraviolet irradiation device 14 are transmitted through the structure 11 and irradiated from the irradiation surface 12 toward the cleaning surface.

紫外線照射装置14のランプハウス16の内部には、紫外線ランプ15が収められていた。また、ランプハウス16の底部は大きく開口していて、構造体11の面(照射面12の反対側の面)が紫外線ランプ15と直接向き合うようになっていた。  An ultraviolet lamp 15 was housed inside the lamp house 16 of the ultraviolet irradiation device 14. In addition, the bottom of the lamp house 16 has a large opening so that the surface of the structure 11 (the surface opposite to the irradiation surface 12) faces the ultraviolet lamp 15 directly.

短い波長の紫外線が大気中を通過すると、大気中の酸素によって激しく吸収され、減衰してしまうため、ランプハウス16の内部の空間は、乾燥した窒素ガス17によって置換され、酸素濃度をできるだけ低くした。ランプハウス16の内部の酸素濃度は、0.01体積%以下にまで下げることが好ましい。  When ultraviolet light having a short wavelength passes through the atmosphere, it is strongly absorbed and attenuated by oxygen in the atmosphere, so that the space inside the lamp house 16 is replaced with dry nitrogen gas 17 to make the oxygen concentration as low as possible. . The oxygen concentration inside the lamp house 16 is preferably lowered to 0.01% by volume or less.

紫外線ランプ15から照射される紫外線の波長については、先に説明したように、合成石英ガラスの吸収特性から、波長170〜250nmの範囲の波長を利用することが好ましい。本実施例においては、波長172nmや波長222nmのエキシマランプや、波長185nmの線スペクトルを含む低圧水銀ランプを用いて実験を行った。紫外線の照射強度は、いずれの波長で実験をする場合にも、照射面12の位置においておよそ100mW/cmとなるようにした。As described above, the wavelength of the ultraviolet light emitted from the ultraviolet lamp 15 is preferably a wavelength in the range of 170 to 250 nm because of the absorption characteristics of the synthetic quartz glass. In this example, an experiment was performed using an excimer lamp with a wavelength of 172 nm or 222 nm or a low-pressure mercury lamp including a line spectrum with a wavelength of 185 nm. Irradiation intensity of ultraviolet rays was set to approximately 100 mW / cm 2 at the position of the irradiation surface 12 in any experiment.

合成石英ガラスは、超音波の振動を良好に伝播させることができる。構造体11の側面の1か所には超音波振動子6が設置されており、ケーブル13によって図示しない超音波発振器と接続されていた。超音波発振器において生成された高周波電気信号は、ケーブル13によって超音波振動子6に伝えられ、超音波振動子6が動作して超音波を発生させた。発生した超音波は、構造体11の内部を伝播した。図4には、構造体11に一つの超音波振動子6が接続されている様子を示したが、超音波振動子6の数は一つには限定されず、必要に応じて、構造体11の周囲に複数設置してもよい。  Synthetic quartz glass can propagate ultrasonic vibrations well. An ultrasonic transducer 6 is installed at one place on the side surface of the structure 11 and is connected to an ultrasonic oscillator (not shown) by a cable 13. The high-frequency electrical signal generated in the ultrasonic oscillator was transmitted to the ultrasonic vibrator 6 through the cable 13, and the ultrasonic vibrator 6 operated to generate ultrasonic waves. The generated ultrasonic wave propagated inside the structure 11. FIG. 4 shows a state in which one ultrasonic transducer 6 is connected to the structure 11, but the number of the ultrasonic transducers 6 is not limited to one. A plurality may be installed around 11.

超音波振動子6で発生させる超音波の振動周波数については、壊れやすい微細なパターンを形成した洗浄対象物を洗浄する場合は、パターンに与えるダメージの観点から、できるだけ高い周波数とすることが好ましい。本実施例では、超音波振動子6が、周波数3MHz、出力3Wで振動するようにした。  The ultrasonic vibration frequency generated by the ultrasonic vibrator 6 is preferably as high as possible from the viewpoint of damage to the pattern when the object to be cleaned on which a fragile fine pattern is formed is cleaned. In the present embodiment, the ultrasonic transducer 6 vibrates at a frequency of 3 MHz and an output of 3 W.

