JPWO2008105242A1 - Disinfection method using expansion of dissolved gas - Google Patents

Disinfection method using expansion of dissolved gas Download PDF

Info

Publication number
JPWO2008105242A1
JPWO2008105242A1 JP2009501176A JP2009501176A JPWO2008105242A1 JP WO2008105242 A1 JPWO2008105242 A1 JP WO2008105242A1 JP 2009501176 A JP2009501176 A JP 2009501176A JP 2009501176 A JP2009501176 A JP 2009501176A JP WO2008105242 A1 JPWO2008105242 A1 JP WO2008105242A1
Authority
JP
Japan
Prior art keywords
gas
liquid
pressure
dissolved
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009501176A
Other languages
Japanese (ja)
Inventor
今井 剛
剛 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Publication of JPWO2008105242A1 publication Critical patent/JPWO2008105242A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Abstract

簡易で安価な装置で、塩素などの薬剤を使用せずに、殺菌すべき液体を密閉容器1に圧力をかけてノズル3から噴出させ、容器1の壁に液体を衝突させて液膜を生成させることによって気体を高濃度に溶解させる。液体中の微生物にその形態を保持するため高濃度に気体が溶解された液体を体内に取り込ませた後、圧力を解放するなどの減圧によって微生物の体内において液体に溶解していた気体を発泡させて膨張させ、液体中の微生物を破裂させて殺菌する。With a simple and inexpensive device, without using chemicals such as chlorine, the liquid to be sterilized is ejected from the nozzle 3 by applying pressure to the sealed container 1 and the liquid collides against the wall of the container 1 to generate a liquid film. To dissolve the gas to a high concentration. After the liquid in which the gas has been dissolved at a high concentration is taken into the body to maintain its form in the microorganism in the liquid, the gas dissolved in the liquid in the body of the microorganism is foamed by reducing the pressure such as releasing the pressure. Swell and sterilize by rupturing the microorganisms in the liquid.

Description

本発明は、上下水、河川・湖沼等、または、液体食品産業、飲食産業において、液体中に存在する微生物を化学薬品や物理的分離膜を使用することなく殺菌する方法及び装置に関する。   The present invention relates to a method and apparatus for sterilizing microorganisms present in liquids without using chemicals or physical separation membranes in water and sewage, rivers, lakes and the like, or in the liquid food industry and the food and beverage industry.

従来、水道水や液体の殺菌・消毒には、塩素処理、オゾン処理などの消毒や膜処理による除菌が行われており、液体食品の分野では加熱殺菌処理や高圧殺菌処理が行われ、あるいは、超臨界二酸化炭素を利用した殺菌方法が知られている。   Conventionally, sterilization and disinfection of tap water and liquid have been sterilized by sterilization and membrane treatment such as chlorination and ozone treatment, and heat sterilization treatment and high-pressure sterilization treatment have been performed in the field of liquid food, or A sterilization method using supercritical carbon dioxide is known.

膜処理による除菌では、ウィルスなどの微生物を除去するためには孔径の小さい膜を複数段に使用する必要があり、維持管理費・施設費などの経費がかかるため、除菌のための経費がコスト高となるという問題点があった。   In sterilization by membrane treatment, in order to remove microorganisms such as viruses, it is necessary to use multiple membranes with small pore diameters, and costs such as maintenance costs and facility costs are incurred. However, there was a problem that the cost became high.

水道水の消毒には塩素処理が最も一般的に行われているが、塩素の量を増やすとカルキ臭が強くなり飲料に適さないと嫌う人がおり、また、高濃度の塩素が環境を汚染する、あるいは、塩素と有機物が反応することにより生成される発ガン性を示すトリハロメタン等が環境を汚染する、あるいは、取り扱いの過ちにより塩素ガスが漏れ出すなどの危険も存在する。また、最近では塩素の効かない微生物が出現している。   Chlorination is the most commonly used method for disinfecting tap water, but some people dislike it when it increases the amount of chlorine and the odor of the salt becomes unsuitable for drinks, and high concentrations of chlorine pollute the environment. There is also a danger that trihalomethane or the like having a carcinogenicity generated by the reaction of chlorine and an organic substance pollutes the environment, or chlorine gas leaks due to mishandling. Recently, microorganisms that do not work with chlorine have appeared.

