WO2008090999A1 - Glucosidase inhibitor - Google Patents

Glucosidase inhibitor Download PDF

Info

Publication number
WO2008090999A1
WO2008090999A1 PCT/JP2008/051142 JP2008051142W WO2008090999A1 WO 2008090999 A1 WO2008090999 A1 WO 2008090999A1 JP 2008051142 W JP2008051142 W JP 2008051142W WO 2008090999 A1 WO2008090999 A1 WO 2008090999A1
Authority
WO
WIPO (PCT)
Prior art keywords
mash
shochu
residue
fraction
molecular weight
Prior art date
Application number
PCT/JP2008/051142
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyoshi Inoue
Original Assignee
Up Well Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Up Well Co. Ltd. filed Critical Up Well Co. Ltd.
Priority to JP2008538065A priority Critical patent/JP4947812B2/en
Publication of WO2008090999A1 publication Critical patent/WO2008090999A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/06Fungi, e.g. yeasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12FRECOVERY OF BY-PRODUCTS OF FERMENTED SOLUTIONS; DENATURED ALCOHOL; PREPARATION THEREOF
    • C12F3/00Recovery of by-products
    • C12F3/10Recovery of by-products from distillery slops

Definitions

  • the present invention relates to a darcosidase inhibitor.
  • diabetes treatment is to maintain blood glucose levels within the normal range to prevent complications.
  • Complications include nephropathy, retinopathy, neuropathy, and stroke and myocardial infarction due to progression of arteriosclerosis.
  • Atherosclerosis has already been shown to progress, especially from the postprandial hyperglycemic stage. Therefore, a blood glucose control that improves postprandial hyperglycemia is also important to prevent the progression of arteriosclerosis.
  • ⁇ -Dalcosidase inhibitors suppress the breakdown of starch or carbohydrates in the diet and delay the absorption of budu sugar into the body, thereby suppressing a rapid increase in blood glucose level after eating.
  • Known ⁇ -darcosidase inhibitors include carbose, poglibose, and miglitol. '
  • Japanese Patent Application Laid-Open No. 2000-0 1 1 6 4 8 6 describes a food containing a large amount of lactic acid as a food for suppressing an increase in blood glucose level after a meal.
  • lactic acid has an a-darcosidase inhibitory action and an o-amylase inhibitory action, and further suppresses an increase in blood glucose level after meals.
  • the above documents exemplify dairy products made using lactic acid bacteria, such as yogurt, lactic acid bacteria drinks, and sour milk drinks, as foods containing lactic acid. Also, in food production such as sake brewing, soft drinks, confectionery, etc. Lactic acid is used, but these foods He also states that no reports have been found to show the effect of suppressing the increase.
  • Shochu is produced by fermenting starchy raw materials (cereals, potatoes) or saccharide raw materials (brown sugar, natto palm) and then distilling them. In the production process of shochu, the residue mash after distillation is usually discarded. However, environmental issues regarding the disposal of shochu residue and mash are being discussed, and their effective use is required. The power of shochu residue moromi that is known to be used as animal feed is still being researched.
  • Japanese Patent Application Laid-Open No. 2002-371003 describes that a barley fermented extract obtained by concentrating a filtrate of a distilled residue of barley shochu suppressed an increase in blood glucose level after a meal.
  • the blood glucose level elevation inhibitory component described in the above-mentioned document is due to an insulin-like action, and no darcosidase or amylase inhibitory action was observed (paragraph number 0013).
  • Japanese Patent Application Laid-Open No. 2005-224205 describes a health food having a blood glucose lowering effect using buckwheat shochu.
  • the object of the present invention is to find out the usefulness of shochu residue mash that is normally discarded in the production of shochu.
  • the present invention provides an a-darcosidase inhibitor containing, as an active ingredient, a concentrated extract of shochu residue moromi or a filtrate or supernatant extract of the shochu residue moromi.
  • the concentrated extract is a fraction having a molecular weight of 6000 or less obtained from a shochu residue mash filtrate or supernatant.
  • the present invention further provides a concentrated extract of shochu residue moromi or a concentrated extract of the shochu residue moromi filtrate or supernatant and a fibrous substance as an active ingredient.
  • a depressant is also provided.
  • a component having ⁇ -darcosidase inhibitory activity is obtained from the shochu residue mash, and an o-darcosidase inhibitor having this active component is provided.
  • FIG. 1 is a graph showing the inhibition rate of ⁇ -darcosidase activity in wheat, rice, rice bran, and buckwheat shochu residue mash supernatant fractions.
  • FIG. 2 is a graph showing the effect of administration of the wheat flour shochu residue mash supernatant fraction on changes in blood glucose levels of normal rats after sucrose application.
  • FIG. 3 is a graph showing the inhibition rate of ⁇ -darcosidase activity in the wheat bran residue residue mash supernatant fraction divided by molecular weight.
  • FIG. 4 is a graph showing the inhibition rate against ⁇ -darcosidase activity of the rice shochu residue mash supernatant fraction divided by molecular weight.
  • FIG. 5 is a graph showing changes over time in blood glucose levels of normal rats after sucrose administration by administration of a shochu residue mash mash supernatant fraction combined with a fibrous substance.
  • FIG. 6 is a graph showing the sucrose load at various doses and the time course of blood glucose level before and after the test substance administration, 30 minutes after administration of the test substance, and 60 minutes after administration of the test substance.
  • FIG. 7 is a graph showing changes in blood glucose level with time when test substance O g was administered (control) and when 0.5 g was administered.
  • FIG. 8 is a graph showing blood insulin concentrations before and 30 minutes after administration of test substance O g (control) and 0.5 g.
  • “shochu residue moromi” means starchy raw materials (cereals, potatoes, etc.) Or moromi that remains after fermenting saccharide raw materials (brown sugar, natto palm, etc.) and then distilling to remove the alcohol.
  • the production of shochu usually includes a starch saccharification process by koji mold, a sugar fermentation process by yeast, and an alcohol distillation process.
  • wheat or rice is treated in a conventional manner (washing, dipping, draining, steaming, allowing to cool, etc.), and this is inoculated with a seed pod of Aspergillus Kawachii that is usually used in shochu production. , And make the iron for an appropriate period at the appropriate temperature.
  • the yeast used for normal baking production is added and mixed, and saccharified and fermented by a conventional method to obtain primary moromi.
  • the primary moromi baking yeast is propagated.
  • add and mix the shochu main ingredients and water treated by ordinary methods washing, dipping, draining, steaming, allowing to cool, etc.
  • any commonly used ingredient can be used, and examples include, but are not limited to, grains such as barley, wheat, rice, corn, and buckwheat, potatoes, brown sugar, and peanuts. Barley is preferable.
  • the yeast fermentation process preparation is in two stages, but it is not necessary to divide the preparation into two stages. The mash after fermentation is subjected to distillation, and the alcohol is recovered and fired. On the other hand, a residue mash from which the alcohol content has been removed is obtained.
  • the above shochu residue mash is concentrated as it is or separated into solid and liquid by filtration, centrifugation, etc., and then the filtrate or supernatant is heated and concentrated, freeze-dried or spray-dried to obtain a concentrated extract. obtain. Further, the concentrated extract can be used to concentrate the active ingredient using an appropriate column such as a silica gel column, an ODS column, an ion exchange resin, or an ultrafiltration membrane molecular sieve. Of these, the filtrate or supernatant fraction is preferred, and the fraction with a molecular weight of 600 or less is preferred.
  • the concentrated extract As shown in the examples described later, Inhibitory activity of lysase is observed.
  • the inhibition rate of the enzyme reaction of ⁇ -darcosidase under the conditions described in Example 1 is 20 ° /.
  • it is defined as having a-vlucosidase inhibitory activity.
  • the concentrated extract also suppresses an increase in postprandial blood glucose level, as shown in Examples described later. Therefore, the hypoglycemic effect of the concentrated extract is considered to be due to ⁇ -darcosidase inhibition, and the concentrated extract can be used as a ct-glucosidase inhibitor.
  • the concentrated extract in addition to the inhibitory activity of _darcosidase, the inhibitory activity of invertase and ⁇ _amylase is also observed.
  • the concentrated extract or monodalcosidase inhibitor can inhibit a variety of glycolytic enzymes.
  • the fraction of 0 or less contains succinic acid, pyroglutamic acid, and pyruvic acid.
  • These organic acids namely succinic acid, pyroglutamic acid, and pyruvic acid, have _darcosidase inhibitory activity.
  • the concentrated extract or a-darcosidase inhibitor can inhibit the action of ⁇ -darcosidase, which degrades carbohydrates, and delays the absorption of glucose from the small intestine. It can be administered orally for the treatment or prevention of various complications such as disorders, cataracts, kidney disorders, retinopathy, joint sclerosis, atherosclerosis, diabetic lobe.
  • the dose depends on the method of administration and the degree of symptoms, patient age, body weight, etc., but it is usually per adult dose per concentrated dose (especially the molecular weight of the filtrate or supernatant of shochu residue mash) (Fraction of 6 00 or less) may be from 0.05 g to 10 g, preferably from 0.075 g to 5 g, more preferably from 0.1 ⁇ to 1 ⁇ .
  • This dose can be appropriately determined by a known glucose tolerance test by humans.
  • the concentrated extract or ⁇ ; -darcosidase inhibitor can be in the form of a tablet, powder, or liquid. It can also be added to food or beverages.
  • a food for health maintenance having an a-darcosidase inhibitory action or a glycolytic enzyme inhibitory action as described above can also be obtained.
  • Such foods include home-use diabetic foods, liquid foods, foods for the sick (combination foods for adjusting diabetic foods, etc.), foods for specified health use, diet foods, and foods based on carbohydrates.
  • Specific food forms include, but are not limited to, coffee, soft drinks, soups, fruit juices, jams, biscuits, breads, and pasta.
  • the concentrated extract or ⁇ ; -darcosidase inhibitor may itself be contained as a hypoglycemic agent alone or in combination with a fibrous substance. It is particularly useful for suppressing postprandial blood glucose levels. By containing a fibrous substance, the blood glucose lowering effect is further enhanced. Examples of the fibrous material include cellulose and indigestible dextrin, and preferably indigestible dextrin is used. Such a hypoglycemic agent can also be made into a food as described above.
  • shochu residue mash from sweet potato, barley, rice or buckwheat was produced as follows.
  • Barley is shaved with a refining machine, water is added to this and steamed, then about 35-4
  • This supernatant was subjected to an ultrafiltration membrane device (Asahi Kasei; pen-type UF membrane), and a solution having a molecular weight of 600 or less was collected and then freeze-dried. Further, the remaining solution was separated into a fraction having a molecular weight of 500000 or less and a fraction having a molecular weight exceeding 500000, and each solution was freeze-dried.
  • the lyophilizate was used in the following examples.
  • the buckwheat rice was shaved with a refiner, then water was added and steamed.
  • the steamed buckwheat rice was cooled to about 35-40 ° C and mixed with Aspergillus Kawachii (Matsunosuke Hamaguchi Co., Ltd.).
  • Aspergillus Kawachii Matsunosuke Hamaguchi Co., Ltd.
  • To the buckwheat soba noodles the buckwheat oat and rice of the above production examples 1 and 2 are added and mixed so that the ratio of rice: wheat: buckwheat is 1: 1: 1.2, and water is added. It was mixed with an appropriate amount of shochu yeast and fermented at about 25-30 ° C for 10 days to obtain moromi. Subsequently, the residue mash was produced in the same manner as in Production Example 1 above, fractionated according to molecular weight, and freeze-dried.
  • Example 1 Effect of shochu residue moromi on a-darcosidase activity
  • lyophilized products of fractions having a molecular weight of 6 ⁇ 00 or less of wheat, rice, rice bran, and soba shochu residue mash As a control, 10 mg of carboxyl (trade name Darkopai (registered trademark); Bayer) was taken as l Omg and dissolved in 1 mL of 0.02 M phosphate buffer to obtain a test substance solution.
  • carboxyl trade name Darkopai (registered trademark); Bayer
  • reaction solution having the following composition was prepared: 0.4% ⁇ -Nitrophenyl a-D-darcoviranoside (Wako Pure Chemical Industries) 0.2 mL; Substance solution 0.2 mL; and 0.5 U / mL ⁇ -Dalcosidase (Toyobo) 0.1 mL.
  • one unit (U) of ct-dalcosidase is the amount of enzyme that liberates 1 ⁇ of glucose per minute from the non-reducing terminal side of the substrate under the following standard reaction conditions.
  • the above reaction solution was incubated at 37 ° C for 15 minutes to allow the enzyme reaction to proceed.
  • the reaction was stopped by adding 0.5 mL of 2M Tris solution (pH 7.0). 0.02 mL of the solution after stopping the reaction is taken, and the coloring reagent (glucose CII test kit; Wako Pure Chemical Industries, Ltd.) 3. Add (mL) and mix for 5 minutes at 37 ° C. And the absorbance was measured with a spectrophotometer (Beckman) at 500 nm. All measurements were performed twice.
  • Fig. 1 is a graph showing the inhibition rate of these shochu residue moromi to ⁇ -darcosidase activity.
  • carbose which is known to inhibit ct-dalcosidase, are also shown.
  • the vertical axis represents the inhibition rate (%) of ⁇ -darcosidase activity. All shochu residue and moromi showed inhibition of ⁇ -darcosidase activity, and in particular, wheat shochu residue and mash showed inhibition of more than 60%.
  • FIG. 2 is a graph showing the change in blood glucose level over time in each treatment group after sucrose application.
  • the horizontal axis represents the postprandial time (minutes), and the vertical axis represents the blood glucose level (serum darose concentration: mgZmL).
  • the black circle is the control group
  • the white circle is the cellulose administration group
  • the white triangle is the carbose administration group
  • the white square is the shochu residue mash supernatant fraction administration group.
  • the blood glucose level rapidly increased by 30 minutes after the treatment, and gradually decreased thereafter.
  • the cellulose administration group showed the same tendency as the control group.
  • the molecular weight of the wheat shochu residue moromi obtained in Production Example 1 is not more than 600.000; the freezing of the fraction having a molecular weight of more than 60.000 and less than 5.000; and a molecular weight of more than 500.000
  • the effect on the single dalcosidase activity was examined according to the procedure described in Example 1 above.
  • FIG. 3 is a graph showing the inhibition rate for the a-darcosidase activity of the mash supernatant fraction of the wheat shochu residue.
  • the vertical axis represents the inhibition rate (%) of a-darcosidase activity.
  • the fraction with a molecular weight of 6 0 0 0 or less is MW ⁇ 6 0 0 0; the fraction with a molecular weight of more than 6 0 0 0 but less than 5 0 0 0 0 is 6 0 0 0 MW ⁇ 5 0 0 0 0; and a fraction having a molecular weight exceeding 5 0 0 0 0 is represented by 5 0 0 0 minus MW.
  • inhibition of a-darcosidase activity was shown, but the inhibition rate was particularly high in fractions having a molecular weight of 600 or less.
  • the molecular weight of the rice shochu residue moromi obtained in Production Example 2 is not more than 600.000; the freezing of the fraction having a molecular weight of more than 60.000 and less than 5.000; and a molecular weight of more than 500.000
  • the effect on a-darcosidase activity was examined according to the procedure described in Example 1 above.
  • FIG. 4 is a graph showing the inhibition rate for the one dalcosidase activity of the mash residue obtained from the rice baking residue.
  • the vertical axis represents the inhibition rate (%) of a-darcosidase activity.
  • the fraction with a molecular weight of 6 0 0 0 or less is MW ⁇ 6 0 0 0; the fraction with a molecular weight of more than 6 0 0 0 but less than 5 0 0 0 0 is 6 0 0 0 MW + 5 0 0 0 0; and fractions with molecular weights greater than 5 0 0 0 0 at 5 0 0 0 0 ⁇ MW To express. In all fractions, including those with a molecular weight of 6 000 or less, 50 ° /. Inhibition of a-darcosidase activity was observed.
  • the sucrose intake group was orally given 2 g / kg sucrose and nothing else was administered.
  • 2 gZk g of sucrose was orally ingested, and 5 mg Zkg of the wheat shochu residue mash fraction lyophilized fraction of the above production example 1 was intragastrically administered.
  • the cellulose-added group includes 5 mg Zkg of the lyophilized fraction of the malt residue of the wheat shochu residue of Production Example 1 above, with a molecular weight of 600 ⁇ or less.
  • FIG. 5 is a graph showing the change in blood glucose level over time in each treatment group after sucrose application.
  • the vertical axis represents the blood glucose level (serum glucose concentration ⁇ mgZmL).
  • the white circle is the sucrose intake group
  • X is the group administered with the freeze-dried fraction with a molecular weight of 6000 or less of the barley burning residue mash (the barley shochu residue mash supernatant fraction administration group)
  • the white triangle is the above production example A group in which cellulose was added together with a fraction freeze-dried fraction with a molecular weight of 6000 or less of the wheat shochu residue mash (cellulose addition group).
  • the white square is a fraction with a molecular weight of 6000 or less of the mash of the wheat shochu residue in Production Example 1 above.
  • indigestible dextrin added group This is a group to which indigestible dextrin is added together with the lyophilized product (indigestible dextrin added group).
  • Cellulose added group and indigestible dextrin added group are: Compared with the clear fraction administration group, the increase in blood glucose level after meal was further suppressed. In particular, the combination of indigestible dextrin and the wheat flour shochu residue mash supernatant fraction showed an excellent hypoglycemic effect. (Example 6: Composition analysis of shochu residue moromi)
  • HPLC was performed under the following conditions:
  • CDD-6A conductivity detector
  • Detection is by column column loose seed purification method.
  • Buffer 20 mM Bis-Tris solution with 5 mM p-toluenesulfonic acid and 100 ⁇ EDTA
  • the specimen was prepared by dissolving Sample 2. Omg in 2000 ⁇ L of millQ water and filtering it through a 0.45 ⁇ membrane filter. The injection volume was 10 ⁇ L.
  • test substance a fraction having a molecular weight of 6000 or less of the wheat shochu residue mash of Production Example 1 was used. Subjects fasted for 10 hours before the start of the test (free drinking), and at the start of the test, 25 g of sucrose (Wako Pure Chemical Industries, Ltd.) was loaded at the same time as O g (control), 0. lg or 0.5 g test substance was taken and administered. Sucrose loading was measured before administration of the test substance, and 30 and 60 minutes after administration of the test substance. At the time of O g administration (control) and 0.5 g administration, blood was collected for blood tests before and 30 minutes after administration. Each test was performed at intervals of 24 hours or longer, and excessive suppression of food intake was avoided.
  • Figure 6 shows the results of blood glucose levels related to dose effects.
  • the measured values are expressed as relative values with the blood glucose level before sucrose loading as 100%.
  • black circles represent controls, triangles represent test substance 0.1 g administration, and white circles represent test substance 0.5 g administration.
  • the test substance O g administration control
  • 0.1 g of the test substance showed significantly lower values than the control at both 30 minutes and 60 minutes after administration (P 0.05).
  • the amount of the test substance was increased to 0.5 g, but there was no difference from the case of 0.1 lg.
  • the ⁇ -darcosidase inhibitor of the present invention is useful for the treatment or prevention of diabetes and its complications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Diabetes (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Botany (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Obesity (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Emergency Medicine (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Disclosed is an α-glucosidase inhibitor comprising a concentrated extract of a shochu residue moromi mash or a concentrated extract of a filtrate or supernatant of the shochu residue moromi mash. The α-glucosidase inhibitor may be used singly or in combination with a fibrous material as a hypoglycemic agent.

Description

ダルコシダーゼ阻害剤 技術分野  Dalcosidase inhibitor Technical Field
本発明は、 ダルコシダーゼ阻害剤に関する。  The present invention relates to a darcosidase inhibitor.
 Light
背景技術 Background art
糖尿病の治療は、 血糖値を正常範囲に維書持して合併症を防ぐことが目的と される。 合併症には、 腎症、 網膜症、 神経障害、 ならびに動脈硬化の進展に よる脳卒中および心筋梗塞がある。 動脈硬化は、 特に食後高血糖の段階から 既に進展することが分かっている。 したがって、 食後高血糖を改善する血糖 コント口ールが動脈硬化の進展を防ぐためにも重要である。  The purpose of diabetes treatment is to maintain blood glucose levels within the normal range to prevent complications. Complications include nephropathy, retinopathy, neuropathy, and stroke and myocardial infarction due to progression of arteriosclerosis. Atherosclerosis has already been shown to progress, especially from the postprandial hyperglycemic stage. Therefore, a blood glucose control that improves postprandial hyperglycemia is also important to prevent the progression of arteriosclerosis.
食後高血糖を下げるためには、 速効型ィンスリン分泌型新薬および ーグ ルコシダーゼ阻害薬が用いられ得る。 α—ダルコシダーゼ阻害薬は、 食事に 含まれる澱粉または糖質の分解を抑制して体内へのブドゥ糖の吸収を遅らせ、 それにより食後の急激な血糖値の上昇を抑制する。 α—ダルコシダーゼ阻害 薬としては、 ァカルボース、 ポグリボース、 およびミグリ トールが公知であ る。 '  In order to lower postprandial hyperglycemia, fast-acting insulin secretory drugs and glucosidase inhibitors can be used. α-Dalcosidase inhibitors suppress the breakdown of starch or carbohydrates in the diet and delay the absorption of budu sugar into the body, thereby suppressing a rapid increase in blood glucose level after eating. Known α-darcosidase inhibitors include carbose, poglibose, and miglitol. '
特開 2 0 0 3— 1 1 6 4 8 6号公報は、 食後の血糖値上昇を抑制する食品 として乳酸を多く含む食品を記載している。 上記文献には、 乳酸が a—ダル コシダーゼ阻害作用および ο;—アミラーゼ阻害作用を示し、 さらに食後の血 糖値の上昇を抑制したことを示す旨が記載されている。 上記文献は、 乳酸を 含む食品として、 ヨーグルト、 乳酸菌飲料、 酸乳飲料など、 乳酸菌を使って 作る乳製品を例示しており、 また、 清酒醸造、 清涼飲料、 製菓用などのよう な食品製造において乳酸が利用されているが、 これらの食品が、 食後の血糖 上昇を低く抑える作用を示したという報告がみられないとも記載している。 焼酎は、 澱粉質原料 (穀類、 芋類) または糖質原料 (黒糖、 なつめやし) を発酵させ、 次いで蒸留することにより製造される。 焼酎の製造過程におい ては、 蒸留後の残渣もろみは、 通常、 廃棄される。 しかし、 この焼酎残渣も ろみの廃棄については環境上の問題が議論されており、 その有効な利用が求 められている。 焼酎残渣もろみは家畜の飼料としての利用が知られている力 その有用性についてなお研究が続いている。 Japanese Patent Application Laid-Open No. 2000-0 1 1 6 4 8 6 describes a food containing a large amount of lactic acid as a food for suppressing an increase in blood glucose level after a meal. In the above document, it is described that lactic acid has an a-darcosidase inhibitory action and an o-amylase inhibitory action, and further suppresses an increase in blood glucose level after meals. The above documents exemplify dairy products made using lactic acid bacteria, such as yogurt, lactic acid bacteria drinks, and sour milk drinks, as foods containing lactic acid. Also, in food production such as sake brewing, soft drinks, confectionery, etc. Lactic acid is used, but these foods He also states that no reports have been found to show the effect of suppressing the increase. Shochu is produced by fermenting starchy raw materials (cereals, potatoes) or saccharide raw materials (brown sugar, natto palm) and then distilling them. In the production process of shochu, the residue mash after distillation is usually discarded. However, environmental issues regarding the disposal of shochu residue and mash are being discussed, and their effective use is required. The power of shochu residue moromi that is known to be used as animal feed is still being researched.
特開 2002— 371003号公報には、 麦焼酎の蒸留残滓の濾液を濃縮 して得た大麦発酵エキスが、 食後の血糖値の上昇を抑制したことが記載され ている。 し力 し、 上記文献に記載の血糖値上昇抑制成分は、 インスリン様作 用によるものであり、 ダルコシダーゼぉよびアミラーゼ阻害作用は認められ なかったことが記載されている (段落番号 0013) 。  Japanese Patent Application Laid-Open No. 2002-371003 describes that a barley fermented extract obtained by concentrating a filtrate of a distilled residue of barley shochu suppressed an increase in blood glucose level after a meal. However, it is described that the blood glucose level elevation inhibitory component described in the above-mentioned document is due to an insulin-like action, and no darcosidase or amylase inhibitory action was observed (paragraph number 0013).
特開 2005— 224205号公報には、 そば焼酎かすを利用した血糖値 低下作用を持つ健康食品が記載されている。 上記文献には、 α_ダルコシダ —ゼ阻害に関しては記載されていない。 発明の開示 Japanese Patent Application Laid-Open No. 2005-224205 describes a health food having a blood glucose lowering effect using buckwheat shochu. The above document, alpha _ Darukoshida - not described with respect peptidase inhibition. Disclosure of the invention
本発明は、 焼酎の製造において通常廃棄される焼酎残渣もろみの有用性を 見出すことを目的とする。  The object of the present invention is to find out the usefulness of shochu residue mash that is normally discarded in the production of shochu.
本発明は、 焼酎残渣もろみの濃縮エキスまたは該焼酎残渣もろみの濾液も しくは上清の濃縮エキスを有効成分として含む a—ダルコシダーゼ阻害剤を 提供する。  The present invention provides an a-darcosidase inhibitor containing, as an active ingredient, a concentrated extract of shochu residue moromi or a filtrate or supernatant extract of the shochu residue moromi.
1つの実施態様では、 濃縮エキスは、 焼酎残渣もろみの濾液もしくは上清 から得られる分子量 6000以下の画分である。  In one embodiment, the concentrated extract is a fraction having a molecular weight of 6000 or less obtained from a shochu residue mash filtrate or supernatant.
本発明はさらに、 焼酎残渣もろみの濃縮エキスまたは該焼酎残渣もろみの 濾液もしくは上清の濃縮エキスおよび繊維性物質を有効成分として含む血糖 降下剤も提供する。 The present invention further provides a concentrated extract of shochu residue moromi or a concentrated extract of the shochu residue moromi filtrate or supernatant and a fibrous substance as an active ingredient. A depressant is also provided.
本発明によれば、 焼酎残渣もろみから α—ダルコシダーゼ阻害活性を有す る成分が得られ、 そしてこの活性成分を有する ο;—ダルコシダーゼ阻害剤が 提供される。 図面の簡単な説明  According to the present invention, a component having α-darcosidase inhibitory activity is obtained from the shochu residue mash, and an o-darcosidase inhibitor having this active component is provided. Brief Description of Drawings
図 1は、 麦、 米、 芋および薷麦焼酎残渣もろみ上清画分の α—ダルコシダ ーゼ活性に対する阻害率を示すグラフである。  FIG. 1 is a graph showing the inhibition rate of α-darcosidase activity in wheat, rice, rice bran, and buckwheat shochu residue mash supernatant fractions.
図 2は、 麦焼酉残渣もろみ上清画分投与による、 スクロースを与えた後の 正常ラットの血糖値の経時変化に対する影響を示すグラフである。  FIG. 2 is a graph showing the effect of administration of the wheat flour shochu residue mash supernatant fraction on changes in blood glucose levels of normal rats after sucrose application.
図 3は、 分子量で分けた麦焼射残渣もろみ上清画分の α—ダルコシダーゼ 活性に対する阻害率を示すグラフである。  FIG. 3 is a graph showing the inhibition rate of α-darcosidase activity in the wheat bran residue residue mash supernatant fraction divided by molecular weight.
図 4は、 分子量で分けた米焼酎残渣もろみ上清画分の α—ダルコシダーゼ 活性に対する阻害率を示すグラフである。  FIG. 4 is a graph showing the inhibition rate against α-darcosidase activity of the rice shochu residue mash supernatant fraction divided by molecular weight.
図 5は、 繊維性物質と組み合わせた焼酎残渣もろみ上清画分投与による、 スクロースを与えた後の正常ラットの血糖値の経時変化を示すグラフである。 図 6は、 各種用量における投与でのスクロース負荷および被験物質投与前、 被験物質投与 3 0分後おょぴ 6 0分後の血糖値の経時変化を示すグラフであ る。  FIG. 5 is a graph showing changes over time in blood glucose levels of normal rats after sucrose administration by administration of a shochu residue mash mash supernatant fraction combined with a fibrous substance. FIG. 6 is a graph showing the sucrose load at various doses and the time course of blood glucose level before and after the test substance administration, 30 minutes after administration of the test substance, and 60 minutes after administration of the test substance.
図 7は、 被験物質 O g投与時 (対照) および 0 . 5 g投与時における血糖 値の経時変化を示すグラフである。  FIG. 7 is a graph showing changes in blood glucose level with time when test substance O g was administered (control) and when 0.5 g was administered.
図 8は、 被験物質 O g投与時 (対照) および 0 . 5 g投与時における投与 前および投与後 3 0分の血中インスリン濃度を示すグラフである。 発明を実施するための最良の形態  FIG. 8 is a graph showing blood insulin concentrations before and 30 minutes after administration of test substance O g (control) and 0.5 g. BEST MODE FOR CARRYING OUT THE INVENTION
本発明における 「焼酎残渣もろみ」 とは、 澱粉質原料 (穀類、 芋類など) または糖質原料 (黒糖、 なつめやしなど) を発酵させ、 次いで蒸留してアル コールを除去した後に残存するもろみをいう。 焼酎の製造は、 通常、 麹菌に よる澱粉の糖化工程、 酵母による糖の発酵工程、 およびアルコール蒸留工程 を含む。 例えば、 麦類または米を、 常法により処理 (水洗、 浸漬、 水切り、 蒸煮、 放冷など) し、 これに焼酎製造に通常用いられる白麹菌 (例えば、 As pergillus Kawachii) の種麹を接種し、 製麹適温にて適切な期間の間、 製麹 する。 このようにして得られた麹に、 水おょぴ通常の焼射製造に用いられる 酵母 (例えば、 鹿児島酵母または熊本酵母) を添加および混合し、 そして常 法により糖化発酵させて一次もろみを得る。 一次もろみでは、 焼射酵母が増 殖される。 次に、 この一次もろみに、 必要に応じて常法により処理 (水洗、 浸漬、 水切り、 蒸煮、 放冷など) した焼酎主原料およぴ水を添加および混合 し、 常法により適温で適切な期間の間さらに糖化発酵させて二次もろみを得 る。 この焼酎主原料としては、 通常用いられる任意の原料が使用でき、 大麦、 小麦、 米、 トウモロコシ、 蘅麦などの穀類、 芋類、 黒糖、 なつめやしなどが 挙げられるが、 これらに限定されない。 好ましくは、 大麦である。 上の説明 は酵母発酵工程 (仕込み) が二段階であるが、 仕込みを二段階に必ずしも分 ける必要はない。 発酵後のもろみを蒸留に供し、 アルコールを回収して焼射 とし、 一方、 アルコール分が除去された残渣もろみが得られる。 In the present invention, “shochu residue moromi” means starchy raw materials (cereals, potatoes, etc.) Or moromi that remains after fermenting saccharide raw materials (brown sugar, natto palm, etc.) and then distilling to remove the alcohol. The production of shochu usually includes a starch saccharification process by koji mold, a sugar fermentation process by yeast, and an alcohol distillation process. For example, wheat or rice is treated in a conventional manner (washing, dipping, draining, steaming, allowing to cool, etc.), and this is inoculated with a seed pod of Aspergillus Kawachii that is usually used in shochu production. , And make the iron for an appropriate period at the appropriate temperature. To the koji obtained in this manner, the yeast (eg, Kagoshima yeast or Kumamoto yeast) used for normal baking production is added and mixed, and saccharified and fermented by a conventional method to obtain primary moromi. . In the primary moromi, baking yeast is propagated. Next, if necessary, add and mix the shochu main ingredients and water treated by ordinary methods (washing, dipping, draining, steaming, allowing to cool, etc.) to the primary mash as necessary. Continue saccharification and fermentation during the period to obtain secondary moromi. As the shochu main ingredient, any commonly used ingredient can be used, and examples include, but are not limited to, grains such as barley, wheat, rice, corn, and buckwheat, potatoes, brown sugar, and peanuts. Barley is preferable. In the above explanation, the yeast fermentation process (preparation) is in two stages, but it is not necessary to divide the preparation into two stages. The mash after fermentation is subjected to distillation, and the alcohol is recovered and fired. On the other hand, a residue mash from which the alcohol content has been removed is obtained.
上記の焼酎残渣もろみは、 そのまま濃縮して、 あるいは濾過、 遠心分離な どによって固液分離され、 次いで濾液または上清の液部を加熱濃縮、 凍結乾 燥もしくはスプレードライなどして、 濃縮エキスを得る。 さらに、 上記濃縮 エキスは、 シリカゲルカラム、 O D Sカラム、 イオン交換樹脂、 限外濾過膜 分子ふるいなどの適当なカラムを用いて、 その有効成分を濃縮することもで きる。 これらのうち、 濾液または上清画分が好ましく、 分子量 6 0 0 0以下 の画分が好ましい。  The above shochu residue mash is concentrated as it is or separated into solid and liquid by filtration, centrifugation, etc., and then the filtrate or supernatant is heated and concentrated, freeze-dried or spray-dried to obtain a concentrated extract. obtain. Further, the concentrated extract can be used to concentrate the active ingredient using an appropriate column such as a silica gel column, an ODS column, an ion exchange resin, or an ultrafiltration membrane molecular sieve. Of these, the filtrate or supernatant fraction is preferred, and the fraction with a molecular weight of 600 or less is preferred.
上記濃縮エキスには、 後述する実施例に示されるように、 α—ダルコシダ ーゼの阻害活性が見られる。 本発明においては、 実施例 1に記載の条件下の α—ダルコシダーゼの酵素反応の阻害率が 2 0 ° /。以上である場合に、 a—ヴ ルコシダーゼ阻害活性を有すると定義される。 上記濃縮エキスはまた、 後述 する実施例に示されるように、 食後血糖値の上昇を抑制している。 したがつ て、 濃縮エキスの血糖降下作用は、 α—ダルコシダーゼ阻害によるものと考 えられ、 上記濃縮エキスは、 ct—グルコシダーゼ阻害剤として使用され得る。 上記濃縮エキスには、 後述する実施例に示されるように、 ひ _ダルコシダ ーゼ阻害活性に加え、 ィンベルタ一ゼおよび α _アミラーゼの阻害活性も見 られる。 このように、 該濃縮エキスまたは 一ダルコシダーゼ阻害剤は、 多 様な糖分解酵素を阻害し得る。 In the concentrated extract, as shown in the examples described later, Inhibitory activity of lysase is observed. In the present invention, the inhibition rate of the enzyme reaction of α-darcosidase under the conditions described in Example 1 is 20 ° /. When it is above, it is defined as having a-vlucosidase inhibitory activity. The concentrated extract also suppresses an increase in postprandial blood glucose level, as shown in Examples described later. Therefore, the hypoglycemic effect of the concentrated extract is considered to be due to α-darcosidase inhibition, and the concentrated extract can be used as a ct-glucosidase inhibitor. In the concentrated extract, as shown in the Examples described later, in addition to the inhibitory activity of _darcosidase, the inhibitory activity of invertase and α_amylase is also observed. Thus, the concentrated extract or monodalcosidase inhibitor can inhibit a variety of glycolytic enzymes.
上記濃縮エキス (特に、 焼酎残渣もろみの濾液または上清の分子量 6 0◦ The above concentrated extract (especially the molecular weight of the shochu residue mash filtrate or supernatant 60 °
0以下の画分) は、 コハク酸、 ピログルタミン酸、 およぴピルビン酸を含む。 これらの有機酸、 すなわち、 コハク酸、 ピログルタミン酸、 およぴピルビン 酸は、 _ダルコシダーゼ阻害活性を有している。 The fraction of 0 or less contains succinic acid, pyroglutamic acid, and pyruvic acid. These organic acids, namely succinic acid, pyroglutamic acid, and pyruvic acid, have _darcosidase inhibitory activity.
上記濃縮エキスまたは a—ダルコシダーゼ阻害剤は、 糖質を分解する α— ダルコシダーゼの働きを阻害して、 小腸からのブドウ糖の吸収を遅らせ得る ため、 糖尿病おょぴそこから引き起こされる高血糖状態による神経障害、 白 内障、 腎障害、 網膜症、 関節硬化症、 ァテローム性動脈硬化症、 糖尿病性壌 疽などの種々の合併症の治療または予防のた,めに、 経口投与され得る。 その 投与量は、 投与方法と症状の程度、 患者の年齢、 体重などに依存するが、 通 常、 成人一人 1回投与当たり、 濃縮エキス (特に、 焼酎残渣もろみの濾液ま たは上清の分子量 6 0 0 0以下の画分) として 0 . 0 5 g ~ 1 0 g、 好まし くは、 0 . 0 7 5 g〜 5 g、 より好ましくは 0 . 1 §〜 1 §でぁり得る。 こ の投与量は、 ヒトによる公知の糖負荷試験によって適宜決定できる。 The concentrated extract or a-darcosidase inhibitor can inhibit the action of α-darcosidase, which degrades carbohydrates, and delays the absorption of glucose from the small intestine. It can be administered orally for the treatment or prevention of various complications such as disorders, cataracts, kidney disorders, retinopathy, joint sclerosis, atherosclerosis, diabetic lobe. The dose depends on the method of administration and the degree of symptoms, patient age, body weight, etc., but it is usually per adult dose per concentrated dose (especially the molecular weight of the filtrate or supernatant of shochu residue mash) (Fraction of 6 00 or less) may be from 0.05 g to 10 g, preferably from 0.075 g to 5 g, more preferably from 0.1 § to 1 § . This dose can be appropriately determined by a known glucose tolerance test by humans.
上記濃縮エキスまたは ο;—ダルコシダーゼ阻害剤は、 錠剤、 散剤、 液剤の ような形態とすることができる。 また、 これを食品または飲料に添加するこ とにより、 a—ダルコシダーゼ阻害作用または上述したような糖分解酵素阻 害作用を有する健康保持用の食品とすることもできる。 このような食品とし ては、 例えば、 在宅用糖尿病食、 流動食、 病者用食品 (糖尿病食調整用組み 合わせ食品など) 、 特定保健用食品、 ダイエット食品、 あるいは炭水化物を 主成分とする食品が挙げられるが、 これらに限定されない。 具体的な食品形 態としては、 例えば、 コーヒー、 清涼飲料水、 スープ、 果汁、 ジャム、 ビス ケット、 パン、 およびパスタが挙げられるが、 これらに限定されない。 食品 への添加または加工は、 当業者が通常用いる方法によって行われ得る。 ヒ ト 以外への動物、 例えば家畜またはぺット用の飼料への添加も可能である。 上記濃縮エキスまたは α;—ダルコシダーゼ阻害剤は、 血糖降下剤として、 それ自体を単独で含むか、 または繊維性物質と合わせて含むこともできる。 特に食後血糖値の上昇の抑制に有用である。 繊維性物質を含むことにより、 さらに血糖降下作用が強化される。 繊維性物質としては、 セルロースおよび 難消化デキストリンが挙げられるが、 好ましくは、 難消化デキストリンが用 いられる。 このような血糖降下剤も同様に、 上記のような食品とすることが できる。 The concentrated extract or ο; -darcosidase inhibitor can be in the form of a tablet, powder, or liquid. It can also be added to food or beverages. Thus, a food for health maintenance having an a-darcosidase inhibitory action or a glycolytic enzyme inhibitory action as described above can also be obtained. Examples of such foods include home-use diabetic foods, liquid foods, foods for the sick (combination foods for adjusting diabetic foods, etc.), foods for specified health use, diet foods, and foods based on carbohydrates. For example, but not limited to. Specific food forms include, but are not limited to, coffee, soft drinks, soups, fruit juices, jams, biscuits, breads, and pasta. Addition or processing to foods can be performed by methods commonly used by those skilled in the art. Addition to animals other than humans, such as livestock or pet food, is also possible. The concentrated extract or α; -darcosidase inhibitor may itself be contained as a hypoglycemic agent alone or in combination with a fibrous substance. It is particularly useful for suppressing postprandial blood glucose levels. By containing a fibrous substance, the blood glucose lowering effect is further enhanced. Examples of the fibrous material include cellulose and indigestible dextrin, and preferably indigestible dextrin is used. Such a hypoglycemic agent can also be made into a food as described above.
以下、 実施例により本発明をより具体的に説明するが、 本発明はこれらの 例示に限定されるものではない。 実施例  EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these exemplifications. Example
本実施例では、 サツマィモ、 大麦、 米または薷麦を原料とする焼酎の残渣 もろみを、 以下のようにして製造した。  In this example, shochu residue mash from sweet potato, barley, rice or buckwheat was produced as follows.
(製造例 1 :麦焼酎残渣もろみの製造) (Production Example 1: Production of wheat shochu residue moromi)
大麦を精製機で表皮を削り、 これに水を加えて蒸煮し、 次いで約 3 5〜4 Barley is shaved with a refining machine, water is added to this and steamed, then about 35-4
0 °Cに放冷した。 これに種麹菌 (Aspergillus Kawachii;株式会社 樋口松 之助商店) を混ぜ、 5日間おいて麹菌を繁殖させた。 次いで、 これに水およ び焼酎酵母を適量加えて混合し、 約 2 5 ~ 3 0 °Cで 1 0日間かけて発酵させ、 もろみを得た。 発酵が終了したもろみをポットスチルで蒸留し、 もろみ中の アルコールを除去した。 このアルコールが除去されたもろみが残渣もろみで ある。 この残渣もろみを室温にて 1 0 0 0 0 gで 3 0分間遠心分離し、 上清 を採取した。 この上清を限外濾過膜装置 (旭化成;ペン型 U F膜) に供し、 分子量 6 0 0 0以下の画分の溶液を採取し、 次いで凍結乾燥した。 さらに、 残留している溶液を分子量 5 0 0 0 0以下の画分と分子量が 5 0 0 0 0を超 える画分とに分離し、 それぞれの溶液を凍結乾燥した。 凍結乾燥物を以下の 実施例で用いた。 It was allowed to cool to 0 ° C. In addition to this, Aspergillus Kawachii; Nonosuke Shoten) was mixed and the bacilli were propagated after 5 days. Next, appropriate amounts of water and shochu yeast were added and mixed, and fermented at about 25 to 30 ° C. for 10 days to obtain moromi. The mash that had been fermented was distilled with a pot still to remove alcohol in the mash. The mash from which the alcohol is removed is the residue mash. The residue moromi was centrifuged at 100 g at room temperature for 30 minutes, and the supernatant was collected. This supernatant was subjected to an ultrafiltration membrane device (Asahi Kasei; pen-type UF membrane), and a solution having a molecular weight of 600 or less was collected and then freeze-dried. Further, the remaining solution was separated into a fraction having a molecular weight of 500000 or less and a fraction having a molecular weight exceeding 500000, and each solution was freeze-dried. The lyophilizate was used in the following examples.
(製造例 2 :米焼酎残渣もろみの製造) (Production Example 2: Production of rice shochu residue moromi)
米を精製機で表皮を削り、 次いで水を加えて蒸煮した。 蒸煮した米を約 3 5〜4 0 °Cに冷却して種麹菌 (Aspergillus Kawachii;株式会社 樋口松之 助商店) を混ぜ、 5日間おいて麹菌を繁殖させた。 次いで、 これに水おょぴ 焼酎酵母を適量加え、 約 2 5〜3 0 °Cで 1 0日間かけて発酵させ、 もろみを 得た。 引き続いて、 上記製造例 1と同様にして、 残渣もろみを製造し、 そし て分子量によって分画し、 凍結乾燥した。 (製造例 3 :芋焼酎残渣もろみの製造)  Rice was shaved with a refiner, then water was added and steamed. The cooked rice was cooled to about 35 to 40 ° C. and mixed with Aspergillus Kawachii (Matsuyuki Higuchi Co., Ltd.) and allowed to propagate for 5 days. Next, an appropriate amount of mizuopi shochu yeast was added thereto and fermented at about 25 to 30 ° C. for 10 days to obtain moromi. Subsequently, a residue mash was produced in the same manner as in Production Example 1 above, fractionated according to molecular weight, and lyophilized. (Production Example 3: Production of mash shochu residue moromi)
サッマイモを、 表面を洗浄し、 次いで水を加えて蒸煮し、 次いで粉碎した。 上記製造例 2の記載に従って米に種麹菌を植えつけて、 製麹した。 蒸煮粉碎 したサツマィモ、 水および焼酎酵母を適量で、 製麹した米と混ぜ、 約 2 5 ~ 3 0 °Cで 3日間かけて発酵させ、 もろみを得た。 引き続いて、 上記製造例 1 と同様にして、 残渣もろみを製造し、 そして分子量によって分画し、 凍結乾 燥した。 (製造例 4 :薷麦焼酎残渣もろみの製造) The surface of the sweet potato was washed, then steamed with water, and then powdered. According to the description in Production Example 2 above, the seed gonococcus was planted in the rice for koji making. An appropriate amount of steamed sweet potato, water and shochu yeast were mixed with the smelted rice and fermented at about 25 to 30 ° C for 3 days to obtain moromi. Subsequently, the residue mash was produced in the same manner as in Production Example 1 above, fractionated according to molecular weight, and freeze-dried. (Production Example 4: Manufacture of soba shochu residue moromi)
薷麦米を精製機で表皮を削り、 次いで水を加えて蒸煮した。 蒸煮した蘅麦 米を約 3 5〜40°Cに冷却して種麹菌 (Aspergillus Kawachii;株式会社 樋口松之助商店) を混ぜ、 5日間おいて麹菌を繁殖させた。 製麹した薷麦に、 上記製造例 1および 2の製麹した麦および米を、 米:麦:薷麦の比が 1 : 1 : 1. 2となるように添加して混ぜ合わせ、 さらに水およぴ焼酎酵母適量 と混ぜ、 約 25〜3 0°Cで 1 0日間かけて発酵させ、 もろみを得た。 引き続 いて、 上記製造例 1と同様にして、 残渣もろみを製造し、 そして分子量によ つて分画し、 凍結乾燥した。  The buckwheat rice was shaved with a refiner, then water was added and steamed. The steamed buckwheat rice was cooled to about 35-40 ° C and mixed with Aspergillus Kawachii (Matsunosuke Hamaguchi Co., Ltd.). To the buckwheat soba noodles, the buckwheat oat and rice of the above production examples 1 and 2 are added and mixed so that the ratio of rice: wheat: buckwheat is 1: 1: 1.2, and water is added. It was mixed with an appropriate amount of shochu yeast and fermented at about 25-30 ° C for 10 days to obtain moromi. Subsequently, the residue mash was produced in the same manner as in Production Example 1 above, fractionated according to molecular weight, and freeze-dried.
(実施例 1 :焼酎残渣もろみの a -ダルコシダーゼ活性への影響) 製造例 1〜4の麦、 米、 芋、 および薷麦焼酎残渣もろみの分子量 6◦ 00 以下の画分の凍結乾燥物をそれぞれ 1 0 Omgならびに対照としてァカルボ ース (商品名ダルコパイ (登録商標) ;バイエル) を l Omgとり、 0. 0 2 Mリン酸緩衝液 1 m Lに溶解し、 被験物質溶液を得た。 α -ダルコシダー ゼ活性についての試験物質の作用を調べるために、 以下の組成を有する反応 液を調製した: 0. 4% ρ—二トロフエニル a—D—ダルコビラノシド (和光純薬) 0. 2mL ;被験物質溶液 0. 2mL ;および 0. 5U/mL α—ダルコシダーゼ (東洋紡) 0. lmL。 ここで、 ct一ダルコシダーゼ の 1単位 (U) は、 上記の反応液を以下の標準反応条件において基質の非還 元性末端側から 1分間に 1 μπιοΐのグルコースを遊離する酵素量とする。 上 記反応液を 3 7°Cにて 1 5分間インキュベーションして、 酵素反応を進行さ せた。 2M T r i s溶液 (pH 7. 0) を 0. 5 mL加えて反応を停止 させた。 反応停止後の溶液 0. 0 2mLを採り、 発色試薬 (グルコース CII テストヮコ一;和光純薬) 3. ( mLを加えて混和し、 3 7 °Cにて 5分間ィ ンキュベーションし、 分光光度計 (Beckman) にて 5 0 5 nmで吸光度を測 定した。 測定はすべて 2回で行った。 (Example 1: Effect of shochu residue moromi on a-darcosidase activity) In each of production examples 1 to 4, lyophilized products of fractions having a molecular weight of 6◦00 or less of wheat, rice, rice bran, and soba shochu residue mash As a control, 10 mg of carboxyl (trade name Darkopai (registered trademark); Bayer) was taken as l Omg and dissolved in 1 mL of 0.02 M phosphate buffer to obtain a test substance solution. In order to investigate the effect of the test substance on α-darcosidase activity, a reaction solution having the following composition was prepared: 0.4% ρ-Nitrophenyl a-D-darcoviranoside (Wako Pure Chemical Industries) 0.2 mL; Substance solution 0.2 mL; and 0.5 U / mL α-Dalcosidase (Toyobo) 0.1 mL. Here, one unit (U) of ct-dalcosidase is the amount of enzyme that liberates 1 μπιοΐ of glucose per minute from the non-reducing terminal side of the substrate under the following standard reaction conditions. The above reaction solution was incubated at 37 ° C for 15 minutes to allow the enzyme reaction to proceed. The reaction was stopped by adding 0.5 mL of 2M Tris solution (pH 7.0). 0.02 mL of the solution after stopping the reaction is taken, and the coloring reagent (glucose CII test kit; Wako Pure Chemical Industries, Ltd.) 3. Add (mL) and mix for 5 minutes at 37 ° C. And the absorbance was measured with a spectrophotometer (Beckman) at 500 nm. All measurements were performed twice.
図 1は、 これらの焼酎残渣もろみの α—ダルコシダーゼ活性に対する阻害 率を示すグラフである。 ct一ダルコシダーゼ阻害が公知であるァカルボース の結果も併せて示す。 縦軸は α—ダルコシダーゼ活性の阻害率 (%) を表す。 いずれの焼酎残渣もろみも α—ダルコシダーゼ活性の阻害を示し、 特に麦焼 酎残渣もろみは、 60%を超える阻害を示した。  Fig. 1 is a graph showing the inhibition rate of these shochu residue moromi to α-darcosidase activity. The results of carbose, which is known to inhibit ct-dalcosidase, are also shown. The vertical axis represents the inhibition rate (%) of α-darcosidase activity. All shochu residue and moromi showed inhibition of α-darcosidase activity, and in particular, wheat shochu residue and mash showed inhibition of more than 60%.
(実施例 2 :焼酎残渣もろみの食後血糖値への影響) (Example 2: Effect of shochu residue moromi on postprandial blood glucose level)
7週齢の正常雄ラット (九動株式会社) を 1 2時間絶食させた。 絶食後、 対照群には、 2 g/k gのスクロースを経口摂取させ、 セルロース投与群に は、 2 g/k gのスクロースの経口摂取と共に 2 Omg/k gのセノレロース を胃内投与し、 ァカルボース投与群には、 2 gZk gのスクロースの経口摂 取と共に 2 Omg/k gのァカルボースを胃内投与し、 そして焼射残渣もろ み上清画分投与群には、 上記製造例 1の麦焼酎残渣もろみの分子量 6 000 以下の画分凍結乾燥物 20mgZk gを胃内投与した。 各群 5匹となるよう にした。 処理前、 処理 30分後、 6 0分後、 および 1 20分後の血糖値を測 定した。 ここでの血糖値は、 血清グルコース濃度である。  Seven-week-old normal male rats (Kudo Co., Ltd.) were fasted for 12 hours. After fasting, the control group was orally ingested with 2 g / kg of sucrose, and the cellulose-administered group was orally ingested with 2 g / kg of sucrose and 2 Omg / kg of cenorelose was intragastrically administered. In addition, 2 Omg / kg of carbose was administered intragastrically with 2 gZkg of sucrose, and the residue of the burning residue was mixed with the supernatant fraction. 20 mgZkg of a lyophilized fraction having a molecular weight of 6 000 or less was administered intragastrically. There were 5 animals in each group. Blood glucose levels were measured before treatment, 30 minutes, 60 minutes, and 120 minutes after treatment. The blood glucose level here is the serum glucose concentration.
図 2は、 スクロースを与えた後の各処理群における血糖値の経時変化を示 すグラフである。 横軸は食後時間 (分) 、 そして縦軸は血糖値 (血清ダルコ ース濃度: mgZmL) を表す。 図中、 黒丸は対照群、 白丸はセルロース投 与群、 白三角はァカルボース投与群、 そして白四角は焼酎残渣もろみ上清画 分投与群である。 スクロースを経口投与しただけの対照群では、 処理 30分 後までに血糖値が急激に上昇し、 それ以降は徐々に低下していく。 セルロー ス投与群もコントロール群と同様の傾向を示した。 これに対して、 ァカルボ ース投与群および焼酎残渣もろみ上清画分投与群では、 処理の 30分後に血 糖値は上昇するが、 その上昇はコンドロールに対して有意に低かった (図 2 中 * * ; r < 0 . 0 5 ) 。 FIG. 2 is a graph showing the change in blood glucose level over time in each treatment group after sucrose application. The horizontal axis represents the postprandial time (minutes), and the vertical axis represents the blood glucose level (serum darose concentration: mgZmL). In the figure, the black circle is the control group, the white circle is the cellulose administration group, the white triangle is the carbose administration group, and the white square is the shochu residue mash supernatant fraction administration group. In the control group in which sucrose was orally administered, the blood glucose level rapidly increased by 30 minutes after the treatment, and gradually decreased thereafter. The cellulose administration group showed the same tendency as the control group. In contrast, in the carbohydrate administration group and in the shochu residue mash supernatant fraction administration group, blood was 30 minutes after treatment. The sugar level increased, but the increase was significantly lower than that of chondrol (in Fig. 2, **; r <0. 05).
(実施例 3 :麦焼酎残渣もろみの a—ダルコシダーゼ活性阻害) (Example 3: Inhibition of barley shochu residue moromi a-darcosidase activity)
上記製造例 1で得られた麦焼酎残渣もろみの分子量 6 0 0 0以下;分子量 が 6 0 0 0を超えて 5 0 0 0 0以下;および分子量が 5 0 0 0 0を超える画 分の凍結乾燥物を用いて、 上記実施例 1に記載の手順に従って、 ひ一ダルコ シダーゼ活性に対する影響を調べた。  The molecular weight of the wheat shochu residue moromi obtained in Production Example 1 is not more than 600.000; the freezing of the fraction having a molecular weight of more than 60.000 and less than 5.000; and a molecular weight of more than 500.000 Using the dried product, the effect on the single dalcosidase activity was examined according to the procedure described in Example 1 above.
図 3は、 これらの麦焼酎残渣もろみ上清画分の a -ダルコシダーゼ活性に 対する阻害率を示すグラフである。 縦軸は a—ダルコシダーゼ活性の阻害率 (%) を表す。 図中、 分子量 6 0 0 0以下の画分を M. W. < 6 0 0 0 ;分 子量が 6 0 0 0を超えて 5 0 0 0 0以下の画分を 6 0 0 0く M. W. < 5 0 0 0 0 ;および分子量が 5 0 0 0 0を超える画分を 5 0 0 0ひく M. W. で 表す。 いずれの画分においても a—ダルコシダーゼ活性の阻害が示されたが、 分子量 6 0 0 0以下の画分で阻害率が特に高かつた。  FIG. 3 is a graph showing the inhibition rate for the a-darcosidase activity of the mash supernatant fraction of the wheat shochu residue. The vertical axis represents the inhibition rate (%) of a-darcosidase activity. In the figure, the fraction with a molecular weight of 6 0 0 0 or less is MW <6 0 0 0; the fraction with a molecular weight of more than 6 0 0 0 but less than 5 0 0 0 0 is 6 0 0 0 MW <5 0 0 0 0; and a fraction having a molecular weight exceeding 5 0 0 0 0 is represented by 5 0 0 0 minus MW. In any fraction, inhibition of a-darcosidase activity was shown, but the inhibition rate was particularly high in fractions having a molecular weight of 600 or less.
(実施例 4 :米焼酎残渣もろみの -ダルコシダーゼ活性阻害) Example 4: Rice shochu residue moromi-darcosidase activity inhibition
上記製造例 2で得られた米焼酎残渣もろみの分子量 6 0 0 0以下;分子量 が 6 0 0 0を超えて 5 0 0 0 0以下;および分子量が 5 0 0 0 0を超える画 分の凍結乾燥物を用いて、 上記実施例 1に記載の手順に従って、 a—ダルコ シダーゼ活性に対する影響を調べた。  The molecular weight of the rice shochu residue moromi obtained in Production Example 2 is not more than 600.000; the freezing of the fraction having a molecular weight of more than 60.000 and less than 5.000; and a molecular weight of more than 500.000 Using the dried product, the effect on a-darcosidase activity was examined according to the procedure described in Example 1 above.
図 4は、 これらの米焼射残渣もろみ上清画分の 一ダルコシダーゼ活性に 対する阻害率を示すグラフである。 縦軸は a—ダルコシダーゼ活性の阻害率 (%) を表す。 図中、 分子量 6 0 0 0以下の画分を M. W. < 6 0 0 0 ;分 子量が 6 0 0 0を超えて 5 0 0 0 0以下の画分を 6 0 0 0く M. W. く 5 0 0 0 0 ;および分子量が 5 0 0 0 0を超える画分を 5 0 0 0 0 < M. W. で 表す。 分子量 6 000以下の画分を含む全ての画分において、 5 0° /。を超え る a—ダルコシダーゼ活性阻害が見られた。 FIG. 4 is a graph showing the inhibition rate for the one dalcosidase activity of the mash residue obtained from the rice baking residue. The vertical axis represents the inhibition rate (%) of a-darcosidase activity. In the figure, the fraction with a molecular weight of 6 0 0 0 or less is MW <6 0 0 0; the fraction with a molecular weight of more than 6 0 0 0 but less than 5 0 0 0 0 is 6 0 0 0 MW + 5 0 0 0 0; and fractions with molecular weights greater than 5 0 0 0 0 at 5 0 0 0 0 <MW To express. In all fractions, including those with a molecular weight of 6 000 or less, 50 ° /. Inhibition of a-darcosidase activity was observed.
(実施例 5 :繊維性物質と組み合わせた焼酎残渣もろみの食後血糖値への 影響) (Example 5: Effect of shochu residue mash combined with fibrous substance on postprandial blood glucose level)
7週齢の正常雄ラット (九動株式会社) を 12時間絶食させた。 絶食後、 スクロース摂取群には、 2 g/k gのスクロースを経口摂取させ、 それ以外 には何も投与しなかった。 焼酎残渣もろみ上清画分投与群には、 2 gZk g のスクロースの経口摂取と共に、 5mgZk gの上記製造例 1の麦焼酎残渣 もろみの分子量 6000以下の画分凍結乾燥物を胃内投与し、 セルロース添 加群には、 2 g/k gのスクロースの経口摂取と共に、 5mgZk gの上記 製造例 1の麦焼酎残渣もろみの分子量 600◦以下の画分凍結乾燥物おょぴ その 5倍量のセルロースを混合して胃内投与し、 そして難消化デキストリン 添加群には、 5 m g Z k gの上記製造例 1の麦焼酎残渣もろみの分子量 60 00以下の画分凍結乾燥物およびその 5倍量の難消化デキストリンを混合し て胃内投与した。 各群 5匹となるようにした。 上記処理前および処理 30分 後の血糖値を測定した。 ここでの血糖値は、 血清グルコース濃度である。 図 5は、 スクロースを与えた後の各処理群における血糖値の経時変化を示 すグラフである。 縦軸は血糖値 (血清グルコース濃度 ·· mgZmL) を表す。 図中、 白丸はスクロース摂取群、 Xは麦焼射残渣もろみの分子量 6000以 下の画分凍結乾燥物を投与した群 (麦焼酎残渣もろみ上清画分投与群) 、 白 三角は上記製造例 1の麦焼酎残渣もろみの分子量 6000以下の画分凍結乾 燥物と共にセルロースを添加した群 (セルロース添加群) .、 そして白四角は 上記製造例 1の麦焼酎残渣もろみの分子量 6000以下の画分凍結乾燥物と 共に難消化デキストリンを添加した群 (難消化デキストリン添加群) である。 セルロース添加群および難消化デキストリン添加群は: 麦焼酎残渣もろみ上 清画分投与群に比較して、 食後の血糖値の上昇がさらに抑制されていた。 特 に、 麦焼酎残渣もろみ上清画分に難消化デキストリンを組み合わせることに より、 優れた血糖降下作用がみられた。 (実施例 6 :焼酎残渣もろみの組成解析) Seven-week-old normal male rats (Kudo Co., Ltd.) were fasted for 12 hours. After fasting, the sucrose intake group was orally given 2 g / kg sucrose and nothing else was administered. To the shochu residue mash supernatant fraction administration group, 2 gZk g of sucrose was orally ingested, and 5 mg Zkg of the wheat shochu residue mash fraction lyophilized fraction of the above production example 1 was intragastrically administered. In addition to the oral intake of 2 g / kg sucrose, the cellulose-added group includes 5 mg Zkg of the lyophilized fraction of the malt residue of the wheat shochu residue of Production Example 1 above, with a molecular weight of 600 ◦ or less. In the group to which indigestible dextrin was added, the fraction freeze-dried product having a molecular weight of 600 000 or less and 5 times the amount of difficult Digested dextrin was mixed and administered into the stomach. There were 5 animals in each group. The blood glucose level was measured before the treatment and 30 minutes after the treatment. The blood glucose level here is the serum glucose concentration. FIG. 5 is a graph showing the change in blood glucose level over time in each treatment group after sucrose application. The vertical axis represents the blood glucose level (serum glucose concentration · mgZmL). In the figure, the white circle is the sucrose intake group, X is the group administered with the freeze-dried fraction with a molecular weight of 6000 or less of the barley burning residue mash (the barley shochu residue mash supernatant fraction administration group), the white triangle is the above production example A group in which cellulose was added together with a fraction freeze-dried fraction with a molecular weight of 6000 or less of the wheat shochu residue mash (cellulose addition group). And the white square is a fraction with a molecular weight of 6000 or less of the mash of the wheat shochu residue in Production Example 1 above. This is a group to which indigestible dextrin is added together with the lyophilized product (indigestible dextrin added group). Cellulose added group and indigestible dextrin added group are: Compared with the clear fraction administration group, the increase in blood glucose level after meal was further suppressed. In particular, the combination of indigestible dextrin and the wheat flour shochu residue mash supernatant fraction showed an excellent hypoglycemic effect. (Example 6: Composition analysis of shochu residue moromi)
製造例 1の麦焼酎残渣もろみの分子量 6 0 0 0以下の画分の凍結乾燥物の 2 . O gを超純水 (millQ水) に溶かし、 シリカゲル (Silica Gel 60N (sph erical, neutral) , 63〜210 μ m;関東化学株式会社) l O gに吸着させて 乾燥させた。 2cm X 60cmのフィルター付き (No. 2) (VIDTEC社) のカラムに 約 5 0 gの上記シリ力ゲルを充填し、 シリカゲルを吸着させた上記麦焼射残 渣もろみをのせた。 単一溶媒 (CHC13:メタノール: 0=5:3 : 0. 4) を流し、 分画した。 各フラクションを薄層クロマトグラフィー (T L C : Partisil (登録商標) K5F Silica Gel 150 A、 20 X 20cm, Whatman) に付し、 発色剤 ( p—ァニスアルデヒド、 エタノール溶液、 東京化成工業株式会社) で嘖霧 して加熱し、 スポットを確認した。 同じ R f値のスポットを集めて濃縮し、 高速液体クロマトグラフィー (H P L C ) でさらに精製した。 Dissolve 2. O g of the lyophilized fraction of the molecular weight of the wheat shochu residue moromi of Production Example 1 in a fraction of 600 or less in ultrapure water (millQ water), silica gel (Silica Gel 60N (sph erical, neutral), 63-210 μm; Kanto Chemical Co., Ltd.) l O g was adsorbed and dried. A column of 2 cm X 60 cm with a filter (No. 2) (VIDTEC) was packed with about 50 g of the above-mentioned siri-force gel, and the above-mentioned wheat burning residue adsorbed with silica gel was placed on the mash. Single solvent (CHC1 3: methanol: 0 = 5: 3: 0.4) flowed was fractionated. Each fraction was subjected to thin layer chromatography (TLC: Partisil (registered trademark) K5F Silica Gel 150 A, 20 X 20 cm, Whatman), and with a color former (p-anisaldehyde, ethanol solution, Tokyo Chemical Industry Co., Ltd.) Fog and heated to confirm spot. Spots with the same R f value were collected, concentrated and further purified by high performance liquid chromatography (HPLC).
H P L Cは、 以下の条件下で実施した:  HPLC was performed under the following conditions:
使用機器:高速液体ク口マトグラフィー SHIMADZU LC-10A Equipment used: High-speed liquid mouthmatography SHIMADZU LC-10A
ポンプ: LC- 10AD X 2台  Pump: LC-10AD X 2 units
検出器: CDD-6A (conductivity detector)  Detector: CDD-6A (conductivity detector)
コントローラ : SCL— 10A  Controller: SCL—10A
カラムオーブン: CT0- 10A  Column oven: CT0-10A
ォートィンジェクタ一: SIL- 10A  Autoinjector: SIL-10A
クロマ卜ノ ック :  Chroma knock:
カラム: Shim- Pack SCR- 102H 300 X 8mm (内径) (島津製作所) Column: Shim- Pack SCR-102H 300 X 8mm (inner diameter) (Shimadzu Corporation)
移動相: 5mM p-トノレエンスノレホン酸 Mobile phase: 5 mM p-tonoreens norephonic acid
流速: 0. 8mLZ分 Flow rate: 0.8mLZ min
温度: 45 °C Temperature: 45 ° C
分析時間: 40分 Analysis time: 40 minutes
検出: conductivity Detection: conductivity
検出はボストカラム緩種 ί化法による  Detection is by column column loose seed purification method.
緩衝液: 5mM p-トルエンスルホン酸および 100 μΜ EDTA含 有、 20mM Bis - Tris溶液  Buffer: 20 mM Bis-Tris solution with 5 mM p-toluenesulfonic acid and 100 μΜ EDTA
流速: 0. 8mL/分  Flow rate: 0.8mL / min
Polarity: +  Polarity: +
Response: slow  Response: slow
検体は、 試料 2. Omgを 2000 μ Lの millQ水に溶解し、 さらにこれ を 0. 45 μπιメンブレンフィルタ一にて濾過して調製した。 インジェクシ ョン量は 10 μ Lであった。  The specimen was prepared by dissolving Sample 2. Omg in 2000 μL of millQ water and filtering it through a 0.45 μπι membrane filter. The injection volume was 10 μL.
HPLCの結果、 画分 1-2〜1-3のピークが得られた。 得られたピークを 標準液チャートのピークと比較して成分およびその含有量を決定した。 標準 液チャートの作成のために以下の有機酸の標準液を用い、 10 μ Lをインジ ェタトした: リン酸 (546. 9mg/L) 、 クェン酸 (220. 6mg/ L) 、 リンゴ酸 (220. 4mg/L) 、 コハク酸 (298. 8mg/L) 、 乳酸 (606. 0mg/L) 、 酢酸 (575. 9mg/L) 、 ピログルタミ ン酸 (288. 5mg/L) 、 ピルビン酸 (218. 4mg/L) 。 この結 果、 f r 1一 2〜 1一 3の 1 mg中にコハク酸 0· 693 nx g、 ピログルタ ミン酸 0. 068mg、 およびピルビン酸 0. 014mgが含まれているこ とが判明した (約 25%存在する残余分は不明) 。 さらに、 上記実施例 1に 記載の手順に従って、 コハク酸、 ピログルタミン酸、 およびピルビン酸の 一ダルコシダーゼ活性に対する影響を調べたところ、 これらがダルコシダー ゼ阻害活性を有することを確認した (コハク酸: I C 50 4. 99mg/ mL、 およびピログルタミン酸: I C 50 7. 38mgZmL、 ピルビン 酸: I C 50 4. 84mgZmL) 。 As a result of HPLC, peaks of fractions 1-2 to 1-3 were obtained. The obtained peak was compared with the peak of the standard solution chart to determine the component and its content. To prepare the standard solution chart, the following organic acid standard solutions were used and 10 μL was injected: phosphoric acid (546. 9 mg / L), citrate (220. 6 mg / L), malic acid (220 4 mg / L), succinic acid (298. 8 mg / L), lactic acid (606.0 mg / L), acetic acid (575. 9 mg / L), pyroglutamic acid (288. 5 mg / L), pyruvic acid (218. 4mg / L). As a result, it was found that 1 mg of fr 1 1-2 1-2 1 contained succinic acid 0 · 693 nx g, pyroglutamic acid 0.068 mg, and pyruvic acid 0.004 mg (about The remaining 25% is unknown). Furthermore, according to the procedure described in Example 1 above, the effects of succinic acid, pyroglutamic acid, and pyruvic acid on the activity of one darcosidase were examined. It was confirmed to have an inhibitory activity (succinic acid: IC 50 4.99 mg / mL, and pyroglutamic acid: IC 50 7.38 mgZmL, pyruvate: IC 50 4.84 mgZmL).
(実施例 7 :焼酎残渣もろみの種々の糖分解酵素の活性に対する影響) (7-1. インベルターゼ (スクラーゼ) 阻害活性) (Example 7: Effect of shochu residue moromi on activity of various glycolytic enzymes) (7-1. Invertase (sucrase) inhibitory activity)
検体溶液を、 製造例 1の麦焼酎残渣もろみの分子量 6000以下の画分 1 O OmgZmU O. 1M酢酸緩衝液 (pH5. 0) (以下の溶液において も溶媒として使用) を加えて種々の濃度に調整した。 基質として 5°/0スクロ ース溶液をそして酵素液として 0. 5U/mLィンベルターゼを用いた。 基質 0. 2mL、 酵素液 0. lmL、 および検体溶液 0. 2mLを混合し て 37°Cにて 15分間ィンキュベートした。 その後、 90°C以上での水浴で 10分間加熱し、 反応を停止させた。 反応後の液から 0. 05mLを採り、 発色試薬 (グルコース CIIテストヮコ一;和光純薬) 3. OmLを加え、 混 和後、 37°Cにて 5分間インキュベートし、 分光光度計 (Beckman) にて 5 05 nmで吸光度を測定した。 測定はすべて 2回で行った。 その結果、 検体 溶液の濃度の増大と共に酵素活性の阻害が見られた。 検体溶液の濃度が 40 mg/mLの場合、 阻害率は約 70 %程度であつた。 Add the sample solution to the various concentrations by adding the fraction 1O OmgZmU O. 1M acetic acid buffer (pH 5.0) (also used as a solvent in the following solutions) to the molecular weight of the wheat shochu residue mash in Production Example 1 below 6000 It was adjusted. A 5 ° / 0 sucrose solution was used as a substrate, and 0.5 U / mL invertase was used as an enzyme solution. The substrate (0.2 mL), the enzyme solution (0.1 mL), and the sample solution (0.2 mL) were mixed and incubated at 37 ° C for 15 minutes. Thereafter, the reaction was stopped by heating in a water bath at 90 ° C or higher for 10 minutes. Take 0.05 mL of the solution after the reaction and add a coloring reagent (glucose CII test kit; Wako Pure Chemicals) 3. Add OmL, mix, incubate at 37 ° C for 5 minutes, and place in spectrophotometer (Beckman). The absorbance was measured at 5 05 nm. All measurements were performed twice. As a result, inhibition of enzyme activity was observed as the concentration of the sample solution increased. When the concentration of the sample solution was 40 mg / mL, the inhibition rate was about 70%.
(7-2. アミラーゼ阻害活性) (7-2. Amylase inhibitory activity)
アミラーゼ測定キット (キッコーマン社) を用いて、 プロトコルを以下の ように改変して、 α—アミラーゼ阻害活性を測定した。 検体溶液は、 製造例 1の麦焼酎残渣もろみの分子量 6000以下の画分 10 OmgZmLに 10 mM酢酸緩衝液 (pH5. 0) (以下の溶液においても溶媒として使用) を 加えて種々の濃度に調整した。 基質として 2 -クロロ- 4-ニトロフ; ϋ二ル- 6 -ァ ジド- 6-デォキシ- マルトペンタオシドの溶液、 発色用酵素液としてグル コアミラーゼおよび /3—ダルコシダーゼの溶液、 試験酵素液として 0. 28 U/mLのァスペルギルス ·ォリゼ a—アミラーゼ溶液を調製した。 Using an amylase measurement kit (Kikkoman), the protocol was modified as follows, and α-amylase inhibitory activity was measured. The sample solution was adjusted to various concentrations by adding 10 mM acetate buffer (pH 5.0) (also used as a solvent in the following solutions) to fraction 10 OmgZmL of molecular weight of 6000 or less of the wheat shochu residue mash in Production Example 1. did. 2-Chloro-4-nitroph as substrate; Nyl-6-azido-6-deoxy-maltopentaoside solution, Glue as coloring enzyme solution As a solution of core amylase and / 3-darcosidase and a test enzyme solution, a 0.28 U / mL Aspergillus oryzae a-amylase solution was prepared.
まず、 基質溶液 25 Lと発色用酵素液 25 μ Lとをプレートにいれ、 次 いで検体溶液 25 μ Lを添カ卩し、 次いで、試験酵素液の α—ァミラーゼ溶液 25 Lを添加し、 37 °Cにて 1 5分間インキュベートした。 その後、 炭酸 ナトリゥム溶液 100 しを添加して反応を停止させた。 分光光度計 (Beckm an) にて、 プレートリーダーのフイノレターは 405 nmを用いて 400 nm で吸光度を測定した。 測定はすべて 2回で行った。  First, add 25 L of the substrate solution and 25 μL of the coloring enzyme solution to the plate, then add 25 μL of the sample solution, and then add 25 L of the α-amylase solution of the test enzyme solution. Incubated at ° C for 15 minutes. Thereafter, 100 sodium carbonate solution was added to stop the reaction. Absorbance was measured at 400 nm with a spectrophotometer (Beckman) using 405 nm as a plate reader. All measurements were performed twice.
その結果、 検体溶液の濃度の増大と共に酵素活性の阻害が見られた。 対照 として用いたァカルボース (商品名ダルコバイ (登録商標) ;バイエル) は、 0. 003mgZmLの濃度で約 50. 5 1 %の α—アミラーゼ活性阻害率 を示した。 検体溶液では 5 m g Zm Lの濃度で約 43 %の阻害率であった。 ァカルボースに比較すると、 α—アミラーゼ阻害活性は著しく低かった。 (実施例 8 :焼酎残渣もろみの食後血糖値への影響) ' As a result, inhibition of enzyme activity was observed as the concentration of the sample solution increased. As a control, carbose (trade name Dalcobay (registered trademark); Bayer) exhibited an α-amylase activity inhibition rate of about 50.5% at a concentration of 0.003 mgZmL. In the sample solution, the inhibition rate was about 43% at a concentration of 5 mg ZmL. Compared with carbose, α -amylase inhibitory activity was remarkably low. (Example 8 : Effect of shochu residue moromi on postprandial blood glucose level) '
焼酎残渣もろみの食後血糖値への影響を調べるに際してボランティアを募 集し、 20歳以上 50歳未満の男女 7名を登録した (男性 1名;女性 6名; 全員の平均年齢 33. 4±6. 6歳) 。 登録にあたっては糖尿病の既往歴が ないことおよび試験時に特別な疾病等を有していないことを条件とし、 責任 医師による総合診断を受けた。 ここで、 特別な疾病等とは、 1) 重篤な肝 · 腎 -心機能障害、 2) 薬剤過敏体質、 3) 判断能力に欠ける精神障害や意識 障害、 4) 妊婦、 授乳婦および本試験中に妊娠する計画のある者、 5) その 他、 担当医が本試験に不適当と判断した者を指す。  Volunteers were recruited to examine the effects of shochu residue moromi on postprandial blood glucose levels, and 7 men and women aged 20 to under 50 years were registered (1 male; 6 females; average age of all 33.4 + 6) 6 years old). The registration was conducted under the condition that there was no history of diabetes and that the patient had no special illness at the time of the examination, and received a comprehensive diagnosis by the responsible physician. Special diseases include 1) severe liver / kidney-cardiac dysfunction, 2) drug sensitivity, 3) mental or mental disabilities that lack judgment ability, 4) pregnant women, lactating women and this study 5) Others who are determined to be inappropriate for this study by the attending physician.
被験物質は、 製造例 1の麦焼酎残渣もろみの分子量 6000以下の画分を 用いた。 被験者は、 試験開始前 10時間絶食し (自由飲水) 、 試験開始に際し て 25 gのスクロース (和光純薬株式会社) 負荷と同時に、 O g (対照) 、 0. l gまたは 0· 5 gの被験物質を服用投与した。 スクロース負荷おょぴ 被験物質投与前、 被験物質投与 30分後および 60分後の血糖値を測定した。 また、 O g投与時 (対照) および 0. 5 g投与時には、 投与前および投与後 30分に血液検査用の採血も実施した。 なお、 各試験の間は 24時間以上の間 隔で行うものとし、 被験者への過剰な摂食抑制は避けた。 As a test substance, a fraction having a molecular weight of 6000 or less of the wheat shochu residue mash of Production Example 1 was used. Subjects fasted for 10 hours before the start of the test (free drinking), and at the start of the test, 25 g of sucrose (Wako Pure Chemical Industries, Ltd.) was loaded at the same time as O g (control), 0. lg or 0.5 g test substance was taken and administered. Sucrose loading was measured before administration of the test substance, and 30 and 60 minutes after administration of the test substance. At the time of O g administration (control) and 0.5 g administration, blood was collected for blood tests before and 30 minutes after administration. Each test was performed at intervals of 24 hours or longer, and excessive suppression of food intake was avoided.
全ての検査項目について、 平均値および標準偏差を求め、 投与前後の差は Student t検定を行った。 なお、 有意差検定はいずれの場合も有意差水準は 5%以下とした。  For all test items, mean values and standard deviations were obtained, and differences before and after administration were subjected to Student t test. In all cases, the significance level was 5% or less.
用量作用に関する血糖値についての結果を図 6に示す。 図 6では、 測定値 を、 スクロース負荷前の血糖値を 100%とした相対値で表す。 図中、 黒丸 は対照、 三角は被験物質 0. 1 g投与、 そして白丸は被験物質 0. 5 g投与 を表す。 25 gスクロースの負荷によって、 被験物質の O g投与 (対照) で は、 30分後には血糖値は 30 %程度上昇し、 60分後でも 10 %以上上昇 したままであった。 これに対して、 被験物質 0. 1 g投与では、 投与 30分 後および 60分後共に、 対照よりも有意に低い値を示した (Pく 0. 05) 。 被験物質の量を 0. 5 gまで増加させたが、 0. l gの場合と差は生じなか つた。 これは、 血糖上昇レベルが、 0. 1 g投与で 10%増加程度まで抑え られていることから、 用量作用関係が見え難くなつているためと考えられる。 上記図 6の試験とは異なった日に、 被験物質 O g投与時 (対照) および 0. 5 g投与時における血糖値の経時変化を測定した。 その結果を、 スクロース 負荷前の血糖値を 100%とした相対値に換算して図 7に示す。 図中、 黒丸 は対照、 そして白丸は被験物質 0. 5 g服用を表す。 投与 30分後では、 2 5 gスクロースの負荷によって生じた約 30%の血糖上昇が、 被験物質 0. 5 g投与によって 16%程度まで減少した。 ただし、 両群の間に統計的有意 差は観察されなかった。 なお、 両群とも投与後 120分では血糖値は空腹時 レベル (スクロース負荷前) まで戻った。 さらに、 被験物質 O g投与時 (対照) および 0 . 5 g投与時に、 投与前お よび投与後 3 0分の時点でそれぞれ採血を行い、 血中ィンスリン濃度を測定 した。 その結果を図 8に示す。 2 5 gスクロース負荷によって血中インスリ ン濃度は上昇したが、 このインスリン濃度上昇には、 被験物質は影響を与え なかった。 産業上の利用可能性 Figure 6 shows the results of blood glucose levels related to dose effects. In Fig. 6, the measured values are expressed as relative values with the blood glucose level before sucrose loading as 100%. In the figure, black circles represent controls, triangles represent test substance 0.1 g administration, and white circles represent test substance 0.5 g administration. With 25 g sucrose loading, the test substance O g administration (control) increased the blood glucose level by approximately 30% after 30 minutes, and remained elevated by more than 10% after 60 minutes. In contrast, 0.1 g of the test substance showed significantly lower values than the control at both 30 minutes and 60 minutes after administration (P 0.05). The amount of the test substance was increased to 0.5 g, but there was no difference from the case of 0.1 lg. This is thought to be because it is difficult to see the dose-response relationship because the blood glucose elevation level was suppressed to an increase of about 10% after administration of 0.1 g. On the day different from the test of FIG. 6 above, changes in blood glucose level over time were measured at the time of test substance O g administration (control) and 0.5 g administration. The results are shown in FIG. 7 in terms of relative values with the blood glucose level before sucrose loading as 100%. In the figure, black circles represent controls, and white circles represent 0.5 g of the test substance. 30 minutes after administration, the increase in blood glucose of about 30% caused by loading with 25 g sucrose was reduced to about 16% by administration of 0.5 g of the test substance. However, no statistically significant difference was observed between the two groups. In both groups, blood glucose levels returned to fasting levels (before sucrose loading) 120 minutes after administration. Furthermore, blood was collected at the time of administration of the test substance O g (control) and at the time of 0.5 g, at 30 minutes before administration and at 30 minutes after administration, and the blood insulin concentration was measured. The results are shown in Fig. 8. The blood insulin concentration increased with the 25 g sucrose load, but the test substance did not affect this increase in insulin concentration. Industrial applicability
本発明の α—ダルコシダーゼ阻害剤は、 糖尿病およびその合併症の治療ま たは予防のために有用である。 また、 本発明によれば、 環境上の問題が議論 されてきた、 焼酎の製造において通常廃棄される焼射残渣もろみを有効利用 することができる。 The α -darcosidase inhibitor of the present invention is useful for the treatment or prevention of diabetes and its complications. In addition, according to the present invention, it is possible to effectively use the residue of fired residue that is normally discarded in the production of shochu, where environmental problems have been discussed.

Claims

請求の範囲 The scope of the claims
1 . 焼酎残渣もろみの濃縮ェキスまたは該焼酎残渣もろみの濾液もしくは上 清の濃縮エキスを有効成分として含む α _ダルコシダーゼ阻害剤。 1. Shochu residue _ Darukoshidaze inhibitors α comprising as an active ingredient concentrated Ekisu or the shochu residue mash filtrate or supernatant in the concentrated extract of the mash.
2 . 前記濃縮エキスが、 焼酎残渣もろみの濾液もしくは上清から得られる分 子量 6 0 0 0以下の画分である、 請求項 1に記載の a—ダルコシダーゼ阻害 剤。 2. The a-darcosidase inhibitor according to claim 1, wherein the concentrated extract is a fraction having a molecular weight of 600 or less obtained from a shochu residue mash filtrate or supernatant.
3 . 焼酎残渣もろみの濃縮ェキスまたは該焼酎残渣もろみの濾液もしくは上 清の濃縮エキスと繊維性物質とを有効成分として含む、 血糖降下剤。 3. A hypoglycemic agent comprising, as an active ingredient, a concentrated extract of shochu residue mash or a filtrate or supernatant extract of the shochu residue mash and a fibrous substance.
PCT/JP2008/051142 2007-01-22 2008-01-21 Glucosidase inhibitor WO2008090999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538065A JP4947812B2 (en) 2007-01-22 2008-01-21 Glucosidase inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007011751 2007-01-22
JP2007-011751 2007-01-22

Publications (1)

Publication Number Publication Date
WO2008090999A1 true WO2008090999A1 (en) 2008-07-31

Family

ID=39644572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051142 WO2008090999A1 (en) 2007-01-22 2008-01-21 Glucosidase inhibitor

Country Status (2)

Country Link
JP (1) JP4947812B2 (en)
WO (1) WO2008090999A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213021A (en) * 2012-03-08 2013-10-17 Up Well:Kk Anti-saccharifying agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231499A (en) * 2000-02-18 2001-08-28 Fancl Corp Food composition
JP2002027978A (en) * 2000-07-14 2002-01-29 Nippon Synthetic Chem Ind Co Ltd:The Method for producing alpha-glucosidase inhibitor
JP2002027979A (en) * 2000-07-14 2002-01-29 Nippon Synthetic Chem Ind Co Ltd:The Method for producing alpha-glucosidase inhibitor
JP2002371003A (en) * 2001-06-15 2002-12-26 Kikkoman Corp Inhibitor against blood sugar level increase
JP2005224205A (en) * 2004-02-16 2005-08-25 Hokko Chem Ind Co Ltd Health food

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287454A (en) * 2004-04-02 2005-10-20 Matsutani Chem Ind Ltd Food and beverage for imparting health function and method for imparting health function to food and beverage
JP2006347967A (en) * 2005-06-16 2006-12-28 Yuusu Techno Corporation:Kk Blood sugar value rise suppressant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231499A (en) * 2000-02-18 2001-08-28 Fancl Corp Food composition
JP2002027978A (en) * 2000-07-14 2002-01-29 Nippon Synthetic Chem Ind Co Ltd:The Method for producing alpha-glucosidase inhibitor
JP2002027979A (en) * 2000-07-14 2002-01-29 Nippon Synthetic Chem Ind Co Ltd:The Method for producing alpha-glucosidase inhibitor
JP2002371003A (en) * 2001-06-15 2002-12-26 Kikkoman Corp Inhibitor against blood sugar level increase
JP2005224205A (en) * 2004-02-16 2005-08-25 Hokko Chem Ind Co Ltd Health food

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213021A (en) * 2012-03-08 2013-10-17 Up Well:Kk Anti-saccharifying agent

Also Published As

Publication number Publication date
JP4947812B2 (en) 2012-06-06
JPWO2008090999A1 (en) 2010-05-20

Similar Documents

Publication Publication Date Title
US11382341B2 (en) Process for preparing a beverage or beverage component from brewer&#39;s spent grains
KR101925096B1 (en) A manufacturing method of hangover-eliminating enzyme powder and a composition for relieving hangover comprising thereof
TWI380823B (en) An agent for rising concentration of adiponectin
KR102244586B1 (en) Method for preparing oat powder
WO2011039999A1 (en) Composition having lipolysis-promoting effect
US20030211176A1 (en) Sugar decomposition inhibitor, digestive enzyme activity inhibitor, insulin secretion controller, and healthy food and beverage
Perumpuli et al. Vinegar: a functional ingredient for human health.
KR20200111664A (en) Composition for Anti-Diabetes Using an Extract of Lespedeza cuneata Obtained Using a Mixed Solvent of Water and Enthanol
JPH0940566A (en) Treating agent for diabetic and immunopotentiator produced from lactobacillus fermentation product
JP2002371003A (en) Inhibitor against blood sugar level increase
JP4947812B2 (en) Glucosidase inhibitor
KR100787003B1 (en) Lipase inhibitor including extract of gardenia, functional food and medical composition including the lipase inhibitor
US9700576B2 (en) Combination of anticholesterolemic fiber
JP2001145472A (en) Composition having fatty liver-suppressing activity fractionated from residual liquid of barley shochu liquor distillation and production of the same composition
JP2006001922A (en) Allergy inhibitory composition
JP7355319B2 (en) Anti-fatigue composition containing an IL-1β and/or IL-6 expression inhibitor for preventing and/or improving fatigue caused by intracerebral inflammation and its use
JPH092963A (en) Glucide hydrolase inhibitor obtained from endhedra herb and diet food containing the same
JP2012006865A (en) Adiponectin production promoter
KR102158337B1 (en) Composition for preventing, ameliorating or treating fatty liver disease comprising vinegar of Kalopanax septemlobus as effective component
JP6026148B2 (en) NO production promoting composition and chilling improving agent containing the same
US20230277573A1 (en) Oligosaccharide compositions and methods of use
KR101904087B1 (en) Fermented sorghum for preventing or treating inflammatory disease
US20220195475A1 (en) Hydrolysis of brewer&#39;s spent grain
KR100656086B1 (en) alpha-glucosidase inhibitor
JP2010280640A (en) Substance for preventing colon cancer containing insoluble dietary fiber of cereal plant seed origin

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008538065

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08703954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08703954

Country of ref document: EP

Kind code of ref document: A1