構造体11の内部には、L字形に曲がった貫通孔18が作られており、片方の出口は照射面12の中央の開口部19に達していた。また、貫通孔18の反対側の出口からはチューブ20が接続されていて、その先は、水素水供給装置に接続されていた。  A through hole 18 bent in an L shape was formed inside the structure 11, and one outlet reached the opening 19 at the center of the irradiation surface 12. Moreover, the tube 20 was connected from the exit of the other side of the through-hole 18, and the tip was connected to the hydrogen water supply apparatus.

本例では、洗浄対象物としてウエハを使用した。後に説明するように、本実施例では、照射面12とウエハ1の表面を非常に接近させた状態で、両者の間にできた洗浄空間に水素水を供給して洗浄を行わなければならない。しかしながら、照射面12がウエハ1と非常に接近しているので、構造体11の外側からこの洗浄空間に水素水を送り込むことは非常に難しい。そこで、本実施例では、構造体11の内部に設けた貫通孔18を通して照射面12の中央の開口部19へと水素水を送り込むことで、開口部19から供給された水素水が、照射面12とウエハ1の間の小さな洗浄空間の中で、照射面12の中央から外縁方向に向かって、気泡等を巻き込むことなく安定した一様な流れとなって広がり、照射面12とウエハ1の間の洗浄空間を安定して洗浄液で満たすことが可能となるようにした。  In this example, a wafer is used as an object to be cleaned. As will be described later, in this embodiment, cleaning must be performed by supplying hydrogen water to a cleaning space formed between the irradiation surface 12 and the surface of the wafer 1 in a state of being very close to each other. However, since the irradiation surface 12 is very close to the wafer 1, it is very difficult to send hydrogen water into the cleaning space from the outside of the structure 11. Therefore, in this embodiment, the hydrogen water supplied from the opening 19 is supplied to the irradiation surface by sending hydrogen water to the central opening 19 of the irradiation surface 12 through the through hole 18 provided in the structure 11. In a small cleaning space between the wafer 12 and the wafer 1, it spreads in a stable and uniform flow from the center of the irradiation surface 12 toward the outer edge without involving bubbles or the like. It was made possible to stably fill the cleaning space between them with the cleaning liquid.

図4を用いて、本実施例による洗浄の様子を更に説明する。照射面12が被洗浄物であるウエハ1の表面と平行になるように、構造体11から上部を支持した。照射面12とウエハ1とは、水素水中での紫外線の吸収、減衰を考慮すると、より高い微粒子等の除去効果を得るためには、できうる限り接近させることが好ましい。本実施例では、およそ0.3mmに設定した。  The state of cleaning according to this embodiment will be further described with reference to FIG. The upper part was supported from the structure 11 so that the irradiation surface 12 was parallel to the surface of the wafer 1 as the object to be cleaned. In consideration of absorption and attenuation of ultraviolet rays in hydrogen water, it is preferable that the irradiated surface 12 and the wafer 1 be as close as possible to obtain a higher removal effect of fine particles and the like. In this example, it was set to about 0.3 mm.

照射面12をウエハ1に接近させた状態で、水素水供給装置を動作させ、水素水3を、チューブ20から貫通孔18へと導き、照射面12の中央の開口部19から、照射面12とウエハ1との間に挟まれた洗浄空間に供給した。水素水3は、このすき間の中で、照射面12の中央にある開口部19の位置から、照射面12の外縁部に向かって、安定した一様な流れとなって広がっていった。このようにすることで、照射面12とウエハ1の間に気泡等が巻き込まれることを防止できた。  With the irradiation surface 12 approaching the wafer 1, the hydrogen water supply device is operated to guide the hydrogen water 3 from the tube 20 to the through hole 18, and from the opening 19 at the center of the irradiation surface 12, the irradiation surface 12. And a cleaning space sandwiched between the wafer 1 and the wafer 1. The hydrogen water 3 spread in a stable and uniform flow from the position of the opening 19 at the center of the irradiation surface 12 toward the outer edge of the irradiation surface 12 in this gap. By doing so, it was possible to prevent bubbles and the like from being caught between the irradiation surface 12 and the wafer 1.

