JPWO2008090999A1 - Glucosidase inhibitor - Google Patents

Glucosidase inhibitor Download PDF

Info

Publication number
JPWO2008090999A1
JPWO2008090999A1 JP2008538065A JP2008538065A JPWO2008090999A1 JP WO2008090999 A1 JPWO2008090999 A1 JP WO2008090999A1 JP 2008538065 A JP2008538065 A JP 2008538065A JP 2008538065 A JP2008538065 A JP 2008538065A JP WO2008090999 A1 JPWO2008090999 A1 JP WO2008090999A1
Authority
JP
Japan
Prior art keywords
shochu
residue
mash
fraction
glucosidase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008538065A
Other languages
Japanese (ja)
Other versions
JP4947812B2 (en
Inventor
浩義 井上
浩義 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UP WELL CO. LTD.
Original Assignee
UP WELL CO. LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UP WELL CO. LTD. filed Critical UP WELL CO. LTD.
Priority to JP2008538065A priority Critical patent/JP4947812B2/en
Publication of JPWO2008090999A1 publication Critical patent/JPWO2008090999A1/en
Application granted granted Critical
Publication of JP4947812B2 publication Critical patent/JP4947812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/06Fungi, e.g. yeasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12FRECOVERY OF BY-PRODUCTS OF FERMENTED SOLUTIONS; DENATURED ALCOHOL; PREPARATION THEREOF
    • C12F3/00Recovery of by-products
    • C12F3/10Recovery of by-products from distillery slops

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Diabetes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Biotechnology (AREA)
  • Obesity (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Botany (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本発明は、焼酎残渣もろみの濃縮エキスまたは該焼酎残渣もろみの濾液もしくは上清の濃縮エキスを含むα−グルコシダーゼ阻害剤を提供する。本発明のα−グルコシダーゼ阻害剤は、単独または繊維性物質と組み合わせて血糖降下剤とすることもできる。The present invention provides an α-glucosidase inhibitor comprising a concentrated extract of shochu residue mash or a concentrated extract of the shochu residue mash filtrate or supernatant. The α-glucosidase inhibitor of the present invention can be used as a hypoglycemic agent alone or in combination with a fibrous substance.

Description

本発明は、グルコシダーゼ阻害剤に関する。   The present invention relates to a glucosidase inhibitor.

糖尿病の治療は、血糖値を正常範囲に維持して合併症を防ぐことが目的とされる。合併症には、腎症、網膜症、神経障害、ならびに動脈硬化の進展による脳卒中および心筋梗塞がある。動脈硬化は、特に食後高血糖の段階から既に進展することが分かっている。したがって、食後高血糖を改善する血糖コントロールが動脈硬化の進展を防ぐためにも重要である。
食後高血糖を下げるためには、速効型インスリン分泌型新薬およびα−グルコシダーゼ阻害薬が用いられ得る。α−グルコシダーゼ阻害薬は、食事に含まれる澱粉または糖質の分解を抑制して体内へのブドウ糖の吸収を遅らせ、それにより食後の急激な血糖値の上昇を抑制する。α−グルコシダーゼ阻害薬としては、アカルボース、ボグリボース、およびミグリトールが公知である。
特開2003−116486号公報は、食後の血糖値上昇を抑制する食品として乳酸を多く含む食品を記載している。上記文献には、乳酸がα−グルコシダーゼ阻害作用およびα−アミラーゼ阻害作用を示し、さらに食後の血糖値の上昇を抑制したことを示す旨が記載されている。上記文献は、乳酸を含む食品として、ヨーグルト、乳酸菌飲料、酸乳飲料など、乳酸菌を使って作る乳製品を例示しており、また、清酒醸造、清涼飲料、製菓用などのような食品製造において乳酸が利用されているが、これらの食品が、食後の血糖上昇を低く抑える作用を示したという報告がみられないとも記載している。
焼酎は、澱粉質原料(穀類、芋類)または糖質原料(黒糖、なつめやし)を発酵させ、次いで蒸留することにより製造される。焼酎の製造過程においては、蒸留後の残渣もろみは、通常、廃棄される。しかし、この焼酎残渣もろみの廃棄については環境上の問題が議論されており、その有効な利用が求められている。焼酎残渣もろみは家畜の飼料としての利用が知られているが、その有用性についてなお研究が続いている。
特開2002−371003号公報には、麦焼酎の蒸留残滓の濾液を濃縮して得た大麦発酵エキスが、食後の血糖値の上昇を抑制したことが記載されている。しかし、上記文献に記載の血糖値上昇抑制成分は、インスリン様作用によるものであり、グルコシダーゼおよびアミラーゼ阻害作用は認められなかったことが記載されている(段落番号0013)。
特開2005−224205号公報には、そば焼酎かすを利用した血糖低下作用を持つ健康食品が記載されている。上記文献には、α−グルコシーゼ阻害に関しては記載されていない。
Diabetes treatment is aimed at maintaining blood glucose levels in the normal range to prevent complications. Complications include nephropathy, retinopathy, neuropathy, and stroke and myocardial infarction due to the progression of arteriosclerosis. It has been found that arteriosclerosis has already progressed, especially from the postprandial hyperglycemic stage. Therefore, glycemic control that improves postprandial hyperglycemia is also important to prevent the progression of arteriosclerosis.
In order to lower postprandial hyperglycemia, fast-acting insulin secretory drugs and α-glucosidase inhibitors can be used. The α-glucosidase inhibitor suppresses the decomposition of starch or carbohydrates contained in the meal and delays the absorption of glucose into the body, thereby suppressing the rapid increase in blood glucose level after the meal. As an α-glucosidase inhibitor, acarbose, voglibose, and miglitol are known.
Japanese Patent Application Laid-Open No. 2003-116486 describes a food containing a large amount of lactic acid as a food that suppresses an increase in blood glucose level after a meal. The above document describes that lactic acid exhibits an α-glucosidase inhibitory action and an α-amylase inhibitory action, and further suppresses an increase in blood glucose level after a meal. The above document exemplifies dairy products made using lactic acid bacteria, such as yogurt, lactic acid bacteria beverages, sour milk beverages, as foods containing lactic acid, and also in food production such as sake brewing, soft drinks, confectionery, etc. Although lactic acid is used, it is also described that there is no report that these foods have shown an action of suppressing postprandial blood glucose elevation.
Shochu is produced by fermenting starchy raw materials (cereals, potatoes) or saccharide raw materials (brown sugar, natto palm) and then distilling them. In the production process of shochu, the residue mash after distillation is usually discarded. However, environmental problems have been discussed regarding the disposal of shochu residue moromi, and its effective use is required. Although it is known that shochu residue moromi is used as livestock feed, research on its usefulness is still ongoing.
Japanese Patent Application Laid-Open No. 2002-371003 describes that a barley fermented extract obtained by concentrating a filtrate of a distillation residue of barley shochu suppressed an increase in blood glucose level after a meal. However, it is described that the blood sugar level elevation inhibitory component described in the above-mentioned document is due to an insulin-like action, and no glucosidase and amylase inhibitory action was observed (paragraph number 0013).
Japanese Patent Application Laid-Open No. 2005-224205 describes a health food having a hypoglycemic effect using buckwheat shochu. The above document does not describe α-glucose inhibition.

本発明は、焼酎の製造において通常廃棄される焼酎残渣もろみの有用性を見出すことを目的とする。
本発明は、焼酎残渣もろみの濃縮エキスまたは該焼酎残渣もろみの濾液もしくは上清の濃縮エキスを有効成分として含むα−グルコシダーゼ阻害剤を提供する。
1つの実施態様では、濃縮エキスは、焼酎残渣もろみの濾液もしくは上清から得られる分子量6000以下の画分である。
本発明はさらに、焼酎残渣もろみの濃縮エキスまたは該焼酎残渣もろみの濾液もしくは上清の濃縮エキスおよび繊維性物質を有効成分として含む血糖降下剤も提供する。
本発明によれば、焼酎残渣もろみからα−グルコシダーゼ阻害活性を有する成分が得られ、そしてこの活性成分を有するα−グルコシダーゼ阻害剤が提供される。
An object of the present invention is to find out the usefulness of shochu residue mash that is normally discarded in the production of shochu.
The present invention provides an α-glucosidase inhibitor comprising, as an active ingredient, a concentrated extract of shochu residue mash or a filtrate or supernatant extract of the shochu residue mash.
In one embodiment, the concentrated extract is a fraction having a molecular weight of 6000 or less obtained from a shochu residue mash filtrate or supernatant.
The present invention further provides a hypoglycemic agent comprising as an active ingredient a concentrated extract of shochu residue mash or a concentrated extract of the filtrate or supernatant of the shochu residue mash.
According to the present invention, a component having an α-glucosidase inhibitory activity is obtained from shochu residue mash, and an α-glucosidase inhibitor having this active component is provided.

図1は、麦、米、芋および蕎麦焼酎残渣もろみ上清画分のα−グルコシダーゼ活性に対する阻害率を示すグラフである。
図2は、麦焼酎残渣もろみ上清画分投与による、スクロースを与えた後の正常ラットの血糖値の経時変化に対する影響を示すグラフである。
図3は、分子量で分けた麦焼酎残渣もろみ上清画分のα−グルコシダーゼ活性に対する阻害率を示すグラフである。
図4は、分子量で分けた米焼酎残渣もろみ上清画分のα−グルコシダーゼ活性に対する阻害率を示すグラフである。
図5は、繊維性物質と組み合わせた焼酎残渣もろみ上清画分投与による、スクロースを与えた後の正常ラットの血糖値の経時変化を示すグラフである。
図6は、各種用量における投与でのスクロース負荷および被験物質投与前、被験物質投与30分後および60分後の血糖値の経時変化を示すグラフである。
図7は、被験物質0g投与時(対照)および0.5g投与時における血糖値の経時変化を示すグラフである。
図8は、被験物質0g投与時(対照)および0.5g投与時における投与前および投与後30分の血中インスリン濃度を示すグラフである。
FIG. 1 is a graph showing the inhibition rate for α-glucosidase activity of wheat, rice, rice bran and soba shochu residue mash supernatant fractions.
FIG. 2 is a graph showing the effect of administration of the wheat shochu residue mash supernatant fraction on the change in blood glucose level of normal rats after sucrose application.
FIG. 3 is a graph showing the inhibition rate against α-glucosidase activity of the wheat shochu residue mash supernatant fraction divided by molecular weight.
FIG. 4 is a graph showing the inhibition rate of α-glucosidase activity of the rice shochu residue mash supernatant fraction divided by molecular weight.
FIG. 5 is a graph showing changes over time in blood glucose levels of normal rats after administration of sucrose by administration of a shochu residue mash mash supernatant fraction combined with a fibrous substance.
FIG. 6 is a graph showing sucrose load in administration at various doses and changes in blood glucose level with time before administration of the test substance, after 30 minutes and 60 minutes after administration of the test substance.
FIG. 7 is a graph showing changes in blood glucose level with time when 0 g of a test substance is administered (control) and when 0.5 g is administered.
FIG. 8 is a graph showing blood insulin concentrations before administration and at 30 minutes after administration at the time of 0 g test administration (control) and 0.5 g administration.

本発明における「焼酎残渣もろみ」とは、澱粉質原料(穀類、芋類など)または糖質原料(黒糖、なつめやしなど)を発酵させ、次いで蒸留してアルコールを除去した後に残存するもろみをいう。焼酎の製造は、通常、麹菌による澱粉の糖化工程、酵母による糖の発酵工程、およびアルコール蒸留工程を含む。例えば、麦類または米を、常法により処理(水洗、浸漬、水切り、蒸煮、放冷など)し、これに焼酎製造に通常用いられる白麹菌(例えば、Aspergillus Kawachii)の種麹を接種し、製麹適温にて適切な期間の間、製麹する。このようにして得られた麹に、水および通常の焼酎製造に用いられる酵母(例えば、鹿児島酵母または熊本酵母)を添加および混合し、そして常法により糖化発酵させて一次もろみを得る。一次もろみでは、焼酎酵母が増殖される。次に、この一次もろみに、必要に応じて常法により処理(水洗、浸漬、水切り、蒸煮、放冷など)した焼酎主原料および水を添加および混合し、常法により適温で適切な期間の間さらに糖化発酵させて二次もろみを得る。この焼酎主原料としては、通常用いられる任意の原料が使用でき、大麦、小麦、米、トウモロコシ、蕎麦などの穀類、芋類、黒糖、なつめやしなどが挙げられるが、これらに限定されない。好ましくは、大麦である。上の説明は酵母発酵工程(仕込み)が二段階であるが、仕込みを二段階に必ずしも分ける必要はない。発酵後のもろみを蒸留に供し、アルコールを回収して焼酎とし、一方、アルコール分が除去された残渣もろみが得られる。
上記の焼酎残渣もろみは、そのまま濃縮しで、あるいは濾過、遠心分離などによって固液分離され、次いで濾液または上清の液部を加熱濃縮、凍結乾燥もしくはスプレードライなどして、濃縮エキスを得る。さらに、上記濃縮エキスは、シリカゲルカラム、ODSカラム、イオン交換樹脂、限外濾過膜分子ふるいなどの適当なカラムを用いて、その有効成分を濃縮することもできる。これらのうち、濾液または上清画分が好ましく、分子量6000以下の画分が好ましい。
上記濃縮エキスには、後述する実施例に示されるように、α−グルコシダーゼの阻害活性が見られる。本発明においては、実施例1に記載の条件下のα−グルコシダーゼの酵素反応の阻害率が20%以上である場合に、α−グルコシダーゼ阻害活性を有すると定義される。上記濃縮エキスはまた、後述する実施例に示されるように、食後血糖値の上昇を抑制している。したがって、濃縮エキスの血糖降下作用は、α−グルコシダーゼ阻害によるものと考えられ、上記濃縮エキスは、α−グルコシダーゼ阻害剤として使用され得る。
上記濃縮エキスには、後述する実施例に示されるように、α−グルコシダーゼ阻害活性に加え、インベルターゼおよびα−アミラーゼの阻害活性も見られる。このように、該濃縮エキスまたはα−グルコシダーゼ阻害剤は、多様な糖分解酵素を阻害し得る。
上記濃縮エキス(特に、焼酎残渣もろみの濾液または上清の分子量6000以下の画分)は、コハク酸、ピログルタミン酸、およびピルビン酸を含む。これらの有機酸、すなわち、コハク酸、ピログルタミン酸、およびピルビン酸は、α−グルコシダーゼ阻害活性を有している。
上記濃縮エキスまたはα−グルコシダーゼ阻害剤は、糖質を分解するα−グルコシダーゼの働きを阻害して、小腸からのブドウ糖の吸収を遅らせ得るため、糖尿病およびそこから引き起こされる高血糖状態による神経障害、白内障、腎障害、網膜症、関節硬化症、アテローム性動脈硬化症、糖尿病性壊疽などの種々の合併症の治療または予防のために、経口投与され得る。その投与量は、投与方法と症状の程度、患者の年齢、体重などに依存するが、通常、成人一人1回投与当たり、濃縮エキス(特に、焼酎残渣もろみの濾液または上清の分子量6000以下の画分)として0.05g〜10g、好ましくは、0.075g〜5g、より好ましくは0.1g〜1gであり得る。この投与量は、ヒトによる公知の糖負荷試験によって適宜決定できる。
上記濃縮エキスまたはα−グルコシダーゼ阻害剤は、錠剤、散剤、液剤のような形態とすることができる。また、これを食品または飲料に添加することにより、α−グルコシダーゼ阻害作用または上述したような糖分解酵素阻害作用を有する健康保持用の食品とすることもできる。このような食品としては、例えば、在宅用糖尿病食、流動食、病者用食品(糖尿病食調整用組み合わせ食品など)、特定保健用食品、ダイエット食品、あるいは炭水化物を主成分とする食品が挙げられるが、これらに限定されない。具体的な食品形態としては、例えば、コーヒー、清涼飲料水、スープ、果汁、ジャム、ビスケット、パン、およびパスタが挙げられるが、これらに限定されない。食品への添加または加工は、当業者が通常用いる方法によって行われ得る。ヒト以外への動物、例えば家畜またはペット用の飼料への添加も可能である。
上記濃縮エキスまたはα−グルコシダーゼ阻害剤は、血糖降下剤として、それ自体を単独で含むか、または繊維性物質と合わせて含むこともできる。特に食後血糖値の上昇の抑制に有用である。繊維性物質を含むことにより、さらに血糖降下作用が強化される。繊維性物質としては、セルロースおよび難消化デキストリンが挙げられるが、好ましくは、難消化デキストリンが用いられる。このような血糖降下剤も同様に、上記のような食品とすることができる。
以下、実施例により本発明をより具体的に説明するが、本発明はこれらの例示に限定されるものではない。
In the present invention, “shochu residue moromi” refers to moromi that remains after fermenting starch raw materials (cereals, potatoes, etc.) or saccharide raw materials (brown sugar, natto palms, etc.) and then removing alcohol by distillation. Say. The production of shochu usually includes a starch saccharification step by koji mold, a sugar fermentation step by yeast, and an alcohol distillation step. For example, wheat or rice is treated by a conventional method (washing, soaking, draining, steaming, allowing to cool, etc.), and this is inoculated with a seed cake of white birch fungi (for example, Aspergillus Kawachii) commonly used in shochu production, Make iron for an appropriate period at a suitable temperature. To the koji obtained in this manner, water and yeast (for example, Kagoshima yeast or Kumamoto yeast) used for normal shochu production are added and mixed, and saccharified and fermented by a conventional method to obtain primary mash. In primary moromi, shochu yeast is grown. Next, if necessary, add and mix the shochu main ingredients and water treated by ordinary methods (water washing, dipping, draining, steaming, allowing to cool, etc.) to this primary mash as necessary. Further saccharification and fermentation is performed to obtain secondary moromi. As the shochu liquor main raw material, any commonly used raw material can be used, and examples include, but are not limited to, grains such as barley, wheat, rice, corn, and buckwheat, potatoes, brown sugar, and soy sauce. Preferably, it is barley. In the above explanation, the yeast fermentation process (preparation) is in two stages, but it is not always necessary to divide the preparation into two stages. The mash after fermentation is subjected to distillation, and the alcohol is recovered to make shochu, while the residue mash from which the alcohol has been removed is obtained.
The above shochu residue mash is concentrated as it is, or solid-liquid separated by filtration, centrifugation, etc., and then the filtrate or supernatant liquid is concentrated by heating, freeze-drying or spray-drying to obtain a concentrated extract. Furthermore, the concentrated extract can also concentrate the active ingredient using suitable columns, such as a silica gel column, ODS column, an ion exchange resin, and an ultrafiltration membrane molecular sieve. Of these, the filtrate or supernatant fraction is preferred, and the fraction having a molecular weight of 6000 or less is preferred.
The concentrated extract exhibits α-glucosidase inhibitory activity as shown in the Examples described later. In the present invention, it is defined as having an α-glucosidase inhibitory activity when the inhibition rate of the enzyme reaction of α-glucosidase under the conditions described in Example 1 is 20% or more. The concentrated extract also suppresses an increase in postprandial blood glucose level, as shown in Examples described later. Therefore, the hypoglycemic effect of the concentrated extract is considered to be due to α-glucosidase inhibition, and the concentrated extract can be used as an α-glucosidase inhibitor.
In the concentrated extract, in addition to α-glucosidase inhibitory activity, invertase and α-amylase inhibitory activity is also seen, as shown in the Examples described later. Thus, the concentrated extract or α-glucosidase inhibitor can inhibit various glycolytic enzymes.
The concentrated extract (particularly, a fraction having a molecular weight of 6000 or less of shochu residue residue mash or supernatant) contains succinic acid, pyroglutamic acid, and pyruvic acid. These organic acids, i.e., succinic acid, pyroglutamic acid, and pyruvic acid have α-glucosidase inhibitory activity.
The concentrated extract or the α-glucosidase inhibitor can inhibit the action of α-glucosidase that degrades carbohydrates and delay the absorption of glucose from the small intestine, so that neuropathy caused by diabetes and hyperglycemia caused therefrom, It can be administered orally for the treatment or prevention of various complications such as cataract, nephropathy, retinopathy, arteriosclerosis, atherosclerosis, diabetic gangrene. The dose depends on the method of administration and the degree of symptoms, the age and weight of the patient, etc., but usually a concentrated extract (especially the molecular weight of the filtrate or supernatant of shochu residue residue mash is 6000 or less per one adult dose). The fraction) may be 0.05 g to 10 g, preferably 0.075 g to 5 g, more preferably 0.1 g to 1 g. This dosage can be appropriately determined by a known glucose tolerance test by humans.
The concentrated extract or α-glucosidase inhibitor can be in the form of a tablet, powder, or liquid. Moreover, it can also be set as the food for health maintenance which has an alpha-glucosidase inhibitory action or a glycolytic enzyme inhibitory action as mentioned above by adding this to a foodstuff or a drink. Examples of such foods include home-use diabetic foods, liquid foods, foods for sick people (combination foods for adjusting diabetic foods, etc.), foods for specified health use, diet foods, and foods based on carbohydrates. However, it is not limited to these. Specific food forms include, but are not limited to, coffee, soft drinks, soup, fruit juice, jam, biscuits, bread, and pasta. Addition or processing to foods can be performed by methods commonly used by those skilled in the art. Addition to non-human animals such as livestock or pet feed is also possible.
The concentrated extract or the α-glucosidase inhibitor may be contained alone as a hypoglycemic agent, or may be contained in combination with a fibrous substance. It is particularly useful for suppressing postprandial blood glucose levels. By containing a fibrous substance, the hypoglycemic effect is further enhanced. Examples of the fibrous substance include cellulose and indigestible dextrin, but preferably indigestible dextrin is used. Such a hypoglycemic agent can also be made into a food as described above.
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these illustrations.

本実施例では、サツマイモ、大麦、米または蕎麦を原料とする焼酎の残渣もろみを、以下のようにして製造した。
(製造例1:麦焼酎残渣もろみの製造)
大麦を精製機で表皮を削り、これに水を加えて蒸煮し、次いで約35〜40℃に放冷した。これに種麹菌(Aspergillus Kawachii;株式会社 樋口松之助商店)を混ぜ、5日間おいて麹菌を繁殖させた。次いで、これに水および焼酎酵母を適量加えて混合し、約25〜30℃で10日間かけて発酵させ、もろみを得た。発酵が終了したもろみをポットスチルで蒸留し、もろみ中のアルコールを除去した。このアルコールが除去されたもろみが残渣もろみである。この残渣もろみを室温にて10000gで30分間遠心分離し、上清を採取した。この上清を限外濾過膜装置(旭化成;ペン型UF膜)に供し、分子量6000以下の画分の溶液を採取し、次いで凍結乾燥した。さらに、残留している溶液を分子量50000以下の画分と分子量が50000を超える画分とに分離し、それぞれの溶液を凍結乾燥した。凍結乾燥物を以下の実施例で用いた。
(製造例2:米焼酎残渣もろみの製造)
米を精製機で表皮を削り、次いで水を加えて蒸煮した。蒸煮した米を約35〜40℃に冷却して種麹菌(Aspergillus Kawachii;株式会社 樋口松之助商店)を混ぜ、5日間おいて麹菌を繁殖させた。次いで、これに水および焼酎酵母を適量加え、約25〜30℃で10日間かけて発酵させ、もろみを得た。引き続いて、上記製造例1と同様にして、残渣もろみを製造し、そして分子量によって分画し、凍結乾燥した。
(製造例3:芋焼酎残渣もろみの製造)
サツマイモを、表面を洗浄し、次いで水を加えて蒸煮し、次いで粉砕した。上記製造例2の記載に従って米に種麹菌を植えつけて、製麹した。蒸煮粉砕したサツマイモ、水および焼酎酵母を適量で、製麹した米と混ぜ、約25〜30℃で3日間かけて発酵させ、もろみを得た。引き続いて、上記製造例1と同様にして、残渣もろみを製造し、そして分子量によって分画し、凍結乾燥した。
(製造例4:蕎麦焼酎残渣もろみの製造)
蕎麦米を精製機で表皮を削り、次いで水を加えて蒸煮した。蒸煮した蕎麦米を約35〜40℃に冷却して種麹菌(Aspergillus Kawachii;株式会社 樋口松之助商店)を混ぜ、5日間おいて麹菌を繁殖させた。製麹した蕎麦に、上記製造例1および2の製麹した麦および米を、米:麦:蕎麦の比が1:1:1.2となるように添加して混ぜ合わせ、さらに水および焼酎酵母適量と混ぜ、約25〜30℃で10日間かけて発酵させ、もろみを得た。引き続いて、上記製造例1と同様にして、残渣もろみを製造し、そして分子量によって分画し、凍結乾燥した。
(実施例1:焼酎残渣もろみのα−グルコシダーゼ活性への影響)
製造例1〜4の麦、米、芋、および蕎麦焼酎残渣もろみの分子量6000以下の画分の凍結乾燥物をそれぞれ100mgならびに対照としてアカルボース(商品名グルコバイ(登録商標);バイエル)を10mgとり、0.02Mリン酸緩衝液1mLに溶解し、被験物質溶液を得た。α−グルコシダーゼ活性についての試験物質の作用を調べるために、以下の組成を有する反応液を調製した:0.4% p−ニトロフェニルα−D−グルコピラノシド(和光純薬)0.2mL;被験物質溶液0.2mL;および0.5U/mL α−グルコシダーゼ(東洋紡)0.1mL。ここで、α−グルコシダーゼの1単位(U)は、上記の反応液を以下の標準反応条件において基質の非還元性末端側から1分間に1μmolのグルコースを遊離する酵素量とする。上記反応液を37℃にて15分間インキュベーションして、酵素反応を進行させた。2M Tris溶液(pH7.0)を0.5mL加えて反応を停止させた。反応停止後の溶液0.02mLを採り、発色試薬(グルコースCIIテストワコー;和光純薬)3.0mLを加えで混和し、37℃にて5分間インキュベーションし、分光光度計(Beckman)にて505nmで吸光度を測定した。測定はすべて2回で行った。
図1は、これらの焼酎残渣もろみのα−グルコシダーゼ活性に対する阻害率を示すグラフである。α−グルコシダーゼ阻害が公知であるアカルボースの結果も併せて示す。縦軸はα−グルコシダーゼ活性の阻害率(%)を表す。いずれの焼酎残渣もろみもα−グルコシダーゼ活性の阻害を示し、特に麦焼酎残渣もろみは、60%を超える阻害を示した。
(実施例2:焼酎残渣もろみの食後血糖値への影響)
7週齢の正常雄ラット(九動株式会社)を12時間絶食させた。絶食後、対照群には、2g/kgのスクロースを経口摂取させ、セルロース投与群には、2g/kgのスクロースの経口摂取と共に20mg/kgのセルロースを胃内投与し、アカルボース投与群には、2g/kgのスクロースの経口摂取と共に20mg/kgのアカルボースを胃内投与し、そして焼酎残渣もろみ上清画分投与群には、上記製造例1の麦焼酎残渣もろみの分子量6000以下の画分凍結乾燥物20mg/kgを胃内投与した。各群5匹となるようにした。処理前、処理30分後、60分後、および120分後の血糖値を測定した。ここでの血糖値は、血清グルコース濃度である。
図2は、スクロースを与えた後の各処理群における血糖値の経時変化を示すグラフである。横軸は食後時間(分)、そして縦軸は血糖値(血清グルコース濃度:mg/mL)を表す。図中、黒丸は対照群、白丸はセルロース投与群、白三角はアカルボース投与群、そして白四角は焼酎残渣もろみ上清画分投与群である。スクロースを経口投与しただけの対照群では、処理30分後までに血糖値が急激に上昇し、それ以降は徐々に低下していく。セルロース投与群もコントロール群と同様の傾向を示した。これに対して、アカルボース投与群および焼酎残渣もろみ上清画分投与群では、処理の30分後に血糖値は上昇するが、その上昇はコントロールに対して有意に低かった(図2中**;r<0.05)。
(実施例3:麦焼酎残渣もろみのα−グルコシダーゼ活性阻害)
上記製造例1で得られた麦焼酎残渣もろみの分子量6000以下;分子量が6000を超えて50000以下;および分子量が50000を超える画分の凍結乾燥物を用いて、上記実施例1に記載の手順に従って、α−グルコシダーゼ活性に対する影響を調べた。
図3は、これらの麦焼酎残渣もろみ上清画分のα−グルコシダーゼ活性に対する阻害率を示すグラフである。縦軸はα−グルコシダーゼ活性の阻害率(%)を表す。図中、分子量6000以下の画分をM.W.<6000;分子量が6000を超えて50000以下の画分を6000<M.W.<50000;および分子量が50000を超える画分を50000<M.W.で表す。いずれの画分においてもα−グルコシダーゼ活性の阻害が示されたが、分子量6000以下の画分で阻害率が特に高かった。
(実施例4:米焼酎残渣もろみのα−グルコシダーゼ活性阻害)
上記製造例2で得られた米焼酎残渣もろみの分子量6000以下;分子量が6000を超えて50000以下;および分子量が50000を超える画分の凍結乾燥物を用いて、上記実施例1に記載の手順に従って、α−グルコシダーゼ活性に対する影響を調べた。
図4は、これらの米焼酎残渣もろみ上清画分のα−グルコシダーゼ活性に対する阻害率を示すグラフである。縦軸はα−グルコシダーゼ活性の阻害率(%)を表す。図中、分子量6000以下の画分をM.W.<6000;分子量が6000を超えて50000以下の画分を6000<M.W.<50000;および分子量が50000を超える画分を50000<M.W.で表す。分子量6000以下の画分を含む全ての画分において、50%を超えるα−グルコシダーゼ活性阻害が見られた。
(実施例5:繊維性物質と組み合わせた焼酎残渣もろみの食後血糖値への影響)
7週齢の正常雄ラット(九動株式会社)を12時間絶食させた。絶食後、スクロース摂取群には、2g/kgのスクロースを経口摂取させ、それ以外には何も投与しなかった。焼酎残渣もろみ上清画分投与群には、2g/kgのスクロースの経口摂取と共に、5mg/kgの上記製造例1の麦焼酎残渣もろみの分子量6000以下の画分凍結乾燥物を胃内投与し、セルロース添加群には、2g/kgのスクロースの経口摂取と共に、5mg/kgの上記製造例1の麦焼酎残渣もろみの分子量6000以下の画分凍結乾燥物およびその5倍量のセルロースを混合して胃内投与し、そして難消化デキストリン添加群には、5mg/kgの上記製造例1の麦焼酎残渣もろみの分子量6000以下の画分凍結乾燥物およびその5倍量の難消化デキストリンを混合して胃内投与した。各群5匹となるようにした。上記処理前および処理30分後の血糖値を測定した。ここでの血糖値は、血清グルコース濃度である。
図5は、スクロースを与えた後の各処理群における血糖値の経時変化を示すグラフである。縦軸は血糖値(血清グルコース濃度:mg/mL)を表す。図中、白丸はスクロース摂取群、×は麦焼酎残渣もろみの分子量6000以下の画分凍結乾燥物を投与した群(麦焼酎残渣もろみ上清画分投与群)、白三角は上記製造例1の麦焼酎残渣もろみの分子量6000以下の画分凍結乾燥物と共にセルロースを添加した群(セルロース添加群)、そして白四角は上記製造例1の麦焼酎残渣もろみの分子量6000以下の画分凍結乾燥物と共に難消化デキストリンを添加した群(難消化デキストリン添加群)である。セルロース添加群および難消化デキストリン添加群は、麦焼酎残渣もろみ上清画分投与群に比較して、食後の血糖値の上昇がさらに抑制されていた。特に、麦焼酎残渣もろみ上清画分に難消化デキストリンを組み合わせることにより、優れた血糖降下作用がみられた。
(実施例6:焼酎残渣もろみの組成解析)
製造例1の麦焼酎残渣もろみの分子量6000以下の画分の凍結乾燥物の2.0gを超純水(millQ水)に溶かし、シリカゲル(Silica Gel 60N(spherical,neutral),63〜210μm;関東化学株式会社)10gに吸着させて乾燥させた。2cm×60cmのフィルター付き(No.2)(VIDTEC社)のカラムに約50gの上記シリカゲルを充填し、シリカゲルを吸着させた上記麦焼酎残渣もろみをのせた。単一溶媒(CHCl:メタノール:HO=5:3:0.4)を流し、分画した。各フラクションを薄層クロマトグラフィー(TLC:Partisil(登録商標)K5F Silica Gel 150Å、20×20cm、Whatman)に付し、発色剤(p−アニスアルデヒド、エタノール溶液、東京化成工業株式会社)で噴霧して加熱し、スポットを確認した。同じRf値のスポットを集めて濃縮し、高速液体クロマトグラフィー(HPLC)でさらに精製した。
HPLCは、以下の条件下で実施した:
使用機器:高速液体クロマトグラフィー SHIMADZU LC−10A
ポンプ:LC−10AD × 2台
検出器:CDD−6A(conductivity detector)
コントローラ:SCL−10A
カラムオーブン:CTO−10A
オートインジェクター:SIL−10A
クロマトパック:
カラム:Shim−Pack SCR−102H 300×8mm(内径)(島津製作所)
移動相:
5mM p−トルエンスルホン酸
流速:0.8mL/分
温度:45℃
分析時間:40分
検出:conductivity
検出はポストカラム緩衝化法による
緩衝液:5mM p−トルエンスルホン酸および100μM EDTA含有、20mM Bis−Tris溶液
流速:0.8mL/分
Polarity:+
Response:slow
検体は、試料2.0mgを2000μLのmillQ水に溶解し、さらにこれを0.45μmメンブレンフィルターにて濾過して調製した。インジェクション量は10μLであった。
HPLCの結果、画分fr1−2〜1−3のピークが得られた。得られたピークを標準液チャートのピークと比較して成分およびその含有量を決定した。標準液チャートの作成のために以下の有機酸の標準液を用い、10μLをインジェクトした:リン酸(546.9mg/L)、クエン酸(220.6mg/L)、リンゴ酸(220.4mg/L)、コハク酸(298.8mg/L)乳酸(606.0mg/L)、酢酸(575.9mg/L)、ピログルタミン酸(288.5mg/L)、ピルビン酸(218.4mg/L)。この結果、fr1−2〜1−3の1mg中にコハク酸0.693mg、ピログルタミン酸0.068mg、およびピルビン酸0.014mgが含まれていることが判明した(約25%存在する残余分は不明)。さらに、上記実施例1に記載の手順に従って、コハク酸、ピログルタミン酸、およびピルビン酸のα−グルコシダーゼ活性に対する影響を調べたところ、これらがグルコシダーゼ阻害活性を有することを確認した(コハク酸:IC50 4.99mg/mL、およびピログルタミン酸:IC50 7.38mg/mL、ピルビン酸:IC50 4.84mg/mL)。
(実施例7:焼酎残渣もろみの種々の糖分解酵素の活性に対する影響)
(7−1.インベルターゼ(スクラーゼ)阻害活性)
検体溶液を、製造例1の麦焼酎残渣もろみの分子量6000以下の画分100mg/mLに0.1M酢酸緩衝液(pH5.0)(以下の溶液においても溶媒として使用)を加えて種々の濃度に調整した。基質として5%スクロース溶液をそして酵素液として0.5U/mLインベルターゼを用いた。
基質0.2mL、酵素液0.1mL、および検体溶液0.2mLを混合して37℃にて15分間インキュベートした。その後、90℃以上での水浴で10分間加熱し、反応を停止させた。反応後の液から0.05mLを採り、発色試薬(グルコースCIIテストワコー;和光純薬)3.0mLを加え、混和後、37℃にて5分間インキュベートし、分光光度計(Beckman)にて505nmで吸光度を測定した。測定はすべて2回で行った。その結果、検体溶液の濃度の増大と共に酵素活性の阻害が見られた。検体溶液の濃度が40mg/mLの場合、阻害率は約70%程度であった。
(7−2.α−アミラーゼ阻害活性)
アミラーゼ測定キット(キッコーマン社)を用いて、プロトコルを以下のように改変して、α−アミラーゼ阻害活性を測定した。検体溶液は、製造例1の麦焼酎残渣もろみの分子量6000以下の画分100mg/mLに10mM酢酸緩衝液(pH5.0)(以下の溶液においても溶媒として使用)を加えて種々の濃度に調整した。基質として2−クロロ−4−ニトロフェニル−6−アジド−6−デオキシ−β−マルトペンタオシドの溶液、発色用酵素液としてグルコアミラーゼおよびβ−グルコシダーゼの溶液、試験酵素液として0.28U/mLのアスペルギルス・オリゼα−アミラーゼ溶液を調製した。
まず、基質溶液25μLと発色用酵素液25μLとをプレートにいれ、次いで検体溶液25μLを添加し、次いで、試験酵素液のα−アミラーゼ溶液25μLを添加し、37℃にて15分間インキュベートした。その後、炭酸ナトリウム溶液100μLを添加して反応を停止させた。分光光度計(Beckman)にて、プレートリーダーのフィルターは405nmを用いて400nmで吸光度を測定した。測定はすべて2回で行った。
その結果、検体溶液の濃度の増大と共に酵素活性の阻害が見られた。対照として用いたアカルボース(商品名グルコバイ(登録商標);バイエル)は、0.003mg/mLの濃度で約50.51%のα−アミラーゼ活性阻害率を示した。検体溶液では5mg/mLの濃度で約43%の阻害率であった。アカルボースに比較すると、α−アミラーゼ阻害活性は著しく低かった。
(実施例8:焼酎残渣もろみの食後血糖値への影響)
焼酎残渣もろみの食後血糖値への影響を調べるに際してボランティアを募集し、20歳以上50歳未満の男女7名を登録した(男性1名;女性6名;全員の平均年齢33.4±6.6歳)。登録にあたっては糖尿病の既往歴がないことおよび試験時に特別な疾病等を有していないことを条件とし、責任医師による総合診断を受けた。ここで、特別な疾病等とは、1)重篤な肝・腎・心機能障害、2)薬剤過敏体質、3)判断能力に欠ける精神障害や意識障害、4)妊婦、授乳婦および本試験中に妊娠する計画のある者、5)その他、担当医が本試験に不適当と判断した者を指す。
被験物質は、製造例1の麦焼酎残渣もろみの分子量6000以下の画分を用いた。被験者は、試験開始前10時間絶食し(自由飲水)、試験開始に際して25gのスクロース(和光純薬株式会社)負荷と同時に、0g(対照)、0.1gまたは0.5gの被験物質を服用投与した。スクロース負荷および被験物質投与前、被験物質投与30分後および60分後の血糖値を測定した。また、0g投与時(対照)および0.5g投与時には、投与前および投与後30分に血液検査用の採血も実施した。なお、各試験の間は24時間以上の間隔で行うものとし、被験者への過剰な摂食抑制は避けた。
全ての検査項目について、平均値および標準偏差を求め、投与前後の差はStudent t検定を行った。なお、有意差検定はいずれの場合も有意差水準は5%以下とした。
用量作用に関する血糖値についての結果を図6に示す。図6では、測定値を、スクロース負荷前の血糖値を100%とした相対値で表す。図中、黒丸は対照、三角は被験物質0.1g投与、そして白丸は被験物質0.5g投与を表す。25gスクロースの負荷によって、被験物質の0g投与(対照)では、30分後には血糖値は30%程度上昇し、60分後でも10%以上上昇したままであった。これに対して、被験物質0.1g投与では、投与30分後および60分後共に、対照よりも有意に低い値を示した(P<0.05)。被験物質の量を0.5gまで増加させたが、0.1gの場合と差は生じなかった。これは、血糖上昇レベルが、0.1g投与で10%増加程度まで抑えられていることから、用量作用関係が見え難くなっているためと考えられる。
上記図6の試験とは異なった日に、被験物質0g投与時(対照)および0.5g投与時における血糖値の経時変化を測定した。その結果を、スクロース負荷前の血糖値を100%とした相対値に換算して図7に示す。図中、黒丸は対照、そして白丸は被験物質0.5g服用を表す。投与30分後では、25gスクロースの負荷によって生じた約30%の血糖上昇が、被験物質0.5g投与によって16%程度まで減少した。ただし、両群の間に統計的有意差は観察されなかった。なお、両群とも投与後120分では血糖値は空腹時レベル(スクロース負荷前)まで戻った。
さらに、被験物質0g投与時(対照)および0.5g投与時に、投与前および投与後30分の時点でそれぞれ採血を行い、血中インスリン濃度を測定した。その結果を図8に示す。25gスクロース負荷によって血中インスリン濃度は上昇したが、このインスリン濃度上昇には、被験物質は影響を与えなかった。
In this example, the residue mash of sweet potatoes made from sweet potato, barley, rice or buckwheat was produced as follows.
(Production Example 1: Production of wheat shochu residue moromi)
Barley was shaved with a refining machine, water was added to this and steamed, and then allowed to cool to about 35-40 ° C. This was mixed with Aspergillus Kawachii (Matsunosuke Hamaguchi Co., Ltd.), and the Aspergillus was propagated after 5 days. Next, water and shochu yeast were added in an appropriate amount to this, mixed, and fermented at about 25-30 ° C. for 10 days to obtain moromi. The mash that had been fermented was distilled with pot still to remove alcohol in the mash. The mash from which the alcohol is removed is the residue mash. The residue moromi was centrifuged at 10,000 g for 30 minutes at room temperature, and the supernatant was collected. This supernatant was subjected to an ultrafiltration membrane device (Asahi Kasei; pen-type UF membrane), and a solution of a fraction having a molecular weight of 6000 or less was collected and then freeze-dried. Further, the remaining solution was separated into a fraction having a molecular weight of 50000 or less and a fraction having a molecular weight exceeding 50000, and each solution was freeze-dried. The lyophilizate was used in the following examples.
(Production Example 2: Production of rice shochu residue moromi)
Rice was shaved with a refiner, then water was added and steamed. The cooked rice was cooled to about 35 to 40 ° C. and mixed with Aspergillus Kawachii (Matsunosuke Hamaguchi Co., Ltd.), and the bacilli were propagated after 5 days. Next, appropriate amounts of water and shochu yeast were added thereto, and fermented at about 25 to 30 ° C. for 10 days to obtain moromi. Subsequently, a residue mash was produced in the same manner as in Production Example 1 above, fractionated according to molecular weight, and lyophilized.
(Production Example 3: Production of potato shochu residue moromi)
The sweet potatoes were washed on the surface, then steamed with water and then ground. According to the description in Production Example 2 above, the seed gonococcus was planted in the rice and kneaded. Steamed sweet potatoes, water and shochu yeast were mixed in appropriate amounts with the koji rice and fermented at about 25-30 ° C. for 3 days to obtain moromi. Subsequently, a residue mash was produced in the same manner as in Production Example 1 above, fractionated according to molecular weight, and lyophilized.
(Production Example 4: Production of Soba Shochu Residue Moromi)
The buckwheat rice was shaved with a refiner, then water was added and steamed. The steamed buckwheat rice was cooled to about 35 to 40 ° C. and mixed with Aspergillus Kawachii (Matsunosuke Hamaguchi Co., Ltd.), and the koji mold was allowed to propagate for 5 days. To the smelted buckwheat, the stalked wheat and rice of the above production examples 1 and 2 are added and mixed so that the ratio of rice: wheat: soba is 1: 1: 1.2, and water and shochu are further mixed. It was mixed with an appropriate amount of yeast and fermented at about 25-30 ° C. for 10 days to obtain moromi. Subsequently, a residue mash was produced in the same manner as in Production Example 1 above, fractionated according to molecular weight, and lyophilized.
(Example 1: Effect of shochu residue moromi on α-glucosidase activity)
100 mg each of freeze-dried fractions having a molecular weight of 6000 or less of the wheat, rice, rice bran, and buckwheat shochu residue moromi of Production Examples 1 to 4 and 10 mg of acarbose (trade name Glucoby (registered trademark); Bayer) as a control, The test substance solution was obtained by dissolving in 1 mL of 0.02 M phosphate buffer. In order to investigate the action of the test substance on the α-glucosidase activity, a reaction solution having the following composition was prepared: 0.4% p-nitrophenyl α-D-glucopyranoside (Wako Pure Chemical) 0.2 mL; Solution 0.2 mL; and 0.5 U / mL α-glucosidase (Toyobo) 0.1 mL. Here, 1 unit (U) of α-glucosidase is the amount of enzyme that liberates 1 μmol of glucose per minute from the non-reducing terminal side of the substrate under the following standard reaction conditions. The reaction solution was incubated at 37 ° C. for 15 minutes to allow the enzyme reaction to proceed. The reaction was stopped by adding 0.5 mL of 2M Tris solution (pH 7.0). Take 0.02 mL of the solution after stopping the reaction, add 3.0 mL of a coloring reagent (glucose CII test Wako; Wako Pure Chemicals), mix and incubate at 37 ° C. for 5 minutes, and then 505 nm with a spectrophotometer (Beckman). Absorbance was measured at. All measurements were performed twice.
FIG. 1 is a graph showing the inhibition rate of these shochu residue moromi to α-glucosidase activity. The results for acarbose, which is known to inhibit α-glucosidase, are also shown. The vertical axis represents the inhibition rate (%) of α-glucosidase activity. All shochu residue and moromi showed inhibition of α-glucosidase activity, and in particular, wheat shochu residue and mash showed inhibition exceeding 60%.
(Example 2: Effect of shochu residue moromi on postprandial blood glucose level)
Seven-week-old normal male rats (Kudo Co., Ltd.) were fasted for 12 hours. After fasting, the control group was orally ingested with 2 g / kg of sucrose, the cellulose-administered group was orally ingested with 2 g / kg of sucrose and 20 mg / kg of cellulose intragastrically, and the acarbose-administered group was 20 mg / kg acarbose was administered intragastrically with 2 g / kg of sucrose orally, and the fraction freezing fraction of the wheat shochu residue mash of Production Example 1 having a molecular weight of 6000 or less was added to the shochu residue mash mash supernatant fraction administration group. A dry product of 20 mg / kg was intragastrically administered. Each group had 5 animals. The blood glucose level was measured before treatment, after 30 minutes, after 60 minutes, and after 120 minutes. The blood glucose level here is the serum glucose concentration.
FIG. 2 is a graph showing changes over time in blood glucose levels in each treatment group after sucrose was given. The horizontal axis represents the postprandial time (minutes), and the vertical axis represents the blood glucose level (serum glucose concentration: mg / mL). In the figure, a black circle is a control group, a white circle is a cellulose administration group, a white triangle is an acarbose administration group, and a white square is a shochu residue residue mash supernatant fraction administration group. In the control group in which sucrose was orally administered, the blood glucose level rapidly increased by 30 minutes after the treatment and gradually decreased thereafter. The cellulose administration group showed the same tendency as the control group. In contrast, in the acarbose administration group and the shochu residue residue mash supernatant fraction administration group, the blood glucose level increased 30 minutes after the treatment, but the increase was significantly lower than the control (** in FIG. 2; r <0.05).
(Example 3: Inhibition of α-glucosidase activity of wheat shochu residue moromi)
Using the lyophilized product of the fraction with a molecular weight of 6000 or less; a molecular weight of more than 6000 and less than 50,000; and a molecular weight of more than 50000 Thus, the influence on α-glucosidase activity was examined.
FIG. 3 is a graph showing the inhibition rate for α-glucosidase activity of these wheat shochu residue mash supernatant fractions. The vertical axis represents the inhibition rate (%) of α-glucosidase activity. In the figure, a fraction having a molecular weight of 6000 or less is represented by M.P. W. <6000; a fraction having a molecular weight of more than 6000 and not more than 50,000 is expressed as 6000 <M. W. <50000; and fractions with molecular weights greater than 50000 W. Represented by In any fraction, inhibition of α-glucosidase activity was shown, but the inhibition rate was particularly high in the fraction having a molecular weight of 6000 or less.
(Example 4: Inhibition of α-glucosidase activity of rice shochu residue moromi)
The procedure described in Example 1 above, using the lyophilized product of the fraction of the rice shochu residue moromi obtained in Production Example 2 with a molecular weight of 6000 or less; a molecular weight of more than 6000 and less than 50,000; and a molecular weight of more than 50,000 Thus, the influence on α-glucosidase activity was examined.
FIG. 4 is a graph showing the inhibition rate for α-glucosidase activity of the rice shochu residue mash supernatant fraction. The vertical axis represents the inhibition rate (%) of α-glucosidase activity. In the figure, a fraction having a molecular weight of 6000 or less is represented by M.P. W. <6000; a fraction having a molecular weight of more than 6000 and not more than 50,000 is 6000 <M. W. <50000; and fractions with molecular weights greater than 50000 W. Represented by In all fractions including a fraction having a molecular weight of 6000 or less, α-glucosidase activity inhibition exceeding 50% was observed.
(Example 5: Effect of shochu residue mash combined with fibrous substance on postprandial blood glucose level)
Seven-week-old normal male rats (Kudo Co., Ltd.) were fasted for 12 hours. After fasting, the sucrose intake group was orally ingested with 2 g / kg sucrose, and nothing else was administered. To the shochu residue residue mash supernatant fraction administration group, 2 g / kg of sucrose was orally ingested, and 5 mg / kg of the fraction lyophilized fraction of molecular weight 6000 or less of the wheat shochu residue residue mash of Production Example 1 was administered intragastrically. In addition, 2 g / kg sucrose was orally ingested into the cellulose addition group, and 5 mg / kg of the lyophilized fraction of molecular weight 6000 or less of the barley shochu residue mash of Production Example 1 above and 5 times the amount of cellulose were mixed. 5 mg / kg of the lyophilized fraction having a molecular weight of 6000 or less of the wheat bran residue of the above-mentioned Production Example 1 and 5 times the amount of the indigestible dextrin Was administered intragastrically. Each group had 5 animals. The blood glucose level was measured before the treatment and 30 minutes after the treatment. The blood glucose level here is the serum glucose concentration.
FIG. 5 is a graph showing the change in blood glucose level over time in each treatment group after giving sucrose. The vertical axis represents blood glucose level (serum glucose concentration: mg / mL). In the figure, the white circle is the sucrose intake group, the × is the group to which the fraction lyophilized product having a molecular weight of 6000 or less of the barley shochu residue mash is administered (the barley shochu residue mash supernatant fraction administration group), and the white triangle is the above production example 1. A group in which cellulose was added together with a lyophilized fraction having a molecular weight of 6000 or less of the barley shochu residue mash, and a white square was a lyophilized fraction having a molecular weight of 6000 or less in the barley shochu residue mash of Production Example 1 above. This is a group to which indigestible dextrin is added (indigestible dextrin added group). The increase in blood glucose level after a meal was further suppressed in the cellulose-added group and the indigestible dextrin-added group compared to the wheat shochu residue mash residue fraction administration group. In particular, an excellent hypoglycemic effect was observed by combining an indigestible dextrin with the wheat flour shochu residue mash residue fraction.
(Example 6: Composition analysis of shochu residue moromi)
Dissolve 2.0 g of the lyophilized fraction of the molecular weight of 6000 or less of the wheat shochu residue residue of Production Example 1 in ultrapure water (millQ water), silica gel (Silica Gel 60N (spherical, neutral), 63-210 μm; Kanto; Chemical Co., Ltd.) was adsorbed to 10 g and dried. A column of 2 cm × 60 cm with a filter (No. 2) (VIDTEC) was packed with about 50 g of the silica gel, and the wheat shochu residue adsorbed with the silica gel was placed on the mash. A single solvent (CHCl 3 : methanol: H 2 O = 5: 3: 0.4) was allowed to flow and fractionated. Each fraction was subjected to thin layer chromatography (TLC: Partisil (registered trademark) K5F Silica Gel 150Å, 20 × 20 cm, Whatman) and sprayed with a color former (p-anisaldehyde, ethanol solution, Tokyo Chemical Industry Co., Ltd.). And spotted. Spots with the same Rf value were collected, concentrated and further purified by high performance liquid chromatography (HPLC).
HPLC was performed under the following conditions:
Equipment used: High performance liquid chromatography SHIMADZU LC-10A
Pump: LC-10AD x 2 detectors: CDD-6A (conductivity detector)
Controller: SCL-10A
Column oven: CTO-10A
Auto injector: SIL-10A
Chromatopack:
Column: Shim-Pack SCR-102H 300 × 8 mm (inner diameter) (Shimadzu Corporation)
Mobile phase:
5 mM p-toluenesulfonic acid flow rate: 0.8 mL / min Temperature: 45 ° C.
Analysis time: 40 minutes Detection: conductivity
Detection is based on a post-column buffering method Buffer: 5 mM p-toluenesulfonic acid and 100 μM EDTA, 20 mM Bis-Tris solution Flow rate: 0.8 mL / min Polarity: +
Response: slow
The specimen was prepared by dissolving 2.0 mg of the sample in 2000 μL of millQ water and further filtering this with a 0.45 μm membrane filter. The injection amount was 10 μL.
As a result of HPLC, peaks of fractions fr1-2 to 1-3 were obtained. The obtained peak was compared with the peak of the standard solution chart to determine the component and its content. To prepare the standard solution chart, 10 μL was injected using the following standard solution of organic acid: phosphoric acid (546.9 mg / L), citric acid (220.6 mg / L), malic acid (220.4 mg) / L), succinic acid (298.8 mg / L) lactic acid (606.0 mg / L), acetic acid (575.9 mg / L), pyroglutamic acid (288.5 mg / L), pyruvic acid (218.4 mg / L) . As a result, 1 mg of fr1-2 to 1-3 was found to contain 0.693 mg of succinic acid, 0.068 mg of pyroglutamic acid, and 0.014 mg of pyruvic acid (the remaining amount of about 25% is unknown). Further, when the influence of succinic acid, pyroglutamic acid, and pyruvic acid on α-glucosidase activity was examined according to the procedure described in Example 1 above, it was confirmed that they had glucosidase inhibitory activity (succinic acid: IC50 4 .99 mg / mL, and pyroglutamic acid: IC50 7.38 mg / mL, pyruvate: IC50 4.84 mg / mL).
(Example 7: Effect of shochu residue mash on the activity of various glycolytic enzymes)
(7-1. Invertase (sucrase) inhibitory activity)
The sample solution was added with 0.1 M acetate buffer (pH 5.0) (also used as a solvent in the following solutions) to 100 mg / mL of the fraction of molecular weight 6000 or less of the wheat shochu residue residue of Production Example 1 to obtain various concentrations. Adjusted. A 5% sucrose solution was used as a substrate, and 0.5 U / mL invertase was used as an enzyme solution.
Substrate 0.2 mL, enzyme solution 0.1 mL, and sample solution 0.2 mL were mixed and incubated at 37 ° C. for 15 minutes. Then, it heated for 10 minutes with the water bath at 90 degreeC or more, and reaction was stopped. 0.05 mL was taken from the solution after the reaction, and 3.0 mL of a coloring reagent (glucose CII test Wako; Wako Pure Chemical Industries, Ltd.) was added, mixed, incubated at 37 ° C. for 5 minutes, and 505 nm with a spectrophotometer (Beckman). Absorbance was measured at. All measurements were performed twice. As a result, inhibition of enzyme activity was observed with increasing concentration of the sample solution. When the concentration of the sample solution was 40 mg / mL, the inhibition rate was about 70%.
(7-2. Α-amylase inhibitory activity)
Using an amylase measurement kit (Kikkoman), the protocol was modified as follows, and α-amylase inhibitory activity was measured. The sample solution was adjusted to various concentrations by adding 10 mM acetate buffer solution (pH 5.0) (also used as a solvent in the following solutions) to 100 mg / mL of the fraction having a molecular weight of 6000 or less in the wheat shochu residue residue of Production Example 1. did. A solution of 2-chloro-4-nitrophenyl-6-azido-6-deoxy-β-maltopentaoside as a substrate, a solution of glucoamylase and β-glucosidase as a coloring enzyme solution, and 0.28 U / as a test enzyme solution mL of Aspergillus oryzae α-amylase solution was prepared.
First, 25 μL of a substrate solution and 25 μL of a coloring enzyme solution were added to a plate, then 25 μL of a sample solution was added, then 25 μL of an α-amylase solution of a test enzyme solution was added, and incubated at 37 ° C. for 15 minutes. Thereafter, 100 μL of sodium carbonate solution was added to stop the reaction. Absorbance was measured at 400 nm using a spectrophotometer (Beckman) with a plate reader filter at 405 nm. All measurements were performed twice.
As a result, inhibition of enzyme activity was observed with increasing concentration of the sample solution. Acarbose used as a control (trade name Glucobay (registered trademark); Bayer) exhibited an α-amylase activity inhibition rate of about 50.51% at a concentration of 0.003 mg / mL. In the sample solution, the inhibition rate was about 43% at a concentration of 5 mg / mL. Compared to acarbose, α-amylase inhibitory activity was remarkably low.
(Example 8: Effect of shochu residue moromi on postprandial blood glucose level)
Volunteers were recruited to examine the effects of shochu residue moromi on postprandial blood glucose levels, and 7 men and women aged 20 to under 50 were registered (1 male; 6 females; average age of all 33.4 ± 6. 6 years old). Upon registration, the patient underwent a comprehensive diagnosis by the responsible physician on the condition that there was no history of diabetes and that there was no special illness at the time of the test. Special diseases include 1) severe liver / kidney / cardiac dysfunction, 2) drug hypersensitivity, 3) mental disorders and impaired consciousness, 4) pregnant women, lactating women and this study. Those who plan to become pregnant, 5) Others who are judged unsuitable for this study by the attending physician.
As a test substance, a fraction having a molecular weight of 6000 or less of the wheat shochu residue mash of Production Example 1 was used. Subjects fasted for 10 hours before the start of the test (free drinking), and received 0 g (control), 0.1 g, or 0.5 g of the test substance at the same time as 25 g of sucrose (Wako Pure Chemical Industries) was loaded at the start of the test. did. The blood sugar level was measured before sucrose loading and test substance administration, and 30 minutes and 60 minutes after test substance administration. At 0 g administration (control) and 0.5 g administration, blood collection for blood test was also performed before administration and 30 minutes after administration. Each test was performed at intervals of 24 hours or more, and excessive feeding suppression to the subjects was avoided.
Average values and standard deviations were obtained for all test items, and Student t test was performed for the difference between before and after administration. In all cases, the significance level was 5% or less.
The results for blood glucose levels related to dose effects are shown in FIG. In FIG. 6, the measured value is expressed as a relative value with the blood glucose level before sucrose loading as 100%. In the figure, a black circle represents a control, a triangle represents administration of 0.1 g of the test substance, and a white circle represents administration of 0.5 g of the test substance. With a load of 25 g sucrose, in the 0 g administration (control) of the test substance, the blood glucose level increased by about 30% after 30 minutes and remained elevated by 10% or more after 60 minutes. In contrast, the administration of 0.1 g of the test substance showed a significantly lower value than the control at both 30 minutes and 60 minutes after administration (P <0.05). The amount of the test substance was increased to 0.5 g, but no difference was observed from the case of 0.1 g. This is thought to be because it is difficult to see the dose-effect relationship because the blood sugar elevation level is suppressed to about 10% increase with 0.1 g administration.
On the day different from the test of FIG. 6, the change in blood glucose level with time when 0 g of the test substance was administered (control) and 0.5 g was measured. The result is shown in FIG. 7 in terms of a relative value with the blood glucose level before sucrose loading as 100%. In the figure, black circles represent controls, and white circles represent 0.5 g of the test substance. 30 minutes after administration, the increase in blood glucose of about 30% caused by loading with 25 g sucrose was reduced to about 16% by administration of 0.5 g of the test substance. However, no statistically significant difference was observed between the two groups. In both groups, the blood glucose level returned to the fasting level (before sucrose loading) at 120 minutes after administration.
Furthermore, blood samples were collected at the time of administration of 0 g of the test substance (control) and at the time of 0.5 g administration, before and 30 minutes after administration, and blood insulin concentration was measured. The result is shown in FIG. The blood insulin concentration was increased by the 25 g sucrose load, but the test substance did not affect the insulin concentration increase.

本発明のα−グルコシダーゼ阻害剤は、糖尿病およびその合併症の治療または予防のために有用である。また、本発明によれば、環境上の問題が議論されてきた、焼酎の製造において通常廃棄される焼酎残渣もろみを有効利用することができる。   The α-glucosidase inhibitor of the present invention is useful for the treatment or prevention of diabetes and its complications. In addition, according to the present invention, it is possible to effectively use the residue of shochu residue, which is normally discarded in the production of shochu, for which environmental problems have been discussed.

Claims (3)

焼酎残渣もろみの濃縮エキスまたは該焼酎残渣もろみの濾液もしくは上清の濃縮エキスを有効成分として含むα−グルコシダーゼ阻害剤。 An α-glucosidase inhibitor comprising, as an active ingredient, a concentrated extract of shochu residue moromi, or a filtrate or supernatant concentrate of the shochu residue moromi. 前記濃縮エキスが、焼酎残渣もろみの濾液もしくは上清から得られる分子量6000以下の画分である、請求項1に記載のα−グルコシダーゼ阻害剤。 The α-glucosidase inhibitor according to claim 1, wherein the concentrated extract is a fraction having a molecular weight of 6000 or less obtained from a shochu residue mash filtrate or supernatant. 焼酎残渣もろみの濃縮エキスまたは該焼酎残渣もろみの濾液もしくは上清の濃縮エキスと繊維性物質とを有効成分として含む、血糖降下剤。 A hypoglycemic agent comprising, as an active ingredient, a concentrated extract of shochu residue moromi or a filtrate or supernatant concentrate of the shochu residue moromi and a fibrous substance.
JP2008538065A 2007-01-22 2008-01-21 Glucosidase inhibitor Active JP4947812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538065A JP4947812B2 (en) 2007-01-22 2008-01-21 Glucosidase inhibitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007011751 2007-01-22
JP2007011751 2007-01-22
JP2008538065A JP4947812B2 (en) 2007-01-22 2008-01-21 Glucosidase inhibitor
PCT/JP2008/051142 WO2008090999A1 (en) 2007-01-22 2008-01-21 Glucosidase inhibitor

Publications (2)

Publication Number Publication Date
JPWO2008090999A1 true JPWO2008090999A1 (en) 2010-05-20
JP4947812B2 JP4947812B2 (en) 2012-06-06

Family

ID=39644572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008538065A Active JP4947812B2 (en) 2007-01-22 2008-01-21 Glucosidase inhibitor

Country Status (2)

Country Link
JP (1) JP4947812B2 (en)
WO (1) WO2008090999A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804391B2 (en) * 2012-03-08 2015-11-04 株式会社アップウェル Anti-glycation agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371003A (en) * 2001-06-15 2002-12-26 Kikkoman Corp Inhibitor against blood sugar level increase
JP2005224205A (en) * 2004-02-16 2005-08-25 Hokko Chem Ind Co Ltd Health food
JP2005287454A (en) * 2004-04-02 2005-10-20 Matsutani Chem Ind Ltd Food and beverage for imparting health function and method for imparting health function to food and beverage
JP2006347967A (en) * 2005-06-16 2006-12-28 Yuusu Techno Corporation:Kk Blood sugar value rise suppressant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231499A (en) * 2000-02-18 2001-08-28 Fancl Corp Food composition
JP4795511B2 (en) * 2000-07-14 2011-10-19 日本サプリメント株式会社 Method for producing α-glucosidase inhibitor
JP4795512B2 (en) * 2000-07-14 2011-10-19 日本サプリメント株式会社 Method for producing α-glucosidase inhibitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371003A (en) * 2001-06-15 2002-12-26 Kikkoman Corp Inhibitor against blood sugar level increase
JP2005224205A (en) * 2004-02-16 2005-08-25 Hokko Chem Ind Co Ltd Health food
JP2005287454A (en) * 2004-04-02 2005-10-20 Matsutani Chem Ind Ltd Food and beverage for imparting health function and method for imparting health function to food and beverage
JP2006347967A (en) * 2005-06-16 2006-12-28 Yuusu Techno Corporation:Kk Blood sugar value rise suppressant

Also Published As

Publication number Publication date
JP4947812B2 (en) 2012-06-06
WO2008090999A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
US11382341B2 (en) Process for preparing a beverage or beverage component from brewer&#39;s spent grains
KR101925096B1 (en) A manufacturing method of hangover-eliminating enzyme powder and a composition for relieving hangover comprising thereof
JP6759337B2 (en) A new strain derived from a traditional fermented food with excellent enzyme production ability and a method for producing a grain fermented enzyme food using the new strain.
TWI380823B (en) An agent for rising concentration of adiponectin
CN112980646B (en) Kefir source composite probiotic fermented pear juice and oat viable bacteria vinegar drink and preparation method thereof
KR20130007713A (en) Beverage composition containing mulberry leaves extract and ferment
KR20200065928A (en) Method for preparing oat powder
Perumpuli et al. Vinegar: a functional ingredient for human health.
KR20200111664A (en) Composition for Anti-Diabetes Using an Extract of Lespedeza cuneata Obtained Using a Mixed Solvent of Water and Enthanol
KR102350102B1 (en) Composition for anti-inflammation comprising extract of fermented red ginseng with improved antioxidant activity as effective component
JP4947812B2 (en) Glucosidase inhibitor
JPH0940566A (en) Treating agent for diabetic and immunopotentiator produced from lactobacillus fermentation product
KR20200078842A (en) Method for producing Makgeolli using Cirsium japonicum
JP2002371003A (en) Inhibitor against blood sugar level increase
JP5549008B2 (en) Anti-allergic agent or anti-atopic inflammatory agent containing potato shochu or a substance derived therefrom
KR20070013416A (en) Lipase inhibitor including extract of gardenia, functional food and medical composition including the lipase inhibitor
JP2001145472A (en) Composition having fatty liver-suppressing activity fractionated from residual liquid of barley shochu liquor distillation and production of the same composition
CN114304618A (en) Method for enriching active ingredients of dandelion roots by fermentation and application of method
KR101598892B1 (en) Method of producing coffee beverage with black choke berry
JP7355319B2 (en) Anti-fatigue composition containing an IL-1β and/or IL-6 expression inhibitor for preventing and/or improving fatigue caused by intracerebral inflammation and its use
KR101798205B1 (en) Food composition increased gamma-aminobutyric acid comprising fermentated barley leaf and corn silk as active ingredient
KR102673923B1 (en) Composition for Anti-Diabetes Using an Extract of Persicaria maackiana
KR102161353B1 (en) Composition for Anti-Diabetes Using an Extract of Lespedeza cuneata
Sankpal An overview on types, medicinal uses and production of vinegar
US20220195475A1 (en) Hydrolysis of brewer&#39;s spent grain

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4947812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250