JPWO2008056584A1 - Rubbing cloth - Google Patents

Rubbing cloth Download PDF

Info

Publication number
JPWO2008056584A1
JPWO2008056584A1 JP2008543042A JP2008543042A JPWO2008056584A1 JP WO2008056584 A1 JPWO2008056584 A1 JP WO2008056584A1 JP 2008543042 A JP2008543042 A JP 2008543042A JP 2008543042 A JP2008543042 A JP 2008543042A JP WO2008056584 A1 JPWO2008056584 A1 JP WO2008056584A1
Authority
JP
Japan
Prior art keywords
fiber
conductive
rubbing cloth
ground
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008543042A
Other languages
Japanese (ja)
Other versions
JP5009300B2 (en
Inventor
昭南 秦
昭南 秦
雅志 足立
雅志 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Trading Co Ltd
Original Assignee
Kuraray Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Trading Co Ltd filed Critical Kuraray Trading Co Ltd
Priority to JP2008543042A priority Critical patent/JP5009300B2/en
Publication of JPWO2008056584A1 publication Critical patent/JPWO2008056584A1/en
Application granted granted Critical
Publication of JP5009300B2 publication Critical patent/JP5009300B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D27/00Woven pile fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/292Conjugate, i.e. bi- or multicomponent, fibres or filaments
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/30Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
    • D03D15/33Ultrafine fibres, e.g. microfibres or nanofibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/30Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
    • D03D15/37Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments with specific cross-section or surface shape
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/41Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/47Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/587Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads adhesive; fusible
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Woven Fabrics (AREA)
  • Liquid Crystal (AREA)

Abstract

液晶表示装置の配向膜を配向処理するために使用するラビング布であって、該ラビング布はグランド地とパイル糸からなり、該グランド地の経糸および緯糸の少なくとも一部に熱融着性複合繊維が用いられ、且つ該パイル糸が、多層積層型複合繊維を分割して得られる1.1dtex以下の扁平極細繊維であって、その扁平率(長径/短径の比)が4以上である極細繊維で構成されていることを特徴とするラビング布であり、液晶表示装置用の配向膜に均一な微細溝を生成させることのできる取扱いの容易なラビング布を提供するものである。A rubbing cloth used for orienting an alignment film of a liquid crystal display device, the rubbing cloth comprising a ground ground and a pile thread, and a heat-fusible composite fiber on at least a part of the warp and weft of the ground ground And the pile yarn is 1.1 dtex or less flat ultrafine fiber obtained by dividing a multilayer laminated composite fiber, and the flatness (major axis / minor axis ratio) is 4 or more. An object of the present invention is to provide a rubbing cloth that is made of a fiber and that can easily form a fine groove in an alignment film for a liquid crystal display device and is easy to handle.

Description

本発明は液晶表示装置の製造工程で、液晶分子の配向を制御するラビング処理に用いられるラビング布に関する。   The present invention relates to a rubbing cloth used in a rubbing process for controlling the orientation of liquid crystal molecules in a manufacturing process of a liquid crystal display device.

液晶表示装置では、配向膜に微細な溝を生成させ、液晶分子をこの微細溝にそって配向させることによって液晶分子の配向を規制している。この配向膜に微細な溝をつける工程は、回転するロールに貼着されたパイル布で配向膜を擦る(Rubbing)ためラビング処理工程と称されている。ここで用いられるパイル布はラビング布と称され、素材としては、現在、レーヨン、コットン等が用いられる。   In the liquid crystal display device, fine grooves are formed in the alignment film, and liquid crystal molecules are aligned along the fine grooves to regulate the alignment of the liquid crystal molecules. The step of forming fine grooves in the alignment film is called a rubbing treatment process because the alignment film is rubbed with a pile cloth adhered to a rotating roll. The pile cloth used here is called a rubbing cloth, and currently, rayon, cotton or the like is used as a material.

レーヨン製ラビング布はグランド糸にキュプラレーヨンを用い、パイル糸に通常レーヨンを用いたベルベット織物である。製織後シャーリングを行い、糊抜、精練を行った後、パイルの安定性を確保するため、繊維素反応型樹脂を用いて樹脂加工され、さらにパイル抜け防止のため酢酸ビニール系樹脂、あるいはアクリル系樹脂で裏面にコーティン加工が施されている。   The rayon rubbing cloth is a velvet fabric using cupra rayon for ground yarn and usually rayon for pile yarn. After weaving, shearing, desizing, scouring, and processing of resin using a fiber-reactive resin to ensure pile stability, and vinyl acetate resin or acrylic to prevent pile removal The back side is coated with resin.

一方、コットン布の場合には、製織後コットン自体に含まれるワックス成分や挟雑物を除去するため精練、漂白が行われ、さらに毛割シャーリングが行われる。コットンの場合には単繊維にコンボリューションとよばれる捩じれがあり直毛状ではないためパイル安定化のための繊維素反応型樹脂による樹脂加工は行われない。一般的にはレーヨン製がWパイルと呼ばれ、緯糸3本でパイルを挟み込むように押さえているのに対し、コットン製ではVパイルと称し緯糸1本でパイルを押さえているためパイルが脱落しやすい構造になっており、充分なバックコートが必要となる。   On the other hand, in the case of cotton cloth, scouring and bleaching are performed to remove wax components and interstitial substances contained in the cotton itself after weaving, and further, split shearing is performed. In the case of cotton, a single fiber has a twist called convolution and is not a straight hair, and therefore, resin processing using a fiber-reactive resin for stabilizing the pile is not performed. In general, rayon is called W pile, and it is pressed so that the pile is sandwiched by three wefts, whereas cotton is called V pile and the pile is dropped because it is pressed by one weft. The structure is easy, and a sufficient back coat is required.

一般に、通常のレーヨン製やコットン製のラビング布を用いるラビング処理では、ラビング布のパイルの長さ、傾斜角度や密度が均一でないと配向膜に対する摩擦力が不揃いになるため配向膜の配向力にバラツキを生じ、液晶パネルの表示品質の低下の原因となる。一般的な極細繊維で形成されたパイルの場合には反発弾性力が低下し、摩擦力が不足して配向しにくくなる。   In general, in the rubbing process using a normal rayon or cotton rubbing cloth, the friction force against the alignment film is not uniform unless the pile length, inclination angle and density of the rubbing cloth are uniform. This causes variation and causes the display quality of the liquid crystal panel to deteriorate. In the case of a pile formed of general ultrafine fibers, the rebound resilience is reduced, and the frictional force is insufficient to make orientation difficult.

また、ラビング処理は高速回転するラビングローラーで配向膜を擦るため摩擦、接触、剥離が繰り返され静電気が発生する。
この静電気はガラス基板上の回路に損傷を与え液晶表示の不良品の発生につながる。さらにラビング布は金属性ロールに両面テープを介して貼着されるが、パイル織物のグランドがセルロース系繊維の場合湿度により伸縮する。すなわち高湿度では伸張し、低湿度では収縮する。このためラビング布の精密裁断、保管、ラビングロールへの貼着では厳密な湿度管理が行わなければならないという問題がある。
In the rubbing process, the alignment film is rubbed with a rubbing roller that rotates at high speed, and friction, contact, and peeling are repeated to generate static electricity.
This static electricity damages the circuit on the glass substrate and leads to defective liquid crystal display. Further, the rubbing cloth is attached to a metallic roll through a double-sided tape, but expands and contracts due to humidity when the ground of the pile fabric is a cellulosic fiber. That is, it expands at high humidity and contracts at low humidity. For this reason, there is a problem that strict humidity control must be performed in precision cutting, storage, and sticking to a rubbing roll of the rubbing cloth.

一方、液晶表示精度の向上を目的として、1.1dtex以下の極細繊維からなる起毛部を有するラビングクロスを用いることが提案されている(特許文献1参照)。しかしながら、特許文献1に具体的に記載されている極細繊維は、中空放射型断面を有する複合紡糸繊維を分割処理して扇型断面を有する極細繊維であって、本発明者等が、同極細繊維を用いてラビング処理に使用したところ、配向性不良が多数生じることを見出した。その原因として、特許文献1で記載されているような極細繊維では、パイルを構成する極細繊維の腰がなく、倒れ易く、その結果、極細繊維であるにもかかわらず、極細繊維を用いる優位性が生かされていないことが考えられる。   On the other hand, for the purpose of improving liquid crystal display accuracy, it has been proposed to use a rubbing cloth having a raised portion made of ultrafine fibers of 1.1 dtex or less (see Patent Document 1). However, the ultrafine fiber specifically described in Patent Document 1 is an ultrafine fiber having a fan-shaped cross section obtained by splitting a composite spun fiber having a hollow radial cross section. When it was used for the rubbing treatment using fibers, it was found that many orientation defects occurred. As the cause, in the ultrafine fiber as described in Patent Document 1, there is no waist of the ultrafine fiber constituting the pile, and it is easy to fall down. As a result, the advantage of using the ultrafine fiber despite being the ultrafine fiber It is possible that is not being utilized.