開口部19から単位時間当たりに供給する水素水3の量は、照射面12に常に新鮮な水素水3が接触しているように滞ることなく絶えず流れていればよく、照射面12とウエハ1の間隔や、チューブ20や貫通孔18の直径等によって、適宜決めればよい。  The amount of the hydrogen water 3 supplied from the opening 19 per unit time may flow continuously without stagnation so that the fresh hydrogen water 3 is always in contact with the irradiation surface 12. May be determined as appropriate according to the distance between the tube 20 and the diameter of the tube 20 or the through hole 18.

照射面12とウエハ1の間の洗浄空間が完全に水素水3で満たされた状態で、紫外線照射装置14内の紫外線ランプ15を点灯し、同時に、超音波振動子6を動作させ、照射面12から紫外線と超音波が同時に水素水3中に向けて照射され、ウエハ1の表面で水素水の作用によって微粒子の除去が進行するようにした。  In a state where the cleaning space between the irradiation surface 12 and the wafer 1 is completely filled with the hydrogen water 3, the ultraviolet lamp 15 in the ultraviolet irradiation device 14 is turned on, and at the same time, the ultrasonic vibrator 6 is operated, Ultraviolet rays and ultrasonic waves were simultaneously irradiated from 12 to the hydrogen water 3 so that the removal of fine particles proceeded on the surface of the wafer 1 by the action of the hydrogen water.

この状態のまま、ウエハ1の中心を通るウエハ1に垂直な直線を回転軸としてウエハ1を一定速度で回転させ、同時に、構造体11から上の部分を、照射面12とウエハ1の距離を一定に保ったままウエハ1の面に平行に一定の速度で移動させた。  In this state, the wafer 1 is rotated at a constant speed with a straight line passing through the center of the wafer 1 as a rotation axis, and at the same time, the distance between the irradiation surface 12 and the wafer 1 is set at the upper part from the structure 11. The wafer was moved at a constant speed parallel to the surface of the wafer 1 while being kept constant.

紫外線は、照射面12の面内にほぼ均一に照射されればよく、照射強度の面内分布等を厳格に管理する必要はない。また、超音波に関しても、照射面12の面内でほぼ一様に振動が発生していればよく、振動強度の面内分布等を厳格に管理する必要はない。いずれにしても、照射面12の各点から水素水3に向けて、更にはウエハ1に向けて、ウエハ1の表面に形成された壊れやすい微細なパターンを壊さない程度の微弱な超音波と、水分子を分解するために充分な大きさのエネルギーの紫外線とが、同時に照射されるように構成できた。これにより、パターン倒れを発生させることなく、ウエハ1の表面から効率よく微粒子を除去することができた。  The ultraviolet rays only have to be irradiated almost uniformly within the irradiation surface 12, and it is not necessary to strictly manage the in-plane distribution of the irradiation intensity. In addition, regarding ultrasonic waves, it is only necessary that vibrations occur substantially uniformly within the surface of the irradiation surface 12, and it is not necessary to strictly manage the in-plane distribution of vibration intensity. In any case, a weak ultrasonic wave that does not break a fragile fine pattern formed on the surface of the wafer 1 from each point of the irradiation surface 12 toward the hydrogen water 3 and further toward the wafer 1. In addition, it was possible to irradiate simultaneously with ultraviolet rays having energy large enough to decompose water molecules. As a result, fine particles could be efficiently removed from the surface of the wafer 1 without causing pattern collapse.

