JPWO2008096846A1 - Composition for stable isotope-labeled protein synthesis and method for producing stable isotope-labeled protein - Google Patents

Composition for stable isotope-labeled protein synthesis and method for producing stable isotope-labeled protein Download PDF

Info

Publication number
JPWO2008096846A1
JPWO2008096846A1 JP2008557162A JP2008557162A JPWO2008096846A1 JP WO2008096846 A1 JPWO2008096846 A1 JP WO2008096846A1 JP 2008557162 A JP2008557162 A JP 2008557162A JP 2008557162 A JP2008557162 A JP 2008557162A JP WO2008096846 A1 JPWO2008096846 A1 JP WO2008096846A1
Authority
JP
Japan
Prior art keywords
stable isotope
labeled
protein
amino acids
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008557162A
Other languages
Japanese (ja)
Inventor
横山 茂之
茂之 横山
木川 隆則
隆則 木川
順 横山
順 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
Taiyo Nippon Sanso Corp
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp, RIKEN Institute of Physical and Chemical Research filed Critical Taiyo Nippon Sanso Corp
Publication of JPWO2008096846A1 publication Critical patent/JPWO2008096846A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、核磁気共鳴分光(NMR)法ならびに質量分析分野において有用な安定同位体標識タンパク質を安価に合成する手段を提供することを課題とする。本発明によれば、(A) L-アラニン、L-アルギニン、L-アスパラギン酸、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-チロシン、L-バリンの16種類のアミノ酸からなるアミノ酸混合物、(B) インドール、(C) 硫化水素または硫化ナトリウム、および(D) アンモニウム塩を含み、かつ前記アミノ酸混合物中のアミノ酸の少なくとも1種、および/または、インドール、硫化水素または硫化物塩、アンモニウム塩のいずれかまたは全部が安定同位体で標識されていることを特徴とする、安定同位体標識タンパク質合成用組成物、ならびに該組成物を用いる安定同位体標識タンパク質の合成方法が提供される。An object of the present invention is to provide a means for inexpensively synthesizing a stable isotope-labeled protein useful in the field of nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry. According to the present invention, (A) L-alanine, L-arginine, L-aspartic acid, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L- A mixture of 16 amino acids: phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine, L-valine, (B) indole, (C) hydrogen sulfide or sodium sulfide, and (D) ammonium A salt, and / or at least one of the amino acids in the amino acid mixture and / or any or all of indole, hydrogen sulfide or sulfide salt, ammonium salt is labeled with a stable isotope The present invention provides a composition for synthesizing stable isotope-labeled proteins, and a method for synthesizing stable isotope-labeled proteins using the composition.

Description

本発明は、核磁気共鳴分光(NMR)分析や質量分析分野において有用な安定同位体標識タンパク質を合成するための組成物、および当該組成物を用いて安定同位体標識タンパク質を製造する方法に関する。   The present invention relates to a composition for synthesizing a stable isotope-labeled protein useful in the field of nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry, and a method for producing a stable isotope-labeled protein using the composition.

タンパク質の構造や機能解析に用いるタンパク質試料には安定同位体標識化が行われる。例えば、核磁気共鳴分光(NMR)分析法においてタンパク質の立体構造解析を行う際には、対象タンパク質に13C、15N、2H、17O等の安定同位体を導入することで、測定感度を向上させ、解析を容易にする効果が得られる。また、質量分析においてタンパク質を定量又は定性分析する際には、内部標準として安定同位体(13C、15N、2H、18O等)標識タンパク質が用いられる。Protein samples used for protein structure and function analysis are labeled with stable isotopes. For example, when conducting a three-dimensional structure analysis of a protein in nuclear magnetic resonance spectroscopy (NMR) analysis, a stable isotope such as 13 C, 15 N, 2 H, or 17 O is introduced into the target protein, thereby increasing the measurement sensitivity. The effect of improving analysis and facilitating analysis can be obtained. In addition, when a protein is quantitatively or qualitatively analyzed in mass spectrometry, a stable isotope ( 13 C, 15 N, 2 H, 18 O, etc.) labeled protein is used as an internal standard.

タンパク質への安定同位体導入方法は、古くから検討されており、いくつかの方法が上述の分析分野で実施されている。最も一般的な方法としては、組換え大腸菌を安定同位体で標識した炭素源(例えばグルコース-13C)又は窒素源(例えば塩化アンモニウム-15N)を含む無機培地で培養し、既知の手法で組換えタンパク質を細胞内に大量発現させ、回収した大腸菌を適切な方法により破砕、抽出し、本抽出液より所望の安定同位体標識タンパク質を精製する方法が挙げられる。また、宿主として大腸菌に代えて酵母、動物細胞、昆虫細胞等の生細胞を用いる安定同位体標識タンパク質合成法も広く実用化されている。Methods for introducing stable isotopes into proteins have been studied for a long time, and several methods have been implemented in the above-described analytical field. The most common method, labeled carbon source with a stable isotope of the recombinant E. coli (e.g., glucose - 13 C) or nitrogen source (e.g. ammonium chloride - 15 N) were cultured in mineral medium containing, in a known manner Examples include a method in which a large amount of recombinant protein is expressed in cells, the recovered E. coli is disrupted and extracted by an appropriate method, and a desired stable isotope-labeled protein is purified from this extract. A stable isotope-labeled protein synthesis method using live cells such as yeast, animal cells, and insect cells instead of Escherichia coli as a host is also widely used.

さらに近年では、生細胞を用いず、破砕した細胞抽出液より、タンパク質を合成する機能成分を分離し、試験管内で効率的に安定同位体標識タンパク質を合成する無細胞タンパク質合成技術が確立されている(非特許文献1および特許文献1)。無細胞タンパク質合成系による方法は、安定同位体標識アミノ酸から効率良く安定同位体標識タンパク質を合成することが可能であり、生細胞に見られる重水素の同位体効果による生育阻害等の問題がなく、多種類のタンパク質の生産に向くなどの利点がある。   Furthermore, in recent years, cell-free protein synthesis technology has been established that separates functional components that synthesize proteins from crushed cell extracts without using live cells and efficiently synthesizes stable isotope-labeled proteins in vitro. (Non-patent Document 1 and Patent Document 1). The cell-free protein synthesis system can efficiently synthesize stable isotope-labeled proteins from stable isotope-labeled amino acids, and there are no problems such as growth inhibition due to the deuterium isotope effect found in living cells. There are advantages such as being suitable for the production of many kinds of proteins.

このような無細胞タンパク質合成系による安定同位体標識タンパク質の合成に際しては、基質アミノ酸として、20種類の安定同位体標識アミノ酸を用いる必要がある。安定同位体標識アミノ酸を製造する方法としては、安定同位体の種類によって幾つかの方法が知られているが、例えば、炭素・窒素安定同位体の場合は、安定同位体標識された栄養源(グルコース、炭酸ガス、酢酸、メタノール、硝酸塩、アンモニウム塩等)を含む培地中、重水素安定同位体の場合は重水中、酸素安定同位体は酸素同位体標識水中にてそれぞれ培養した微生物からタンパク質を抽出、精製し、酸加水分解、あるいはプロテアーゼやエキソ(エンド)ペプチダーゼ等による酵素分解により、アミノ酸まで分解し、陽イオン交換カラムなどを用いて分離、精製する方法が一般的である。しかしながら、タンパク質を上記酵素で分解する方法では、完全にアミノ酸単位まで分解することは難しく、アミノ酸の二量体、三量体が不純物となり、細胞増殖や無細胞タンパク質合成反応を阻害するなどの不具合が生じやすい(非特許文献2)。また、上記酵素は、自己分解を起こし、アミノ酸の同位体標識率を下げる問題もある。一方、酸加水分解で製造する方法では、比較的効率よくアミノ酸にまで分解でき、同位体希釈も生じないが、L-トリプトファン、L-システイン、L-アスパラギン、L-グルタミンの4種類のアミノ酸は酸に極めて不安定であるために酸加水分解過程で分解され消失してしまう。そのため、酸加水分解法で生産される安定同位体標識アミノ酸は、上記の4種類のアミノ酸を除く16種類のアミノ酸のみである。よって、L-トリプトファン、L-システイン、L-アスパラギン、L-グルタミンの4種類のアミノ酸の安定同位体標識体については、発酵、化学合成、酵素合成等他の方法で別途合成する必要があるため非常にコストがかかり、高価である。   When a stable isotope labeled protein is synthesized by such a cell-free protein synthesis system, it is necessary to use 20 kinds of stable isotope labeled amino acids as substrate amino acids. There are several known methods for producing stable isotope-labeled amino acids depending on the type of stable isotope. For example, in the case of carbon / nitrogen stable isotopes, stable isotope-labeled nutrient sources ( Protein in a medium containing glucose, carbon dioxide, acetic acid, methanol, nitrate, ammonium salt, etc.) in the case of deuterium stable isotopes in heavy water and oxygen stable isotopes in microorganisms cultured in oxygen isotope-labeled water. In general, extraction, purification, acid hydrolysis, or enzymatic degradation with protease, exo (endo) peptidase or the like, the amino acid is decomposed and separated and purified using a cation exchange column or the like. However, in the method of degrading proteins with the above enzymes, it is difficult to completely degrade the amino acid unit, and amino acid dimers and trimers become impurities, which inhibit cell growth and cell-free protein synthesis reaction. (Non-Patent Document 2). In addition, the above enzyme has a problem of causing autolysis and lowering the isotope labeling rate of amino acids. On the other hand, in the method of producing by acid hydrolysis, it can be decomposed into amino acids relatively efficiently and isotope dilution does not occur, but the four types of amino acids L-tryptophan, L-cysteine, L-asparagine, and L-glutamine are Since it is extremely unstable to acid, it decomposes and disappears in the acid hydrolysis process. Therefore, the stable isotope-labeled amino acids produced by the acid hydrolysis method are only 16 types of amino acids except the above-mentioned 4 types of amino acids. Therefore, the stable isotope labeling of the four amino acids L-tryptophan, L-cysteine, L-asparagine, and L-glutamine must be separately synthesized by other methods such as fermentation, chemical synthesis, and enzymatic synthesis. Very expensive and expensive.

特に、近年注目される固体NMR分野においてその効果が期待される酸素同位体(17O)標識アミノ酸は、アミノ酸を酸素同位体(17O)で標識する際に、酸素同位体(17O)標識水を塩化水素ガスで飽和した強酸条件下で反応を行うため、酸に極めて不安定な上記の4種類のアミノ酸は分解されてしまうという問題があった。従って、酸素同位体(17O)標識アミノ酸はその製造方法が確立しているものの、いまだ経済的に実用レベルの製品は市販されていない。これを解決する手段として、例えば、カルボキシル基がエステル化合物で誘導体化されたFmoc-(またはtBoc-)アミノ酸を、酸素同位体(17O)標識水を含む溶媒中で加水分解することによって、カルボキシル基中の1つの酸素原子を酸素同位体(17O)で標識するという手法が提案されている(特許文献2)。これにより、上述の酸に不安定な4種類のアミノ酸についても酸素同位体標識することが可能となった。更に上記のカルボキシル基のエステル化と酸素標識水存在下での加水分解を繰り返すことにより、カルボキシル基の2つの酸素原子を全て酸素同位体標識することが可能である。本アミノ酸は、Fmoc-(またはtBoc-)化されており、そのままペプチド合成機を用いて化学的に重合させ、酸素同位体標識タンパク質を合成することができる点で大変優れている。しかしながら、上記の手法を実施し、カルボキシル基の酸素原子を全て酸素同位体標識するためには、複数回カルボキシル基のエステル化反応及び加水分解を繰り返す必要があり、多大な労力を必要とする上、精製によるロスが生じる。また、より高分子量で複雑な高次構造をとるタンパク質を合成するためには、Fmoc-(またはtBoc-)誘導体の除去後、精製してアミノ酸を調製する工程が必要である点で煩雑である。In particular, oxygen isotope (17 O) labeled amino acid in which the effect is expected in the solid-state NMR fields in recent years attention, when labeled amino acids with oxygen isotope (17 O), oxygen isotope (17 O) labeled Since the reaction is carried out under strong acid conditions in which water is saturated with hydrogen chloride gas, there is a problem that the above four amino acids that are extremely unstable to acids are decomposed. Therefore, although an oxygen isotope ( 17 O) -labeled amino acid has been established as a production method, a product at an economically practical level is not yet commercially available. As a means for solving this, for example, Fmoc- (or tBoc-) amino acid in which a carboxyl group is derivatized with an ester compound is hydrolyzed in a solvent containing oxygen isotope ( 17 O) -labeled water to form carboxyl. A technique of labeling one oxygen atom in a group with an oxygen isotope ( 17 O) has been proposed (Patent Document 2). As a result, oxygen isotope labeling was possible for the above-mentioned four acid-labile amino acids. Furthermore, by repeating the esterification of the carboxyl group and the hydrolysis in the presence of oxygen-labeled water, it is possible to label all two oxygen atoms of the carboxyl group with an oxygen isotope. This amino acid has been converted to Fmoc- (or tBoc-), and is excellent in that it can be chemically polymerized directly using a peptide synthesizer to synthesize an oxygen isotope-labeled protein. However, in order to carry out the above method and label all the oxygen atoms of the carboxyl group with an oxygen isotope, it is necessary to repeat the esterification reaction and hydrolysis of the carboxyl group several times, which requires a lot of labor. Loss due to purification occurs. In addition, in order to synthesize proteins with higher molecular weights and complex higher-order structures, it is complicated in that a step of preparing amino acids by purification after removing Fmoc- (or tBoc-) derivatives is necessary. .