そこで、塩素にかえて、オゾン、臭素や塩素化シアヌル酸等を使用する方法も提案されている。しかし、これらの方法は塩素による方法の2倍以上のコストがかかり、経済的ではない。更に問題なのが殺菌に使用した薬剤と液体中の有機物質の反応によって、人体に悪影響を与える物質が生成されることによる影響である。   Therefore, a method using ozone, bromine, chlorinated cyanuric acid or the like instead of chlorine has been proposed. However, these methods are more than twice as expensive as the chlorine method and are not economical. A further problem is the effect of the production of substances that adversely affect the human body due to the reaction between the chemicals used for sterilization and the organic substances in the liquid.

これらの点を総合的に勘案すると、多種多様な微生物や種々の物質が水中に存在する現状では、化学反応による殺菌は問題があり、導入や維持管理が非常に高コストとなる。   Considering these points comprehensively, in the present situation where a wide variety of microorganisms and various substances are present in water, sterilization by chemical reaction is problematic, and introduction and maintenance are very expensive.

そこで、液体食品の分野では、加熱殺菌装置が代表的な殺菌装置として用いられている。そのほかにも、超高圧処理装置も使用されているが、高圧処理装置においては、微生物を殺すために液体を加圧し、20MPa以上の高い圧力に維持しなければならないので、高圧処理容器に強度が要求され、また高圧であるため危険であり、維持管理にコストがかかると共に、高圧装置自体が、極めて高価である。   Therefore, in the field of liquid food, a heat sterilizer is used as a typical sterilizer. In addition, although an ultra-high pressure processing apparatus is used, in the high-pressure processing apparatus, the liquid must be pressurized in order to kill microorganisms and maintained at a high pressure of 20 MPa or more. It is required and dangerous because of the high pressure, and the maintenance is expensive, and the high-pressure device itself is very expensive.

また特許文献1、特許文献2に開示されているように、超臨界二酸化炭素を利用した殺菌方法が提案されている。超臨界二酸化炭素を利用した殺菌方法は、殺菌すべき試料に液化炭酸ガスを混合して溶解し、液化炭酸ガスを溶解した試料を送液しながら所定の温度と圧力の超臨界状態に保持して殺菌を行い、その後、試料の圧力を常圧にして排出するというものである。この方法にあっては、液化炭酸ガスの使用や超臨界状態を形成するための装置等が必要となり、ランニングコストが比較的高くなるという問題があった。   Moreover, as disclosed in Patent Document 1 and Patent Document 2, a sterilization method using supercritical carbon dioxide has been proposed. The sterilization method using supercritical carbon dioxide is to mix and dissolve liquefied carbon dioxide gas in the sample to be sterilized, and maintain the supercritical state at a predetermined temperature and pressure while feeding the sample in which liquefied carbon dioxide gas is dissolved. The sample is sterilized, and then the sample is discharged under normal pressure. In this method, the use of liquefied carbon dioxide gas, an apparatus for forming a supercritical state, and the like are required, and there is a problem that the running cost is relatively high.

以上のように、従来、水道水や液体食品、或いは下水、河川、湖沼などの汚水等の殺菌方法として、安価な設備と低ランニングコストで、微生物に対して有効な殺菌方法の開発が期待されていた。
特開2000−83634号公報 特開平7−170965号公報 特開2003−340251号公報
As described above, the development of an effective sterilization method against microorganisms with low cost equipment and low running cost is expected as a sterilization method for tap water, liquid food, or sewage such as sewage, rivers and lakes. It was.
JP 2000-83634 A Japanese Patent Laid-Open No. 7-170965 JP 2003-340251 A

そこで、本発明は、化学薬品を用いず、しかも簡単な設備により低ランニングコストで、塩素殺菌と同等の殺菌効果が得られ、更に既存の設備への適用が容易である殺菌方法を提供することを目的とする。   Accordingly, the present invention provides a sterilization method that does not use chemicals, has a low sterilization effect with a simple facility, has the same sterilization effect as chlorine sterilization, and can be easily applied to existing facilities. With the goal.

本発明の殺菌方法は、微生物を含む液体に加圧気体を溶解させ、溶解した気体を微生物の体内にとりこませ、圧力を急激に低減して溶解した気体を微生物の体内で発泡・膨張させることによって微生物を殺菌するものである。   In the sterilization method of the present invention, a pressurized gas is dissolved in a liquid containing microorganisms, the dissolved gas is taken into the body of the microorganism, and the dissolved gas is expanded and expanded in the body of the microorganism by rapidly reducing the pressure. Sterilizes microorganisms.