具体的には、次のような実験を行った。実験では、2種類の試料を用いて洗浄を行った。一つは、超音波が与えるダメージの大きさを評価する目的で、パターン倒れの発生の有無の確認に使用する試料であり、直径8インチ(約200mm)のSiウエハ上に、多孔質シリカからなる絶縁材料を一様な膜厚200nmで成膜し、この絶縁材料の膜に対して、ドライエッチングにより、L(ライン)/S(スペース)=65/65nmの縞状の一様なパターンを形成したものを用いた。このスペースの65nmが、本発明における凸部の幅に該当する。この場合の高さは凸部の頂部から凹部の底までの長さであり、195nmであった。すなわちアスペクト比は3であった。
洗浄後、偏光顕微鏡を用いてパターンの観察を行い、パターン倒れの有無を確認した。
Specifically, the following experiment was conducted. In the experiment, washing was performed using two types of samples. One is a sample used to confirm the occurrence of pattern collapse for the purpose of evaluating the magnitude of damage caused by ultrasonic waves. From a porous silica on an 8 inch (about 200 mm) diameter Si wafer. An insulating material having a uniform thickness of 200 nm is formed, and a stripe-like uniform pattern of L (line) / S (space) = 65/65 nm is formed on the insulating material film by dry etching. What was formed was used. 65 nm of this space corresponds to the width of the convex portion in the present invention. The height in this case was the length from the top of the convex part to the bottom of the concave part, and was 195 nm. That is, the aspect ratio was 3.
After washing, the pattern was observed using a polarizing microscope, and the presence or absence of pattern collapse was confirmed.

もう一つは、微粒子除去の効果の大きさを評価する目的で使用する試料であり、同じく直径8インチ(約200mm)のSiウエハ上に、厚さ100nmの熱酸化膜を形成し、この熱酸化膜の表面に、平均粒径0.15μmのシリカ(SiO)粒子を、除去対象である微粒子のモデルとして、ほぼ均一に付着させたものであった。シリカ粒子の総数は、ウエハ1枚当たり3万個程度に調製した。The other is a sample used for the purpose of evaluating the effect of removing fine particles. A thermal oxide film having a thickness of 100 nm is formed on a Si wafer having a diameter of 8 inches (about 200 mm). Silica (SiO 2 ) particles having an average particle size of 0.15 μm were deposited almost uniformly on the surface of the oxide film as a model of fine particles to be removed. The total number of silica particles was adjusted to about 30,000 per wafer.

ウエハ表面検査装置を使用して、洗浄前後でウエハ表面に付着しているシリカ粒子の数を計測し、洗浄によってどれだけのシリカ粒子が除去されたか(除去率)を算出した。  Using a wafer surface inspection apparatus, the number of silica particles adhering to the wafer surface before and after cleaning was measured, and how much silica particles were removed by the cleaning (removal rate) was calculated.

紫外線の照射には、先に説明したランプのうち、波長172nmのエキシマランプを使用した。  Among the lamps described above, an excimer lamp having a wavelength of 172 nm was used for irradiation with ultraviolet rays.

洗浄液には、超純水中に水素ガスを1.5mg/Lの濃度で溶解させた水素水を使用した。その供給速度は600mL/分とした。  As the cleaning liquid, hydrogen water in which hydrogen gas was dissolved at a concentration of 1.5 mg / L in ultrapure water was used. The supply rate was 600 mL / min.

ウエハは200rpmで回転させ、また、照射面はウエハ上でウエハの中心とウエハの外縁との間を2cm/秒の速度で往復運動させた。ウエハ1枚当たりの洗浄時間は、すべて90秒に設定した。  The wafer was rotated at 200 rpm, and the irradiation surface was reciprocated on the wafer between the center of the wafer and the outer edge of the wafer at a speed of 2 cm / second. The cleaning time per wafer was all set to 90 seconds.

これ以外の条件は、これまで説明してきた通りの条件に設定し、洗浄を行った。  The other conditions were set to the same conditions as described above, and cleaning was performed.

表1に洗浄の結果を示す。  Table 1 shows the results of washing.

Figure 2008107933
水素ガス溶解の欄で、「あり」と書かれている場合には上記条件を採用した。「あり」と書かれていない条件においては、洗浄液として、水素ガスを溶解させていない超純水を使用した。
Figure 2008107933
When “Yes” is written in the hydrogen gas dissolution column, the above conditions were adopted. Under conditions where “Yes” is not written, ultrapure water in which hydrogen gas is not dissolved is used as the cleaning liquid.