また、ラビング処理では高速回転するラビング布と配向膜との間で摩擦、接触、剥離が繰り返されるため静電気が発生し、ガラス基板上の回路に損傷を与え液晶表示の不良品発生につながる。これを防ぐために、特許文献1には、ラビング処理時の帯電を防止するために、起毛布の少なくとも起毛層に導電性を付与することが開示されている。そして、制電性を付与する具体的方法として、極細繊維を紡糸する際にカーボンブラック、金属の微粉末等の制電剤を練り込んでおく方法が提案されている。しかしながら、このようにパイルに制電剤を練り込んだ導電性繊維を用いる場合は、ベルベット織物やモケット織物ではパイル糸の表面や断面にカーボンブラックや金属粉末等の制電剤が露出することになる。制電剤が露出したパイル糸で配向膜をラビングすることは、コンタミネーションの原因となり液晶表示装置の不良発生に繋がる。   In the rubbing process, friction, contact, and peeling are repeated between the rubbing cloth that rotates at high speed and the alignment film, so that static electricity is generated, and the circuit on the glass substrate is damaged, leading to defective liquid crystal display. In order to prevent this, Patent Document 1 discloses providing conductivity to at least the raised layer of the raised cloth in order to prevent charging during the rubbing treatment. As a specific method for imparting antistatic properties, a method has been proposed in which an antistatic agent such as carbon black or fine metal powder is kneaded when spinning ultrafine fibers. However, when using conductive fibers kneaded with antistatic agent in the pile, the antistatic agent such as carbon black or metal powder is exposed on the surface or cross section of the pile yarn in velvet fabric or moquette fabric. Become. The rubbing of the alignment film with the pile yarn from which the antistatic agent is exposed causes contamination and leads to a defect in the liquid crystal display device.

一方、前記の導電材料の擦過等に起因する微小ダスト・異物の発生を避けるため、中芯が導電性材料からなり、該中芯を被覆する非導電性材料からなる鞘・芯構造の複合繊維を含み、ラビング面においては実質的に導電性材料が露出していないラビング布が提案されている(特許文献2参照)。
そして、具体的な態様として、パイル糸が前記の鞘・芯構造の複合繊維からなり、該パイルが切断されていない輪パイルを形成しているラビング布が提案されている。
しかし、特許文献2に記載のラビング布では、パイル糸に鞘・芯構造の導電性複合繊維を用いるので、パイル糸の極細化を図ることができず、配向膜に微細な配向を施すことが困難である。すなわち、鞘・芯構造の導電性複合繊維は、中芯の導電性材料としては、金属繊維、表面金属化繊維、カーボンファイバー、導電性セラミック繊維等の繊維それ自体か、またはカーボン粉末、金属粉末などの導電性粉末を樹脂に練りこみ、紡糸してなる繊維等に成形し、外層として、例えばポリエステル、アクリル、ポリアミドなどの樹脂からなる被覆材で全体を被覆したものであり、得られる導電性複合繊維の単繊維繊度は、5〜20dtex程度であり、細繊度のものを得ることは難しく、通常のラビング布のパイル繊度(1.1〜3.3dtex)に対して著しく太いパイルとなり、部分使用ではラビング斑、スジに繋がり、全面使用では不平等電界が形成されずコロナ放電が得られない。
また、パイル糸の先端が鋭角でなく輪パイルであるため、ラビング効果も減殺される。さらに、導電性材料が黒色の場合、黒色を隠蔽して白色ないし灰白色とする隠蔽層を設けることについての提案はされていない。
On the other hand, in order to avoid generation of fine dust and foreign matters due to the abrasion of the conductive material, a composite fiber having a sheath / core structure in which the core is made of a conductive material and the non-conductive material covers the core. And a rubbing cloth in which the conductive material is not substantially exposed on the rubbing surface has been proposed (see Patent Document 2).
As a specific aspect, there has been proposed a rubbing cloth in which a pile yarn is composed of a composite fiber having the above-described sheath / core structure and the pile is not cut.
However, the rubbing cloth described in Patent Document 2 uses a sheath / core conductive composite fiber for the pile yarn, so that the pile yarn cannot be made extremely thin, and the alignment film can be finely oriented. Have difficulty. That is, the conductive composite fiber having a sheath / core structure includes a metal fiber, a surface metallized fiber, a carbon fiber, a conductive ceramic fiber, or the like as a core conductive material, or a carbon powder or a metal powder. Conductive powder such as kneaded into a resin and molded into a fiber that is spun, and the outer layer is coated entirely with a coating material made of resin such as polyester, acrylic, polyamide, etc. The single fiber fineness of the composite fiber is about 5 to 20 dtex, and it is difficult to obtain a fine fineness, and the pile fineness (1.1 to 3.3 dtex) of a normal rubbing cloth becomes extremely thick. When used, it leads to rubbing spots and streaks, and when used over the entire surface, an unequal electric field is not formed and corona discharge cannot be obtained.
Further, since the tip of the pile yarn is not an acute angle but a ring pile, the rubbing effect is also reduced. Furthermore, when the conductive material is black, there is no proposal for providing a concealing layer that conceals black and makes it white or grayish white.

さらに、特許文献1では、ラビング布のパイル部分の脱落防止のため、酢酸ビニール系あるいはアクリル酸系樹脂を裏面にコーティング加工することが記載されているが、コーティング加工という新たな工程が加わると、ラビング布全体の製造工程が長くなることとなり、それだけコスト高となり、かつ工程中での汚れ等の加工欠点も増加する。
このように、従来においては、液晶表示精度を向上できるラビング効果の高い極細繊度のパイルの構成や、導電剤によるコンタミネーション、コスト高等の問題を解決できるラビング布は提案されていない。
Furthermore, in patent document 1, in order to prevent the pile part of the rubbing cloth from falling off, it is described that vinyl acetate-based or acrylic acid-based resin is coated on the back surface, but when a new process called coating is added, The manufacturing process for the entire rubbing cloth becomes longer, the cost is increased, and processing defects such as dirt in the process increase.
Thus, conventionally, there has not been proposed a rubbing cloth capable of solving problems such as a structure of an extremely fine pile having a high rubbing effect capable of improving liquid crystal display accuracy, contamination by a conductive agent, and high cost.

特開2005−91899号公報JP 2005-91899 A 特開2007−232938号公報Japanese Patent Laid-Open No. 2007-232938

本発明はこのような事情に鑑みなされたものであり、パイル糸の長さ、傾斜角度、密度の均一性がそれほど問題でなく、しかも特殊断面を持つ極細繊維で構成されているパイル糸により微細均一な配向を実現し、また導電性繊維による静電気対策がなされているにも拘わらずコンタミネーションが少なく、またコーティング工程が省略できる優れたラビング布を提供することを目的とするものである。
本発明者らは、前記課題を解決するため鋭意研究を行った結果、特殊断面の極細繊維をラビング布のパイルに用いることにより配向性不良の非常に少ない表示素子を得ることができ、さらに熱融着性複合繊維を用いることによりグランドのバッキング工程の省略が可能となり、導電層が露出していない導電性複合繊維を用いることにより、歩留まりの改善されたラビング布が得られることを見出し、本発明を完成するに至った。
The present invention has been made in view of such circumstances, and the length, inclination angle, and density uniformity of the pile yarn are not so much of a problem, and the pile yarn is composed of ultrafine fibers having a special cross section. An object of the present invention is to provide an excellent rubbing cloth that achieves uniform orientation, has little contamination despite the measures against static electricity by conductive fibers, and can omit the coating process.
As a result of intensive studies to solve the above-mentioned problems, the present inventors have been able to obtain a display element with very little orientation failure by using ultrafine fibers having a special cross section for a pile of rubbing cloth, and further, The use of the fusible conjugate fiber makes it possible to omit the ground backing step, and the use of the conductive conjugate fiber with the conductive layer not exposed reveals that a rubbing cloth with improved yield can be obtained. The invention has been completed.

すなわち、本発明は、(1)液晶表示装置の配向膜を配向処理するために使用するラビング布であって、該ラビング布はグランド地とパイル糸からなり、該グランド地の経糸および緯糸の少なくとも一部に熱融着性複合繊維が用いられ、且つ該パイル糸が、多層積層型複合繊維を分割して得られる1.1dtex以下の扁平極細繊維であって、その扁平率(長径/短径の比)が4以上である極細繊維で構成されていることを特徴とするラビング布、(2)グランド地には導電性複合繊維が含まれており、該導電性複合繊維が、繊維表面に導電層が露出しておらず、導電性能が1フィラメント当たり105〜109Ω/cmである前記1記載のラビング布、及び(3)導電性複合繊維の導電層の外周に隠蔽ポリマー層を施してなる導電性複合繊維が用いられている前記(2)記載のラビング布、を提供するものである。That is, the present invention is (1) a rubbing cloth used for orienting an alignment film of a liquid crystal display device, and the rubbing cloth is composed of a ground ground and a pile yarn, and at least of warps and wefts of the ground ground A heat-fusible conjugate fiber is used in part, and the pile yarn is a flat ultrafine fiber of 1.1 dtex or less obtained by dividing a multilayer laminated conjugate fiber, and its flatness (major axis / minor axis) A rubbing cloth characterized in that it is composed of ultrafine fibers having a ratio of 4 or more, and (2) the ground includes conductive composite fibers, and the conductive composite fibers are present on the fiber surface. The rubbing cloth according to 1 above, wherein the conductive layer is not exposed and the conductive performance is 10 5 to 10 9 Ω / cm per filament, and (3) a concealing polymer layer is provided on the outer periphery of the conductive layer of the conductive composite fiber. Conductive composite fiber Wherein the is used (2) rubbing cloth according, there is provided a.