本発明の好ましい態様は、加圧気体が0.15MPa乃至1MPa程度の、それ程高くない加圧下に気体を微生物の存在する液体に溶解させた後、急激に減圧する。この減圧手段は、一般には大気圧のもとへ開放することで達成される。圧力開放手段は、加圧下に気体を溶解している液体を大気圧下にフラッシュするのが好ましい。   In a preferred embodiment of the present invention, the pressure of the pressurized gas is about 0.15 MPa to 1 MPa, and the pressure is not so high. This decompression means is generally achieved by opening to atmospheric pressure. The pressure release means preferably flushes the liquid dissolving the gas under pressure to atmospheric pressure.

本発明において、微生物の存在する液体に加圧気体を溶解する手段は何等限定されないが、加圧気体の存在する容器に微生物を含む液体を供給する手段、例えば加圧された吸収塔、一般には潅液塔、充填塔、薄膜吸収塔などの構造の容器、或いは図2に示す如く、容器内の底部に液体が溜った状態で壁面、特に底部液溜中に設けた衝突板(これも壁面に含まれる)に液を噴射して衝突させ、液を泡立たせる方法などが好適に採用される。   In the present invention, means for dissolving the pressurized gas in the liquid in which microorganisms are present is not limited in any way, but means for supplying a liquid containing microorganisms to a container in which pressurized gas is present, such as a pressurized absorption tower, A container having a structure such as an irrigation tower, a packed tower, a thin film absorption tower, or the like, as shown in FIG. 2, a wall surface in a state where liquid is accumulated in the bottom of the container, particularly a collision plate provided in the bottom liquid reservoir (also a wall surface) A method of jetting the liquid to make it collide and bubbling the liquid is suitably employed.

その他、微生物を含む液が存在する容器の底部から、加圧気体を気泡として供給する方法も好適に採用される。この場合も容器内にラッシッヒリング(Raschig Ring)等の充填物を充填したり、棚段を設ける等、吸収効率を高める手段を講じるのが好ましい。   In addition, a method of supplying pressurized gas as bubbles from the bottom of a container in which a liquid containing microorganisms is present is also suitably employed. In this case as well, it is preferable to take measures to increase the absorption efficiency, such as filling the container with a filling such as Raschig Ring or providing a shelf.

本発明において使用される気体は特に限定されないが、コストの面からは空気を用いるのがよく、また殺菌効率を考慮すると、酸素(中でも嫌気性菌に対して)が有効であるが、特に、水媒体に対して溶解度の大きい、しかも圧力差による溶解度の変化の大きい二酸化炭素が、殺菌効率が高いので好ましい。   The gas used in the present invention is not particularly limited, but from the viewpoint of cost, it is better to use air, and considering sterilization efficiency, oxygen (especially against anaerobic bacteria) is effective, Carbon dioxide having a high solubility in an aqueous medium and a large change in solubility due to a pressure difference is preferable because of high sterilization efficiency.

本発明によれば、液体に気体を溶解させるだけでよく、塩素のように有毒な物質を使用せず、人体に対して無害な気体を使用して殺菌効果が得られるので、管理設備が簡単でよく、消費エネルギーが小さくてすむ。また、井戸水をポンプで汲み上げて用いる簡易水道等の上水道圧程度の加圧でよいことから、気体溶解装置を既設の設備に簡単に付加することができ、大掛かりな工事をすることなく稼動させることが可能である。   According to the present invention, it is only necessary to dissolve a gas in a liquid, a toxic substance such as chlorine is not used, and a bactericidal effect can be obtained by using a gas that is harmless to the human body. The energy consumption is small. In addition, because it is sufficient to pressurize well water such as a simple water supply that pumps well water, a gas dissolving device can be easily added to the existing equipment and operated without any major construction work. Is possible.