まず、シリカ粒子の除去率に注目すると、水素水に対して超音波も紫外線も照射しなければ、除去率は超純水とほとんど変わらないことが理解される(条件番号2)。  First, paying attention to the removal rate of silica particles, it is understood that the removal rate is almost the same as that of ultrapure water unless the ultrasonic wave and the ultraviolet ray are irradiated to the hydrogen water (condition number 2).

超純水に紫外線を照射しても除去率は変わらないが(条件番号3)、水素水に紫外線を照射しても、やはり除去率は変わらなかった(条件番号4)。すなわち、水素水に紫外線を照射しただけでは、微粒子除去の効果は得られないことが理解される。  Irradiation of ultrapure water with ultraviolet rays did not change the removal rate (condition number 3), but even when hydrogen water was irradiated with ultraviolet rays, the removal rate did not change (condition number 4). That is, it is understood that the effect of removing fine particles cannot be obtained only by irradiating hydrogen water with ultraviolet rays.

超純水に超音波を照射すると、照射しない場合と比べて除去率は高くなるが(条件番号5)、同時に紫外線を照射しても、超音波のみの場合とほとんど除去率は変わらない(条件番号6)。水素水中に水素ラジカルが存在する状態を作り出すためには、超純水中に水素ガスを溶解させておくことが必要であることが理解される。  When the ultrapure water is irradiated with ultrasonic waves, the removal rate is higher than when it is not irradiated (condition number 5). However, even when ultraviolet rays are irradiated at the same time, the removal rate is almost the same as when only ultrasonic waves are used (conditions Number 6). It is understood that it is necessary to dissolve hydrogen gas in ultrapure water in order to create a state in which hydrogen radicals exist in hydrogen water.

水素水に超音波を照射すると、水素水洗浄の効果が現れて、除去率は上昇するが(条件番号7)、そこに同時に紫外線を照射すると、更に飛躍的に除去率が高くなった(条件8)。  When the hydrogen water is irradiated with ultrasonic waves, the effect of washing with hydrogen water appears, and the removal rate increases (condition number 7), but when the ultraviolet rays are simultaneously irradiated there, the removal rate is further increased dramatically (conditions) 8).

更に、何れの条件においてもパターン倒れは全く発生していなかった。  Furthermore, no pattern collapse occurred at any condition.

本発明は、半導体装置等の平坦な表面を有する洗浄対象物の表面の洗浄に利用できる。  The present invention can be used for cleaning the surface of a cleaning object having a flat surface such as a semiconductor device.

Claims (12)