本発明のラビング布のパイル糸の扁平極細繊維形成成分として用いられる多層積層型複合繊維の一例の横断面図である。It is a cross-sectional view of an example of a multilayer laminated composite fiber used as a flat extra fine fiber forming component of the pile yarn of the rubbing cloth of the present invention. 本発明のラビング布の構成の一例を示す模式断面図である。It is a schematic cross section which shows an example of a structure of the rubbing cloth of this invention. 本発明に用いられる導電性複合繊維の一例を示す模式断面図である。It is a schematic cross section which shows an example of the electroconductive composite fiber used for this invention. 本発明の比較例に用いられた導電性複合繊維を示す模式断面図である。It is a schematic cross section which shows the electroconductive composite fiber used for the comparative example of this invention.

符号の説明Explanation of symbols

A:繊維形成性ポリマーA
B:ポリマーAとは非相溶性の繊維形成性ポリマーB
1: 多層積層型複合繊維
10:ラビング布
21:パイル層
22:グランド地
23:導電性複合繊維
30、40:導電性複合繊維
31:導電層
32:隠蔽ポリマー層
33:保護ポリマー層
41:保護ポリマー層
A: Fiber-forming polymer A
B: Fiber-forming polymer B that is incompatible with polymer A
1: multilayer laminated composite fiber 10: rubbing cloth 21: pile layer 22: ground 23: conductive composite fiber 30, 40: conductive composite fiber 31: conductive layer 32: concealing polymer layer 33: protective polymer layer 41: protection Polymer layer

本発明のラビング布は、ラビング布のパイルに用いる極細繊維が、図1に示すように繊維形成性ポリマー(本発明において「ポリマー」は「重合体」と同義である。)Aと、ポリマーAとは非相溶性の繊維形成性ポリマーBとからなる扁平極細繊維形成成分の集合体である多層積層型の特殊断面形状を有する分割型複合繊維を分割して得られる扁平極細繊維であり、分割後は、それぞれがポリマーA又はポリマーBによる扁平な極細繊維となる。該扁平極細繊維の単繊維繊度は、1.1dtex以下のものがスジのない均一な表示素子が得られる点で好適であり、0.1〜1.1dtexが好ましく、0.2〜0.5dtexの範囲がより好ましい。さらに扁平極細繊維の横断面での長径/短径の比である扁平度が4以上であることが精細な溝を得る点で必要であり、好ましくは5以上で15以下の扁平度のものである。特に扁平度が4以上でかつ扁平面が接するような状態でパイルを構成している場合には、パイル糸が倒れにくく、配向性の優れた配向膜が得られる。扁平極細繊維で形成されたパイル糸を倒れにくくするには、扁平極細繊維の扁平面の長径側がラビング方向に平行になるように、パイル糸を配置することが好ましい。例えば、分割型複合繊維として図1に示すような多層積層型複合繊維を用い、かつ同繊維からなるパイル形成糸(以下、「パイル用糸」ともいう。)として、撚数が0〜500T/Mの低撚糸を用い、このようなパイル用糸を経糸と平行に織物に打ち込むと緯糸に押さえつけられ、パイル用糸が扁平化し、分割性多層積層型複合繊維の扁平面(長径側)が緯糸と平行になり易い。このような糸を分割処理し、ラビング布としてラビングロールの円周方向が経糸方向となるように巻きつけると扁平極細繊維の扁平面がラビング方向に平行となり易い。もちろん、扁平極細繊維の扁平面がラビング方向に平行となるような特別の配慮をしない場合でも、扁平極細繊維のいくらかは、自ずと扁平面がラビング方向と平行となり、このような方向を向いている扁平極細繊維が有効に働き、均一な微細溝を形成することとなる。   In the rubbing cloth of the present invention, the ultrafine fibers used for the pile of the rubbing cloth are a fiber-forming polymer (in the present invention, “polymer” is synonymous with “polymer”) A and polymer A as shown in FIG. Is a flat ultrafine fiber obtained by splitting a split type composite fiber having a special cross-sectional shape of a multi-layer laminated type, which is an assembly of flat ultrafine fiber forming components composed of an incompatible fiber-forming polymer B. After that, each becomes a flat ultrafine fiber made of polymer A or polymer B. The flat fine fiber has a single fiber fineness of 1.1 dtex or less, which is suitable in that a uniform display element without streaks is obtained, preferably 0.1 to 1.1 dtex, and preferably 0.2 to 0.5 dtex. The range of is more preferable. Further, it is necessary that the flatness, which is the ratio of the major axis / minor axis in the cross section of the flat ultrafine fiber, is 4 or more in order to obtain a fine groove, and preferably has a flatness of 5 or more and 15 or less. is there. In particular, when the pile is formed in a state where the flatness is 4 or more and the flat surface is in contact with the pile, the pile yarn is not easily collapsed, and an alignment film having excellent orientation can be obtained. In order to make it difficult for the pile yarn formed of flat ultrafine fibers to fall down, it is preferable to arrange the pile yarn so that the major axis side of the flat surface of the flat ultrafine fibers is parallel to the rubbing direction. For example, a multi-layer laminated composite fiber as shown in FIG. 1 is used as the split composite fiber, and a pile forming yarn (hereinafter, also referred to as “pile yarn”) made of the same fiber has a twist number of 0 to 500 T / When using such a low twist yarn of M and driving such a pile yarn into a woven fabric in parallel with the warp, the pile yarn is pressed down, the pile yarn is flattened, and the flat surface (major axis side) of the splittable multilayer laminated composite fiber is the weft yarn It is easy to become parallel with. When such a yarn is divided and wound as a rubbing cloth so that the circumferential direction of the rubbing roll is the warp direction, the flat surface of the flat ultrafine fibers tends to be parallel to the rubbing direction. Of course, even if there is no special consideration that the flat surface of the flat ultrafine fiber is parallel to the rubbing direction, some of the flat ultrafine fibers are naturally oriented in such a direction that the flat surface is parallel to the rubbing direction. The flat ultrafine fibers work effectively to form uniform fine grooves.

さらに、本発明において、分割前の多層積層型複合繊維は、扁平面が接するように、5〜20層、特に7〜15層の扁平極細繊維形成成分が積層しているような断面形状が好ましく、そして分割前の多層積層型複合繊維の単繊維繊度としては1〜10dtexが好ましい。分割前の多層積層型複合繊維としては、上記したような扁平断面繊維形成成分が多数扁平面で接しているような断面形状が好ましく、特に、各扁平極細繊維形成成分の断面が、ほぼ長方形であるのが精細な溝の生成の点で好ましい。   Furthermore, in the present invention, the multi-layer laminated composite fiber before division preferably has a cross-sectional shape in which 5 to 20 layers, particularly 7 to 15 layers of flat ultrafine fiber forming components are laminated so that the flat surfaces are in contact with each other. The monofilament fineness of the multilayer laminated composite fiber before division is preferably 1 to 10 dtex. The multi-layer laminated composite fiber before division preferably has a cross-sectional shape in which many flat cross-section fiber forming components as described above are in contact with each other on a flat surface, and in particular, the cross-section of each flat ultrafine fiber forming component is substantially rectangular. It is preferable in terms of producing fine grooves.

また、パイルとしては、トータル繊度で40〜500dtexが好ましく、パイル高さとしては1.0〜3.0mm、特に1.5〜2.6mmであればパイルが倒れにくく、配向性に優れた配向膜が得られる点で好ましい。さらにパイル密度としては、グランド生地1cm2当たり10万〜40万本のパイルが存在しているような状態が好ましい。Further, the pile is preferably 40 to 500 dtex in terms of the total fineness, and the pile height is 1.0 to 3.0 mm, particularly 1.5 to 2.6 mm. This is preferable in that a film is obtained. Further, the pile density is preferably in a state where 100,000 to 400,000 piles exist per 1 cm 2 of the ground fabric.

このような扁平極細繊維は、非相溶性の2種類以上の重合体を繊維の横断面で見て多層積層状態となるように紡糸口金孔に導き複合紡糸することによって得られる多層積層型複合繊維を、繊維の状態で、または該繊維を用いたパイル織物にした後、揉み処理、水流ジェット処理、空気ジェット処理、ニードル処理、シャーリング処理、アルカリ減量処理、安息香酸やベンジルアルコールなどの溶剤処理により分割処理することにより得られる。   Such a flat microfiber is a multi-layer laminated composite fiber obtained by conducting two or more incompatible polymers to a spinneret hole so as to be in a multi-layer laminated state when viewed in the cross section of the fiber and performing composite spinning. , In the state of fibers or after making a pile fabric using the fibers, by scouring treatment, water jet treatment, air jet treatment, needle treatment, shearing treatment, alkali weight loss treatment, solvent treatment such as benzoic acid or benzyl alcohol It is obtained by dividing.