また、気体溶解装置の有効容積を小型化することが可能であるため、上下水道の施設ばかりでなく、各家庭の水道蛇口においても本発明を適用可能であり、この場合、水道水中に塩素を使用しなくてよい、もしくは、その使用量を減らせるので、殺菌と同時においしい水を供給することが可能となる。   In addition, since it is possible to reduce the effective volume of the gas dissolving device, the present invention can be applied not only to water and sewage facilities but also to water faucets in each household. Since it is not necessary to use or the amount of use can be reduced, it becomes possible to supply delicious water simultaneously with sterilization.

本発明は、比較的小さい圧力、一般に0.15MPa(メガパスカル:1気圧≒0.1MPa)〜1MPa、好ましくは0.2〜0.6MPa程度の圧力を付加することにより、常圧下におけるより多量の気体を水などの液体中に溶解させ、この溶解液を急激に大気圧(0.1MPa)に戻すことにより気体を発泡させるものであるから、従来高圧殺菌に用いられていたような極めて高い圧力を要しないため、設備費は高価とはならないのである。   The present invention applies a relatively small pressure, generally 0.15 MPa (megapascal: 1 atm≈0.1 MPa) to 1 MPa, preferably about 0.2 to 0.6 MPa, so that a larger amount under normal pressure. Is dissolved in a liquid such as water, and the dissolved liquid is rapidly returned to atmospheric pressure (0.1 MPa) to foam the gas. Therefore, it is extremely high as conventionally used for high-pressure sterilization. Since no pressure is required, the equipment cost is not expensive.

図1は本発明の殺菌方法を説明する概念図である。FIG. 1 is a conceptual diagram illustrating the sterilization method of the present invention. 図2は気体溶解器の一例の断面図である。FIG. 2 is a cross-sectional view of an example of a gas dissolver. 図3は実験装置の概念図である。FIG. 3 is a conceptual diagram of the experimental apparatus. 図4は実験における殺菌効果を示すグラフである。FIG. 4 is a graph showing the bactericidal effect in the experiment. 図5は本発明のワン・パスによる殺菌装置の概念図である。FIG. 5 is a conceptual diagram of the one-pass sterilization apparatus of the present invention.

符号の説明Explanation of symbols

1 気体溶解装置
2 圧力容器
3 ノズル
1 Gas dissolving device 2 Pressure vessel 3 Nozzle

本発明は、微生物が存在する液体、特に水性媒体に加圧下で気体を溶解させ、溶解した気体を微生物の体内にとり込ませた後、圧力を急激に低減することにより殺菌する。   In the present invention, a gas is dissolved under pressure in a liquid in which microorganisms are present, particularly an aqueous medium, the dissolved gas is taken into the body of the microorganism, and then sterilized by rapidly reducing the pressure.

気体は一般にほぼヘンリーの法則に従って、液体上に存在する気体の分圧に比例して溶解する。その量は常圧近傍ではヘンリー定数と分圧によってほぼ決まると考えられる。   The gas generally dissolves in proportion to the partial pressure of the gas present on the liquid, almost according to Henry's law. The amount is considered to be almost determined by Henry's constant and partial pressure near normal pressure.

表1に炭酸ガス、空気及び酸素の20℃及び25℃におけるヘンリー定数を示す。   Table 1 shows Henry's constants of carbon dioxide, air and oxygen at 20 ° C and 25 ° C.

Figure 2008105242
Figure 2008105242

また、表2及び表3に、例として、20℃及び25℃における水に対する炭酸ガス、空気及び酸素の0.35MPa及び0.1MPa時のガス溶解度を示す。   Moreover, Table 2 and Table 3 show the gas solubility at the time of 0.35 MPa and 0.1 MPa of carbon dioxide gas, air and oxygen with respect to water at 20 ° C. and 25 ° C. as an example.

これらは推算値であり、しかも実気体にあっては必ずしもヘンリーの法則が正確にはあてはまらないが、一応の目安にはなるものである。   These are estimated values, and Henry's law does not always apply to real gases, but they are only a guide.

表2及び表3から理解されるように、20℃〜25℃においては0.35MPaから0.1MPa(約大気圧)まで、圧力を低減した場合、炭酸ガス、空気及び酸素共に概ね71〜72%の溶存気体が放出されるのである。   As understood from Tables 2 and 3, when the pressure is reduced from 0.35 MPa to 0.1 MPa (about atmospheric pressure) at 20 ° C. to 25 ° C., about 71 to 72 for carbon dioxide, air and oxygen. % Of dissolved gas is released.