平坦な表面を有する洗浄対象物の当該表面を洗浄するための洗浄装置において、
超音波と紫外線とを伝播し得る構造体であって、前記表面に対向する平坦な表面を有する構造体と、
前記洗浄対象物の前記表面を照射するための超音波振動子および紫外線照射装置と、
前記構造体の前記表面を前記洗浄対象物の前記表面に対して一定の間隔を設けて平行に保持するための機構と、
前記二つの表面間の空間に洗浄液を供給するための洗浄液供給機構と
を含んでなり、
前記洗浄液が、水素、酸素、希ガス物質およびこれらの混合物からなる群から選ばれた物質を水に溶解させたガス溶解水である、
洗浄装置。
In a cleaning apparatus for cleaning the surface of an object to be cleaned having a flat surface,
A structure capable of propagating ultrasonic waves and ultraviolet rays, the structure having a flat surface facing the surface;
An ultrasonic vibrator and an ultraviolet irradiation device for irradiating the surface of the object to be cleaned;
A mechanism for holding the surface of the structure parallel to the surface of the object to be cleaned at a certain interval;
A cleaning liquid supply mechanism for supplying a cleaning liquid to the space between the two surfaces,
The cleaning liquid is gas-dissolved water in which a substance selected from the group consisting of hydrogen, oxygen, a rare gas substance, and a mixture thereof is dissolved in water.
Cleaning device.
前記洗浄液供給機構が、前記構造体の内部を通り、前記構造体の前記表面に開口する導通管部を有する、請求項1に記載の洗浄装置。The cleaning apparatus according to claim 1, wherein the cleaning liquid supply mechanism includes a conductive pipe portion that passes through the structure and opens on the surface of the structure. 前記間隔が1mm以下である、請求項1または2に記載の洗浄装置。The cleaning apparatus according to claim 1 or 2, wherein the interval is 1 mm or less. 前記構造体が石英ガラスである、請求項1〜3のいずれかに記載の洗浄装置。The cleaning device according to claim 1, wherein the structure is quartz glass. 前記紫外線照射装置から照射される紫外線の波長が170〜250nmの範囲にある、請求項1〜4のいずれかに記載の洗浄装置。The cleaning apparatus according to any one of claims 1 to 4, wherein a wavelength of ultraviolet rays irradiated from the ultraviolet irradiation device is in a range of 170 to 250 nm. 前記超音波振動子から照射される超音波の振動周波数が1MHz以上である、請求項1〜5のいずれかに記載の洗浄装置。The cleaning apparatus according to claim 1, wherein a vibration frequency of ultrasonic waves irradiated from the ultrasonic vibrator is 1 MHz or more. 前記間隔を保持したまま、前記洗浄対象物を回転させる機構を有する、請求項1〜6のいずれかに記載の洗浄装置。The cleaning apparatus according to claim 1, further comprising a mechanism that rotates the object to be cleaned while maintaining the interval. 前記間隔を保持したまま、前記構造体を運動させる機構を有する、請求項1〜7のいずれかに記載の洗浄装置。The cleaning apparatus according to claim 1, further comprising a mechanism that moves the structure while maintaining the distance. 前記洗浄対象物が半導体装置である、請求項1〜8のいずれかに記載の洗浄装置。The cleaning apparatus according to claim 1, wherein the object to be cleaned is a semiconductor device. 前記洗浄対象物の表面が、溝と溝との間の凸部の幅が100nm以下である凹凸を有する、請求項1〜9のいずれかに記載の洗浄装置。The cleaning apparatus according to any one of claims 1 to 9, wherein the surface of the object to be cleaned has irregularities in which a width of a convex portion between the grooves is 100 nm or less. 請求項1〜10のいずれかに記載の洗浄装置を用いて、平坦な表面を有する洗浄対象物の当該表面を洗浄する方法であって、前記空間に前記洗浄液を供給しつつ、前記超音波振動子からの超音波と前記紫外線照射装置からの紫外線とを、前記構造体の前記表面を通して、前記洗浄対象物の前記表面に照射する、洗浄方法。A method for cleaning a surface of an object to be cleaned having a flat surface using the cleaning device according to claim 1, wherein the ultrasonic vibration is supplied while supplying the cleaning liquid to the space. A cleaning method of irradiating the surface of the object to be cleaned with ultrasonic waves from a child and ultraviolet rays from the ultraviolet irradiation device through the surface of the structure. 前記空間が前記洗浄液で満たされた状態において前記洗浄を行う、請求項11に記載の洗浄方法。The cleaning method according to claim 11, wherein the cleaning is performed in a state where the space is filled with the cleaning liquid.
JP2009502348A 2007-03-07 2007-03-07 Cleaning device and cleaning method Expired - Fee Related JP4731622B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/000176 WO2008107933A1 (en) 2007-03-07 2007-03-07 Cleaning device and cleaning method

Publications (2)

Publication Number Publication Date
JPWO2008107933A1 true JPWO2008107933A1 (en) 2010-06-03
JP4731622B2 JP4731622B2 (en) 2011-07-27

Family

ID=39737839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009502348A Expired - Fee Related JP4731622B2 (en) 2007-03-07 2007-03-07 Cleaning device and cleaning method

Country Status (2)