このように、無細胞タンパク質合成技術を用いた安定同位体標識タンパク質合成法は、安定同位体標識アミノ酸を効率的に利用することができ、経済的観点からも一定の成果を上げているものの、上記の酸素同位体標識アミノ酸を含む一部の安定同位体標識アミノ酸が高価であるため、未だ経済的に実用レベルとは言い難い。
特開2000−175695号 特開2006-8666号 Kigawa T. et al., Cell-free production and stable-isotope labeling of milligram quantities of proteins, FEBS Lett., 442(1), 15-9, 1999 Andrew P. Hansen, et al., A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells, Biochemistry, 31(51), 12713-12718, 1992
As described above, the stable isotope-labeled protein synthesis method using cell-free protein synthesis technology can efficiently use stable isotope-labeled amino acids, and has achieved certain results from an economic point of view. Since some stable isotope-labeled amino acids including the above-mentioned oxygen isotope-labeled amino acids are expensive, it is still not economically practical.
JP 2000-175695 A JP 2006-8666 Kigawa T. et al., Cell-free production and stable-isotope labeling of milligram quantities of proteins, FEBS Lett., 442 (1), 15-9, 1999 Andrew P. Hansen, et al., A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells, Biochemistry, 31 (51), 12713-12718, 1992

従って、本発明の目的は、安定同位体標識タンパク質を安価に合成する手段を提供することにある。   Accordingly, an object of the present invention is to provide means for synthesizing a stable isotope-labeled protein at a low cost.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、16種類のアミノ酸(-アラニン、L-アルギニン、L-アスパラギン酸、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-チロシン、L-バリン)を含む反応系内に、4種類のアミノ酸(L-トリプトファン、L-システイン、L-アスパラギン、L-グルタミン)の前駆体物質を添加することによって、これまで製造が困難で、高価であった上記の4種類のアミノ酸の安定同位体標識体を添加せずとも、20種類のアミノ酸を添加した場合と同等レベル量の安定同位体標識タンパク質を安価にかつ効率的に合成できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that 16 kinds of amino acids (-alanine, L-arginine, L-aspartic acid, L-glutamic acid, glycine, L-histidine, L-isoleucine, In the reaction system containing L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine, L-valine), four types of amino acids (L- By adding the precursor substances (tryptophan, L-cysteine, L-asparagine, L-glutamine), the stable isotope labels of the above four types of amino acids, which have been difficult and expensive to manufacture, can be added. At least, it was found that a stable isotope-labeled protein of the same level as when 20 kinds of amino acids were added could be synthesized inexpensively and efficiently, and the present invention was completed.

すなわち、本発明は以下の発明を包含する。   That is, the present invention includes the following inventions.

(1) (A) L-アラニン、L-アルギニン、L-アスパラギン酸、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-チロシン、L-バリンの16種類のアミノ酸からなるアミノ酸混合物、(B) インドール、(C) 硫化水素または硫化物塩、および(D) アンモニウム塩を含み、かつ前記アミノ酸混合物中のアミノ酸の少なくとも1種、および/または、インドール、硫化水素または硫化物塩、アンモニウム塩の少なくとも1種が安定同位体で標識されていることを特徴とする、安定同位体標識タンパク質合成用組成物。 (1) (A) L-alanine, L-arginine, L-aspartic acid, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L -Proline, L-serine, L-threonine, L-tyrosine, L-valine amino acid mixture consisting of 16 kinds of amino acids, (B) indole, (C) hydrogen sulfide or sulfide salt, and (D) ammonium salt A stable isotope, characterized in that at least one of the amino acids in the amino acid mixture and / or at least one of indole, hydrogen sulfide or sulfide salt, ammonium salt is labeled with a stable isotope Composition for body-labeled protein synthesis.

(2) 前記安定同位体が、17O、18O、13C、15N、及び2Hからなる群から選ばれる1種または2種以上の組み合わせである、(1)に記載の安定同位体標識タンパク質合成用組成物。(2) The stable isotope according to (1), wherein the stable isotope is one or a combination of two or more selected from the group consisting of 17 O, 18 O, 13 C, 15 N, and 2 H Composition for labeling protein synthesis.

(3) (1)または(2)に記載の組成物を含む、安定同位体標識タンパク質合成用試薬キット。 (3) A reagent kit for the synthesis of a stable isotope-labeled protein comprising the composition according to (1) or (2).

(4) (1)または(2)に記載の組成物を用いて安定同位体標識タンパク質を合成することを特徴とする、安定同位体標識タンパク質の製造方法。 (4) A method for producing a stable isotope-labeled protein, comprising synthesizing a stable isotope-labeled protein using the composition according to (1) or (2).

(5) 安定同位体標識タンパク質の合成が、無細胞タンパク質合成系内で行われる、(4)に記載の製造方法。 (5) The production method according to (4), wherein the synthesis of the stable isotope-labeled protein is performed in a cell-free protein synthesis system.

(6) 安定同位体標識タンパク質の合成が、生細胞内で行われる、(4)に記載の製造方法。 (6) The production method according to (4), wherein the stable isotope-labeled protein is synthesized in a living cell.

本発明によれば、従来から製造コストのかかっていたL-トリプトファン、L-システイン、L-アスパラギン、L-グルタミンの4種類のアミノ酸の安定同位体標識体について、これらのアミノ酸を使用することなく、タンパク質合成反応系内で他のアミノ酸から転換、系内合成によって製造することが可能となった。従って、本発明は、安価かつ効率的な安定同位体標識タンパク質を合成する技術として非常に有用である。   According to the present invention, the stable isotope labels of four types of amino acids L-tryptophan, L-cysteine, L-asparagine, and L-glutamine, which have conventionally been costly to manufacture, can be used without using these amino acids. It was possible to convert from other amino acids in the protein synthesis reaction system, and to produce by in-system synthesis. Therefore, the present invention is very useful as a technique for synthesizing an inexpensive and efficient stable isotope labeled protein.

19種類のアミノ酸(L-トリプトファン無添加)混合物とインドールを用いる無細胞タンパク質合成系によるCATタンパク質の合成を示す。This shows the synthesis of CAT protein by a cell-free protein synthesis system using a mixture of 19 amino acids (without L-tryptophan) and indole. 19種類のアミノ酸(L-システイン無添加)混合物と硫化ナトリウムを用いる無細胞タンパク質合成系によるCATタンパク質の合成を示す。This shows the synthesis of CAT protein by a cell-free protein synthesis system using a mixture of 19 amino acids (without L-cysteine) and sodium sulfide. 18種類のアミノ酸(L-システイン及びL−トリプトファン無添加)混合物または16種類のアミノ酸(L-アスパラギン、L-グルタミン、L-システイン及びL-トリプトファン無添加)混合物と、硫化ナトリウムとインドールを用いる無細胞タンパク質合成系によるCATタンパク質の合成を示す。A mixture of 18 amino acids (without L-cysteine and L-tryptophan) or 16 amino acids (without L-asparagine, L-glutamine, L-cysteine and L-tryptophan) and no sodium sulfide and indole The synthesis of CAT protein by the cell protein synthesis system is shown. Rasタンパク質の15N-HSQCスペクトルを示す(上:20種類のアミノ酸混合物による合成、下:16種類のアミノ酸混合物+非標識インドール、硫化ナトリウム、酢酸ナトリウム−15Nによる合成)Shows the 15 N-HSQC spectrum of Ras protein (top: synthesis with 20 amino acid mixtures, bottom: 16 amino acid mixtures + unlabeled indole, sodium sulfide, sodium acetate- 15 N) 18O標識タンパク質(UBAタンパク質)のTOF-MS測定を示す(A:非標識16種類のアミノ酸混合物+インドール、硫化ナトリウム、B: 18O標識16種類のアミノ酸混合物+非標識アスパラギン、グルタミン、トリプトファン、システイン、C: 18O標識16種類のアミノ酸混合物+インドール、硫化ナトリウム)。Shows TOF-MS measurement of 18 O-labeled protein (UBA protein) (A: unlabeled 16 amino acid mixture + indole, sodium sulfide, B: 18 O labeled 16 amino acid mixture + unlabeled asparagine, glutamine, tryptophan, Cysteine, C: 18 O-labeled 16 amino acid mixture + indole, sodium sulfide).

本願は、2007年2月9日に出願された日本国特許出願2007-030650号の優先権を主張するものであり、該特許出願の明細書に記載される内容を包含する。   This application claims the priority of the Japan patent application 2007-030650 for which it applied on February 9, 2007, and includes the content described in the specification of this patent application.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

1.安定同位体標識タンパク質合成用組成物
本発明によれば、安定同位体標識タンパク質合成用組成物が提供される。本安定同位体標識タンパク質合成用組成物は、16種類のアミノ酸からなるアミノ酸混合物と4種類のアミノ酸の前駆体であるインドール、硫化水素または硫化物塩、およびアンモニウム塩とを含み、かつ前記アミノ酸混合物中のアミノ酸の少なくとも1種、および/または、インドール、硫化水素または硫化物塩、アンモニウム塩の少なくとも1種が安定同位体で標識されていることを特徴とする。
1. Composition for Stable Isotope Labeled Protein Synthesis According to the present invention, a composition for stable isotope labeled protein synthesis is provided. The composition for synthesizing stable isotope-labeled protein comprises an amino acid mixture comprising 16 kinds of amino acids and an indole, a hydrogen sulfide or sulfide salt, and an ammonium salt, which are precursors of four kinds of amino acids, and the amino acid mixture. It is characterized in that at least one of the amino acids therein and / or at least one of indole, hydrogen sulfide or sulfide salt, and ammonium salt is labeled with a stable isotope.

上記の「アミノ酸混合物」の16種類のアミノ酸とは、L-アラニン、L-アルギニン、L-アスパラギン酸、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-チロシン、L-バリンをいう。本アミノ酸混合物は、16種類のアミノ酸単品をそれぞれ混合したものでもよく、或いは市販のアミノ酸混合物を用いてもよい。   The 16 types of amino acids in the above “amino acid mixture” are L-alanine, L-arginine, L-aspartic acid, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L -Methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine, L-valine. The amino acid mixture may be a mixture of 16 types of amino acids, or a commercially available amino acid mixture.

また、上記の「4種類のアミノ酸」とは、L-トリプトファン、L-システイン、L-アスパラギン、L-グルタミンをいう。必須アミノ酸を必要としない多くの微生物では、タンパク質を構成する全てのアミノ酸を細胞内で合成するためのアミノ酸生合成系を保有している。   Further, the above “four kinds of amino acids” refer to L-tryptophan, L-cysteine, L-asparagine, and L-glutamine. Many microorganisms that do not require essential amino acids have an amino acid biosynthetic system for synthesizing all amino acids constituting a protein in cells.

下記に示すように、L-トリプトファンは、その前駆物質であるピルビン酸、アンモニウムイオン、及びインドールから、またはL-セリンとインドールからトリプトファンシンターゼ(E.C.4.2.1.20)またはトリプトファナーゼ(E.C.4.1.99.1)の作用により合成される。また、L-システインは、L-セリンがセリンo-アセチルトランスフェラーゼ(E.C.2.3.1.30)の作用でo-アセチル化され、o-アセチルL-セリンとなり、システインシンターゼ(E.C.4.2.99.8)の作用により硫化水素と反応してL-システインを生成する。   As shown below, L-tryptophan is tryptophan synthase (EC4.2.1.20) or tryptophanase (EC 4.1.99.1) from its precursors pyruvate, ammonium ions, and indole, or from L-serine and indole. ). L-cysteine is o-acetylated by the action of serine o-acetyltransferase (EC2.3.1.30) to become o-acetyl L-serine, and L-cysteine is produced by the action of cysteine synthase (EC4.2.99.8). Reacts with hydrogen sulfide to produce L-cysteine.

Figure 2008096846
また、下記に示すように、L-アスパラギン、L-グルタミンは、L-アスパラギン酸、L-グルタミン酸の側鎖の水酸基が、アスパラギンシンセターゼ(E.C.6.3.1.1)及びグルタミンシンセターゼ(E.C.6.3.1.2)の作用によりアミノ基に置換されることで生成される。
Figure 2008096846
Further, as shown below, L-asparagine, L-glutamine, L-aspartic acid, hydroxyl group of the side chain of L-glutamic acid, asparagine synthetase (EC6.3.1.1) and glutamine synthetase (EC6.3.1) It is generated by substitution with an amino group by the action of .2).

Figure 2008096846
従って、上記の「4種類のアミノ酸の前駆物質」とは、具体的には、L-トリプトファンの前駆物質であるインドール、L-システインの前駆物質である硫化水素または硫化物塩、L-アスパラギン、L-グルタミンの前駆物質であるアンモニウム塩をいう。
Figure 2008096846
Therefore, the above-mentioned “four amino acid precursors” specifically include indole, which is a precursor of L-tryptophan, hydrogen sulfide or sulfide salt, which is a precursor of L-cysteine, L-asparagine, An ammonium salt that is a precursor of L-glutamine.

ここで、アンモニウム塩としては、アスパラギン酸、グルタミン酸からアスパラギン、グルタミンへの代謝系においてアミノ基のドナーとなり、アスパラギンとグルタミンの側鎖アミノ基に転じる作用を有する限り、特に限定はされない。例えば酢酸アンモニウム、硫酸アンモニウム、クエン酸アンモニウム、塩化アンモニウム等が挙げられるが、酢酸アンモニウムが好ましい。アンモニウム塩の反応液への添加濃度は、好ましくは5〜100mM、より好ましくは10〜50mMである。   Here, the ammonium salt is not particularly limited as long as it has an action of becoming a donor of an amino group in a metabolic system from aspartic acid and glutamic acid to asparagine and glutamine and converting to a side chain amino group of asparagine and glutamine. Examples include ammonium acetate, ammonium sulfate, ammonium citrate, ammonium chloride, and the like, with ammonium acetate being preferred. The concentration of ammonium salt added to the reaction solution is preferably 5 to 100 mM, more preferably 10 to 50 mM.

上記アミノ酸混合物中のアミノ酸の少なくとも1種、および/または、インドール、硫化水素または硫化物塩、アンモニウム塩の少なくとも1種が安定同位体で標識されている。安定同位体とは、17O、18O、13C、15N、及び2Hからなる群から選ばれる1種または2種以上の組み合わせをいう。タンパク質の構造解析においては、多種類の標識タンパク質が必要となる場合が多い。このような場合には、数種類の標識アミノ酸を組み合わせた基質用アミノ酸混合物を用意することが望ましい。従って、上記のアミノ酸混合物に含まれるアミノ酸、アミノ酸前駆体物質は少なくとも1種が標識されていればよく、全種が標識されていてもよい。標識するアミノ酸の数及び種類は、解析対象となるタンパク質の種類、解析目的等により適宜選択すればよい。At least one of the amino acids in the amino acid mixture and / or at least one of indole, hydrogen sulfide or sulfide salt, and ammonium salt is labeled with a stable isotope. The stable isotope refers to one or a combination of two or more selected from the group consisting of 17 O, 18 O, 13 C, 15 N, and 2 H. In protein structural analysis, many types of labeled proteins are often required. In such a case, it is desirable to prepare a substrate amino acid mixture in which several kinds of labeled amino acids are combined. Therefore, at least one kind of amino acid and amino acid precursor substance contained in the above amino acid mixture may be labeled, and all kinds may be labeled. The number and type of amino acids to be labeled may be appropriately selected depending on the type of protein to be analyzed, the purpose of analysis, and the like.

2.安定同位体標識タンパク質の製造方法
本発明によれば、上記1.の安定同位体標識タンパク質合成用組成物を用いて、安定同位体標識タンパク質を製造する方法が提供される。
2. Method for Producing Stable Isotope Labeled Protein According to the present invention, the above 1. A method for producing a stable isotope-labeled protein using the stable isotope-labeled protein synthesis composition is provided.

安定同位体標識タンパク質の合成は、上記組成物からL-トリプトファン、L-システイン、L-アスパラギン、L-グルタミンの4種類のアミノ酸を合成するために必要なアミノ酸生合成酵素群が存在する限り、無細胞タンパク質合成系内または生細胞内のいずれの系で行ってもよい。   As long as there is an amino acid biosynthetic enzyme group required to synthesize four types of amino acids, L-tryptophan, L-cysteine, L-asparagine, and L-glutamine, from the above composition, The reaction may be carried out in any cell-free protein synthesis system or in a living cell.

上記のアミノ酸生合成酵素群は、L-トリプトファン合成に関わるトリプトファンシンターゼ(E.C.4.2.1.20)またはトリプトファナーゼ(E.C.4.1.99.1)、L-システイン合成に関わるセリンo-アセチルトランスフェラーゼ(E.C.2.3.1.30)、システインシンターゼ(E.C.4.2.99.8)、L-アスパラギン合成に関わるアスパラギンシンセターゼ(E.C.6.3.1.1)、L-グルタミンに関わるグルタミンシンセターゼ(E.C.6.3.1.2)等が挙げられるが、同様の反応を触媒する酵素群が当該細胞に存在していればよい。   The above amino acid biosynthetic enzymes are tryptophan synthase (EC4.2.1.20) or tryptophanase (EC4.1.99.1) involved in L-tryptophan synthesis, serine o-acetyltransferase (EC2.3.1.30) involved in L-cysteine synthesis. ), Cysteine synthase (EC 4.2.99.8), asparagine synthetase (EC6.3.1.1) involved in L-asparagine synthesis, glutamine synthetase (EC6.3.1.2) related to L-glutamine, etc. It is sufficient that an enzyme group that catalyzes is present in the cell.

2−1.無細胞タンパク質合成系
本発明における「無細胞タンパク質合成系」とは、DNAを鋳型としてRNAを合成する無細胞転写系とmRNAの情報を読み取ってリボソーム上でタンパク質を合成する無細胞翻訳系とを含む無細胞転写翻訳系、ならびに無細胞翻訳系の両者を包含する。
2-1. Cell-free protein synthesis system In the present invention, the "cell-free protein synthesis system" refers to a cell-free transcription system that synthesizes RNA using DNA as a template and a cell-free translation system that reads mRNA information and synthesizes proteins on ribosomes. Includes both cell-free transcription and translation systems, as well as cell-free translation systems.

本発明における「タンパク質」とは、複数のアミノ酸残基から構成される任意の分子量のポリペプチドをいい、特にポリペプチドが立体構造を形成したものをいう。   The “protein” in the present invention refers to a polypeptide having an arbitrary molecular weight composed of a plurality of amino acid residues, and particularly refers to a polypeptide in which a three-dimensional structure is formed.

本発明の無細胞タンパク質合成系による安定同位体標識タンパク質の製造は、アミノ酸基質として上記1.の組成物を用いる以外は、従来から知られる無細胞タンパク質合成のための材料、すなわち無細胞タンパク質合成用細胞抽出液、目的タンパク質をコードする鋳型となる核酸、エネルギー源(ATP、GTP、クレアチンホスフェート等の高エネルギーリン酸結合含有物)等を用いて行うことができる。無細胞タンパク質合成反応は、特開2000-175695号公報、特開2005-102513号公報、Zubayの文献(Geoffrey Zubay, Annual Review of Genetics, 1973 Vol.7:267-287)を参考にしてもよいし、ロッシュダイアグノスティックス社、プロメガ社等から市販されているキットを適宜使用してもよい。   Production of a stable isotope-labeled protein by the cell-free protein synthesis system of the present invention is carried out as described above in 1. Except for using the above composition, conventionally known materials for cell-free protein synthesis, that is, cell extracts for cell-free protein synthesis, nucleic acids that serve as templates for encoding target proteins, energy sources (ATP, GTP, creatine phosphate) High energy phosphate bond-containing materials). The cell-free protein synthesis reaction may be referred to JP 2000-175695 A, JP 2005-102513 A, Zubay literature (Geoffrey Zubay, Annual Review of Genetics, 1973 Vol. 7: 267-287). In addition, kits commercially available from Roche Diagnostics, Promega, etc. may be used as appropriate.

「無細胞タンパク質合成用細胞抽出液」とは、リボソーム、tRNAなどのタンパク質合成に関与する翻訳系又は転写系/翻訳系に必要な成分を含む植物細胞、動物細胞、真菌細胞、細菌細胞からの抽出液をいう。具体的には、大腸菌、小麦胚芽、ウサギ網赤血球、マウスL−細胞、エールリッヒ腹水癌細胞、Hela細胞、CHO細胞、出芽酵母等の抽出液が挙げられる。細胞抽出液の調製は、例えばPratt, J.M.ら、Transcription and trasnlation-a practical approach(1984)、pp.179−209に記載の方法に従い、上記細胞をフレンチプレスやグラスビーズにて破砕し、タンパク質成分やリボソームを可溶化するための数種類の塩を含有する緩衝液を加えてホモジナイズし、遠心分離にて不溶成分を沈殿させることによって行うことができる。   "Cell extract for cell-free protein synthesis" refers to plant cells, animal cells, fungal cells, bacterial cells containing components necessary for translation systems or transcription systems / translation systems involved in protein synthesis such as ribosomes and tRNAs. Refers to the extract. Specific examples include extracts of Escherichia coli, wheat germ, rabbit reticulocytes, mouse L-cells, Ehrlich ascites tumor cells, Hela cells, CHO cells, budding yeast, and the like. The cell extract is prepared according to the method described in Pratt, JM, et al., Transcription and trasnlation-a practical approach (1984), pp. 179-209, and the cells are disrupted with a French press or glass beads to obtain protein components. And a buffer containing several kinds of salts for solubilizing ribosomes, homogenizing, and precipitating insoluble components by centrifugation.

本発明において好適に用いることのできる細胞抽出液としては大腸菌S30細胞抽出液を例示することができる。当該S30細胞抽出液は、大腸菌A19株(rnamet)BL21株 codon plus等から既知の方法(Geoffrey Zubay, Annual Review of Genetics, 1973 Vol.7:267-287)により調製することができ、また市販品(Promega社やNovagen社からも入手可能)を用いてもよい。An example of a cell extract that can be suitably used in the present invention is an E. coli S30 cell extract. The S30 cell extract can be prepared by known methods (Geoffrey Zubay, Annual Review of Genetics, 1973 Vol.7: 267-287) from E. coli A19 strain ( rna , met ) BL21 strain codon plus, etc. Commercial products (available from Promega and Novagen) may also be used.

また、上記アミノ酸生合成酵素群を持たない生物由来(例えば、トリプトファン合成酵素を持たないヒト由来)の無細胞タンパク質合成用細胞抽出液を用いる場合であっても、反応液内に上記アミノ酸生合成酵素群を添加することによっても本発明は達成できる。   Further, even when a cell extract for cell-free protein synthesis derived from an organism not having the amino acid biosynthetic enzyme group (for example, derived from a human having no tryptophan synthase) is used, the amino acid biosynthesis is included in the reaction solution. The present invention can also be achieved by adding enzymes.

上記無細胞タンパク質合成用細胞抽出液の量は、特に限定されないが、例えば、反応液全体の10〜40重量%の範囲が好ましい。   The amount of the cell extract for cell-free protein synthesis is not particularly limited, but is preferably in the range of 10 to 40% by weight of the total reaction solution, for example.

「目的タンパク質をコードする核酸」は、当該目的タンパク質をコードし、転写及び/又は翻訳され得る適切な配列を含むものであれば特に限定されず、RNA、DNAのいずれをも含む。   The “nucleic acid encoding the target protein” is not particularly limited as long as it contains the appropriate sequence that encodes the target protein and can be transcribed and / or translated, and includes both RNA and DNA.

上記核酸の無細胞タンパク質合成用反応液(以下、反応液ともいう)への添加濃度は、無細胞タンパク質合成用細胞抽出液のタンパク質合成活性、合成するタンパク質の種類等によって適宜設定することができるが、例えば、最終濃度で0.5〜10μg/mL程度が例示される。   The concentration of the nucleic acid added to the reaction solution for cell-free protein synthesis (hereinafter also referred to as reaction solution) can be appropriately set depending on the protein synthesis activity of the cell extract for cell-free protein synthesis, the type of protein to be synthesized, and the like. However, for example, the final concentration is about 0.5 to 10 μg / mL.

上記無細胞タンパク質合成系におけるエネルギー源は、生体内でエネルギー源として利用される物質であれば特に限定はされないが、好ましくはATP,GTP,クレアチンホスフェート、ホスホエノールピルビン酸等の高エネルギーリン酸結合を有する物質が挙げられる。また、当該エネルギー源の反応液への添加濃度は、無細胞タンパク質合成用細胞抽出液のタンパク質合成活性、合成するタンパク質の種類等によって適宜設定することができる。   The energy source in the cell-free protein synthesis system is not particularly limited as long as it is a substance that can be used as an energy source in a living body, but preferably a high energy phosphate bond such as ATP, GTP, creatine phosphate, or phosphoenolpyruvate. The substance which has is mentioned. The concentration of the energy source added to the reaction solution can be appropriately set depending on the protein synthesis activity of the cell extract for cell-free protein synthesis, the type of protein to be synthesized, and the like.

上記反応液には、必要に応じて、ATP再生に関与する酵素(例えば、ホスホエノールピルベートとピルビン酸キナーゼの組み合わせ又はクレアチンホスフェートとクレアチンキナーゼの組み合わせ)、各種のRNAポリメラーゼ(T7、T3、及びSP6 RNA polymerase等)、タンパク質の三次元構造を形成する働きを持つシャペロンタンパク質類(例えば、DnaJ、DnaK、GroE、GroEL、GroES及びHSP70等)を添加してもよい。   In the above reaction solution, if necessary, an enzyme involved in ATP regeneration (for example, a combination of phosphoenolpyruvate and pyruvate kinase or a combination of creatine phosphate and creatine kinase), various RNA polymerases (T7, T3, and SP6 RNA polymerase, etc.) and chaperone proteins (for example, DnaJ, DnaK, GroE, GroEL, GroES, HSP70, etc.) having a function of forming a three-dimensional structure of the protein may be added.

また、上記反応液には、必要に応じて、非タンパク質性成分を補強することができる。非タンパク質性成分とは、もともと無細胞タンパク質合成用細胞抽出液中に含まれている成分であるが、別途添加することでタンパク質合成能を向上させることができる成分であり、例えばtRNAが挙げられる。   Moreover, a non-protein component can be reinforced to the reaction solution as necessary. A non-protein component is a component that is originally contained in a cell extract for cell-free protein synthesis, but is a component that can be added separately to improve protein synthesis ability, such as tRNA. .

さらに、上記反応液は、必要に応じて、タンパク質やRNAの保護及び/又は安定化のための各種の添加剤を含有させてもよい。当該添加剤としては、例えば、リボヌクレアーゼ(RNアーゼ)阻害剤(RNaseインヒビター等);還元剤(ジチオトレイトール等);RNA安定化剤(スペルミジン等);プロテアーゼ阻害剤(フェニルメタンスルホニルフルオリド(PMSF)等)などが挙げられる。これらの反応液への添加濃度は、使用する無細胞タンパク質合成用細胞抽出液のタンパク質合成活性、合成する目的タンパク質の種類等に応じて適宜設定すればよい。   Furthermore, the reaction solution may contain various additives for protection and / or stabilization of proteins and RNA as necessary. Examples of such additives include ribonuclease (RNase) inhibitors (RNase inhibitors, etc.); reducing agents (dithiothreitol, etc.); RNA stabilizers (spermidine, etc.); protease inhibitors (phenylmethanesulfonyl fluoride (PMSF) ) Etc.). What is necessary is just to set the addition density | concentration to these reaction liquids suitably according to the protein synthesis activity of the cell extract for cell-free protein synthesis | combination to be used, the kind of target protein synthesize | combined, etc.

無細胞タンパク質合成には、従来から知られているバッチ法、透析法のいずれの方法を用いてもよい。   For cell-free protein synthesis, any conventionally known batch method or dialysis method may be used.

例えば、バッチ法を用いる場合、反応液には目的タンパク質をコードする核酸、無細胞タンパク質合成用細胞抽出液、目的タンパク質の構成材料となる前記のアミノ酸組成物、ATP(アデノシン5'-三リン酸)、GTP(グアノシン5'-三リン酸)、CTP(シチジン5'-三リン酸)、UTP(ウリジン5'-三リン酸)、緩衝液、塩類、RNアーゼ阻害剤、抗菌剤のほか、必要によりT7RNAポリメラーゼなどのRNAポリメラーゼ(DNAを鋳型として用いる場合)、tRNAなどを含むことができる。その他、ATP再生系としてホスホエノールピルベートとピルビン酸キナーゼの組み合わせ又はクレアチンホスフェートとクレアチンキナーゼの組み合わせ、ポリエチレングリコール(例えば#8000)、3',5'-cAMP、葉酸類、還元剤(例えばジチオトレイトール)などを含むことができる。   For example, when the batch method is used, the reaction solution contains a nucleic acid encoding the target protein, a cell extract for cell-free protein synthesis, the amino acid composition as the constituent material of the target protein, ATP (adenosine 5′-triphosphate ), GTP (guanosine 5'-triphosphate), CTP (cytidine 5'-triphosphate), UTP (uridine 5'-triphosphate), buffer, salts, RNase inhibitor, antibacterial agent, If necessary, RNA polymerase such as T7 RNA polymerase (when DNA is used as a template), tRNA and the like can be contained. In addition, as a ATP regeneration system, a combination of phosphoenolpyruvate and pyruvate kinase or a combination of creatine phosphate and creatine kinase, polyethylene glycol (for example, # 8000), 3 ′, 5′-cAMP, folic acid, a reducing agent (for example, dithiotray) Toll) and the like.

ここで、緩衝液としては、例えばHepes-KOH、Tris-OAcのような緩衝剤が使用できる。塩類としては、例えば酢酸マグネシウム、塩化マグネシウム、酢酸カリウム、塩化カルシウムなどを用いることができ、抗菌剤としては、例えばアジ化ナトリウム、アンピシリンなどを用いることができる。   Here, for example, a buffer such as Hepes-KOH or Tris-OAc can be used as the buffer. Examples of salts that can be used include magnesium acetate, magnesium chloride, potassium acetate, and calcium chloride. Examples of antibacterial agents that can be used include sodium azide and ampicillin.

反応条件は、使用する無細胞タンパク質合成用細胞抽出液、合成する目的タンパク質等によって適宜設定すればよいが、温度は通常20〜40℃、好ましくは23〜37℃であり、時間は通常1〜5時間、好ましくは3〜4時間である。   The reaction conditions may be appropriately set according to the cell-free protein synthesis cell extract to be used, the target protein to be synthesized, etc., but the temperature is usually 20 to 40 ° C., preferably 23 to 37 ° C., and the time is usually 1 to 5 hours, preferably 3 to 4 hours.

また、透析法を用いて連続的に目的の安定同位体標識タンパク質を製造する場合、上記バッチ式の反応液を透析内液とし、反応液の5〜10倍容量の透析外液に対して透析を行い、生成した目的タンパク質を透析内液から回収する。透析外液は、透析内液組成から無細胞タンパク質合成用細胞抽出液、RNアーゼ阻害剤、目的タンパク質をコードする核酸、RNAポリメラーゼ、ピルビン酸キナーゼあるいはクレアチンキナーゼ等を除いたものが使用できる。従って、透析外液は、例えば、緩衝液、ATP、GTP、CTP、UTP、塩類、目的タンパク質の構成材料となる前記のアミノ酸混合物、ATP再生系としてホスホエノールピルベートまたはクレアチンホスフェート、抗菌剤などを含んでいればよい。   In addition, when continuously producing the target stable isotope-labeled protein using the dialysis method, the above batch-type reaction solution is used as the dialysis internal solution, and dialyzed against the dialysis external solution 5 to 10 times the volume of the reaction solution. And the produced target protein is recovered from the dialyzed solution. As the dialysis external solution, one obtained by removing the cell extract for cell-free protein synthesis, RNase inhibitor, nucleic acid encoding the target protein, RNA polymerase, pyruvate kinase, creatine kinase, etc. from the dialysis internal solution composition can be used. Accordingly, the dialysis external solution includes, for example, a buffer solution, ATP, GTP, CTP, UTP, salts, the amino acid mixture as a constituent material of the target protein, phosphoenolpyruvate or creatine phosphate as an ATP regeneration system, an antibacterial agent, etc. It only has to be included.

透析内液と透析外液を隔てる透析膜の分画分子量は、3,500〜100,000、好ましくは10,000〜50,000である。透析は、通常20〜40℃、好ましくは23〜37℃にて攪拌しつつ行い、新しい外液と交換、または、新たな核酸を定期的に反応液に補給してもよい。   The fractional molecular weight of the dialysis membrane that separates the dialyzed solution from the dialyzed solution is 3,500 to 100,000, preferably 10,000 to 50,000. Dialysis is usually performed while stirring at 20 to 40 ° C., preferably 23 to 37 ° C., and exchanged with a new external solution, or new nucleic acid may be periodically replenished to the reaction solution.

透析は、透析膜を介して内液と外液とを隔離して含む振とう若しくは攪拌(回転攪拌など)可能な透析装置を用いて行うことができる。小スケール反応用装置としては、例えばDispoDialyzer(登録商標)(Spectrum社製)やSlidealyzer(登録商標)(Pierce社製)等を用いることができる。また、大スケール反応用装置としては、Spectra/Por(登録商標)透析用チューブ(Spectrum社製)等を用いることができる。また、振とう速度若しくは攪拌速度は低速、例えば100〜200rpmとし、反応時間は目的タンパク質の生成を監視しながら適当に選択することができる。   Dialysis can be performed by using a dialysis apparatus capable of shaking or stirring (rotating stirring or the like) including and separating the inner liquid and the outer liquid through a dialysis membrane. As an apparatus for small scale reaction, for example, DispoDialyzer (registered trademark) (manufactured by Spectrum) or Slidealyzer (registered trademark) (manufactured by Pierce) can be used. As a large-scale reaction apparatus, a Spectra / Por (registered trademark) dialysis tube (manufactured by Spectrum) or the like can be used. The shaking speed or stirring speed is low, for example, 100 to 200 rpm, and the reaction time can be appropriately selected while monitoring the production of the target protein.

合成した安定同位体標識タンパク質の精製法としては、例えば硫酸アンモニウム若しくはアセトン沈殿、酸抽出、アニオン若しくはカチオン交換クロマトグラフィー、疎水性相互作用クロマトグラフィー、アフィニティークロマトグラフィー、ゲルろ過クロマトグラフィー、ヒドロキシアパタイト、等電点クロマトグラフィー、クロマトフォーカシング等が挙げられ、精製はこれらの方法を当該タンパク質の性質に応じて単独に又は適宜組み合わせて行うことができる。また、当該タンパク質に予めタグと呼ばれるペプチド配列を付加させておき、タグを特異的に認識し吸着することを利用したアフィニティー精製法を用いることができる。当該精製法は、高純度のタンパク質を得る上で特に好ましい。当該タグとしては特に限定されないが、ヒスチジンタグ、GSTタグ及びマルトース結合性タグ等が一般的である。   Purification methods for the synthesized stable isotope labeled protein include, for example, ammonium sulfate or acetone precipitation, acid extraction, anion or cation exchange chromatography, hydrophobic interaction chromatography, affinity chromatography, gel filtration chromatography, hydroxyapatite, isoelectric Point chromatography, chromatofocusing and the like can be mentioned, and purification can be carried out by these methods alone or in appropriate combination depending on the properties of the protein. Alternatively, an affinity purification method can be used in which a peptide sequence called a tag is added to the protein in advance and the tag is specifically recognized and adsorbed. This purification method is particularly preferable for obtaining a highly pure protein. Although it does not specifically limit as the said tag, A histidine tag, a GST tag, a maltose binding tag, etc. are common.

以上のようにして合成・精製された安定同位体標識タンパク質の同定及び定量は、活性測定、免疫学的測定、分光学的測定、アミノ酸分析などによって、必要に応じて標準サンプルと比較しながら行うことができる。   Identification and quantification of the stable isotope-labeled protein synthesized and purified as described above is carried out by comparing with a standard sample as required by activity measurement, immunological measurement, spectroscopic measurement, amino acid analysis, etc. be able to.

2−2.生細胞内合成系
安定同位体標識タンパクを生細胞内で行う方法としては、生細胞を培養する培養液に上記安定同位体標識タンパク質合成用組成物を直接添加する方法であってもよく、あるいは、あらかじめ培養した生細胞を回収、洗浄後、上記安定同位体標識タンパク質合成用組成物を添加した緩衝液と反応させる方法(T.Yamasaki J.Am.Chem.Soc.1997,199 p872-880参照)のいずれの方法であってもよい。
2-2. Live cell synthesis system The method of performing stable isotope-labeled protein in living cells may be a method of directly adding the composition for stable isotope-labeled protein synthesis to a culture medium for culturing live cells, or A method in which live cells cultured in advance are collected, washed, and reacted with a buffer solution to which the composition for synthesizing stable isotope-labeled protein is added (see T. Yamasaki J. Am. Chem. Soc. 1997, 199 p872-880). Any method of) may be used.

生細胞を用いる場合においても同様に、上記のアミノ酸生合成酵素群を持つ生物由来の細胞であればよく、例えば、大腸菌、酵母などが挙げられる。   Similarly, when a living cell is used, it may be a cell derived from an organism having the above amino acid biosynthetic enzyme group, and examples thereof include Escherichia coli and yeast.

ただし、添加するインドールや硫化ナトリウムから発生する硫化水素が、細胞毒性を示さない程度に低濃度に保つため、それら濃度をモニターしながら間欠的に添加することが望ましい。   However, in order to keep the hydrogen sulfide generated from the indole and sodium sulfide to be added at a low concentration that does not show cytotoxicity, it is desirable to add them intermittently while monitoring their concentrations.

生細胞内で安定同位体標識タンパク質を製造する場合、まず目的タンパク質をコードする核酸または該核酸を組み込んだ適当なプラスミドを生細胞に導入し、組換え細胞を得る。次に、得られた組換え細胞を、上記組成物を含有する培養液で培養するか、あるいは、得られた組換え細胞を通常の培養液で培養した培養細胞を回収、洗浄後、上記組成物を含有する緩衝液に添加して培養する。   When producing a stable isotope-labeled protein in a living cell, first, a nucleic acid encoding the target protein or an appropriate plasmid incorporating the nucleic acid is introduced into the living cell to obtain a recombinant cell. Next, the obtained recombinant cells are cultured in a culture solution containing the above composition, or the cultured cells obtained by culturing the obtained recombinant cells in a normal culture solution are collected and washed, and then the above composition is prepared. Add to the buffer containing the product and incubate.

目的とする安定同位体標識タンパク質は、その培養物から採取することにより得ることができる。ここで、「培養物」とは、培養上清のほか、培養細胞若しくは培養菌体又は細胞若しくは菌体の破砕物のいずれをも意味するものである。   The target stable isotope labeled protein can be obtained by collecting from the culture. Here, the “culture” means not only the culture supernatant but also any cultured cells or cultured cells, or crushed cells or cells.

組換え細胞を培養する場合、その細胞の培養に用いられる通常の方法に従って行われる。細胞が大腸菌や酵母菌等の微生物であれば、微生物が資化し得る炭素源、窒素源、無機塩類等を含有し、当該細胞の培養を効率的に行うことができる培地であれば、天然培地、合成培地のいずれを用いてもよい。炭素源としては、グルコース、フラクトース、スクロース、デンプン等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノール等のアルコール類が挙げられる。窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸若しくは有機酸のアンモニウム塩又はその他の含窒素化合物のほか、ペプトン、肉エキス、コーンスティープリカー等が挙げられる。無機物としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等が挙げられる。培養は、通常、振盪培養又は通気攪拌培養などの好気的条件下、37℃で行う。pHの調整は、無機又は有機酸、アルカリ溶液等を用いて行う。培養中は必要に応じてアンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよい。   When culturing a recombinant cell, it is carried out according to the usual method used for culturing the cell. If the cell is a microorganism such as Escherichia coli or yeast, a natural medium that contains a carbon source, a nitrogen source, an inorganic salt, etc. that can be assimilated by the microorganism and can efficiently culture the cell. Any of synthetic media may be used. Examples of the carbon source include carbohydrates such as glucose, fructose, sucrose, and starch, organic acids such as acetic acid and propionic acid, and alcohols such as ethanol and propanol. Examples of the nitrogen source include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium phosphate or other nitrogen-containing compounds, peptone, meat extract, corn steep liquor, and the like. Examples of the inorganic substance include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate. The culture is usually performed at 37 ° C. under aerobic conditions such as shaking culture or aeration and agitation culture. The pH is adjusted using an inorganic or organic acid, an alkaline solution, or the like. During culture, an antibiotic such as ampicillin or tetracycline may be added to the medium as necessary.

培養した組換え細胞を、既知の方法で回収し、上記組成物を含む緩衝液に添加する場合、緩衝液としては、例えば、無機最小培地、Hepes緩衝液、Tris緩衝液、リン酸緩衝液等を用いることができる。   When the cultured recombinant cells are collected by a known method and added to the buffer containing the above composition, examples of the buffer include minimal inorganic medium, Hepes buffer, Tris buffer, and phosphate buffer. Can be used.

目的タンパク質が菌体内又は細胞内に生産される場合には、超音波処理、凍結融解の繰り返し、ホモジナイザー処理などを施して菌体又は細胞を破砕することにより目的タンパク質を採取する。また、目的タンパク質が菌体外又は細胞外に生産される場合には、培養液をそのまま使用するか、遠心分離等により菌体又は細胞を除去する。その後、タンパク質の単離精製に用いられる一般的な生化学的方法、例えば硫酸アンモニウム沈殿、ゲルクロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー等を単独で又は適宜組み合わせて用いることにより、前記培養物中から本発明のタンパク質を単離精製することができる。   When the target protein is produced in cells or cells, the target protein is collected by crushing the cells or cells by performing ultrasonic treatment, repeated freeze-thawing, homogenizer treatment, and the like. When the target protein is produced outside the cells or cells, the culture solution is used as it is, or the cells or cells are removed by centrifugation or the like. Thereafter, by using general biochemical methods used for protein isolation and purification, such as ammonium sulfate precipitation, gel chromatography, ion exchange chromatography, affinity chromatography, etc. alone or in appropriate combination, From the above, the protein of the present invention can be isolated and purified.

3.安定同位体標識タンパク質合成用試薬キット
前記1.の「安定同位体標識タンパク質合成用組成物」は、無細胞タンパク合成系または生細胞内合成系によるタンパク製造にそれぞれ必要な他の成分とともに、安定同位体標識タンパク質合成用キットの形態で提供することができる。
3. Reagent kit for synthesis of stable isotope labeled protein The “stable isotope-labeled protein synthesis composition” is provided in the form of a stable isotope-labeled protein synthesis kit together with other components necessary for protein production by a cell-free protein synthesis system or a living cell synthesis system. be able to.

例えば、安定同位体標識タンパク質合成を無細胞タンパク合成系で行う場合は、本発明の安定同位体標識タンパク質合成用キットは、前記の安定同位体標識タンパク質合成用組成物と無細胞タンパク質合成用細胞抽出液を少なくとも含んでいればよい。また、本キットには、ATP,GTP,CTP,UTPなどのリボヌクレオチド、基質溶液のpHを調節するための緩衝液などを含めることができる。   For example, when stable isotope-labeled protein synthesis is carried out in a cell-free protein synthesis system, the stable isotope-labeled protein synthesis kit of the present invention comprises the aforementioned composition for stable isotope-labeled protein synthesis and cells for cell-free protein synthesis What is necessary is just to contain the extract at least. In addition, the kit can contain ribonucleotides such as ATP, GTP, CTP, and UTP, and a buffer for adjusting the pH of the substrate solution.

以下、実施例によって本発明を更に具体的に説明するが、これらの実施例は本発明を限定するものでない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but these examples do not limit the present invention.

(実施例1)19種類のアミノ酸(L-トリプトファン無添加)混合物とインドールによる無細胞タンパク質合成
L-トリプトファンを除く19種類のアミノ酸混合物とインドールによる無細胞タンパク質合成を透析法にて行った。アミノ酸とアミノ酸の前駆体以外の反応液(内液)および透析外液の組成をそれぞれ下記表1および表2に示す。

Figure 2008096846
Figure 2008096846
(Example 1) Cell-free protein synthesis using a mixture of 19 amino acids (without L-tryptophan) and indole
Cell-free protein synthesis with 19 kinds of amino acid mixtures excluding L-tryptophan and indole was performed by dialysis. The compositions of the reaction solution (inner solution) and the dialysis outer solution other than amino acids and amino acid precursors are shown in Table 1 and Table 2, respectively.
Figure 2008096846
Figure 2008096846

反応は、表1に示した組成の反応液(内液)を、表2に示した組成の透析外液に対して30℃にて一晩透析することにより行った。反応スケールは反応液(内液)30μl、透析外液300μlとした。大腸菌S30抽出液はズベイ(Zubay)ら(Annu.Rev.Geneti.,7,267-287,1973)の方法に従って、大腸菌BL21codon plus株から調製した。タンパク質合成量を定量的に示すため、比活性から容易にタンパク質の定量が可能なクロラムフェニコールアミノトランスフェラーゼ(CAT)を採用した。CAT発現ベクターとしてはpK7-CAT(Kim et al.,Eur. J. Biochem. 239, 881-886, 1996参照)を用いた。合成されたCATタンパク質の定量はShawらの方法(Methods Enzymol. 735-755, 1975参照)に従った。すなわち、アセチルコエンザイムAとクロラムフェニコールを基質としてCATによるクロラムフェニコールのアセチル化反応を行い、その結果生じた還元型コエンザイムAを5,5’−ジチオビス−2−ニトロ安息香酸(DNTB)を用いて発色定量した。37℃、412nmにおける吸光度の単位時間当たりの増加量よりCATの活性を定量し、これを指標としてCATタンパク質量を決定した。   The reaction was performed by dialysis of a reaction solution (inner solution) having the composition shown in Table 1 overnight at 30 ° C. against an external dialysis solution having the composition shown in Table 2. The reaction scale was 30 μl of reaction solution (inner solution) and 300 μl of dialysis solution. E. coli S30 extract was prepared from E. coli BL21codon plus strain according to the method of Zubay et al. (Annu. Rev. Geneti., 7, 267-287, 1973). In order to quantitatively show the amount of protein synthesis, chloramphenicol aminotransferase (CAT), which can easily quantify proteins from specific activity, was employed. PK7-CAT (see Kim et al., Eur. J. Biochem. 239, 881-886, 1996) was used as the CAT expression vector. The synthesized CAT protein was quantified according to the method of Shaw et al. (See Methods Enzymol. 735-755, 1975). That is, acetylation of chloramphenicol by CAT using acetyl coenzyme A and chloramphenicol as substrates, and the resulting reduced coenzyme A was converted to 5,5′-dithiobis-2-nitrobenzoic acid (DNTB). The color development was quantified using The activity of CAT was quantified from the increase in absorbance per unit time at 37 ° C. and 412 nm, and the amount of CAT protein was determined using this as an index.

反応液(表1)に対し、L-トリプトファン以外のアミノ酸として、藍藻由来のタンパク質を塩酸加水分解して得られた16種類のアミノ酸混合物(L-アラニン、L-アルギニン、L-アスパラギン酸、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-チロシン、L-バリン)(大陽日酸株式会社より購入)を最終濃度で5mg/ml、L-アスパラギンを最終濃度で2mM、L-グルタミンとL-システインをそれぞれ最終濃度で1mMになるように添加した。また、同反応液に対し、トリプトファンの前駆体(基質)となるインドールを最終濃度で0.5 mMまたは1.0mMになるように添加した。また、コントロールとして、インドールを添加しない場合と、L-トリプトファンを最終濃度で1mMになるように添加した条件でもCAT合成を同時に行った。   For the reaction solution (Table 1), as amino acids other than L-tryptophan, a mixture of 16 types of amino acids (L-alanine, L-arginine, L-aspartic acid, L -Glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine, L-valine) ( Purchased from Taiyo Nippon Sanso Co., Ltd.) at a final concentration of 5 mg / ml, L-asparagine at a final concentration of 2 mM, and L-glutamine and L-cysteine at a final concentration of 1 mM. Further, indole as a tryptophan precursor (substrate) was added to the reaction solution so that the final concentration was 0.5 mM or 1.0 mM. In addition, as a control, CAT synthesis was simultaneously performed in the absence of indole and in the condition where L-tryptophan was added to a final concentration of 1 mM.

その結果、図1に示すように、L-トリプトファン、インドールを添加しない反応系(図1中、19種類アミノ酸、バックラウンド)、ほとんどCATは合成されなかったが、インドールを添加することによりCATが合成された。また、トリプトファン合成酵素の補酵素であるピリドキサール5'-リン酸(PLP)を最終濃度で0.5mM添加することで、20種類のアミノ酸を添加した場合と同等量のCATを合成できた。   As a result, as shown in FIG. 1, L-tryptophan and indole were not added to the reaction system (in FIG. 1, 19 types of amino acids, background), and almost no CAT was synthesized. Synthesized. In addition, by adding 0.5 mM of pyridoxal 5'-phosphate (PLP), a coenzyme for tryptophan synthase, at the final concentration, CAT was synthesized in the same amount as when 20 amino acids were added.


(実施例2)19種類のアミノ酸(L-システイン無添加)混合物と硫化ナトリウムによる無細胞タンパク質合成
L−システインを除く19種類のアミノ酸混合物と硫化ナトリウムによる無細胞タンパク質合成を実施例1と同様にして透析法にて行った。アミノ酸とアミノ酸の前駆体以外の反応液(内液)組成および透析外液組成、ならびに反応条件(スケール・温度・時間)は実施例1と同じである。前記反応液(表1)に対し、L-システイン以外のアミノ酸として、藍藻由来のタンパク質を塩酸加水分解して得られた16種類のアミノ酸混合物(L-アラニン、L-アルギニン、L-アスパラギン酸、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-チロシン、L-バリン)(大陽日酸株式会社より購入)を最終濃度で5mg/ml、L-アスパラギンを最終濃度で2mM、L-グルタミンとL-トリプトファンをそれぞれ最終濃度で1mMになるように添加した。また、同反応液に対し、L-システインの前駆体(基質)となる硫化ナトリウム(Na2S)を最終濃度で0.5 mMまたは1.0mMになるように添加した。また、コントロールとして、硫化ナトリウムを添加しない場合と、L−システインを最終濃度で1.0mMになるように添加した条件でもCAT合成を同時に行った。

(Example 2) Cell-free protein synthesis using a mixture of 19 amino acids (without L-cysteine) and sodium sulfide Cell-free protein synthesis using a mixture of 19 amino acids excluding L-cysteine and sodium sulfide was carried out in the same manner as in Example 1. The dialysis method was used. The reaction solution (inner solution) composition and the dialysis outer solution composition other than amino acids and amino acid precursors, and the reaction conditions (scale, temperature, time) are the same as in Example 1. For the reaction solution (Table 1), as amino acids other than L-cysteine, a mixture of 16 kinds of amino acids (L-alanine, L-arginine, L-aspartic acid, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine, L-valine) (Purchased from Taiyo Nippon Sanso Co., Ltd.) was added to a final concentration of 5 mg / ml, L-asparagine to a final concentration of 2 mM, and L-glutamine and L-tryptophan to a final concentration of 1 mM. In addition, sodium sulfide (Na 2 S) as a precursor (substrate) of L-cysteine was added to the reaction solution so that the final concentration was 0.5 mM or 1.0 mM. Further, as a control, CAT synthesis was simultaneously performed under the condition where sodium sulfide was not added and under the condition where L-cysteine was added to a final concentration of 1.0 mM.

その結果、図2に示すように、L-システイン、硫化ナトリウムを添加しない反応系(図2中、19種類アミノ酸、バックラウンド)においては、ほとんどCATは合成されなかったが、硫化ナトリウムを添加することによりCATが合成された。また、実施例1と同様、システイン合成酵素の補酵素であるPLPを最終濃度で0.5mM添加することでさらに合成量が増加した。硫化ナトリウムを最終濃度で1mM、PLPを最終濃度で0.5mM添加した場合、20種類のアミノ酸を添加した場合の8割以上のCATタンパク質を合成できた。   As a result, as shown in FIG. 2, CAT was hardly synthesized in the reaction system to which L-cysteine and sodium sulfide were not added (in FIG. 2, 19 kinds of amino acids, background), but sodium sulfide was added. As a result, CAT was synthesized. Further, as in Example 1, the amount of synthesis further increased by adding 0.5 mM of PLP, which is a coenzyme of cysteine synthase, at a final concentration. When sodium sulfide was added at a final concentration of 1 mM and PLP was added at a final concentration of 0.5 mM, over 80% of CAT protein was synthesized when 20 types of amino acids were added.


(実施例3)18種類のアミノ酸(L-システイン及びL-トリプトファン無添加)混合物または16種類のアミノ酸(L-アスパラギン、L-グルタミン、L-システイン及びL-トリプトファン無添加)混合物と、硫化ナトリウムとインドールによる無細胞タンパク質合成
(i) L-システイン及びL-トリプトファンを除く18種類のアミノ酸混合物、硫化ナトリウム、及びインドールによる無細胞タンパク質合成、(ii) L-アスパラギン、L-グルタミン、L-システイン及びL-トリプトファンを除く16種類のアミノ酸混合物、硫化ナトリウム、及びインドールによる無細胞タンパク質合成を実施例1と同様にして透析法にて行った。アミノ酸とアミノ酸の前駆体以外の反応液(内液)組成および透析外液組成、ならびに反応条件(スケール・温度・時間)は実施例1と同じである。

(Example 3) A mixture of 18 kinds of amino acids (without addition of L-cysteine and L-tryptophan) or a mixture of 16 kinds of amino acids (without addition of L-asparagine, L-glutamine, L-cysteine and L-tryptophan) and sodium sulfide Cell-free protein synthesis by indole
(i) Cell-free protein synthesis with a mixture of 18 amino acids excluding L-cysteine and L-tryptophan, sodium sulfide and indole, (ii) Excluding L-asparagine, L-glutamine, L-cysteine and L-tryptophan16 Cell-free protein synthesis with a mixture of various amino acids, sodium sulfide, and indole was performed by dialysis in the same manner as in Example 1. The reaction solution (inner solution) composition and the dialysis outer solution composition other than amino acids and amino acid precursors, and the reaction conditions (scale, temperature, time) are the same as in Example 1.

前記反応液(表1)に対し、L-システイン及びL-トリプトファン以外のアミノ酸として、藍藻由来のタンパク質を塩酸加水分解して得られた16種類のアミノ酸混合物(L-アラニン、L-アルギニン、L-アスパラギン酸、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-チロシン、L-バリン)(大陽日酸株式会社より購入)を最終濃度で5mg/ml、(i)の合成の場合は、L-アスパラギンを最終濃度で2mM、L-グルタミンを最終濃度で1mMになるように反応液に添加した。また、同反応液に対し、L-システインの前駆体(基質)となる硫化ナトリウム(Na2S)を最終濃度で0.5 mM、およびL-トリプトファンの前駆体(基質)となるインドールを最終濃度で0、0.1、0.2、0.3、0.5、1.0、1.5mMになるよう添加した。さらに、実施例1、2でCAT合成量向上に効果が見られたPLPを最終濃度で0.5mM添加した。また、コントロールとして、L-システイン及びL-トリプトファンをそれぞれ最終濃度で1mMになるように添加した条件でもCAT合成を同時に行った。For the reaction solution (Table 1), as amino acids other than L-cysteine and L-tryptophan, a mixture of 16 types of amino acids (L-alanine, L-arginine, L -Aspartic acid, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine, L-valine (purchased from Taiyo Nippon Sanso Co., Ltd.) at a final concentration of 5 mg / ml. In the case of (i) synthesis, L-asparagine is 2 mM in the final concentration and L-glutamine is 1 mM in the final concentration. Was added to the reaction solution. In addition, sodium sulfide (Na 2 S), which is the precursor (substrate) of L-cysteine, is 0.5 mM in the final concentration, and indole, which is the precursor (substrate) of L-tryptophan, at the final concentration. It added so that it might become 0, 0.1, 0.2, 0.3, 0.5, 1.0, 1.5 mM. Furthermore, 0.5 mM of PLP, which was effective in improving the CAT synthesis amount in Examples 1 and 2, was added at the final concentration. As a control, CAT synthesis was simultaneously performed under the condition where L-cysteine and L-tryptophan were added to a final concentration of 1 mM.

その結果、図3に示すように、インドールを添加しない反応系は、ほとんどCATは合成されなかったが、インドールを添加することによりCATが合成された。インドールの最終濃度が0.2mMの条件が最も合成量が多かった。16種類のアミノ酸の場合では、18種類のアミノ酸の場合に比べ、合成量が6割程度に留まったもののCATが合成されることが確認された。反応系内のアンモニウムイオンを最適化することにより、合成量はさらに改善すると考えられる。   As a result, as shown in FIG. 3, in the reaction system to which no indole was added, CAT was hardly synthesized, but CAT was synthesized by adding indole. The amount of synthesis was the highest when the final concentration of indole was 0.2 mM. In the case of 16 types of amino acids, it was confirmed that CAT was synthesized although the synthesis amount remained at about 60% compared to the case of 18 types of amino acids. By optimizing ammonium ions in the reaction system, the synthesis amount is considered to be further improved.


(実施例4)窒素同位体(15N)標識タンパク質の合成
(1)無細胞タンパク質合成による窒素同位体(15N)標識タンパク質合成
16種類の15N標識アミノ酸混合物(L-アラニン-15N、L-アルギニン-15N、L-アスパラギン酸-15N、L-グルタミン酸-15N、グリシン-15N、L-ヒスチジン-15N、L-イソロイシン-15N、L-ロイシン-15N 、L-リジン-15N、L-メチオニン-15N、L-フェニルアラニン-15N、L-プロリン-15N、L-セリン-15N、L-スレオニン-15N、L-チロシン-15N、L-バリン-15N)、硫化ナトリウム(Na2S)、およびインドールをアミノ酸基質として用い、前記表1に示す鋳型DNA(発現プラスミド)としてCAT発現ベクターに代えてRasタンパク質(Yamasaki J Biomol NMR. 1992 Jan;2(1):71-82)をコードする環状プラスミドDNA(最終濃度2μg/ml)、酢酸アンモニウムに代えて酢酸アンモニウム-15Nを用いる以外は、実施例1と同様にして無細胞タンパク質合成を透析法にて行った。アミノ酸とアミノ酸の前駆体以外の反応液(内液)組成および透析外液組成、反応条件(温度・時間)は実施例1と同じである。なお、反応液(内液)は3ml, 透析外液は30mlとした。

(Example 4) nitrogen isotopes (15 N) Synthesis of labeled protein (1) nitrogen isotopic cell-free protein synthesis (15 N) labeled protein synthesis
16 kinds of 15 N labeled amino acid mixture (L-alanine- 15 N, L-arginine- 15 N, L-aspartic acid- 15 N, L-glutamic acid- 15 N, glycine- 15 N, L-histidine- 15 N, L-isoleucine- 15 N, L-leucine- 15 N , L-lysine- 15 N, L-methionine- 15 N, L-phenylalanine- 15 N, L-proline- 15 N, L-serine- 15 N, L-threonine- 15 N, L-tyrosine- 15 N, L- valine - 15 N), sodium sulfide (Na 2 S), and indol as amino acid substrate, in place of the CAT expression vector as the template DNA (expression plasmid) shown in table 1 Ras protein (Yamasaki J Biomol NMR. 1992 Jan; 2 (1): 71-82) circular plasmid DNA (final concentration 2 μg / ml), cell-free as in Example 1 except that ammonium acetate- 15 N is used instead of ammonium acetate Protein synthesis was performed by dialysis. The reaction solution (inner solution) composition, the dialysis outer solution composition, and the reaction conditions (temperature and time) other than the amino acid and the amino acid precursor are the same as in Example 1. The reaction solution (inner solution) was 3 ml, and the outer dialysis solution was 30 ml.

前記反応液(表1)に対し、窒素同位体(15N)アミノ酸混合物を最終濃度で5mg/ml、インドールを最終濃度で0.2mM、硫化ナトリウムを最終濃度で0.5mMになるように添加した。また、補酵素であるPLPを最終濃度で0.5mMになるように添加した。また、コントロールとして、20種類の15N標識アミノ酸を基質とした無細胞タンパク質合成も同時に実施した。合成が終了した後、透析膜内の反応液を遠沈管に回収した。To the reaction solution (Table 1), a nitrogen isotope ( 15 N) amino acid mixture was added to a final concentration of 5 mg / ml, indole to a final concentration of 0.2 mM, and sodium sulfide to a final concentration of 0.5 mM. In addition, PLP as a coenzyme was added to a final concentration of 0.5 mM. As a control, cell-free protein synthesis using 20 types of 15 N-labeled amino acids as substrates was also performed. After the synthesis was completed, the reaction solution in the dialysis membrane was collected in a centrifuge tube.

(2) 窒素同位体(15N)標識タンパク質の精製
上記手法で合成、回収したRasタンパク質の精製は、ヒスチジンとコバルトイオンとの親和性を利用した精製方法にて行った。操作は4℃で実施した。無細胞タンパク質合成反応液3mlを、緩衝液(20mMトリス塩酸塩(pH8.0)/1M 塩化ナトリウム)2.6mlで希釈し、遠心分離(2,000回転、5分間)して沈殿を除去した。得られた上清に3.2mlのTALON樹脂(BD Biosciences clontech社)を加えて混和し、タンパク質を吸着させた。ミニカラムに、上記タンパク質溶液と樹脂の混合液を静かに充填し、ろ過することで樹脂と液を分離した。カラムボリュームの約5倍量の洗浄緩衝液でカラムを洗浄した後、溶出用液緩衝液(20mMトリス塩酸塩(pH8.0)/30mM 塩化ナトリウム/500mMイミダゾール)4mlを樹脂に加えることによりTALON樹脂に吸着したRasタンパク質を溶出させた。溶出したRasタンパク質のN末端にある不要なヒスチジンタグを切断するために、限外ろ過装置(ビバスピン2;ザルトリウス社)を用いて約500μlに濃縮し、8μg/mlのTEVプロテアーゼを加えて4℃で一晩切断反応を行った。反応終了後の液を再度限外ろ過装置に入れ、緩衝液(20mMトリス塩酸塩(pH8.0)/1M塩化ナトリウム)を2ml加えて200μlにまで濃縮した。これを数回繰り返し、緩衝液の交換を行った。溶媒を洗浄緩衝液に交換したRasタンパク質溶液にさらに洗浄緩衝液を加えて3.5mlとし、そこに1.6mlのTALON樹脂を加えて切断したヒスチジンタグを樹脂に吸着させた。ミニカラムに樹脂を含む溶液を充填し、素通りした画分を回収し、精製Rasタンパク質を得た。収量は、16種類のアミノ酸で合成した場合で約3.1mg、20種類のアミノ酸の場合で3.8mgであり、本発明方法による16種類のアミノ酸で合成したRasタンパク質収量は20種類のアミノ酸で合成した場合と比較して若干収量は低下するものの、NMR測定に十分量のRasタンパク質を合成することができた。
(2) Purification of nitrogen isotope ( 15 N) -labeled protein The Ras protein synthesized and recovered by the above method was purified by a purification method utilizing the affinity between histidine and cobalt ions. The operation was performed at 4 ° C. 3 ml of the cell-free protein synthesis reaction solution was diluted with 2.6 ml of a buffer solution (20 mM Tris hydrochloride (pH 8.0) / 1 M sodium chloride), and centrifuged (2,000 rpm, 5 minutes) to remove the precipitate. To the resulting supernatant, 3.2 ml of TALON resin (BD Biosciences clontech) was added and mixed to adsorb the protein. The mini-column was gently filled with the mixed solution of the protein solution and the resin, and the resin and the liquid were separated by filtration. After washing the column with about 5 times the column volume of washing buffer, add 4 ml of elution buffer (20 mM Tris hydrochloride (pH 8.0) / 30 mM sodium chloride / 500 mM imidazole) to the resin. The Ras protein adsorbed on was eluted. In order to cleave the unnecessary histidine tag at the N-terminus of the eluted Ras protein, it was concentrated to about 500 μl using an ultrafiltration device (Vivapin 2; Sartorius), added with 8 μg / ml TEV protease, and 4 ° C. The cleavage reaction was performed overnight. The solution after completion of the reaction was put into the ultrafiltration device again, and 2 ml of a buffer solution (20 mM Tris hydrochloride (pH 8.0) / 1 M sodium chloride) was added and concentrated to 200 μl. This was repeated several times to exchange the buffer solution. The washing buffer was further added to the Ras protein solution in which the solvent was replaced with the washing buffer to make 3.5 ml, and 1.6 ml of TALON resin was added thereto to adsorb the cleaved histidine tag to the resin. The minicolumn was filled with a solution containing the resin, and the fraction passed through was collected to obtain purified Ras protein. The yield was about 3.1 mg when synthesized with 16 amino acids and 3.8 mg when synthesized with 20 amino acids, and the yield of Ras protein synthesized with 16 amino acids according to the method of the present invention was synthesized with 20 amino acids. Although the yield was slightly reduced as compared with the case, an amount of Ras protein sufficient for NMR measurement could be synthesized.

(3) NMR測定試料の調製
精製した15N標識Rasタンパク質をNMR測定に適した溶媒(20mM リン酸ナトリウム(pH6.5)/100mM NaCl/5mM MgCl2/5mM d-DTT/0.01%NaN3)に置換するため、再度限外ろ過装置で溶媒交換を実施した。溶媒置換したタンパク質溶液に対して、10%になるよう重水を加え、NMR測定用試料とした。
(3) solvent and 15 N-labeled Ras proteins prepared purified NMR measurement sample suitable for the NMR measurement (20mM sodium phosphate (pH6.5) / 100mM NaCl / 5mM MgCl 2 / 5mM d-DTT / 0.01% NaN 3) Then, the solvent was exchanged again using an ultrafiltration apparatus. Heavy water was added to the solvent-substituted protein solution at 10% to prepare a sample for NMR measurement.

(4) NMR測定
NMR測定用溶媒に置換した15N 標識Rasタンパク質溶液を対称型ミクロNMR試料管(シゲミ社、φ5mm)に入れ、700MHzのNMR装置(DRX;ブルカー社)で、温度25℃にてH-15N -2次元HSQC(以降15N-HSQCと略記)測定を実施した。NMR測定(15N-HSQCスペクトル)の結果を図4に示す。
(4) NMR measurement
15 N substituted with solvent for NMR measurement The labeled Ras protein solution is placed in a symmetric micro NMR sample tube (Shigemi, φ5 mm) and 1 H- 15 N at a temperature of 25 ° C. with a 700 MHz NMR apparatus (DRX; Bruker). -Measured 2D HSQC (hereinafter abbreviated as 15 N-HSQC). The results of NMR measurement ( 15 N-HSQC spectrum) are shown in FIG.

16種類のアミノ酸とその他のアミノ酸前駆体をアミノ酸源として合成したRasタンパク質では、トリプトファンの前駆体として非標識インドールを用いたため、トリプトファンの側鎖(インドール環)が標識されていないことが分かる(図4:下図)。それ以外のN-Hのシグナルは、20種類のアミノ酸で合成したRasタンパク質と同等であることが確認された。   In the Ras protein synthesized using 16 types of amino acids and other amino acid precursors as amino acid sources, unlabeled indole was used as the tryptophan precursor, indicating that the side chain (indole ring) of tryptophan was not labeled (Fig. 4: Below). The other NH signals were confirmed to be equivalent to Ras protein synthesized with 20 amino acids.


(実施例5)酸素同位体(18O)標識タンパク質の合成
(1)アミノ酸(16種類)の酸素同位体(18O)標識
アミノ酸のカルボキシル基の酸素を酸素同位体で標識する方法として、Murphy RC, Clay KL., 1979, Synthesis and back exchange of 18O-labeled amino acids for use as internal standards with mass spectrometry. Biomed Mass Spectrom 6:309-314に記載の方法を用いた。

(Example 5) Synthesis of oxygen isotope ( 18 O) labeled protein (1) Oxygen isotope ( 18 O) labeling of amino acids (16 types) As a method of labeling oxygen of the carboxyl group of amino acids with oxygen isotopes, Murphy RC, Clay KL., 1979, Synthesis and back exchange of 18 O-labeled amino acids for use as internal standards with mass spectrometry. The method described in Biomed Mass Spectrom 6: 309-314 was used.

市販の16種類のアミノ酸(L-アラニン、L-アルギニン、L-アスパラギン酸、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-チロシン、L-バリン)を、下記表3に示す藍藻のアミノ酸混合物の組成比と同一の組成比になるよう混合し、16種類の非標識アミノ酸混合物を作成した。

Figure 2008096846
16 commercially available amino acids (L-alanine, L-arginine, L-aspartic acid, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine, L-valine) are mixed so that the composition ratio is the same as that of the amino acid mixture of cyanobacteria shown in Table 3 below. A mixture of amino acids was made.

Figure 2008096846

上記アミノ酸混合物を0.257g(A)と0.259g(B)秤量し、それぞれを10ml容ナスフラスコに移した。Aに濃塩酸で調製した0.3N 塩酸18O標識水(18O濃縮度: 95atom%)を4.25g、Bに0.3N 塩酸水溶液(非標識水)を4.02gそれぞれ加えて完全に溶解させた。各々に蓋をしてオイルバスに入れ、窒素気流下100℃にて16時間還流加熱した。反応終了後、室温に冷まし、ロータリーエバポレーターを用いて完全に乾固させ、水分及び塩酸を除去した。乾固物に蒸留水を加え、5M 水酸化カリウムでpH7.5に調整し、それぞれ蒸留水を添加して5mlにし、酸素同位体(18O)標識アミノ酸混合物(16種類)を調製した。The amino acid mixture was weighed in 0.257 g (A) and 0.259 g (B), and each was transferred to a 10 ml eggplant flask. To A, 0.35 hydrochloric acid 18 O-labeled water ( 18 O concentration: 95 atom%) prepared with concentrated hydrochloric acid (4.25 g) was added to B, and 0.3N hydrochloric acid aqueous solution (unlabeled water) (4.02 g) was added and completely dissolved. Each was covered and placed in an oil bath and heated at 100 ° C. for 16 hours under a nitrogen stream. After completion of the reaction, the mixture was cooled to room temperature and completely dried using a rotary evaporator to remove water and hydrochloric acid. Distilled water was added to the dried product, adjusted to pH 7.5 with 5M potassium hydroxide, and each was added with distilled water to 5 ml to prepare oxygen isotope ( 18 O) labeled amino acid mixture (16 types).

(2)無細胞タンパク質合成法による酸素同位体(18O)標識タンパク質合成
アミノ酸基質として(1)で作成した酸素同位体(18O)標識アミノ酸混合物を用い、前記表1に示す鋳型DNA(発現プラスミド)としてCAT発現ベクターに代えて配列番号1に示したヒト由来イソペプチダーゼ5(E.C.3.1.2.15)のユビキチン結合ドメイン(UBA)塩基配列を含む発現プラスミドDNAを用いた以外は、実施例1と同様にして無細胞タンパク質合成を透析法にて行った。アミノ酸とアミノ酸の前駆体以外の反応液(内液)組成および透析外液組成、ならびに反応条件(スケール・温度・時間)は実施例1と同じである。
(2) oxygen isotope by cell-free protein synthesis method (18 O) of oxygen isotopes created in the labeled protein synthesis amino acid substrates (1) (18 O) using labeled amino acid mixture, template DNA shown in Table 1 (expressed Example 1 except that expression plasmid DNA containing the ubiquitin-binding domain (UBA) base sequence of human isopeptidase 5 (EC3.1.2.15) shown in SEQ ID NO: 1 was used as the plasmid) instead of the CAT expression vector In the same manner, cell-free protein synthesis was performed by dialysis. The reaction solution (inner solution) composition and the dialysis outer solution composition other than amino acids and amino acid precursors, and the reaction conditions (scale, temperature, time) are the same as in Example 1.

前記反応液(表1)に対し、酸素同位体(18O)標識アミノ酸混合物および非標識アミノ酸混合物を最終濃度で5mg/mlになるように添加した。また、インドール、硫化ナトリウムは、それぞれ最終濃度で1mMになるように添加した。また、コントロールとして、非標識L-アスパラギンを最終濃度で2mM、非標識L-グルタミン、非標識L-トリプトファン、及び非標識L-システインをそれぞれ最終濃度で1mMになるように添加した条件でもUBAタンパク質合成を実施した。To the reaction solution (Table 1), an oxygen isotope ( 18 O) labeled amino acid mixture and an unlabeled amino acid mixture were added to a final concentration of 5 mg / ml. Indole and sodium sulfide were added to a final concentration of 1 mM. In addition, as a control, UBA protein was also used under the conditions where unlabeled L-asparagine was added to a final concentration of 2 mM, and unlabeled L-glutamine, unlabeled L-tryptophan, and unlabeled L-cysteine were each added to a final concentration of 1 mM. Synthesis was performed.

(3) 酸素同位体(18O)標識タンパク質の精製
上記のようにして合成されたUBAタンパク質の精製は、ヒスチジンとコバルトイオンとの親和性を利用した精製方法にて行った。無細胞タンパク質合成反応液30μlを0.6ml容遠心チューブにて回収し、緩衝液(20mMトリス塩酸塩(pH8.0)/1M 塩化ナトリウム)30μlで希釈し、遠心分離(4,000回転、5分間)して沈殿を除去した。得られた上清40μlにTALON樹脂(BD Biosciences clontech社)を加えて混和し、タンパク質を吸着させた。フィルタープレートを用いて遠心分離により上清を除去した後、得られた樹脂に上記緩衝液を150μl加えて更に遠心分離し、樹脂の洗浄を行った。樹脂から合成UBAタンパク質を溶出させるため、溶出用緩衝液(20mMトリス塩酸塩(pH8.0)/300mM 塩化ナトリウム/500mMイミダゾール)100μlを樹脂に加えて混和し、遠心分離により精製UBAタンパク質を含む溶出液を得た。
(3) Purification of Oxygen Isotope ( 18 O) Labeled Protein The UBA protein synthesized as described above was purified by a purification method using the affinity between histidine and cobalt ions. Collect 30 μl of the cell-free protein synthesis reaction solution in a 0.6 ml centrifuge tube, dilute with 30 μl of buffer solution (20 mM Tris hydrochloride (pH 8.0) / 1 M sodium chloride), and centrifuge (4,000 rpm, 5 minutes). To remove the precipitate. TALON resin (BD Biosciences clontech) was added to 40 μl of the obtained supernatant and mixed to adsorb the protein. After removing the supernatant by centrifugation using a filter plate, 150 μl of the above buffer solution was added to the obtained resin, and the mixture was further centrifuged to wash the resin. To elute the synthetic UBA protein from the resin, add 100 μl of elution buffer (20 mM Tris hydrochloride (pH 8.0) / 300 mM sodium chloride / 500 mM imidazole) to the resin, mix, and centrifuge to elute the purified UBA protein. A liquid was obtained.

(4) 酸素同位体(18O)標識タンパク質の脱塩と質量分析
精製された酸素同位体(18O)標識UBAタンパク質の酸素同位体標識による質量の増加の有無を確認するため、質量分析を行った。質量分析の前処理として、精製タンパク質をZip tip C18(Waters社)により脱塩処理した。質量分析精度向上のため、試料中にミオグロビンを内部標準として添加して脱塩精製UBAタンパク質試料とし、MALDI-TOF MS(Voyager;アプライドバイオシステムズ社)により酸素同位体(18O)標識タンパク質の質量を測定した。合成したUBAタンパク質の非標識の平均分子量は、10390.9Daであった。TOF-MSによる質量測定結果を図5に示す。その結果、18O標識したアミノ酸混合物を使用したUBAタンパク質で酸素同位体標識によると思われる平均質量の増加が確認された。
(4) oxygen isotope (18 O) desalting and mass spectrometry purified oxygen isotope labeled protein (18 O) in order to confirm the presence or absence of the mass increase due to oxygen isotope label of the labeled UBA proteins, mass spectrometry went. As a pretreatment for mass spectrometry, the purified protein was desalted with Zip tip C18 (Waters). For mass analysis accuracy, by adding myoglobin as an internal standard in the sample and desalted purified UBA protein samples, MALDI-TOF MS; mass of oxygen isotope by (Voyager Applied Biosystems) (18 O) labeled protein Was measured. The average molecular weight of the unlabeled UBA protein was 10390.9 Da. The mass measurement result by TOF-MS is shown in FIG. As a result, it was confirmed that the UBA protein using the 18 O-labeled amino acid mixture had an increase in average mass that was probably due to oxygen isotope labeling.

本発明によれば、安定同位体標識タンパク質を安価に製造することが可能となり、タンパク質立体構造解析などの技術分野において貢献できる。   According to the present invention, it is possible to produce a stable isotope-labeled protein at a low cost, which can contribute to technical fields such as protein tertiary structure analysis.

本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書に組み入れるものとする。   All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (6)

(A) L-アラニン、L-アルギニン、L-アスパラギン酸、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-チロシン、L-バリンの16種類のアミノ酸からなるアミノ酸混合物、(B) インドール、(C) 硫化水素または硫化物塩、および(D) アンモニウム塩を含み、かつ前記アミノ酸混合物中のアミノ酸の少なくとも1種、および/または、インドール、硫化水素または硫化物塩、アンモニウム塩の少なくとも1種が安定同位体で標識されていることを特徴とする、安定同位体標識タンパク質合成用組成物。   (A) L-alanine, L-arginine, L-aspartic acid, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, A mixture of 16 amino acids of L-serine, L-threonine, L-tyrosine, L-valine, (B) indole, (C) hydrogen sulfide or sulfide salt, and (D) ammonium salt, and A stable isotope-labeled protein, wherein at least one of amino acids in the amino acid mixture and / or at least one of indole, hydrogen sulfide or sulfide salt, and ammonium salt is labeled with a stable isotope Composition for synthesis. 前記安定同位体が、17O、18O、13C、15N、及び2Hからなる群から選ばれる1種または2種以上の組み合わせである、請求項1に記載の安定同位体標識タンパク質合成用組成物。The stable isotope labeled protein synthesis according to claim 1, wherein the stable isotope is one or a combination of two or more selected from the group consisting of 17 O, 18 O, 13 C, 15 N, and 2 H. Composition. 請求項1または2に記載の組成物を含む、安定同位体標識タンパク質合成用試薬キット。   A reagent kit for synthesizing stable isotope-labeled proteins, comprising the composition according to claim 1 or 2. 請求項1または2に記載の組成物を用いて安定同位体標識タンパク質を合成することを特徴とする、安定同位体標識タンパク質の製造方法。   A method for producing a stable isotope-labeled protein, comprising synthesizing a stable isotope-labeled protein using the composition according to claim 1. 安定同位体標識タンパク質の合成が、無細胞タンパク質合成系内で行われる、請求項4に記載の製造方法。   The production method according to claim 4, wherein the stable isotope-labeled protein is synthesized in a cell-free protein synthesis system. 安定同位体標識タンパク質の合成が、生細胞内で行われる、請求項4に記載の製造方法。   The production method according to claim 4, wherein the synthesis of the stable isotope-labeled protein is performed in a living cell.
JP2008557162A 2007-02-09 2008-02-08 Composition for stable isotope-labeled protein synthesis and method for producing stable isotope-labeled protein Pending JPWO2008096846A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007030650 2007-02-09
JP2007030650 2007-02-09
PCT/JP2008/052116 WO2008096846A1 (en) 2007-02-09 2008-02-08 Composition for synthesis of protein labeled with stable isotope and method for production of protein labeled with stable isotope

Publications (1)

Publication Number Publication Date
JPWO2008096846A1 true JPWO2008096846A1 (en) 2010-05-27

Family

ID=39681747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008557162A Pending JPWO2008096846A1 (en) 2007-02-09 2008-02-08 Composition for stable isotope-labeled protein synthesis and method for producing stable isotope-labeled protein

Country Status (2)

Country Link
JP (1) JPWO2008096846A1 (en)
WO (1) WO2008096846A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113125594A (en) * 2021-04-02 2021-07-16 宁波大学 Peptide chain hydrolysis reagent and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6909466B2 (en) * 2017-07-25 2021-07-28 大陽日酸株式会社 Method for producing labeled metabolites, method for quantifying metabolites, and kit for producing labeled metabolites
JP7457300B2 (en) * 2018-08-29 2024-03-28 国立大学法人 岡山大学 Peptide markers for diagnosis of neurodegenerative diseases

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143690A (en) * 1985-12-18 1987-06-26 Mitsui Toatsu Chem Inc Production of sulfur-containing l-amino acid by enzymatic process
JPH01101892A (en) * 1987-10-16 1989-04-19 Res Assoc Util Of Light Oil Production of l-tryptophan
JPH02222692A (en) * 1989-02-23 1990-09-05 Kyowa Hakko Kogyo Co Ltd Production of sulfur-containing l-amino acid
JPH08103283A (en) * 1994-10-06 1996-04-23 Mitsubishi Chem Corp Production of tryptophan
WO2004104210A1 (en) * 2003-05-22 2004-12-02 Riken Process for producing protein by cell-free protein synthesis system and proten synthesis reagent kit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143690A (en) * 1985-12-18 1987-06-26 Mitsui Toatsu Chem Inc Production of sulfur-containing l-amino acid by enzymatic process
JPH01101892A (en) * 1987-10-16 1989-04-19 Res Assoc Util Of Light Oil Production of l-tryptophan
JPH02222692A (en) * 1989-02-23 1990-09-05 Kyowa Hakko Kogyo Co Ltd Production of sulfur-containing l-amino acid
JPH08103283A (en) * 1994-10-06 1996-04-23 Mitsubishi Chem Corp Production of tryptophan
WO2004104210A1 (en) * 2003-05-22 2004-12-02 Riken Process for producing protein by cell-free protein synthesis system and proten synthesis reagent kit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113125594A (en) * 2021-04-02 2021-07-16 宁波大学 Peptide chain hydrolysis reagent and preparation method and application thereof

Also Published As

Publication number Publication date
WO2008096846A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
Maier Semisynthetic production of unnatural L-α-amino acids by metabolic engineering of the cysteine-biosynthetic pathway
CA2496437C (en) Improved methods of in vitro protein synthesis
US10921326B2 (en) Fluorescent labeling of transfer RNA and study of protein synthesis
Moore et al. A Streptomyces venezuelae cell-free toolkit for synthetic biology
WO2005052117A2 (en) Improved methods of in vitro protein synthesis
US20050054044A1 (en) Method of alleviating nucleotide limitations for in vitro protein synthesis
Biermann et al. Simultaneous analysis of the non-canonical amino acids norleucine and norvaline in biopharmaceutical-related fermentation processes by a new ultra-high performance liquid chromatography approach
Ai Biochemical analysis with the expanded genetic lexicon
Becker Stable isotopic labeling of proteins for quantitative proteomic applications
EP1143009A1 (en) Process for producing polypeptide in cell-free protein synthesis system
JPWO2008096846A1 (en) Composition for stable isotope-labeled protein synthesis and method for producing stable isotope-labeled protein
Bhandari et al. Mechanistic studies on the radical SAM enzyme tryptophan lyase (NosL)
JP6909466B2 (en) Method for producing labeled metabolites, method for quantifying metabolites, and kit for producing labeled metabolites
Terada et al. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins
JP2020127365A (en) Reaction mixture for cell-free protein synthesis, and cell-free protein synthesis method and cell-free protein synthesis kit using the same
JP4310378B2 (en) Protein production method using cell-free protein synthesis system and protein synthesis reagent kit
JP3145431B2 (en) Method for producing stable isotope-labeled protein and reagent kit
Chiao et al. Development of prokaryotic cell-free systems for synthetic biology
Robescu et al. From Batch to Continuous Flow Bioprocessing: Use of an Immobilized γ-Glutamyl Transferase from B. subtilis for the Synthesis of Biologically Active Peptide Derivatives
US8664355B2 (en) Cell-free protein synthesis method with the use of linear template DNA and cell extract therefor
EP4001415A1 (en) Protein production method and cell-free protein synthesis kit
JP4426241B2 (en) Cell-free protein synthesis method using reaction mixture of improved composition
Zimmermann The impact of S-sulfocysteine in cell culture media
Zheng et al. Biosynthesis of the proteins containing neurotoxin β-N-methylamino-L-alanine in marine diatoms
JPWO2019065211A1 (en) Amino acid quantification method and amino acid quantification kit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130827