Figure 2008105242
Figure 2008105242

Figure 2008105242
Figure 2008105242

このような溶解気体の放出が、微生物体内で急激に生じた場合、微生物はその変化に対応できず、あたかも人間が潜水病に罹患した場合の如くなるか、或いは微生物が破裂することによって殺菌されるのである。   When such a dissolved gas release occurs suddenly in the microorganism, the microorganism cannot cope with the change, and it is as if a human suffered from a submerged disease, or is sterilized by rupture of the microorganism. It is.

これを模式的に図1に示す。すなわち、図1の左側の図(1)は微生物体内に加圧により多量に気体が溶解した液体(水)が取り込まれた状態を示す。   This is schematically shown in FIG. That is, FIG. 1 (1) on the left side of FIG. 1 shows a state where a liquid (water) in which a large amount of gas is dissolved by pressurization is taken into the microorganism.

また、図1の右の図(2)は、圧力が開放され溶解気体が液中から発泡し、ガス状となり、体積が増大したため微生物が破裂した状態を示している。   Moreover, the figure (2) on the right side of FIG. 1 shows a state in which the microorganisms are ruptured because the pressure is released and the dissolved gas is foamed from the liquid to become gaseous and the volume is increased.

気体を液体に溶解させるには、一般に吸収塔に用いられる構造、すなわち灌液塔、充填塔等を用いて上部から液体を落下させる方法、或いは液を入れた充填塔、目皿又は泡鐘等の棚段塔に、下部から気体を圧入する方法、更には圧力タンク上部から液体をノズルで気体中に噴射して溶解させる方法や、圧力タンク内で液体と気体をミキシングして溶解させる方法等が採用される。   In order to dissolve a gas in a liquid, a structure generally used for an absorption tower, that is, a method in which a liquid is dropped from the upper part using an irrigation tower, a packed tower, etc. A method of injecting gas into the plate tower from the bottom, a method of injecting and dissolving liquid from the top of the pressure tank into the gas, a method of mixing and dissolving liquid and gas in the pressure tank, etc. Is adopted.

本発明の方法に使用する気体溶解器としては、例えば、特許文献3(特開2003−340251号公報)に開示されたものを利用するのが、気体溶解のための消費エネルギーが少なく最適である。   As the gas dissolver used in the method of the present invention, for example, the one disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 2003-340251) is optimal because it consumes less energy for gas dissolution. .

図2に、好ましい気体溶解装置1の概念図を示す。タンク5に収納された処理すべき液体をポンプPによって加圧して、密閉容器2内のノズル3から流速を上げて噴出させ、ノズル3から噴出する噴流を密閉容器2の壁21に衝突させて処理すべき液体の非常に薄い膜(以下、液膜)を壁21の近傍に形成する。液膜の周辺は気体で満たされており、密閉容器2内の気体と処理すべき液体の接触面積が増大すると共に、密閉容器2内は、徐々に液面が上昇し、気相の体積が減少し、気体は圧縮(加圧)され、密閉容器2内の大量の気体が処理すべき液体に溶解する。   In FIG. 2, the conceptual diagram of the preferable gas dissolving apparatus 1 is shown. The liquid to be processed stored in the tank 5 is pressurized by the pump P, and is ejected by increasing the flow velocity from the nozzle 3 in the sealed container 2, and the jet stream ejected from the nozzle 3 is made to collide with the wall 21 of the sealed container 2. A very thin film (hereinafter, liquid film) of the liquid to be processed is formed in the vicinity of the wall 21. The periphery of the liquid film is filled with gas, the contact area between the gas in the sealed container 2 and the liquid to be processed increases, and the liquid level gradually rises in the sealed container 2 so that the volume of the gas phase is increased. The gas is compressed (pressurized) and a large amount of gas in the sealed container 2 is dissolved in the liquid to be treated.

形成された液膜は、密閉容器2の底部で液体に戻り、気体が高濃度に溶解された状態となる。密閉容器2からの処理すべき液体の取り出しは、バルブ22の開度によって調整する。気体を処理すべき液体に溶解させる際の運転指標は、密閉容器2内の圧力であり、運転条件は、ポンプPの吐出圧力と密閉容器2から処理液を排出するためのバルブ22によって容器内圧が制御される。ポンプの吐出圧力及び密閉容器2内の圧力は、それぞれ、圧力計41、42によって計測する。   The formed liquid film returns to a liquid at the bottom of the hermetic container 2 and the gas is dissolved at a high concentration. The extraction of the liquid to be processed from the sealed container 2 is adjusted by the opening degree of the valve 22. The operation index when the gas is dissolved in the liquid to be processed is the pressure in the sealed container 2, and the operating conditions are the discharge pressure of the pump P and the internal pressure of the container by the valve 22 for discharging the processing liquid from the sealed container 2. Is controlled. The discharge pressure of the pump and the pressure in the sealed container 2 are measured by pressure gauges 41 and 42, respectively.

勿論、供給ガス圧により制御可能であり、実際にはこれらの要素を適宜組み合わせて運転を行う。バルブ22により密閉容器2から取り出された処理すべき液体は、大気圧下にフラッシュされ、溶解された気体が析出・発泡して膨張し、処理される液体内の微生物が死滅する。   Of course, it can be controlled by the supply gas pressure. In practice, these elements are appropriately combined for operation. The liquid to be processed taken out from the sealed container 2 by the valve 22 is flushed under atmospheric pressure, the dissolved gas is precipitated and foamed and expanded, and microorganisms in the liquid to be processed are killed.

密閉容器2内の気体が二酸化炭素の場合、水道水の圧力である0.2〜0.3MPaで加圧した場合でも十分な殺菌効果が得られるので、駆動源を新たに設置することなく殺菌することが可能であり、24時間風呂、家庭用浄水装置にも適用可能となる。   When the gas in the sealed container 2 is carbon dioxide, a sufficient sterilizing effect can be obtained even when pressurized with tap water pressure of 0.2 to 0.3 MPa, so sterilization without newly installing a drive source. It can be applied to a 24-hour bath and a domestic water purifier.

更に、図3は、溶解された気体の発泡・膨張を繰返し、より完全に殺菌するための装置の例である。微生物を含む液溜5は大気に開放されており、濁水等微生物を含む被処理水が入れられている。これをポンプPにより加圧して、密閉容器2に送り、図2の場合と同様に密閉容器2の気体を加圧して密閉容器2内に導入された液体に加圧溶解させた後、バルブ22から大気圧下の液溜5に急激に排出することにより減圧し殺菌を行う。大気圧下へのフラッシュを1回行うワン・パスでは十分な殺菌が得られない場合は、数回、処理液を循環させることにより殺菌をより高度に達成することができるのである。   Further, FIG. 3 shows an example of an apparatus for repeating the foaming / expansion of the dissolved gas to sterilize it more completely. The liquid reservoir 5 containing microorganisms is open to the atmosphere, and treated water containing microorganisms such as turbid water is placed therein. This is pressurized by the pump P and sent to the sealed container 2, and the gas in the sealed container 2 is pressurized and dissolved in the liquid introduced into the sealed container 2 in the same manner as in FIG. Is sterilized by reducing the pressure by abruptly discharging the liquid from the water to the liquid reservoir 5 under atmospheric pressure. If sufficient sterilization cannot be obtained by one-pass flushing to atmospheric pressure, sterilization can be achieved to a higher degree by circulating the treatment liquid several times.

下水処理場の汚泥貯留槽及び曝気槽より採取した濁水に対して、図3に示す実験装置によって殺菌処理の実験をおこなった。気体溶解装置2は図2に示したものと同様である。   Experiments on sterilization treatment were performed on the muddy water collected from the sludge storage tank and aeration tank of the sewage treatment plant using the experimental apparatus shown in FIG. The gas dissolving apparatus 2 is the same as that shown in FIG.

Figure 2008105242
Figure 2008105242

微生物を含む試料の処理水を加圧ポンプPで密閉容器2内にノズル3から噴出させ、微生物を含む試料に溶解させる気体は空気を用い、密閉容器2内の圧力を圧力調整弁22で調整した。ポンプの吐出圧は0.3MPaであり、密閉容器2の内圧は0.26MPaで、その差圧は0.04MPaとし、20分間の繰り返し運転を実施した。その間、微生物を含む処理水は4〜6回循環したことになる。   The treated water of the sample containing microorganisms is ejected from the nozzle 3 into the sealed container 2 by the pressure pump P, and air is used as the gas dissolved in the sample containing microorganisms, and the pressure in the sealed container 2 is adjusted by the pressure regulating valve 22. did. The discharge pressure of the pump was 0.3 MPa, the internal pressure of the sealed container 2 was 0.26 MPa, the differential pressure was 0.04 MPa, and repeated operation for 20 minutes was performed. In the meantime, the treated water containing microorganisms was circulated 4 to 6 times.

実験に用いた試料は、試料の水温を10℃と25℃、pH(potential Hydrogen:水素イオン指数)を7と9.5、濁度を20NTU(Nephelometric Turbidity Unit:ネフェロメ濁度単位)と2000NTUとしてそれらを組み合わせたものであり、表3に示す。   Samples used in the experiment were water temperature of 10 ° C and 25 ° C, pH (potential Hydrogen: hydrogen ion index) 7 and 9.5, turbidity 20NTU (Nephelometric Turbidity Unit) and 2000NTU. These are combined and shown in Table 3.

この実験における大腸菌群の数(CFU:Colony Forming Unit)の変化を図4に示す。運転開始後、10分で大腸菌群の数は半分に減少しており、運転開始後20分では、大腸菌群の数は当初の約20%に減少しており、殺菌効果が確認できた。   The change in the number of coliform groups (CFU: Colony Forming Unit) in this experiment is shown in FIG. In 10 minutes after the start of operation, the number of coliforms was reduced to half, and in 20 minutes after the start of operation, the number of coliforms was reduced to about 20% of the initial value, confirming the bactericidal effect.

また、温度及び、濁度は殺菌効果に与える影響は小さかったが、pHが9.5のほうが7.0よりも殺菌効果が有意に高いことが確認された。   Moreover, although the influence which temperature and turbidity have on the bactericidal effect was small, it was confirmed that the sterilizing effect is significantly higher at pH 9.5 than 7.0.

使用した気体を炭酸ガスとし、図5に示す装置を用い、大気圧下へのフラッシュを1回のみ行うワン・パスによる殺菌効果を測定した。ポンプPの吐出圧0.3MPa、密閉容器内気相部は全圧炭酸ガスとし、内圧との差圧を0.04MPa(内圧0.26MPa)として実施を行った。   The gas used was carbon dioxide gas, and the sterilization effect by one pass in which flushing to atmospheric pressure was performed only once was measured using the apparatus shown in FIG. The discharge pressure of the pump P was 0.3 MPa, the gas phase inside the sealed container was full-pressure carbon dioxide, and the differential pressure from the internal pressure was 0.04 MPa (internal pressure 0.26 MPa).

濁度20NTU、800NTUの場合、それぞれ、大腸菌群の数が95%及び87%減少する高い殺菌率が得られた。   In the case of turbidity of 20 NTU and 800 NTU, high bactericidal rates were obtained in which the number of coliforms decreased by 95% and 87%, respectively.

Claims (6)

微生物を含む液体に加圧気体を溶解させ、溶解した気体を微生物の体内にとりこませ、圧力を急激に減圧して溶解した気体を微生物の体内で発泡・膨張させることによって微生物を殺菌する溶解気体の膨張を利用した殺菌方法。   Dissolved gas that sterilizes microorganisms by dissolving pressurized gas in a liquid containing microorganisms, taking the dissolved gas into the body of the microorganism, and rapidly decompressing the dissolved gas to foam and expand the dissolved gas in the body of the microorganism Sterilization method using the expansion of. 前記加圧気体の圧力が0.15MPa乃至1MPaであり、前記急激な減圧が大気圧までの減圧である請求項1記載の殺菌方法。   The sterilization method according to claim 1, wherein the pressure of the pressurized gas is 0.15 MPa to 1 MPa, and the rapid pressure reduction is a pressure reduction to atmospheric pressure. 前記加圧気体中に前記微生物を含む液体を供給して、該液体中に気体を溶解させることを特徴とする請求項2記載の殺菌方法。   The sterilization method according to claim 2, wherein a liquid containing the microorganism is supplied into the pressurized gas, and the gas is dissolved in the liquid. 前記微生物を含む液体中に前記加圧気体を供給して、該液体中に気体を溶解させることを特徴とする請求項2記載の殺菌方法。   3. The sterilization method according to claim 2, wherein the pressurized gas is supplied into a liquid containing the microorganism to dissolve the gas in the liquid. 前記微生物を含む液体を前記加圧気体が存在する密閉容器内に噴出し、前記密閉容器の壁面に前記微生物を含む液体を衝突させることにより前記加圧気体を該液体に溶解させることを特徴とする請求項3記載の殺菌方法。   The liquid containing the microorganisms is jetted into a sealed container in which the pressurized gas exists, and the pressurized gas is dissolved in the liquid by colliding the liquid containing the microorganisms with the wall surface of the sealed container. The sterilization method according to claim 3. 前期微生物を含む液体が水であり、前記溶解させる気体が、空気、酸素、二酸化炭素のいずれか1種又は2種以上である請求項1乃至5のいずれかの項に記載の殺菌方法。   The sterilization method according to any one of claims 1 to 5, wherein the liquid containing the microorganisms is water, and the gas to be dissolved is one or more of air, oxygen, and carbon dioxide.
JP2009501176A 2007-02-28 2008-02-15 Disinfection method using expansion of dissolved gas Pending JPWO2008105242A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007049021 2007-02-28
JP2007049021 2007-02-28
PCT/JP2008/052514 WO2008105242A1 (en) 2007-02-28 2008-02-15 Sterilization method using expansion of dissolved gas

Publications (1)

Publication Number Publication Date
JPWO2008105242A1 true JPWO2008105242A1 (en) 2010-06-03

Family

ID=39721079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009501176A Pending JPWO2008105242A1 (en) 2007-02-28 2008-02-15 Disinfection method using expansion of dissolved gas

Country Status (2)

Country Link
JP (1) JPWO2008105242A1 (en)
WO (1) WO2008105242A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896211B2 (en) * 2009-11-30 2012-03-14 株式会社タカコ Microbial mass control device and system
GB201019993D0 (en) * 2010-11-24 2011-01-05 Seafarm Products As Process
JP6439755B2 (en) * 2016-06-15 2018-12-19 Jfeスチール株式会社 Method for producing galvannealed steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736605B2 (en) * 1994-04-25 1998-04-02 花王株式会社 Liquid material sterilization method
JP2000262875A (en) * 1999-03-16 2000-09-26 Yamato:Kk Carbonated water making apparatus
JP2006333835A (en) * 2005-06-06 2006-12-14 Kobe Steel Ltd Method for treating liquid state fluid by utilizing high pressure carbon dioxide

Also Published As

Publication number Publication date
WO2008105242A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
EP2252552B1 (en) Beverage manufacture, processing, packaging and dispensing using electrochemically activated water
JP5131625B2 (en) Food processing method and food processing apparatus
US6132629A (en) Method and apparatus for continuous or intermittent supply of ozonated water
KR101069176B1 (en) Method of sterilization and sterilizer apparatus
JP2006272232A (en) Method for forming superfine bubble, its device and sterilizing or disinfecting facility using it
JP6221437B2 (en) Ballast water treatment system and ballast water treatment method
JP2006263563A (en) Apparatus for sterilizing microbe or the like in ballast water
US6503403B2 (en) Gas-liquid contact apparatus
JPWO2008105242A1 (en) Disinfection method using expansion of dissolved gas
CA2921749A1 (en) Method and system for removing hydrogen sulfide from wastewater
Kobayashi et al. Inactivation of Escherichia coli by CO2 microbubbles at a lower pressure and near room temperature
JP2000325702A (en) Device for sterilizing and degassing
JP2006212492A (en) Method for removing residual ozone in water and method for removing residual ozone in ballast water
JPH0671594B2 (en) Method and apparatus for removing dissolved oxygen in water
RU2355648C1 (en) Drinking water preparation plant
WO2016028231A1 (en) Ballast water treatment system and method of ballast water treatment
JP4058012B2 (en) Pumped water treatment apparatus and pumped water treatment method
CN217265253U (en) Secondary water supply disinfection device for canteen
KR101254551B1 (en) An aquarium type sterilizer
JP2006334529A (en) Sludge treatment method
JP2010023034A (en) Method for killing microbial contaminant in ballast water of transport ship
RU2284964C1 (en) Method of sterilization of the water systems
KR101825648B1 (en) Sterilization system using sea water of ship
KR20230163154A (en) Chlorine dioxide water manufacturing kit
CN115231681A (en) Ship ballast water treatment system and method based on micro-nano bubble technology