Country Link
JP (1) JP4731622B2 (en)
WO (1) WO2008107933A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058962B4 (en) * 2009-11-03 2012-12-27 Suss Microtec Photomask Equipment Gmbh & Co. Kg Method and device for treating substrates
WO2017073396A1 (en) * 2015-10-28 2017-05-04 東京エレクトロン株式会社 Substrate processing method, substrate processing apparatus, substrate processing system and storage medium
KR101962305B1 (en) * 2016-12-20 2019-03-26 주식회사 티씨케이 Wasted carbon recycling method in semiconductor manufacturing
KR101987705B1 (en) * 2017-02-28 2019-06-11 (주)엔피홀딩스 Substrate cleaning nozzle using uv light lamp
CN108746010A (en) * 2018-05-24 2018-11-06 友达光电(昆山)有限公司 A kind of cleaning system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111337A (en) * 1987-10-26 1989-04-28 Toshiba Corp Wafer cleaning apparatus
JPH10177978A (en) * 1996-12-18 1998-06-30 Tadahiro Omi Liquid-saving liquid feed nozzle, liquid-saving liquid feed nozzle device, and wet processing device for wet processing such as cleaning, etching, development, separation and the like
JP2000107706A (en) * 1998-10-08 2000-04-18 Furontekku:Kk Cleaning apparatus
JP2000182974A (en) * 1998-12-11 2000-06-30 Tokyo Electron Ltd Heat treating device for transfered sheet
JP2003092277A (en) * 2001-09-17 2003-03-28 Alps Electric Co Ltd Wet treatment apparatus
JP2003093984A (en) * 2001-06-26 2003-04-02 Alps Electric Co Ltd Wet processing nozzle and wet processor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075356B1 (en) * 1999-03-29 2000-08-14 株式会社カイジョー Ultrasonic cleaning equipment
JP3809296B2 (en) * 1999-04-14 2006-08-16 株式会社カイジョー Ultrasonic cleaning equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111337A (en) * 1987-10-26 1989-04-28 Toshiba Corp Wafer cleaning apparatus
JPH10177978A (en) * 1996-12-18 1998-06-30 Tadahiro Omi Liquid-saving liquid feed nozzle, liquid-saving liquid feed nozzle device, and wet processing device for wet processing such as cleaning, etching, development, separation and the like
JP2000107706A (en) * 1998-10-08 2000-04-18 Furontekku:Kk Cleaning apparatus
JP2000182974A (en) * 1998-12-11 2000-06-30 Tokyo Electron Ltd Heat treating device for transfered sheet
JP2003093984A (en) * 2001-06-26 2003-04-02 Alps Electric Co Ltd Wet processing nozzle and wet processor
JP2003092277A (en) * 2001-09-17 2003-03-28 Alps Electric Co Ltd Wet treatment apparatus

Also Published As

Publication number Publication date
WO2008107933A1 (en) 2008-09-12
JP4731622B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP5122662B2 (en) Surface cleaning method and apparatus
JP4731622B2 (en) Cleaning device and cleaning method
US20090025761A1 (en) Ultrasonic cleaning apparatus
JP2007311756A (en) Ultrasonic cleaner and ultrasonic cleaning method
US20120073596A1 (en) Ultrasonic cleaning method and apparatus
JP4088810B2 (en) Substrate cleaning apparatus and substrate cleaning method
US20050034742A1 (en) Cleaning method and cleaning apparatus
TW200904555A (en) Ultrasonic cleaning method
WO2014184999A1 (en) Ultrasonic cleaning apparatus and cleaning method
JPH10109072A (en) High frequency washing device
US20140053868A1 (en) Method And Apparatus For Surface Cleaning
TW201402236A (en) Ultrasonic cleaning method and ultrasonic cleaning apparatus
JP2005158913A (en) Ultrasonic nozzle and substrate treatment apparatus
JP2009231668A (en) Substrate processing device and method
JP4957277B2 (en) Cleaning device and cleaning method
JP5703625B2 (en) Cleaning apparatus and cleaning method
JP2000262989A (en) Substrate washing device
JP2001358108A (en) Substrate-processing apparatus
EP2515323B1 (en) Method and apparatus for cleaning semiconductor substrates
JP2002086068A (en) Ultrasonic vibration unit, ultrasonic cleaner, and ultrasonic cleaning method
JP2000354835A (en) Ultrasonic cleaning treatment method and apparatus
JP5803154B2 (en) Ultrasonic cleaning equipment
JP5685881B2 (en) Ultrasonic cleaning method
KR100655459B1 (en) Cleaning device using a laser
JP2009208005A (en) Ultrasonic washing apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees