JPWO2008062553A1 - Method for producing cyclic olefin - Google Patents

Method for producing cyclic olefin Download PDF

Info

Publication number
JPWO2008062553A1
JPWO2008062553A1 JP2008545308A JP2008545308A JPWO2008062553A1 JP WO2008062553 A1 JPWO2008062553 A1 JP WO2008062553A1 JP 2008545308 A JP2008545308 A JP 2008545308A JP 2008545308 A JP2008545308 A JP 2008545308A JP WO2008062553 A1 JPWO2008062553 A1 JP WO2008062553A1
Authority
JP
Japan
Prior art keywords
compound
dicarboxylic acid
cyclic olefin
group
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008545308A
Other languages
Japanese (ja)
Other versions
JP5248322B2 (en
Inventor
陽 松浦
松浦  陽
植田 直浩
直浩 植田
敦生 小畑
敦生 小畑
深田 功
深田  功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2008545308A priority Critical patent/JP5248322B2/en
Publication of JPWO2008062553A1 publication Critical patent/JPWO2008062553A1/en
Application granted granted Critical
Publication of JP5248322B2 publication Critical patent/JP5248322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

下記一般式(1)で表される脂環式ジカルボン酸無水物を、配位子となりうる化合物の共存下でニッケル錯体を触媒として脱カルボニル、脱炭酸し、下記一般式(2)で表される環状オレフィン化合物を製造する方法であって、前記反応は、生成した前記環状オレフィン化合物を反応系外に除去しながら行なうことを特徴とする。The alicyclic dicarboxylic acid anhydride represented by the following general formula (1) is decarbonylated and decarboxylated using a nickel complex as a catalyst in the presence of a compound that can be a ligand, and represented by the following general formula (2). In the method for producing a cyclic olefin compound, the reaction is carried out while removing the produced cyclic olefin compound from the reaction system.

Description

本発明は、脂環式ジカルボン酸無水物から環状オレフィンを製造する方法に関するものである。   The present invention relates to a method for producing a cyclic olefin from an alicyclic dicarboxylic acid anhydride.

環状オレフィンは、エチレンなどの低級オレフィンとの共重合や開環メタセシス重合により得られるCOCの原料として有用である。環状オレフィンの製造法に関しては多くの方法が知られているが、その中で(1)脂環式ジカルボン酸無水物の脱カルボニル、脱炭酸反応、あるいは(2)脂環式ジカルボン酸無水物の加水分解によって得られるジカルボン酸誘導体の酸化的脱炭酸反応がある。   The cyclic olefin is useful as a raw material for COC obtained by copolymerization with a lower olefin such as ethylene or ring-opening metathesis polymerization. There are many known methods for producing cyclic olefins, including (1) decarbonylation and decarboxylation of alicyclic dicarboxylic acid anhydrides, or (2) alicyclic dicarboxylic acid anhydrides. There is an oxidative decarboxylation reaction of a dicarboxylic acid derivative obtained by hydrolysis.

これらの反応の原料となる脂環式ジカルボン酸無水物は、共役ジエン化合物と無水マレイン酸類とのDiels−Alder反応によって得ることができる。一般にDiels−Alder反応において無水マレイン酸類は高い反応性を示すことから、付加体が良好な収率で得られる場合が多い。したがってこれらの脂環式ジカルボン酸無水物あるいはそれらの加水分解によって得られるジカルボン酸誘導体から効率良く脱カルボニルあるいは脱炭酸を行なうことができれば、種々のジエン化合物と無水マレイン酸類との組み合わせにより多様な構造をもつ環状オレフィンを高収率で合成することが期待できる。   The alicyclic dicarboxylic acid anhydride used as a raw material for these reactions can be obtained by a Diels-Alder reaction between a conjugated diene compound and maleic anhydrides. In general, maleic anhydrides are highly reactive in the Diels-Alder reaction, so that adducts are often obtained in good yields. Therefore, if the decarbonylation or decarboxylation can be efficiently performed from these alicyclic dicarboxylic acid anhydrides or dicarboxylic acid derivatives obtained by hydrolysis thereof, various structures can be obtained by combining various diene compounds and maleic anhydrides. It can be expected to synthesize cyclic olefins having a high yield.

しかしながら(1)、(2)のいずれの公知方法も環状オレフィンを工業的に有利に製造するには問題点が多い。   However, both of the known methods (1) and (2) have many problems in producing a cyclic olefin industrially advantageously.

(1)の方法としては、例えばJ.Org.Chem.,41,887(1975)記載のニッケルカルボニル錯体を用いる方法が挙げられるが、高価なニッケルカルボニル錯体を1当量以上必要とするという問題がある。触媒量のニッケルカルボニル錯体を用いた例(J.Org.Chem.,43,3074(1978))もあるが、触媒量は原料酸無水物に対して20mol%と多く、また溶媒を厳密に精製し、触媒も使用前に新たに調製したものを使用しなければならないなど満足し得るものではない。   As a method of (1), for example, J.A. Org. Chem. , 41, 887 (1975). However, there is a problem that one equivalent or more of an expensive nickel carbonyl complex is required. There is also an example using a catalytic amount of nickel carbonyl complex (J. Org. Chem., 43, 3074 (1978)), but the catalytic amount is as high as 20 mol% with respect to the raw acid anhydride, and the solvent is strictly purified. However, it is not satisfactory that the catalyst must be newly prepared before use.

(2)の方法としては、例えば(a)J.Am.Chem.Soc.,74,4370(1952)記載の酸化鉛(IV)を用いる方法、(b)Org.React.,19,279(1972)記載の酢酸鉛(IV)を用いる方法、(c)(Tetrahedron Lett.,4447(1976)記載の酸化銅(I)と2,2'−ビピリジルを用いる方法、(d)Tetrahedron Lett.,5117(1968)記載の電気分解による方法などが挙げられる。   As a method of (2), for example, (a) J. et al. Am. Chem. Soc. , 74, 4370 (1952), (b) Org. React. , 19, 279 (1972), using lead acetate (IV), (c) (Tetrahedron Lett., 4447 (1976) using copper (I) oxide and 2,2′-bipyridyl, ) Electrolytic method described in Tetrahedron Lett., 5117 (1968).

しかしながら、これらの方法も様々な問題点を有している。
(a)では毒性の高い酸化鉛(IV)を原料であるジカルボン酸に対して1当量以上必要とする上に収率が非常に低いという問題がある。
However, these methods also have various problems.
In (a), there is a problem that one or more equivalents of highly toxic lead (IV) oxide is required with respect to the raw material dicarboxylic acid and the yield is very low.

(b)では、(a)に比して収率は高いものの、転位反応が起こりやすいため満足し得るものとは言えず、同様に毒性の高い酢酸鉛(IV)を原料ジカルボン酸に対して1当量以上必要とするという問題がある。   In (b), although the yield is higher than in (a), it cannot be said to be satisfactory because the rearrangement reaction easily occurs. Similarly, highly toxic lead (IV) is used with respect to the raw dicarboxylic acid. There is a problem that one equivalent or more is required.