分割型複合繊維を構成する非相溶性の重合体とは、溶解パラメーターが2MJ/m-3以上異なる重合体である。具体的には、ポリマーAとしてポリエチレンテレフタレート、ポリブチレンテレフタレート或いはこれらを主体とする共重合ポリエステル、ポリ乳酸等のポリエステル、ポリマーBとしてナイロン−6、ナイロン−66,ナイロン−610、半芳香族ポリアミド等のポリアミド、又は、ポリマーAとしてエチレン含量20〜50モル%のエチレン−ビニルアルコール系共重合体、ポリマーBとしてポリエチレン、ポリプロピレン等のポリオレフィンから選ばれるなかの2種類または3種類以上を組み合わせて形成されていることが、分割が容易である点から好ましい。
ポリマーAとポリマーBの重量比は、4:1〜1:4の範囲が好ましく、3:1〜1:3の範囲がより好ましい。
The incompatible polymer constituting the split composite fiber is a polymer having a solubility parameter different by 2 MJ / m −3 or more. Specifically, the polymer A is polyethylene terephthalate, polybutylene terephthalate or a copolyester mainly composed thereof, polyester such as polylactic acid, and the polymer B is nylon-6, nylon-66, nylon-610, semi-aromatic polyamide, etc. Polyamide, or an ethylene-vinyl alcohol copolymer having an ethylene content of 20 to 50 mol% as polymer A, and a combination of two or more selected from polyolefins such as polyethylene and polypropylene as polymer B. It is preferable from the viewpoint that division is easy.
The weight ratio of polymer A to polymer B is preferably in the range of 4: 1 to 1: 4, and more preferably in the range of 3: 1 to 1: 3.

多層積層型複合繊維を形成する重合体のより好ましい具体的組み合わせ例としては、ポリアミド/ポリエステル、ポリエステル/エチレン−ビニルアルコール共重合体、ポリエステル/ポリオレフィン、ポリアミド/ポリオレフィンなどを挙げることができる。なかでも、ポリアミド/ポリエステルの組み合わせがもっとも好ましい。ここでいう複合繊維を構成する重合体の溶解パラメーターとは、工業調査会発行の「プラスチックデータブック」(1999年12月1日発行)の第90頁に記載されている重合体のパラメーター表(SP値表)に示されている値を意味する。該SP値表に示されていない重合体については、凝集エネルギーの密度の計算値よりその溶解パラメーターを求めることができる。   Specific examples of more preferable combinations of the polymers forming the multilayer laminated composite fiber include polyamide / polyester, polyester / ethylene-vinyl alcohol copolymer, polyester / polyolefin, polyamide / polyolefin, and the like. Of these, a polyamide / polyester combination is most preferable. The solubility parameter of the polymer constituting the composite fiber here is a parameter table of the polymer described on page 90 of the “Plastic Data Book” (issued on December 1, 1999) published by the Industrial Research Council ( It means the value shown in the SP value table. For polymers not shown in the SP value table, the solubility parameter can be determined from the calculated density energy density.

次に本発明のラビング布のグランド地に用いられる熱融着性複合繊維について説明する。本発明で用いられる熱融着性複合繊維とは、融点が160℃以下80℃以上である重合体を含有する低融点成分と、当該低融点成分よりも高融点の重合体であって、融点200℃以上、好ましくは融点240℃以上の高融点成分との異なる2種類の重合体で構成し、サイド−バイ−サイド型、芯鞘型(同心芯鞘型、偏心芯鞘型)、海島型、多層積層型等の複合断面構造を有する複合繊維とすることができるが、なかでも芯鞘型が好適である。   Next, the heat-fusible conjugate fiber used for the ground of the rubbing cloth of the present invention will be described. The heat-fusible conjugate fiber used in the present invention is a low melting point component containing a polymer having a melting point of 160 ° C. or lower and 80 ° C. or higher, and a polymer having a higher melting point than the low melting point component, Consists of two different polymers with high melting point components of 200 ° C or higher, preferably 240 ° C or higher, side-by-side type, core-sheath type (concentric core-sheath type, eccentric core-sheath type), sea-island type A composite fiber having a composite cross-sectional structure such as a multilayer laminate type can be used, and a core-sheath type is particularly preferable.

これらの熱融着性複合繊維に用いることができる重合体としては、例えばナイロン等で代表されるポリアミド、ポリエステル、及びポリプロピレン、ポリエチレンなどで代表されるポリオレフィン系重合体があげられる。これらのうち低融点成分と高融点成分の組み合わせとしては、例えば低融点ポリエステル/高融点ポリエステル、ポリエチレン/ポリプロピレン、ポリエチレン/高融点ポリエステル、ポリプロピレン/ポリエステルなどがあげられる。   Examples of the polymer that can be used for these heat-fusible composite fibers include polyamides represented by nylon and the like, polyesters, and polyolefin polymers represented by polypropylene and polyethylene. Among these, examples of the combination of the low melting point component and the high melting point component include low melting point polyester / high melting point polyester, polyethylene / polypropylene, polyethylene / high melting point polyester, and polypropylene / polyester.

さらに、本発明においては、前記熱融着性複合繊維が熱融着性と、融着後でも強度、伸度、熱収縮性などの繊維物性を兼ね備えていることが重要である。熱融着性複合繊維の使用目的がパイルの脱落防止であり、パイル糸がポリエステル/ナイロンの複合繊維であることが好適であることを考慮すると、パイル糸とグランド糸との相溶性の観点から、低融点ポリエステル/高融点ポリエステルが好ましい。そして、低融点のポリエステル成分としてポリヘキサメチレンテレフタレート、高融点成分としてポリエチレンテレフタレートを用いたものは、融着後において、風合いが硬くなることが少なく特に好適である。熱融着性複合繊維に占める上記低融点ポリマーの割合としては20〜80重量%が好ましい。
低融点ポリマーが20重量%未満の場合には、良好な熱融着性が得られにくく、また、80重量%を超えると紡糸性、延伸性等の繊維化工程性が低下するので好ましくない。
Furthermore, in the present invention, it is important that the heat-fusible conjugate fiber has both heat-fusibility and fiber properties such as strength, elongation, and heat-shrinkability even after fusing. Considering that the purpose of use of the heat-fusible conjugate fiber is to prevent the pile from falling off and that the pile yarn is preferably a polyester / nylon conjugate fiber, from the viewpoint of compatibility between the pile yarn and the ground yarn Low melting point polyester / high melting point polyester is preferable. Further, those using polyhexamethylene terephthalate as the low melting point polyester component and polyethylene terephthalate as the high melting point component are particularly preferable because the texture does not become hard after fusion. The proportion of the low melting point polymer in the heat-fusible conjugate fiber is preferably 20 to 80% by weight.
When the low melting point polymer is less than 20% by weight, it is difficult to obtain good heat-fusibility, and when it exceeds 80% by weight, the fiber forming processability such as spinnability and stretchability is deteriorated.

熱融着性複合繊維の単繊維太さとしては1〜10dtexが好ましい。本発明において、グランド地を構成する繊維の全てが熱融着性複合繊維であってもよいし、またグランド地を構成する繊維の一部として熱融着性複合繊維が用いられていてもよい。グランド地を構成する繊維の一部として用いる場合には、経糸及び緯糸に所定間隔で配置してグランド地を構成する全繊維の40重量%以上が熱融着性複合繊維であるのがパイル糸の抜けを防止する上で好ましい。
もちろん本発明において、より一層のパイル糸の脱落を達成したい場合には、グランド地にアクリル系エマルジョンやポリウレタン系のエマルジョン、ゴム系のエマルジョンやラテックス等をバックコートしてもよい。
The thickness of the single fiber of the heat-fusible conjugate fiber is preferably 1 to 10 dtex. In the present invention, all of the fibers constituting the ground may be heat-fusible conjugate fibers, or the heat-fusible conjugate fibers may be used as part of the fibers constituting the ground. . When used as a part of the fibers constituting the ground, pile yarn is that 40% by weight or more of the total fibers constituting the ground are arranged at predetermined intervals on the warp and weft yarns. It is preferable for preventing the omission.
Of course, in the present invention, when it is desired to further remove the pile yarn, an acrylic emulsion, polyurethane emulsion, rubber emulsion, latex or the like may be back-coated on the ground.

本発明では、グランド地に導電性複合繊維を用いることができる。一般にラビング処理では、高速回転するラビングローラーに貼着されたラビング布により配向膜を擦ることによって行われるため、配向膜とラビング布の間で摩擦、接触、剥離が繰り返され、静電気が発生し、ガラス基板上の回路に損傷を与えるとともにラビング時に発生する種々の塵を吸着する。   In the present invention, a conductive conjugate fiber can be used for the ground. In general, rubbing treatment is performed by rubbing the alignment film with a rubbing cloth adhered to a high-speed rotating rubbing roller, so that friction, contact, and peeling are repeated between the alignment film and the rubbing cloth, and static electricity is generated. Damages the circuit on the glass substrate and adsorbs various dusts generated during rubbing.