(c)においても原料ジカルボン酸に対して酸化銅(I)を2当量以上、2,2'−ビピリジルを1当量以上必要とするという問題がある。   Even in (c), there is a problem that 2 equivalents or more of copper oxide (I) and 1 equivalent or more of 2,2′-bipyridyl are required for the raw material dicarboxylic acid.

(d)では電極に高価な白金を用いる必要があり、また反応液中の原料濃度が高いと生成物の収率が極端に低下するため希薄条件下で行なわなければならず、工業的規模で行うには生産効率が悪いなどの問題を有している。   In (d), it is necessary to use expensive platinum for the electrode, and if the raw material concentration in the reaction solution is high, the yield of the product is extremely reduced, so it must be performed under dilute conditions. To do so, it has problems such as poor production efficiency.

このように何れの方法も高価な原料、あるいは設備を必要とするためコストがかかる上、生成物の分離精製が煩雑であるという問題を有しており、さらに多量の廃棄物を排出するため環境問題の観点からも好ましいものではない。
J.Org.Chem.,41,887(1975) J.Org.Chem.,43,3074(1978) J.Am.Chem.Soc.,74,4370(1952) Org.React.,19,279(1972) Tetrahedron Lett.,4447(1976) Tetrahedron Lett.,5117(1968)
As described above, each method requires expensive raw materials or equipment, which is costly and has a problem that the separation and purification of the product is complicated, and further, a large amount of waste is discharged. It is not preferable from the viewpoint of the problem.
J. et al. Org. Chem. , 41, 887 (1975) J. et al. Org. Chem. , 43, 3074 (1978) J. et al. Am. Chem. Soc. , 74, 4370 (1952) Org. React. , 19, 279 (1972) Tetrahedron Lett. , 4447 (1976) Tetrahedron Lett. , 5117 (1968)

しかして、本発明の目的は、前記従来技術に鑑み、COCなどのポリオレフィンの原料として有用な環状オレフィンを、工業的に有利に製造する方法を提供することにある。   Therefore, in view of the prior art, an object of the present invention is to provide a method for industrially advantageously producing a cyclic olefin useful as a raw material for polyolefin such as COC.

本発明者らは、前記の課題を解決するため鋭意検討を重ねた結果、脂環式ジカルボン酸無水物の脱カルボニル、脱炭酸反応によって環状オレフィンを製造する方法において、配位子となりうる化合物の共存下でニッケル錯体を触媒として使用し、生成する環状オレフィンを反応系外に除去することにより、高い選択率で、高純度の環状オレフィンを製造することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies in order to solve the above-mentioned problems, the present inventors have found that a compound that can be a ligand in a method for producing a cyclic olefin by decarbonylation and decarboxylation of an alicyclic dicarboxylic acid anhydride. By using a nickel complex as a catalyst in the coexistence and removing the generated cyclic olefin out of the reaction system, it was found that it is possible to produce a high-purity cyclic olefin with high selectivity. It came to be completed.

すなわち、本発明は、以下の(1)〜(9)に記載されるとおりである。   That is, the present invention is as described in the following (1) to (9).

(1)一般式(1)   (1) General formula (1)

Figure 2008062553
Figure 2008062553

(式中、Xは環を形成するのに必要な非金属原子群を、RおよびR'は各々独立して水素原子または置換基を有することのある炭化水素基を表す。)で表される脂環式ジカルボン酸無水物を、配位子となりうる化合物の共存下でニッケル錯体を触媒として脱カルボニル、脱炭酸し、一般式(2) (Wherein X represents a nonmetallic atom group necessary for forming a ring, and R and R ′ each independently represent a hydrogen atom or a hydrocarbon group which may have a substituent). An alicyclic dicarboxylic acid anhydride is decarbonylated and decarboxylated using a nickel complex as a catalyst in the presence of a compound capable of acting as a ligand.

Figure 2008062553
Figure 2008062553

(式中、Xは環を形成するのに必要な非金属原子群を、RおよびR'は各々独立して水素原子または置換基を有することのある炭化水素基を表す。)で表される環状オレフィン化合物を製造する方法であって、
前記反応は、生成した前記環状オレフィン化合物を反応系外に除去しながら行なうことを特徴とする環状オレフィン化合物の製造方法。
(Wherein X represents a nonmetallic atom group necessary for forming a ring, and R and R ′ each independently represent a hydrogen atom or a hydrocarbon group which may have a substituent). A method for producing a cyclic olefin compound comprising:
The said reaction is performed, removing the produced | generated said cyclic olefin compound out of the reaction system, The manufacturing method of the cyclic olefin compound characterized by the above-mentioned.

(2)前記ニッケル錯体1モルに対し、配位子となりうる前記化合物を10〜500モル用いる(1)に記載の環状オレフィン化合物の製造方法。   (2) The manufacturing method of the cyclic olefin compound as described in (1) using 10-500 mol of said compounds which can become a ligand with respect to 1 mol of said nickel complexes.

(3)配位子となりうる前記化合物が含リン化合物である(1)または(2)に記載の製造方法。   (3) The production method according to (1) or (2), wherein the compound that can be a ligand is a phosphorus-containing compound.

(4)配位子となりうる前記化合物は、一般式(5)または(6)で表されることを特徴とする(1)乃至(3)のいずれかに記載の環状オレフィン化合物の製造方法;   (4) The method for producing a cyclic olefin compound according to any one of (1) to (3), wherein the compound that can be a ligand is represented by the general formula (5) or (6);

Figure 2008062553
Figure 2008062553

(式中、X、XおよびXは、それぞれ独立に、置換基を有することのある炭化水素基を表す。)(Wherein X 1 , X 2 and X 3 each independently represents a hydrocarbon group which may have a substituent)

Figure 2008062553
Figure 2008062553

(式中、X、X、XおよびXは、それぞれ独立に、置換基を有することのある炭化水素基を表す。また、Zは炭素数1〜8までのアルキレン基、アリーレン基、フェロセニレン基を表す。)。(In the formula, X 4 , X 5 , X 6 and X 7 each independently represent a hydrocarbon group which may have a substituent. Z represents an alkylene group having 1 to 8 carbon atoms or an arylene group. And represents a ferrocenylene group).

(5)配位子となりうる前記化合物がトリフェニルホスフィンである(4)に記載の製造方法。   (5) The production method according to (4), wherein the compound that can be a ligand is triphenylphosphine.

(6)前記ニッケル錯体が、ゼロ価ニッケル錯体である(1)乃至(5)のいずれかに記載の製造方法。   (6) The manufacturing method according to any one of (1) to (5), wherein the nickel complex is a zero-valent nickel complex.

(7)前記脂環式ジカルボン酸無水物が、一般式(3)   (7) The alicyclic dicarboxylic acid anhydride is represented by the general formula (3)

Figure 2008062553
Figure 2008062553

(式中、R,R,R,R,R,R,およびRは各々独立して水素原子またはヘテロ原子を有することのある置換基を表す。)で表される5,6−ベンゾ−2,3−ジカルボン酸無水物類である(1)乃至(6)のいずれかに記載の製造方法。(Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 each independently represent a hydrogen atom or a substituent that may have a hetero atom). The production method according to any one of (1) to (6), which is 5,6-benzo-2,3-dicarboxylic anhydride.

(8)一般式(3)においてR,R,R,R,R,R,およびRがすべて水素である(7)記載の製造方法。(8) The production method according to (7), wherein in formula (3), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 are all hydrogen.

(9)前記脂環式ジカルボン酸無水物が、一般式(4)   (9) The alicyclic dicarboxylic acid anhydride is represented by the general formula (4)

Figure 2008062553
Figure 2008062553

(式中、nは0〜1の整数を、X'はOまたはCH2を表す。)で表されるジカルボン酸無水物である(1)乃至(8)のいずれかに記載の製造方法。(Wherein n represents an integer of 0 to 1 and X ′ represents O or CH 2 ). The production method according to any one of (1) to (8), which is a dicarboxylic acid anhydride represented by:

本発明によれば、脂環式ジカルボン酸無水物の脱カルボニル、脱炭酸反応によりエチレンなどの低級オレフィンとの共重合や開環メタセシス重合により得られるCOCなどのポリオレフィンの原料として有用な環状オレフィン化合物を提供することができる。   According to the present invention, a cyclic olefin compound useful as a raw material for a polyolefin such as COC obtained by copolymerization with a lower olefin such as ethylene or ring-opening metathesis polymerization by decarbonylation or decarboxylation of an alicyclic dicarboxylic acid anhydride. Can be provided.

本発明の方法によれば、触媒であるニッケル錯体の使用量を大幅に低減することが可能であり、高価な原料を多量に必要とするためコストがかかる、生成物の収率が低い、生成物の分離精製が煩雑である、多量の廃棄物を排出する、などの公知の方法における問題点を解決できる。   According to the method of the present invention, it is possible to significantly reduce the amount of nickel complex used as a catalyst, and a large amount of expensive raw material is required, which is costly and produces a low yield of product. It is possible to solve problems in known methods such as complicated separation and purification of wastes and discharge of a large amount of waste.

上記の理由から、本発明は環状オレフィンの工業的製造方法として極めて有利であり、容易に入手される脂環式ジカルボン酸無水物から入手困難な環状オレフィンが製造され得る際に特に有用である。   For the above reasons, the present invention is extremely advantageous as an industrial production method for cyclic olefins, and is particularly useful when cyclic olefins that are difficult to obtain from easily available alicyclic dicarboxylic acid anhydrides can be produced.

実施例において得られたベンゾノルボルネン−2,3−ジカルボン酸無水物のH−NMRチャートである。 1 is a 1 H-NMR chart of benzonorbornene-2,3-dicarboxylic acid anhydride obtained in Examples. 実施例において得られたベンゾノルボルネン−2,3−ジカルボン酸無水物の13C−NMRチャートである。It is a 13 C-NMR chart of benzonorbornene-2,3-dicarboxylic anhydride obtained in the examples. 実施例において得られたベンゾノルボルナジエンのH−NMRチャートである。 1 is a 1 H-NMR chart of benzonorbornadiene obtained in Examples. 実施例において得られたベンゾノルボルナジエンの13C−NMRチャートである。It is a 13 C-NMR chart of benzonorbornadiene obtained in Examples.

以下、本発明について詳細に説明する。
本発明において原料として使用する脂環式ジカルボン酸無水物は一般式(1)で表される。
Hereinafter, the present invention will be described in detail.
The alicyclic dicarboxylic acid anhydride used as a raw material in the present invention is represented by the general formula (1).

Xは、環を形成するのに必要な非金属原子群を示し、これらから構成される環は飽和環でも不飽和環でもよく、例えばシクロヘキサン、ノルボルナン、ビシクロ[2.2.2]オクタン、テトラシクロ[4.4.0.12.5.17.10]ドデカン等の飽和環、ノルボルネン、テトラシクロ[4.4.0.12.5.17.10]−8−ドデセン、ベンゾノルボルネン等の不飽和環、7−オキサビシクロ[2.2.1]ヘプタン、7−チアビシクロ[2.2.1]ヘプタン等の非プロトン性ヘテロ環が挙げられる。X represents a nonmetallic atom group necessary for forming a ring, and the ring composed of these may be a saturated ring or an unsaturated ring. For example, cyclohexane, norbornane, bicyclo [2.2.2] octane, tetracyclo [4.4.0.1 2.5 . 1 7.10 ] saturated ring such as dodecane, norbornene, tetracyclo [4.4.0.1 2.5 . 1 7.10 ] -8-dodecene, unsaturated rings such as benzonorbornene, aprotic heterocycles such as 7-oxabicyclo [2.2.1] heptane, 7-thiabicyclo [2.2.1] heptane Can be mentioned.

RおよびR'は、それぞれ独立に水素原子または置換基を有することのある炭化水素基を表す。炭化水素基としては、炭素数1〜8までの基を挙げることができ、例えば、メチル、エチル、プロピル等のアルキル基;ビニル、アリル等のアルケニル基;エチニル、プロピニル等のアルキニル基;フェニル、トリル等のアリール基;ベンジル、フェネチル等のアラルキル基が挙げられる。   R and R ′ each independently represent a hydrogen atom or a hydrocarbon group that may have a substituent. Examples of the hydrocarbon group include groups having 1 to 8 carbon atoms, such as alkyl groups such as methyl, ethyl and propyl; alkenyl groups such as vinyl and allyl; alkynyl groups such as ethynyl and propynyl; phenyl, Aryl groups such as tolyl; aralkyl groups such as benzyl and phenethyl.

RおよびR'としては、好ましくは水素原子、アルキル基であり、より好ましくは水素原子、メチル基、エチル基である。   R and R ′ are preferably a hydrogen atom or an alkyl group, and more preferably a hydrogen atom, a methyl group or an ethyl group.

RおよびR'はお互いと、あるいはXで構成される環と架橋して、炭素原子2〜8個のアルキレン基を形成してもよい。また、Xで構成される環、RおよびR'は反応に不活性な置換基を有していてもよい。置換基としては、例えばハロゲン、アルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニルオキシ基、アシル基、アルキルアミノ基、カルバモイル基、ニトロ基、ニトロソ基、シアノ基、アルキルチオ基、スルフィニル基、スルホニル基、シリル基などが挙げられる。また、これらの置換基のうち、隣接する置換基が架橋されて、その結合炭素原子を含む環を形成しても良い。   R and R ′ may be bridged with each other or with a ring composed of X to form an alkylene group having 2 to 8 carbon atoms. Further, the ring constituted by X, R and R ′ may have a substituent inert to the reaction. Examples of the substituent include halogen, alkyl group, alkenyl group, alkynyl group, aryl group, aralkyl group, alkoxy group, alkoxycarbonyl group, alkylcarbonyloxy group, acyl group, alkylamino group, carbamoyl group, nitro group, nitroso group. , Cyano group, alkylthio group, sulfinyl group, sulfonyl group, silyl group and the like. In addition, among these substituents, adjacent substituents may be bridged to form a ring containing the bonded carbon atoms.

一般式(1)で表される脂環式ジカルボン酸無水物としては、具体的に一般式(3)で表される5,6−ベンゾ−2,3−ジカルボン酸無水物類、一般式(4)で表されるジカルボン酸無水物などを用いることができる。   Specific examples of the alicyclic dicarboxylic acid anhydride represented by the general formula (1) include 5,6-benzo-2,3-dicarboxylic acid anhydrides represented by the general formula (3), The dicarboxylic acid anhydride represented by 4) can be used.

一般式(3)において、R,R,R,R,R,R,およびRは、各々独立に水素原子またはヘテロ原子を有することのある置換基を表す。置換基としては、上記の置換基を用いることができる。本発明においては、R〜Rのいずれの置換基も水素原子である化合物を用いることができる。In the general formula (3), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 each independently represent a hydrogen atom or a substituent that may have a hetero atom. As the substituent, the above-described substituents can be used. In the present invention, a compound in which any substituent of R 1 to R 7 is a hydrogen atom can be used.

本発明においては、触媒としてニッケル錯体を使用するが、具体例としては、ビス(トリフェニルホスフィン)ニッケルジカルボニルのような、ニッケルテトラカルボニルと第三級ホスフィンとの反応によって得られるニッケルカルボニル錯体、あるいはテトラキス(トリフェニルホスフィン)ニッケルなどのような、一酸化炭素の存在下でニッケルカルボニル錯体に変換しうるニッケル錯体である。   In the present invention, a nickel complex is used as a catalyst. Specific examples thereof include a nickel carbonyl complex obtained by reaction of nickel tetracarbonyl and a tertiary phosphine, such as bis (triphenylphosphine) nickel dicarbonyl, Alternatively, a nickel complex such as tetrakis (triphenylphosphine) nickel that can be converted to a nickel carbonyl complex in the presence of carbon monoxide.

ニッケル錯体は、市販されているものをそのまま使用できるが、例えば米国特許第4012399号、J.Am.Chem.Soc.,81,4200(1959)、J.Am.Chem.Soc.,94,2669(1972)、J.Am.Chem.Soc.,96,53(1974)、Inorg.Chim.Acta,12,167(1975)、Inorg.Chim.Acta,37,L455(1979)、Chem.Lett.,831(1974)、Chem.Lett.,1119(1972)、J.Chem.Soc.,2099(1962)などに記載されている方法で合成し、使用してもよい。   As the nickel complex, a commercially available one can be used as it is, for example, U.S. Pat. Am. Chem. Soc. 81, 4200 (1959); Am. Chem. Soc. 94, 2669 (1972); Am. Chem. Soc. 96, 53 (1974), Inorg. Chim. Acta, 12, 167 (1975), Inorg. Chim. Acta, 37, L455 (1979), Chem. Lett. , 831 (1974), Chem. Lett. 1119 (1972); Chem. Soc. , 2099 (1962), and the like.

また上記のニッケル錯体は、ニッケルテトラカルボニルや、あるいはビス(1,5−シクロオクタジエン)ニッケル、ビス(π−アリル)ニッケル、ニッケロセンなどのようなニッケル錯体を、配位子となりうる化合物を含む反応溶液に添加することによりin situで形成されてもよい。ニッケル錯体触媒の使用量は、一般的には原料である脂環式ジカルボン酸無水物1モルあたり0.0001〜0.2モルであり、好ましくは0.001〜0.05モルである。   In addition, the above nickel complex includes nickel tetracarbonyl, or a compound that can act as a ligand for nickel complexes such as bis (1,5-cyclooctadiene) nickel, bis (π-allyl) nickel, nickelocene, and the like. It may be formed in situ by adding to the reaction solution. Generally the usage-amount of a nickel complex catalyst is 0.0001-0.2 mol per mol of alicyclic dicarboxylic acid anhydride which is a raw material, Preferably it is 0.001-0.05 mol.

本発明において使用される「配位子となりうる化合物」(以下、単に化合物ともいう)は、配位原子として周期律表第V族元素、すなわち、窒素、リン、ヒ素、アンチモンを有する単座または多座の電子供与性化合物である。なお、本発明において用いられる配位子となりうる化合物は、ニッケル錯体における配位子と同一であってもよく異なっていてもよい。   The “compound that can be a ligand” used in the present invention (hereinafter also simply referred to as a compound) is a monodentate or polyvalent compound having a group V element of the periodic table as a coordinating atom, that is, nitrogen, phosphorus, arsenic, and antimony. It is an electron donating compound of the locus. In addition, the compound that can be a ligand used in the present invention may be the same as or different from the ligand in the nickel complex.

配位子となりうる化合物としては、トリブチルアミン、トリオクチルアミン、トリフェニルアミン、N,N,N',N'−テトラメチルエチレンジアミン、N,N,N',N'−テトラメチル−1,2−フェニレンジアミンなどの第三級アミン類、2,2'−ビピリジル、1,10−フェナントロリンなどの含窒素芳香族類、N,N'−ジフェニル−1,4−ジアザブタジエン、1,6−ジフェニル−2,5−ジアザ−1,5−ヘキサジエンなどのイミン類に代表される含窒素化合物;トリブチルヒ素、トリフェニルヒ素などの含ヒ素化合物;
トリブチルアンチモン、トリフェニルアンチモンなどの含アンチモン化合物;一般式(5)または(6)で表される含リン化合物が挙げられる。
Compounds that can be ligands include tributylamine, trioctylamine, triphenylamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyl-1,2 -Tertiary amines such as phenylenediamine, nitrogen-containing aromatics such as 2,2'-bipyridyl and 1,10-phenanthroline, N, N'-diphenyl-1,4-diazabutadiene, 1,6- Nitrogen-containing compounds represented by imines such as diphenyl-2,5-diaza-1,5-hexadiene; arsenic-containing compounds such as tributylarsenic and triphenylarsenic;
Examples thereof include antimony-containing compounds such as tributylantimony and triphenylantimony; and phosphorus-containing compounds represented by the general formula (5) or (6).

Figure 2008062553
Figure 2008062553

(式中、X、XおよびXは、それぞれ独立に、置換基を有することのある炭化水素基を表す。)(Wherein X 1 , X 2 and X 3 each independently represents a hydrocarbon group which may have a substituent)

Figure 2008062553
Figure 2008062553

(式中、X、X、XおよびXは、それぞれ独立に、置換基を有することのある炭化水素基を表す。また、Zは炭素数1〜8までのアルキレン基、アリーレン基、フェロセニレン基を表す。)(In the formula, X 4 , X 5 , X 6 and X 7 each independently represent a hydrocarbon group which may have a substituent. Z represents an alkylene group having 1 to 8 carbon atoms or an arylene group. Represents a ferrocenylene group.)

〜Xにおける炭化水素基としては、炭素数1〜6のアルキル基、芳香族基、炭素環および/またはヘテロ環が縮合してなる縮合環等を挙げることができる。また、その置換基としては、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、ハロゲン原子等を挙げることができる。Examples of the hydrocarbon group for X 1 to X 7 include condensed rings formed by condensation of alkyl groups having 1 to 6 carbon atoms, aromatic groups, carbocycles and / or heterocycles. Moreover, as the substituent, a C1-C6 alkyl group, a C1-C6 alkoxy group, a halogen atom, etc. can be mentioned.

前記一般式(5)で表される配位子となりうる化合物としては、例えば、トリシクロヘキシルホスフィン、トリシクロペンチルホスフィン、トリ−n−ブチルホスフィン、トリ−t−ブチルホスフィン、トリオクチルホスフィン、トリベンジルホスフィンなどのトリアルキルホスフィン類や、トリフェニルホスフィン、トリトリルホスフィン(オルト、メタ、およびパラの各種置換異性体を含む)、トリス(メトキシフェニル)ホスフィン(オルト、メタ、およびパラの各種置換異性体を含む)、トリス(フルオロフェニル)ホスフィン(オルト、メタ、およびパラの各種置換異性体を含む)、トリ(α−ナフチル)ホスフィンなどのトリアリールホスフィン類、ジフェニルシクロヘキシルホスフィンなどのジアリールアルキルホスフィン類、ジシクロヘキシルフェニルホスフィンなどのジアルキルアリールホスフィン類などが挙げられるが、好ましくはトリアリールホスフィン類であり、さらに好ましくはトリフェニルホスフィンである。また、X、XおよびXは二つの基の間で架橋されてリン原子を含む環を構成してもよく、そのようなホスフィンとしては、フェニルビフェニレンホスフィンなどが挙げられる。Examples of the compound that can be a ligand represented by the general formula (5) include tricyclohexylphosphine, tricyclopentylphosphine, tri-n-butylphosphine, tri-t-butylphosphine, trioctylphosphine, and tribenzylphosphine. Trialkylphosphines such as triphenylphosphine, tolylphosphine (including ortho, meta, and para substituted isomers), tris (methoxyphenyl) phosphine (ortho, meta, and para substituted isomers) ), Tris (fluorophenyl) phosphine (including various ortho, meta, and para substituted isomers), triarylphosphine such as tri (α-naphthyl) phosphine, and diarylalkylphosphine such as diphenylcyclohexylphosphine. Although such dialkyl aryl phosphines such as dicyclohexyl phenyl phosphine, preferably triarylphosphines, even more preferably triphenylphosphine. X 1 , X 2 and X 3 may be bridged between two groups to form a ring containing a phosphorus atom, and examples of such phosphine include phenylbiphenylenephosphine.

前記一般式(6)で表される配位子となりうる化合物としては、例えば、1,2−ビス(ジフェニルホスフィノ)エタン、1,3−ビス(ジフェニルホスフィノ)プロパン、1,4−ビス(ジフェニルホスフィノ)ブタンなどが挙げられる。   Examples of the compound that can be a ligand represented by the general formula (6) include 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, and 1,4-bis. And (diphenylphosphino) butane.

本発明においては、高い選択率で、高純度の目的物質を得る観点から、一般式(5)または(6)で表される配位子となりうる化合物を用いることが好ましい。   In the present invention, it is preferable to use a compound that can be a ligand represented by the general formula (5) or (6) from the viewpoint of obtaining a target substance with high selectivity and high purity.

本発明においては、ニッケル錯体触媒の安定性を向上させるため、配位子となりうる化合物を過剰に共存させることが重要である。配位子となりうる化合物の量が少なすぎると触媒の安定性が低下する。一方、配位子の量が多い場合には、触媒の安定性が使用量に比例して向上するわけではなく不経済であったり、反応速度が低下する傾向が認められる。   In the present invention, in order to improve the stability of the nickel complex catalyst, it is important that a compound capable of being a ligand coexists excessively. If the amount of the compound that can be a ligand is too small, the stability of the catalyst is lowered. On the other hand, when the amount of the ligand is large, the stability of the catalyst is not improved in proportion to the amount used, but it is uneconomical or the reaction rate tends to decrease.

したがって、配位子となりうる化合物の使用量はその種類によって必ずしも一定ではないが、通常、ニッケル錯体触媒1モルあたり10〜500モルであり、好ましくは20〜200モルである。   Therefore, the amount of the compound that can be a ligand is not necessarily constant depending on the type, but is usually 10 to 500 mol, preferably 20 to 200 mol, per mol of the nickel complex catalyst.

配位子となりうる化合物を上記の量で用いることにより、高い選択率で、高純度の環状オレフィンを製造することができる。さらに、この範囲内であれば、この化合物自身を溶媒として用いてもよい。その場合使用される化合物は、目的化合物に対して安定であり、かつ、比較的安価なものが好ましい。中でもトリフェニルホスフィンは有用な化合物の一つである。   By using the compound that can be a ligand in the above amount, a high-purity cyclic olefin can be produced with high selectivity. Further, within this range, the compound itself may be used as a solvent. The compound used in that case is preferably stable with respect to the target compound and relatively inexpensive. Among them, triphenylphosphine is one of useful compounds.

これらの配位子となりうる化合物は単独で用いてもよいが、いずれか二種以上の混合物として用いてもよい。これらの配位子となりうる化合物の混合物を用いる場合、それらを任意の割合で混合してもよいが、これらの化合物の総使用量がニッケル錯体触媒1モルに対して上記の範囲内になることが好ましい。   These compounds that can be ligands may be used alone or as a mixture of any two or more thereof. When using a mixture of compounds that can become these ligands, they may be mixed in an arbitrary ratio, but the total amount of these compounds used is within the above range with respect to 1 mol of the nickel complex catalyst. Is preferred.

反応温度は高いほうが反応速度の点では有利であるが、高すぎると触媒の分解や生成物である環状オレフィンの転位、重合などの好ましくない副反応を引き起こして選択率の低下を招く恐れがある。したがって通常100〜300℃、特に150〜250℃で反応を行なうのが好ましい。   A higher reaction temperature is advantageous in terms of reaction rate. However, if the reaction temperature is too high, it may cause undesirable side reactions such as decomposition of the catalyst, rearrangement of the cyclic olefin product, polymerization, and the like, leading to a decrease in selectivity. . Therefore, it is usually preferable to carry out the reaction at 100 to 300 ° C., particularly 150 to 250 ° C.

本発明においては、ニッケル錯体触媒の活性低下を抑制するため、さらには生成する環状オレフィン化合物の熱履歴を少なくすることによって選択率を高めるため、生成物をできるだけ速やかに反応系外に除去することが重要である。したがって反応蒸留方式を採用することが望ましい。   In the present invention, the product is removed from the reaction system as quickly as possible in order to suppress the decrease in the activity of the nickel complex catalyst, and further to increase the selectivity by reducing the thermal history of the cyclic olefin compound to be produced. is important. Therefore, it is desirable to employ a reactive distillation method.

反応圧力は生成するオレフィンの沸点に大きく依存するが、生成物の反応系外からの速やかな除去が達成される限りにおいては特に制限はない。生成物の沸点が低い場合は、常圧で反応させることができる。一方、生成物の沸点が高い場合は、減圧下で反応を行なうことが好ましい。   The reaction pressure largely depends on the boiling point of the olefin to be produced, but is not particularly limited as long as rapid removal of the product from the outside of the reaction system is achieved. When the boiling point of the product is low, the reaction can be performed at normal pressure. On the other hand, when the boiling point of the product is high, the reaction is preferably performed under reduced pressure.

一般式(1)の脂環式ジカルボン酸無水物から得られる一般式(2)で表される環状オレフィン化合物は、気体の形で取り出された後、凝縮によりCOとCOを含むガスから分離される。このようにして得られる粗製の環状オレフィン化合物は、必要に応じて蒸留などによりさらに精製してもよい。The cyclic olefin compound represented by the general formula (2) obtained from the alicyclic dicarboxylic acid anhydride of the general formula (1) is taken out in the form of a gas and then separated from the gas containing CO and CO 2 by condensation. Is done. The crude cyclic olefin compound thus obtained may be further purified by distillation or the like, if necessary.

反応に際しては、配位子となりうる化合物自身が溶媒の役割を担うことができる場合、それ以外の溶媒を用いることなく反応を行ってもよいが、必要に応じて新たに溶媒を用いても差し支えない。   In the reaction, if the compound that can be a ligand itself can play the role of a solvent, the reaction may be performed without using any other solvent, but a new solvent may be used if necessary. Absent.

溶媒としては、原料、触媒、および配位子となりうる化合物に対して不活性な溶媒であれば、任意のものを使用することができる。例えば、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジフェニルエーテル、アニソール、ベラトロール等のエーテル類、テトラリン、ナフタレン等の芳香族炭化水素類、ニトロベンゼン、ベンゾニトリル、N−メチルピロリドン、ジメチルイミダゾリジノン等の非プロトン性極性溶媒などが挙げられる。   As the solvent, any solvent can be used as long as it is inert to the raw material, the catalyst, and the compound that can be a ligand. For example, ethers such as diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diphenyl ether, anisole and veratrol, aromatic hydrocarbons such as tetralin and naphthalene, aprotic such as nitrobenzene, benzonitrile, N-methylpyrrolidone and dimethylimidazolidinone Examples include polar solvents.

溶媒(または配位子となりうる化合物)は、生成物である環状オレフィンと容易に分離できるものが好ましく、一般には生成する環状オレフィンよりも高沸点のものが使用される。上記のような溶媒を使用すれば、反応混合物から目的物である環状オレフィンを含む生成物を反応蒸留によって分離する際、触媒と配位子となりうる化合物を溶解している反応液中からの溶媒(または配位子となりうる化合物)の留出を抑制することができるため、これらの溶媒(または配位子となりうる化合物)を新たに供給する必要がなく、また、生成物の煩雑な分離精製を回避できるという点からも有利である。   The solvent (or a compound that can be a ligand) is preferably one that can be easily separated from the product cyclic olefin, and generally has a higher boiling point than the cyclic olefin to be produced. When a solvent such as the above is used, when the product containing the target cyclic olefin is separated from the reaction mixture by reactive distillation, the solvent from the reaction solution in which the catalyst and the compound capable of being a ligand are dissolved. Since distillation of (or a compound that can be a ligand) can be suppressed, there is no need to newly supply these solvents (or compounds that can become a ligand), and complicated separation and purification of the product. This is also advantageous in that it can be avoided.

反応は酸素や水分を除いた状態で行なうことが好ましく、通常、窒素あるいはアルゴンのような不活性雰囲気下で行なわれる。   The reaction is preferably carried out without oxygen or moisture, and is usually carried out in an inert atmosphere such as nitrogen or argon.

反応はバッチ方式、あるいは、ニッケル錯体触媒、配位子となりうる化合物、原料であるジカルボン酸無水物、および溶媒を反応器に連続的に供給する連続式の何れの方式においても実施することができる。   The reaction can be carried out either in a batch system or in a continuous system in which a nickel complex catalyst, a compound capable of becoming a ligand, a raw material dicarboxylic acid anhydride, and a solvent are continuously supplied to a reactor. .

以下、実施例により本発明の有用性を更に詳細に説明するが、本発明はこれらに限定されるのもではない。なお、分析はガスクロマトグラフィーで行い、転化率及び選択率は内部標準法(mol%)により、純度は面積百分率(%)により求めた。   Hereinafter, the usefulness of the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. The analysis was performed by gas chromatography, the conversion rate and selectivity were determined by the internal standard method (mol%), and the purity was determined by area percentage (%).

[合成例1]
ベンゾノルボルネン−2,3−ジカルボン酸無水物の合成
SUS316製1.5Lオートクレーブに、インデン(JFEケミカル製、純度96%)380.1g(3.14mol)、無水マレイン酸282.9g(2.88mol)、フェノチアジン5.69g(28.6mmol)、メチルイソブチルケトン501.5gを仕込み、220℃で4時間攪拌を行った。反応液を室温まで冷却した後、析出した固形物を吸引ろ過により分別し、メチルイソブチルケトンで洗浄した後、乾燥した(424.0g)。この固形物のマススペクトルおよびNMRによる分析を行った結果、ベンゾノルボルネン−2,3−ジカルボン酸無水物であった(EI m/z 214(M))。NMRチャートを図1および2に示す。ガスクロマトグラフィーによる分析の結果、純度は99%以上であった(無水マレイン酸基準での単離収率69%)。
[Synthesis Example 1]
Synthesis of benzonorbornene-2,3-dicarboxylic acid anhydride Into a 1.5 L autoclave made of SUS316, 380.1 g (3.14 mol) of indene (manufactured by JFE Chemical, purity 96%), 282.9 g (2.88 mol) of maleic anhydride ), 5.69 g (28.6 mmol) of phenothiazine, and 501.5 g of methyl isobutyl ketone, and the mixture was stirred at 220 ° C. for 4 hours. After cooling the reaction solution to room temperature, the precipitated solid was separated by suction filtration, washed with methyl isobutyl ketone, and dried (424.0 g). The solid was analyzed by mass spectrum and NMR. As a result, it was benzonorbornene-2,3-dicarboxylic anhydride (EI m / z 214 (M + )). NMR charts are shown in FIGS. As a result of analysis by gas chromatography, the purity was 99% or more (isolation yield 69% based on maleic anhydride).

[実施例1]
蒸留装置を備えた100mLガラス製フラスコに、ベンゾノルボルネン−2,3−ジカルボン酸無水物21.42g(0.100mol)、トリフェニルホスフィン26.23g(0.100mol)、ビス(トリフェニルホスフィン)ニッケルジカルボニル1.28g(2.0mmol)を仕込み、25mmHgの減圧下で200〜210℃に加熱した。反応液は沸騰し、ガスの発生と液体の留出が見られた。2時間後、液体の留出はほぼおさまった(13.55g)。反応残液の分析の結果、ベンゾノルボルネン−2,3−ジカルボン酸無水物の転化率は99.0%であった。また、留出した液体はマススペクトルおよびNMRにより分析した結果、ベンゾノルボルナジエンであった(EI m/z 142(M))。NMRチャートを図3および4に示す。選択率は96.0%、純度は99.7%であった。
[Example 1]
In a 100 mL glass flask equipped with a distillation apparatus, 21.42 g (0.100 mol) of benzonorbornene-2,3-dicarboxylic acid anhydride, 26.23 g (0.100 mol) of triphenylphosphine, bis (triphenylphosphine) nickel 1.28 g (2.0 mmol) of dicarbonyl was charged and heated to 200 to 210 ° C. under a reduced pressure of 25 mmHg. The reaction liquid boiled, and gas generation and liquid distillation were observed. After 2 hours, the liquid distillate has subsided (13.55 g). As a result of analysis of the reaction residue, the conversion of benzonorbornene-2,3-dicarboxylic anhydride was 99.0%. Further, the liquid distilled was benzonorbornadiene (EI m / z 142 (M + )) as a result of analysis by mass spectrum and NMR. The NMR chart is shown in FIGS. The selectivity was 96.0% and the purity was 99.7%.

[実施例2]
ベンゾノルボルネン−2,3−ジカルボン酸無水物21.42g(0.100mol)、トリフェニルホスフィン39.34g(0.150mol)、ビス(トリフェニルホスフィン)ニッケルジカルボニル0.64g(1.0mmol)を仕込み、実施例1と同様に反応を行なった。9時間後におけるベンゾノルボルネン−2,3−ジカルボン酸無水物の転化率は94.9%であった。また、ベンゾノルボルナジエン(13.19g)の選択率は97.2%、純度は99.4%であった。
[Example 2]
21.42 g (0.100 mol) of benzonorbornene-2,3-dicarboxylic acid anhydride, 39.34 g (0.150 mol) of triphenylphosphine, 0.64 g (1.0 mmol) of bis (triphenylphosphine) nickel dicarbonyl The same reaction as in Example 1 was performed. After 9 hours, the conversion of benzonorbornene-2,3-dicarboxylic anhydride was 94.9%. The selectivity of benzonorbornadiene (13.19 g) was 97.2%, and the purity was 99.4%.

[実施例3]
実施例1において、用いるニッケル錯体をビス(1,5−シクロオクタジエン)ニッケル(0.55g、2.0mmol)に変更する以外は、全て同様に操作した。
ベンゾノルボルネン−2,3−ジカルボン酸無水物の転化率は95.1%であった。また、ベンゾノルボルナジエン(13.27g)の選択率は97.4%、純度は99.2%であった。
[Example 3]
In Example 1, the same operation was performed except that the nickel complex used was changed to bis (1,5-cyclooctadiene) nickel (0.55 g, 2.0 mmol).
The conversion of benzonorbornene-2,3-dicarboxylic acid anhydride was 95.1%. The selectivity of benzonorbornadiene (13.27 g) was 97.4%, and the purity was 99.2%.

[実施例4]
実施例1において、用いるニッケル錯体をテトラキス(トリフェニルホスフィン)ニッケル(2.22g、2.0mmol)に変更する以外は、全て同様に操作した。
ベンゾノルボルネン−2,3−ジカルボン酸無水物の転化率は99.1%であった。また、ベンゾノルボルナジエン(13.27g)の選択率は93.0%、純度は99.0%であった。
[Example 4]
In Example 1, the same operation was performed except that the nickel complex used was changed to tetrakis (triphenylphosphine) nickel (2.22 g, 2.0 mmol).
The conversion of benzonorbornene-2,3-dicarboxylic acid anhydride was 99.1%. The selectivity for benzonorbornadiene (13.27 g) was 93.0%, and the purity was 99.0%.

[実施例5]
蒸留装置を備えた50mLガラス製フラスコに、endo−ノルボルナン−2,3−ジカルボン酸無水物9.96g(0.060mol)、トリフェニルホスフィン23.60g(0.090mol)、ビス(トリフェニルホスフィン)ニッケルジカルボニル0.64g(1.0mmol)を仕込み、常圧下で270℃に加熱した。反応液は沸騰し、ガスの発生と液体の留出が見られた。2時間後、液体の留出はほぼおさまった(4.78g)。反応残液の分析の結果、endo−ノルボルナン−2,3−ジカルボン酸無水物の転化率は99.5%であった。また、留出した液体はマススペクトルにより分析した結果、ノルボルネンであり(EI m/z 94(M))、選択率は86.4%、純度は98.7%であった。
[Example 5]
In a 50 mL glass flask equipped with a distillation apparatus, 9.96 g (0.060 mol) of endo-norbornane-2,3-dicarboxylic acid anhydride, 23.60 g (0.090 mol) of triphenylphosphine, bis (triphenylphosphine) 0.64 g (1.0 mmol) of nickel dicarbonyl was charged and heated to 270 ° C. under normal pressure. The reaction liquid boiled, and gas generation and liquid distillation were observed. After 2 hours, the liquid distillate has subsided (4.78 g). As a result of analysis of the reaction residue, the conversion of endo-norbornane-2,3-dicarboxylic anhydride was 99.5%. As a result of analyzing the distilled liquid by mass spectrum, it was norbornene (EI m / z 94 (M + )), the selectivity was 86.4%, and the purity was 98.7%.

[比較例1]
還流冷却器を備えた100mLガラス製フラスコに、ベンゾノルボルネン−2,3−ジカルボン酸無水物21.42g(0.100mol)、ビス(トリフェニルホスフィン)ニッケルジカルボニル0.64g(1.0mmol)、テトラエチレングリコールジメチルエーテル39.5gを仕込み、窒素雰囲気下、常圧で210℃に加熱した。反応液の分析の結果、ベンゾノルボルナジエンの収率は2時間後において1%以下であり、それ以上の向上は見られなかった。
[Comparative Example 1]
In a 100 mL glass flask equipped with a reflux condenser, 21.42 g (0.100 mol) of benzonorbornene-2,3-dicarboxylic acid anhydride, 0.64 g (1.0 mmol) of bis (triphenylphosphine) nickel dicarbonyl, Tetraethylene glycol dimethyl ether (39.5 g) was charged and heated to 210 ° C. under a nitrogen atmosphere at normal pressure. As a result of analysis of the reaction solution, the yield of benzonorbornadiene was 1% or less after 2 hours, and no further improvement was observed.

[比較例2]
還流冷却器を備えた100mLガラス製フラスコに、ベンゾノルボルネン−2,3−ジカルボン酸無水物21.42g(0.100mol)、トリフェニルホスフィン39.34g(0.150mol)、ビス(トリフェニルホスフィン)ニッケルジカルボニル0.64g(1.0mmol)を仕込み、窒素雰囲気下、常圧で210℃に加熱した。反応液の分析の結果、ベンゾノルボルナジエンの収率は2時間後において3%であり、それ以上の向上は見られなかった。
[Comparative Example 2]
In a 100 mL glass flask equipped with a reflux condenser, 21.42 g (0.100 mol) of benzonorbornene-2,3-dicarboxylic acid anhydride, 39.34 g (0.150 mol) of triphenylphosphine, bis (triphenylphosphine) 0.64 g (1.0 mmol) of nickel dicarbonyl was charged and heated to 210 ° C. under a nitrogen atmosphere at normal pressure. As a result of analysis of the reaction solution, the yield of benzonorbornadiene was 3% after 2 hours, and no further improvement was observed.

Claims (9)

一般式(1)
Figure 2008062553
(式中、Xは環を形成するのに必要な非金属原子群を、RおよびR'は各々独立して水素原子または置換基を有することのある炭化水素基を表す。)で表される脂環式ジカルボン酸無水物を、配位子となりうる化合物の共存下でニッケル錯体を触媒として脱カルボニル、脱炭酸し、一般式(2)
Figure 2008062553
(式中、Xは環を形成するのに必要な非金属原子群を、RおよびR'は各々独立して水素原子または置換基を有することのある炭化水素基を表す。)で表される環状オレフィン化合物を製造する方法であって、
前記反応は、生成した前記環状オレフィン化合物を反応系外に除去しながら行なうことを特徴とする環状オレフィン化合物の製造方法。
General formula (1)
Figure 2008062553
(Wherein X represents a nonmetallic atom group necessary for forming a ring, and R and R ′ each independently represent a hydrogen atom or a hydrocarbon group which may have a substituent). An alicyclic dicarboxylic acid anhydride is decarbonylated and decarboxylated using a nickel complex as a catalyst in the presence of a compound capable of acting as a ligand.
Figure 2008062553
(Wherein X represents a nonmetallic atom group necessary for forming a ring, and R and R ′ each independently represent a hydrogen atom or a hydrocarbon group which may have a substituent). A method for producing a cyclic olefin compound comprising:
The said reaction is performed, removing the produced | generated said cyclic olefin compound out of the reaction system, The manufacturing method of the cyclic olefin compound characterized by the above-mentioned.
前記ニッケル錯体1モルに対し、配位子となりうる前記化合物を10〜500モル用いる請求項1に記載の環状オレフィン化合物の製造方法。   The manufacturing method of the cyclic olefin compound of Claim 1 using 10-500 mol of said compounds which can become a ligand with respect to 1 mol of said nickel complexes. 配位子となりうる前記化合物が含リン化合物である請求項1または2に記載の製造方法。   The method according to claim 1 or 2, wherein the compound that can be a ligand is a phosphorus-containing compound. 配位子となりうる前記化合物は、一般式(5)または(6)で表されることを特徴とする請求項3に記載の環状オレフィン化合物の製造方法;
Figure 2008062553
(式中、X、XおよびXは、それぞれ独立に、置換基を有することのある炭化水素基を表す。)
Figure 2008062553
(式中、X、X、XおよびXは、それぞれ独立に、置換基を有することのある炭化水素基を表す。また、Zは炭素数1〜8までのアルキレン基、アリーレン基、フェロセニレン基を表す。)。
The said compound which can become a ligand is represented by General formula (5) or (6), The manufacturing method of the cyclic olefin compound of Claim 3 characterized by the above-mentioned;
Figure 2008062553
(Wherein X 1 , X 2 and X 3 each independently represents a hydrocarbon group which may have a substituent)
Figure 2008062553
(In the formula, X 4 , X 5 , X 6 and X 7 each independently represent a hydrocarbon group which may have a substituent. Z represents an alkylene group having 1 to 8 carbon atoms or an arylene group. And represents a ferrocenylene group).
配位子となりうる前記化合物がトリフェニルホスフィンである請求項4に記載の製造方法。   The method according to claim 4, wherein the compound that can be a ligand is triphenylphosphine. 前記ニッケル錯体が、ゼロ価ニッケル錯体である請求項1乃至5のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the nickel complex is a zerovalent nickel complex. 前記脂環式ジカルボン酸無水物が、一般式(3)
Figure 2008062553
(式中、R,R,R,R,R,R,およびRは各々独立して水素原子またはヘテロ原子を有することのある置換基を表す。)で表される5,6−ベンゾ−2,3−ジカルボン酸無水物類である請求項1乃至6のいずれかに記載の製造方法。
The alicyclic dicarboxylic acid anhydride has the general formula (3)
Figure 2008062553
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 each independently represent a hydrogen atom or a substituent that may have a hetero atom). The production method according to any one of claims 1 to 6, which is 5,6-benzo-2,3-dicarboxylic acid anhydrides.
一般式(3)においてR,R,R,R,R,R,およびRがすべて水素である請求項7記載の製造方法。The production method according to claim 7, wherein in the general formula (3), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 are all hydrogen. 前記脂環式ジカルボン酸無水物が、一般式(4)
Figure 2008062553
(式中、nは0〜1の整数を、X'はOまたはCH2を表す。)で表されるジカルボン酸無水物である請求項1乃至8のいずれかに記載の製造方法。
The alicyclic dicarboxylic acid anhydride has the general formula (4)
Figure 2008062553
(Wherein, n an integer of 0 to 1, X 'is. Representing O or CH 2) The process according to any one of claims 1 to 8 is a dicarboxylic acid anhydride represented by.
JP2008545308A 2006-11-20 2007-11-19 Method for producing cyclic olefin Active JP5248322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008545308A JP5248322B2 (en) 2006-11-20 2007-11-19 Method for producing cyclic olefin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006312579 2006-11-20
JP2006312579 2006-11-20
PCT/JP2007/001250 WO2008062553A1 (en) 2006-11-20 2007-11-19 Process for production of cyclic olefin
JP2008545308A JP5248322B2 (en) 2006-11-20 2007-11-19 Method for producing cyclic olefin

Publications (2)

Publication Number Publication Date
JPWO2008062553A1 true JPWO2008062553A1 (en) 2010-03-04
JP5248322B2 JP5248322B2 (en) 2013-07-31

Family

ID=39429496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008545308A Active JP5248322B2 (en) 2006-11-20 2007-11-19 Method for producing cyclic olefin

Country Status (3)

Country Link
JP (1) JP5248322B2 (en)
TW (1) TW200833640A (en)
WO (1) WO2008062553A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974732B2 (en) * 2007-03-30 2012-07-11 三井化学株式会社 Method for producing cyclic olefin
CN115702134A (en) * 2020-06-26 2023-02-14 三井化学株式会社 Process for producing cyclic olefin compound
KR20230043174A (en) 2020-08-26 2023-03-30 미쓰이 가가쿠 가부시키가이샤 ester compound
JPWO2022138635A1 (en) 2020-12-21 2022-06-30
CN114573412B (en) * 2022-02-23 2023-12-26 杭州凯名庞德生物科技有限公司 Preparation method of benzoperylene
WO2023163050A1 (en) * 2022-02-25 2023-08-31 日東電工株式会社 Catalyst reaction method, formate production method, and formic acid production method

Also Published As

Publication number Publication date
WO2008062553A1 (en) 2008-05-29
JP5248322B2 (en) 2013-07-31
TW200833640A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
US10421702B2 (en) Method for producing fluorine-containing olefin
JP5248322B2 (en) Method for producing cyclic olefin
WO2002079127A1 (en) Selective ring-opening cross-metathesis of cycloolefins
JP6054386B2 (en) Process for the production of palladium (I) tri-t-butylphosphine bromide dimer and process using it in isomerization reactions
JP6583289B2 (en) Method for producing chlorine-containing fluorine-containing olefin
JP6572966B2 (en) Method for producing fluorine-containing olefin compound
JP7367219B2 (en) Method for producing cyclic olefin compounds
JP6759760B2 (en) Method for producing fluorine-containing olefin
JP6669085B2 (en) Method for producing fluoropolymer
JP6607200B2 (en) Method for producing fluorine-containing diene
JP6384363B2 (en) Method for producing fluorine-containing olefin
CN117776958A (en) Aromatic hydrocarbon carboxylic acid meta-position alkylation product and synthesis method thereof
JP2023536686A (en) Method for preparing diene
JP2016160231A (en) Method for producing fluorine-containing olefin
JP2023152776A (en) Production method for olefin compound
JP2016145174A (en) Method for producing fluorine-containing diene
JP2005247746A (en) Method for producing 1-indanones

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5248322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250