このため静電気対策は極めて重要で、前出の特許文献1では、静電気対策として、起毛層(すなわちパイル部)に導電性が付与されているラビングクロスを用いることが記載されており、その具体策として、起毛層に導電性繊維を加えること、或いは極細繊維を紡糸する際に制電剤(カーボンブラックや金属粉末)を練り込んで紡糸することが記載されている。しかしながら、起毛層に含まれる導電性繊維が極細繊維でない場合には、起毛層すなわちパイル面は該導電性繊維と極細繊維が混在することになり、当然配向膜との間の摩擦力に差が生じラビング斑になる。一方、制電剤が練り込まれた極細繊維では、分割後の極細繊維を例えば芯鞘型の複合繊維とすることは製造工程上不可能であることから、特許文献1における導電性の極細繊維とは、制電剤が均一に練り込まれた極細繊維を意味するものと解せられる。したがって、この場合にはカーボンブラックや金属微粉末が極細繊維表面に露出していることになる。また、仮に分割後の極細繊維が複合化されたものであると仮定しても、パイル糸は製織後に切断されるためパイル糸断面には制電剤が露出していることになり、制電剤が露出した極細繊維で配向膜をラビング処理すれば、コンタミネーションの原因となり液晶表示品質を低下させることとなる。   For this reason, countermeasures against static electricity are extremely important, and the above-mentioned Patent Document 1 describes the use of a rubbing cloth in which conductivity is imparted to the raised layer (that is, the pile portion) as countermeasures against static electricity. As mentioned above, it is described that an electroconductive fiber is added to the raised layer, or an antistatic agent (carbon black or metal powder) is kneaded and spun when spinning ultrafine fibers. However, when the conductive fiber contained in the raised layer is not an ultrafine fiber, the raised layer, that is, the pile surface, is a mixture of the conductive fiber and the ultrafine fiber, and naturally there is a difference in the frictional force between the alignment film. Resulting in rubbing spots. On the other hand, in the ultrafine fiber kneaded with the antistatic agent, it is impossible in the manufacturing process to make the divided ultrafine fiber, for example, a core-sheath type composite fiber. Is understood to mean an ultrafine fiber in which the antistatic agent is uniformly kneaded. Therefore, in this case, carbon black and metal fine powder are exposed on the surface of the ultrafine fiber. Further, even if it is assumed that the divided ultrafine fibers are composited, the pile yarn is cut after weaving, so the antistatic agent is exposed on the pile yarn cross section, and the antistatic If the alignment film is rubbed with ultrafine fibers with the agent exposed, it causes contamination and lowers the liquid crystal display quality.

本発明者らは、蓄積された静電気の除電は導通によらずコロナ放電によっても可能であるため、導電性繊維をパイルに使用する必要はなく、グランドすなわち地組織の一部に用いればよいことを見出した。該導電性複合繊維としては、例えば、繊維に用いられる導電剤として一般的な導電性炭素(カーボンブラック)を含有する樹脂からなる導電層が繊維の長さ方向に連続している複合繊維を利用することができる。コロナ放電による除電であるため、導電性複合繊維の電気抵抗は、105Ω/cm以上109Ω/cm以下の範囲のものが好適である。このような電気抵抗を有する導電性複合繊維の導電層中に含まれる導電性カーボンブラックは、10-2〜10-3Ω・cmの固有抵抗を有するものが好ましい。ここでいう電気抵抗とは、繊維を10cmに切断し切断面に導電性塗料(ドータイト)を塗布して繊維端部を固定した後、該端部を電極として印加電圧1KVにおける電気抵抗を算出した1フィラメントあたりの電気抵抗である。
なお、導電剤としては、前記の導電性炭素(カーボンブラック)として、アセチレンブラック、ケッチェンブラック、PAN系カーボン、ピッチ系カーボンなどのカーボン粉、アルミニウム、パラジウム、鉄、銅、銀などの金属系の粉体や繊維、酸化亜鉛、酸化すず、酸化チタン、硫化銅、硫化亜鉛などの金属化合物粉などがあり、これらを単独または2種類以上組み合わせて用いることができる。
The inventors of the present invention can remove the accumulated static electricity not only by conduction but also by corona discharge. Therefore, it is not necessary to use conductive fibers for the pile, and it may be used for the ground, that is, a part of the ground structure. I found. As the conductive conjugate fiber, for example, a conjugate fiber in which a conductive layer made of a resin containing conductive carbon (carbon black), which is a general conductive agent used in the fiber, is continuous in the length direction of the fiber is used. can do. Since the neutralization is performed by corona discharge, the electrical resistance of the conductive composite fiber is preferably in the range of 10 5 Ω / cm to 10 9 Ω / cm. The conductive carbon black contained in the conductive layer of the conductive composite fiber having such electrical resistance preferably has a specific resistance of 10 −2 to 10 −3 Ω · cm. As used herein, the electrical resistance is calculated by calculating the electrical resistance at an applied voltage of 1 KV after cutting the fiber to 10 cm, applying a conductive paint (dortite) to the cut surface and fixing the fiber end, and using the end as an electrode. The electrical resistance per filament.
As the conductive agent, carbon powder such as acetylene black, ketjen black, PAN-based carbon, and pitch-based carbon, and metal-based materials such as aluminum, palladium, iron, copper, and silver are used as the conductive carbon (carbon black). Powders, fibers, zinc oxide, tin oxide, titanium oxide, copper sulfide, zinc sulfide, and other metal compound powders. These can be used alone or in combination of two or more.

導電剤としてカーボンブラックを用いる場合、導電性カーボンブラック含有樹脂の電気伝導メカニズムはカーボンブラック連鎖の接触によるものと、トンネル効果等によるもの等が考えられているが、一般に前者が主と考えられている。したがって、カーボン連鎖は長い方が、また高密度で樹脂中に存在する方が、接触確率が大となり高い導電性が付与される。本発明者らの検討結果では、導電性カーボンブラック含有量が15重量%未満ではほとんど導電効果がなく、20重量%になると急激に導電性が向上し、30重量%を超えると導電効果はほぼ飽和に達する。
導電性複合繊維の導電層は、導電性カーボンブラック等の導電材料と繊維形成性ポリマーより構成される。
When carbon black is used as a conductive agent, the electrical conduction mechanism of the conductive carbon black-containing resin is considered to be due to the contact of the carbon black chain, due to the tunnel effect, etc., but the former is generally considered the main Yes. Therefore, the longer the carbon chain, or the higher the density of the carbon chain present in the resin, the higher the contact probability and the higher conductivity. As a result of the study by the present inventors, there is almost no conductive effect when the conductive carbon black content is less than 15% by weight, and when 20% by weight, the conductivity is drastically improved. Saturation is reached.
The conductive layer of the conductive composite fiber is composed of a conductive material such as conductive carbon black and a fiber-forming polymer.

導電層を含む導電性複合繊維の断面の一例を図3に示した。同図に示す本発明のラビング布に用いる導電性複合繊維30は、導電層31が繊維表面(繊維側面)に露出していない、すなわち導電層31が複層の非導電性ポリマー層として隠蔽ポリマー層32及び保護ポリマー層33により覆われて、繊維側面には導電層が露出していない鞘芯型導電性複合繊維であり、配向膜へのコンタミネーションの問題を回避できる非露出タイプである。
本発明のラビング布に用いる導電性複合繊維の太さとしては、単繊維繊度が5〜20dtex、特に7〜18dtexの範囲が好ましい。
An example of a cross section of the conductive conjugate fiber including the conductive layer is shown in FIG. In the conductive composite fiber 30 used for the rubbing cloth of the present invention shown in the same figure, the conductive layer 31 is not exposed on the fiber surface (fiber side surface), that is, the conductive layer 31 is a concealing polymer as a multi-layer nonconductive polymer layer. It is a sheath-core type conductive composite fiber that is covered with the layer 32 and the protective polymer layer 33, and the conductive layer is not exposed on the fiber side surface, and is a non-exposed type that can avoid the problem of contamination to the alignment film.
As the thickness of the conductive conjugate fiber used for the rubbing cloth of the present invention, the single fiber fineness is preferably 5 to 20 dtex, particularly preferably 7 to 18 dtex.

本発明のラビング布においては、図3に示すように、審美性の点からカーボンブラック等の導電層の黒色を隠蔽すべく、導電層を被覆する白色(灰白色)の隠蔽ポリマー層とすることが導電性複合繊維の外観上好ましい。隠蔽ポリマー層は繊維形成性ポリマー中に無機微粒子を含有するもので、該無機微粒子としては、二酸化チタン、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、二酸化ケイ素、硫酸バリウム、炭酸カルシウム、炭酸ナトリウム、タルク、カオリン等の隠蔽効果を有する白色系顔料または白色系充填材が挙げられ、これらは1種または2種以上併用することができる。隠蔽効果、布帛としての白度、製糸性、加工特性を考慮すると二酸化チタンおよび/または酸化亜鉛が好適である。隠蔽ポリマー層を形成する繊維形成性ポリマー中に、前記無機微粒子を、概ね10〜50重量%含有させ、隠蔽ポリマー層の厚みを調整すれば、隠蔽効果を得ることができる。繊維形成性ポリマーとしては、後に鞘層を形成するポリマーとして挙げるものが使用できる。   In the rubbing cloth of the present invention, as shown in FIG. 3, in order to conceal the black color of the conductive layer such as carbon black from the viewpoint of aesthetics, a white (gray white) concealing polymer layer that covers the conductive layer may be used. It is preferable in terms of the appearance of the conductive conjugate fiber. The concealing polymer layer contains inorganic fine particles in a fiber-forming polymer. Examples of the inorganic fine particles include titanium dioxide, zinc oxide, magnesium oxide, aluminum oxide, silicon dioxide, barium sulfate, calcium carbonate, sodium carbonate, talc, Examples thereof include white pigments or white fillers having a concealing effect such as kaolin, and these can be used alone or in combination of two or more. Titanium dioxide and / or zinc oxide is preferable in consideration of the concealing effect, whiteness as a fabric, yarn forming property, and processing characteristics. A concealing effect can be obtained by adding approximately 10 to 50% by weight of the inorganic fine particles in the fiber-forming polymer forming the concealing polymer layer and adjusting the thickness of the concealing polymer layer. As the fiber-forming polymer, those listed later as polymers for forming a sheath layer can be used.

また、本発明のラビング布の導電性複合繊維は、前記隠蔽ポリマー層をさらに、繊維形成性ポリマー(重合体)で被覆して保護ポリマー層を設けることが好ましい。該保護ポリマー層を形成するポリマーとしては、例えばナイロン等で代表されるポリアミド、ポリエステル、及びポリプロピレン、ポリエチレンなどで代表されるポリオレフィン系ポリマーがあげられる。特に前記の熱融着性複合繊維の低融点成分と相溶性を有するポリマーを選択し、グランドの熱融着を堅固にできるようにすれば、パイル糸の抜けを一層向上できるので好ましい。
保護ポリマー層の機能としては、導電層及び隠蔽層をさらに保護し、導電性複合繊維として、ベルベット織物等に製織するため及びラビング布のグランド糸としての繊維強度の発現、導電層の黒色等のさらなる隠蔽等である。また、保護ポリマー層は、繊維の最外表面となることから、形成ポリマーに通常の合成繊維に用いられる二酸化チタン等を添加して、繊維の質感を高めることが好ましい。なお、隠蔽ポリマー層及び保護ポリマー層には必要に応じて、通常、繊維の添加として用いられる熱安定剤、光安定剤、帯電防止剤等の各種添加剤や着色顔料等を適宜添加できる。
In the conductive composite fiber of the rubbing cloth of the present invention, it is preferable that the concealing polymer layer is further covered with a fiber-forming polymer (polymer) to provide a protective polymer layer. Examples of the polymer that forms the protective polymer layer include polyamides represented by nylon and the like, polyesters, and polyolefin polymers represented by polypropylene and polyethylene. In particular, it is preferable to select a polymer that is compatible with the low-melting-point component of the heat-fusible composite fiber so that the heat-bonding of the ground can be firmly performed, because the pile yarn can be further removed.
As a function of the protective polymer layer, the conductive layer and the concealing layer are further protected, and the conductive composite fiber is woven into a velvet fabric or the like, and the fiber strength is expressed as the ground yarn of the rubbing cloth, the black color of the conductive layer, etc. For example, further concealment. Further, since the protective polymer layer becomes the outermost surface of the fiber, it is preferable to add titanium dioxide or the like used for ordinary synthetic fibers to the forming polymer to enhance the texture of the fiber. In addition, various additives such as a heat stabilizer, a light stabilizer, and an antistatic agent that are usually used for adding fibers, a color pigment, and the like can be appropriately added to the concealing polymer layer and the protective polymer layer as necessary.

導電性複合繊維を図3に示ように3層で形成する場合、繊維断面における複合比を導電ポリマー層31の最長径、隠蔽ポリマー層32、保護ポリマー層33の夫々の最大厚さの相対比が、導電ポリマー層31の最大長を1として、1:0.1〜1:0.5〜2の割合であることが、導電性、隠蔽性、表面保護性および繊維性能のバランス等から好ましい。
参考のために、露出タイプの導電性複合繊維を図4に示す。同図に示す導電性複合繊維40は、導電層31と保護層41とからなり導電層31が繊維側面の一部に露出している。このような露出タイプの導電性複合繊維を用いると高速回転するラビングロールによる摩擦により導電剤のコンタミネーションが危惧される。
本発明においては、導電性複合繊維はパイル糸に用いることなく、グランド糸の一部に用いられるが、高速回転するラビングロールによる摩擦を考慮してコンタミネーション防止の点から図3に示すような非露出タイプの鞘芯型の導電性複合繊維を採用するのである。
When the conductive composite fiber is formed of three layers as shown in FIG. 3, the composite ratio in the fiber cross section is the relative ratio of the longest diameter of the conductive polymer layer 31, the maximum thickness of each of the concealing polymer layer 32 and the protective polymer layer 33. However, a ratio of 1: 0.1 to 1: 0.5 to 2 with the maximum length of the conductive polymer layer 31 being 1 is preferable from the balance of conductivity, concealability, surface protection, fiber performance, and the like. .
For reference, an exposed type conductive composite fiber is shown in FIG. The conductive conjugate fiber 40 shown in the figure is composed of a conductive layer 31 and a protective layer 41, and the conductive layer 31 is exposed at a part of the side surface of the fiber. When such an exposed type conductive composite fiber is used, there is a risk of contamination of the conductive agent due to friction caused by a rubbing roll rotating at high speed.
In the present invention, the conductive conjugate fiber is used for a part of the ground yarn without being used for the pile yarn, but as shown in FIG. 3 from the viewpoint of preventing contamination in consideration of friction caused by the rubbing roll rotating at high speed. A non-exposed sheath-core type conductive composite fiber is employed.

なお、導電性繊維は2〜6本を束ねた状態で用いるのが、導電性複合繊維の切断による、導電性の消失を防ぐ上で好ましい。また、導電性複合繊維を非導電性糸の周りに巻きつけたカバリング糸として、導電性複合繊維に極力張力がかからないようにするのも好ましい。   In addition, it is preferable to use 2-6 conductive fibers in a bundled state in order to prevent loss of conductivity due to cutting of the conductive composite fiber. Moreover, it is also preferable that tension is applied to the conductive conjugate fiber as much as possible as a covering yarn in which the conductive conjugate fiber is wound around the non-conductive yarn.

上記導電性複合繊維は地組織の少なくとも経方向あるいは緯方向に用いられる。該導電性複合繊維を含む糸は、前記のように複数本まとめて束とした状態(以下、「導電性糸」ということがある。)でグランド地の1cm以上5cm以下の間隔、より好ましくは1cm以上で4cm以下に1本程度で用いられる。地組織への織り込みは導電性複合繊維のみからなる導電性糸単独で用いてもよいし、インターレース等の手段を用いて他の補強繊維と一体化したものとしてもよく、また、上記したように、カバリング糸としてもよい。1cm以上5cm以下に導電性糸1本の割合で、経方向或いは緯方向に織り込むのが好都合である。導電性糸の織り込み間隔が1cm未満の場合は導電性複合繊維が高価であるためコスト高となり、また特に除電性能が向上することもない。一方織り込み間隔が5cm以上の場合には充分な除電効果が得られない。   The conductive conjugate fiber is used in at least the longitudinal direction or the weft direction of the ground tissue. As described above, the yarn containing the conductive conjugate fiber is bundled in a bundle (hereinafter sometimes referred to as “conductive yarn”), and is preferably 1 cm to 5 cm in distance from the ground, more preferably About 1 to 4 cm or less is used. As for the weaving into the ground structure, the conductive yarn made of only the conductive composite fiber may be used alone, or it may be integrated with other reinforcing fibers by using means such as interlacing. The covering yarn may be used. It is convenient to weave in the warp direction or the weft direction at a ratio of 1 conductive thread to 1 cm to 5 cm. When the weaving interval of the conductive yarn is less than 1 cm, the conductive composite fiber is expensive, so that the cost is high and the static elimination performance is not particularly improved. On the other hand, when the weaving interval is 5 cm or more, a sufficient static elimination effect cannot be obtained.

本発明のラビング布において、グランド地は織密度が経糸15〜40本/cm、緯糸20〜50本/cmが好ましい。経糸及び緯糸の太さとしては、50〜300dtexの範囲が好ましい。   In the rubbing cloth of the present invention, the ground fabric preferably has a weaving density of 15 to 40 warps / cm and 20 to 50 wefts / cm. The thickness of the warp and the weft is preferably in the range of 50 to 300 dtex.

次に本発明のラビング布の最良の形態について説明する。図2は本発明の一実施の形態であるラビング布10の拡大断面模式図を示している。
該ラビング布10はパイル21とグランド地22からなるパイル地布材で、グランド地22の一部が導電性複合繊維23、またグランド地の経糸及び緯糸の少なくともいずれか一方に熱融着性複合繊維が織り込まれている。また、パイル糸が1.1dtex以下の極細繊維で分割後の扁平度が4以上、好ましくは5以上の多層積層型分割繊維による扁平極細繊維である。1.1dtexを超える太さのものはラビング処理時にパイル1本1本が液晶表示素子の配向膜に与える影響が大きく、パイル長や傾斜角度が問題となって均一な配向効果が得られ難い。
Next, the best mode of the rubbing cloth of the present invention will be described. FIG. 2 shows an enlarged schematic sectional view of a rubbing cloth 10 according to an embodiment of the present invention.
The rubbing cloth 10 is a pile cloth material composed of a pile 21 and a ground material 22, and a part of the ground material 22 is a heat-bondable composite material with a conductive composite fiber 23 and at least one of warp and weft of the ground material. Fiber is woven. Further, the pile yarn is a flat ultrafine fiber made of multi-layered laminated fibers having an ultrafine fiber of 1.1 dtex or less and a flatness after division of 4 or more, preferably 5 or more. When the thickness exceeds 1.1 dtex, each pile has a great influence on the alignment film of the liquid crystal display element at the time of rubbing treatment, and it is difficult to obtain a uniform alignment effect due to pile length and tilt angle.

上記パイル地布材としては、ベルベット、モケット等が好適である。該パイル地布材のグランドには、少なくとも経方向あるいは緯方向の一部に導電性複合繊維を配し、少なくとも経糸あるいは緯糸に熱融着性複合繊維を用いる他はグランド糸に対する制限はなく、通常用いられる素材が利用できる。しかしながら、グランド糸がキュプラの場合には湿度変化による寸法変化があるため、保管、精密裁断、ラビングロールへの貼着に厳密な湿度管理が必要となる。要求される温湿度管理が容易であることから、温湿度に対する寸法安定性のよいポリエステル繊維が特に好適である。   As the pile fabric material, velvet, moquette and the like are suitable. The ground of the pile fabric material is not limited to the ground yarn except that the conductive conjugate fiber is arranged at least in the warp direction or a part of the weft direction, and at least the heat-fusible conjugate fiber is used for the warp yarn or the weft yarn. Commonly used materials can be used. However, when the ground yarn is a cupra, there is a dimensional change due to a change in humidity, so strict humidity control is required for storage, precision cutting, and sticking to a rubbing roll. Since the required temperature and humidity management is easy, a polyester fiber having good dimensional stability against temperature and humidity is particularly suitable.

本発明のラビング布はパイル糸が扁平極細繊維による特殊断面であるため、均一で安定したラビング処理をおこなうことができる。そして、このラビング布によれば、従来のようにパイル長や傾斜角度を厳密に管理する必要がなく、取り扱いが簡単で配向膜に均一で微細な溝を生成することができる。   Since the pile yarn of the rubbing cloth of the present invention has a special cross section made of flat ultrafine fibers, uniform and stable rubbing treatment can be performed. And according to this rubbing cloth, it is not necessary to strictly manage the pile length and the inclination angle as in the prior art, and it is easy to handle and can generate uniform and fine grooves in the alignment film.

さらに、本発明のラビング布には、地組織の一部に導電性複合繊維が配されているため、ラビング時に生ずる配向膜とラビング布間の摩擦、接触、剥離の繰り返しによる静電気をコロナ放電により除電し、配向膜に設けられた回路の損傷を軽減し、ラビングにより発生する塵の吸着を低減することができる。   Further, since the rubbing cloth of the present invention has conductive composite fibers arranged in a part of the ground structure, static electricity caused by repeated friction, contact and peeling between the alignment film and the rubbing cloth during rubbing is caused by corona discharge. It is possible to eliminate static electricity, reduce damage to a circuit provided in the alignment film, and reduce adsorption of dust generated by rubbing.

また、本発明のラビング布の少なくとも経糸あるいは緯糸に、熱融着性複合繊維を用いると、パイル糸の脱落防止のためのバックコーティングが省略可能となり、工程が短縮することで低コストとなり、また歩留まりも向上する。   Further, when a heat-fusible composite fiber is used for at least the warp or weft of the rubbing cloth of the present invention, the back coating for preventing the pile yarn from falling off can be omitted, and the cost can be reduced by shortening the process. Yield is also improved.

以下に実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
なお、本発明でいう扁平度とは、繊維の断面の顕微鏡写真を撮り、それを拡大して、任意に選び出した繊維50本のそれぞれについて、長辺と短辺の比を求めたその平均値をいう。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
The flatness referred to in the present invention is an average value obtained by taking a micrograph of the cross section of the fiber, enlarging it, and determining the ratio of the long side to the short side for each of the 50 fibers arbitrarily selected. Say.

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

実施例1
以下に記載するパイル糸、経糸及び緯糸を用い、グランド地の織密度が経、緯夫々70本/インチ(28本/cm)、69本/インチ(27本/cm)のベルベット織物をセンターカットしつつ捲取った。
Example 1
Using the pile yarn, warp and weft described below, center cut of velvet fabric with ground weaving density of 70 / inch (28 / cm) and 69 / inch (27 / cm), respectively. While catching.

パイル糸
ポリエステル(溶解パラメーター=22MJ/m3)とナイロン(溶解パラメーター=27MJ/m3)を2:1の重量比で用いて複合紡糸を行って得られた、図1に示すようなポリマーA層のポリエステルとポリマーB層のナイロンが交互に横方向に11層の多層積層型で貼り合わされた、図1に示す扁平断面の多層積層型複合繊維1よりなる撚数250T/Mのマルチフィラメント(84dtex/24フィラメント)を扁平極細繊維形成性パイル糸とし、経糸と平行に打ち込んだ。
Polymer A as shown in FIG. 1 obtained by performing composite spinning using pile yarn polyester (dissolution parameter = 22 MJ / m 3 ) and nylon (dissolution parameter = 27 MJ / m 3 ) in a weight ratio of 2: 1. A multifilament having a twist number of 250 T / M made of a multilayer laminated composite fiber 1 having a flat cross section shown in FIG. 84 dtex / 24 filament) was used as a flat ultrafine fiber-forming pile yarn, which was driven in parallel to the warp.

グランド経糸
(1)レギュラーポリエステル(84dtex/72フィラメント、撚数S800T/M)
(2)導電性複合繊維
図3に示すような導電性複合繊維として、導電ポリマー層31として導電性カーボンブラックを35重量%含有したナイロン6を用い、隠蔽ポリマー層32として二酸化チタン微粒子(平均粒径0.2μm)を50重量%含有したナイロン6を用い、保護ポリマー層33として二酸化チタンを0.5重量%含有したポリエステルを用い、繊維断面における複合比を導電ポリマー層の最長径、隠蔽ポリマー層、保護ポリマー層夫々の最大厚さの相対比が1:0.27:1.03の割合で、導電ポリマー層、隠蔽ポリマー層、及び保護ポリマー層のからなる三層芯鞘型複合断面で複合紡糸、延伸をして得られた28dtex/2フィラメントの導電性複合繊維糸(電気抵抗3×107Ω/cm・f)を1.27cmに1本の割合で織機の後方より経糸に引き揃えて織り込んだ。
Ground warp (1) Regular polyester (84 dtex / 72 filament, twist S800T / M)
(2) Conductive composite fiber As the conductive composite fiber as shown in FIG. 3, nylon 6 containing 35% by weight of conductive carbon black is used as the conductive polymer layer 31, and titanium dioxide fine particles (average particle size) are used as the concealing polymer layer 32. Nylon 6 containing 50 wt% of diameter) is used, polyester containing 0.5 wt% of titanium dioxide is used as the protective polymer layer 33, the composite ratio in the fiber cross section is the longest diameter of the conductive polymer layer, and the concealing polymer In a three-layer core-sheath composite cross section comprising a conductive polymer layer, a concealing polymer layer, and a protective polymer layer in a relative ratio of the maximum thicknesses of the layer and the protective polymer layer of 1: 0.27: 1.03 composite spinning, one of the split conductive composite fiber yarn 28dtex / 2 filaments obtained by the stretching (electric resistance 3 × 10 7 Ω / cm · f) to 1.27cm In woven aligned drawn from the rear of the loom in the warp.

グランド緯糸
緯糸として、融点が135℃のポリヘキサメチレンテレフタレートを低融点鞘成分とし、通常ポリエステルを高融点芯成分として得られた芯鞘比率80:20の熱融着性複合繊維(220dtex/48フィラメント、撚数S500T/M)を織り込んだ。
As the ground weft weft, polyhexamethylene terephthalate having a melting point of 135 ° C. as a low melting point sheath component, and a polyester / polyester as a high melting point core component, a heat-sheathed composite fiber (220 dtex / 48 filament) having a core / sheath ratio of 80:20 , Twist number S500 T / M).

次いでシャーリングを行い、糊抜、精練、扁平極細繊維形成性パイル糸の分割は、水酸化ナトリウム水溶液によるアルカリ減量加工で、減量率7%を目標に行った。さらにブラッシング、乾燥後、180℃の熱処理により、緯糸の熱融着性複合繊維がパイルを強固に固着して、指定サイズに裁断した切断面から扁平な極細繊維によるパイル糸は容易に脱落せず、バッキング工程が省略できた。得られたラビング布のパイルは、繊度0.3dtexで扁平度が6の極細繊維から構成されており、パイル長は2mmであり、且つ、この扁平な極細繊維は分割面を接するような状態で存在していた。そして、グランド生地1cm2当たり25万本の扁平な極細パイル繊維が存在しているような状態であった。Next, shearing was performed, and desizing, scouring, and division of the flat ultrafine fiber-forming pile yarn were performed with an alkali weight reduction process using a sodium hydroxide aqueous solution, with a weight loss rate of 7% as a target. Furthermore, after heat treatment at 180 ° C after brushing and drying, the heat-fusible composite fiber of the wefts firmly fixes the pile, and the pile yarn made of flat ultrafine fibers does not easily fall off from the cut surface cut to the specified size. The backing process could be omitted. The pile of the obtained rubbing cloth is composed of ultrafine fibers having a fineness of 0.3 dtex and a flatness of 6, the pile length is 2 mm, and the flat ultrafine fibers are in contact with the split surfaces. Existed. And it was in the state where 250,000 flat ultra-pile pile fibers existed per 1 cm 2 of ground fabric.

このラビング布を用い、押し込み長0.2mm、回転速度1500rpmでラビングを行い、原子間力顕微鏡画像を用いて表面状態を観察したところ、ムラのない均一で平行な溝が形成されていた。また静電気による回路の損傷が軽減されたキズの少ない高精細な液晶表示装置が得られた。   Using this rubbing cloth, rubbing was performed at an indentation length of 0.2 mm and a rotational speed of 1500 rpm, and the surface state was observed using an atomic force microscope image. As a result, uniform and parallel grooves without unevenness were formed. In addition, a high-definition liquid crystal display device with reduced scratches in which circuit damage due to static electricity was reduced was obtained.

《比較例1》
極細分割繊維として、分割前断面が中空放射状でポリエステル/ナイロンが交互に計12層貼り合わさった複合繊維よりなるマルチフィラメント糸(84dtex/24フィラメント)をパイル糸に用いた。この比較例では、導電性複合繊維をグランド地に織り込まず、また熱融着性複合繊維を使用せず、その代わりにレギュラーポリエステル繊維(84dtex/72フィラメント、撚数S800T/M)を経糸及び緯糸に使用して製織し、次いでシャーリングを行い、糊抜、精練をし、パイル糸の分割は、水酸化ナトリウム水溶液によるアルカリ減量加工で、減量率7%を目標に行った。さらにブラッシング、乾燥後、アクリル系エマルジョンを用いてバックコーティングしてラビング布を得た。
実施例1と同様な条件でラビングを行ったところ充分な配向効果が得られなかった。また、バッキング加工ではラビング布専用の機械ではなく、種々の生地、種々の色が加工されるため、若干の汚れが認められ、歩留まりが劣る結果となった。
このラビング布では、パイルを構成する繊維は、0.27dtexの極細繊維ではあるが、平均扁平度が1.8であった。
<< Comparative Example 1 >>
As the ultra fine divided fiber, a multifilament yarn (84 dtex / 24 filament) composed of a composite fiber in which a cross section before division was hollow and 12 layers of polyester / nylon were alternately bonded together was used as a pile yarn. In this comparative example, the conductive composite fiber is not woven into the ground, and the heat-fusible composite fiber is not used. Instead, regular polyester fiber (84 dtex / 72 filament, twist number S800 T / M) is used as warp and weft. And weaving, then shearing, desizing and scouring, and the pile yarn was divided by alkali weight reduction with an aqueous sodium hydroxide solution with the goal of a weight loss rate of 7%. Further, after brushing and drying, back coating was performed using an acrylic emulsion to obtain a rubbing cloth.
When rubbing was performed under the same conditions as in Example 1, a sufficient alignment effect could not be obtained. Further, in the backing process, not a machine dedicated to rubbing cloth, but various fabrics and various colors are processed, so that some stains were observed, resulting in poor yield.
In this rubbing cloth, the fibers constituting the pile were 0.27 dtex ultrafine fibers, but the average flatness was 1.8.

《比較例2》
導電性複合繊維として、図4に示すように導電性カーボンブラックを含有するナイロン6を導電層31とし、同じくナイロン6を保護ポリマー層41とし、導電層31が繊維表面に一部露出している、いわゆる露出タイプの28dtex/2フィラメントの導電性複合繊維40(電気抵抗2×107Ω/cm・f)と、比較例1と同一の放射状断面の極細分割繊維とを混合して、1.27cmに1ヶ所の割合でパイル糸に使用した他は、比較例1と同様にしてラビング布を作製した。
実施例1と同様にラビング処理を行ったところ、パイルに用いた導電性複合繊維が28dtex/2フィラメントと太かったため、キズが生じ、また、高速回転により導電性複合繊維の表面に露出した導電層より導電性カーボンブラックが脱落し、コンタミネーションが発生した。これを除去するための洗浄工程の影響で配向性能が低下し、液晶表示装置の品質が低下した。
<< Comparative Example 2 >>
As the conductive conjugate fiber, as shown in FIG. 4, nylon 6 containing conductive carbon black is used as the conductive layer 31, and similarly nylon 6 is used as the protective polymer layer 41. The conductive layer 31 is partially exposed on the fiber surface. A so-called exposed type 28 dtex / 2 filament conductive composite fiber 40 (electric resistance 2 × 10 7 Ω / cm · f) and ultra-fine divided fiber having the same radial cross section as in Comparative Example 1 are mixed. A rubbing cloth was prepared in the same manner as in Comparative Example 1, except that the pile yarn was used at a rate of 1 per 27 cm.
When the rubbing treatment was performed in the same manner as in Example 1, the conductive composite fiber used for the pile was thick as 28 dtex / 2 filament, so that scratches were generated, and the conductive layer exposed on the surface of the conductive composite fiber by high-speed rotation More conductive carbon black dropped off and contamination occurred. The alignment performance deteriorated due to the influence of the cleaning process for removing this, and the quality of the liquid crystal display device deteriorated.

本発明のラビング布は、配向膜に均一で微細な溝を形成するための均一で安定したラビング処理に利用することができる。
また、本発明のラビング布は少なくとも経糸あるいは緯糸に、熱融着性複合繊維を用いているので、パイル糸の脱落防止のためのバックコーティングが省略可能であり、低コストで歩留まりも向上できるラビング処理に利用できる。
さらに、地組織の一部に導電性複合繊維を配した本発明のラビング布は、ラビング時に生ずる配向膜とラビング布間の摩擦、接触、剥離の繰り返しによる静電気をコロナ放電により除電し、配向膜に設けられた回路の損傷を軽減し、かつ、ラビングにより発生する塵の吸着を低減できるラビング処理に利用できる。
The rubbing cloth of the present invention can be used for uniform and stable rubbing treatment for forming uniform and fine grooves in the alignment film.
In addition, since the rubbing cloth of the present invention uses a heat-fusible composite fiber at least for the warp or weft, the back coating for preventing the pile yarn from falling off can be omitted, and the rubbing can improve the yield at low cost. Available for processing.
Further, the rubbing cloth of the present invention in which conductive composite fibers are arranged on a part of the ground structure is formed by removing the static electricity caused by repeated friction, contact, and peeling between the alignment film and the rubbing cloth generated during rubbing by corona discharge. It can be used for rubbing treatment that can reduce damage to the circuit provided in the rubbing and reduce the adsorption of dust generated by rubbing.

Claims (3)

液晶表示装置の配向膜を配向処理するために使用するラビング布であって、該ラビング布はグランド地とパイル糸からなり、該グランド地の経糸および緯糸の少なくとも一部に熱融着性複合繊維が用いられ、且つ該パイル糸が、多層積層型複合繊維を分割して得られる1.1dtex以下の扁平極細繊維であって、その扁平率(長径/短径の比)が4以上である極細繊維で構成されていることを特徴とするラビング布。   A rubbing cloth used for orienting an alignment film of a liquid crystal display device, the rubbing cloth comprising a ground ground and a pile thread, and a heat-fusible composite fiber on at least a part of the warp and weft of the ground ground And the pile yarn is 1.1 dtex or less flat ultrafine fiber obtained by dividing a multilayer laminated composite fiber, and the flatness (major axis / minor axis ratio) is 4 or more. A rubbing cloth comprising fibers. グランド地には導電性複合繊維が含まれており、該導電性複合繊維が、繊維表面に導電層が露出しておらず、導電性能が1フィラメント当たり105〜109Ω/cmである請求項1記載のラビング布。The ground ground contains conductive composite fiber, and the conductive composite fiber has no conductive layer exposed on the fiber surface, and the conductive performance is 10 5 to 10 9 Ω / cm per filament. Item 1. A rubbing cloth according to item 1. 導電性複合繊維の導電層の外周に隠蔽ポリマー層を施してなる導電性複合繊維が用いられている請求項2記載のラビング布。   The rubbing cloth according to claim 2, wherein the conductive conjugate fiber is formed by applying a concealing polymer layer to the outer periphery of the conductive layer of the conductive conjugate fiber.
JP2008543042A 2006-11-07 2007-10-31 Rubbing cloth Expired - Fee Related JP5009300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008543042A JP5009300B2 (en) 2006-11-07 2007-10-31 Rubbing cloth

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006301400 2006-11-07
JP2006301400 2006-11-07
PCT/JP2007/071228 WO2008056584A1 (en) 2006-11-07 2007-10-31 Rubbing cloth
JP2008543042A JP5009300B2 (en) 2006-11-07 2007-10-31 Rubbing cloth

Publications (2)

Publication Number Publication Date
JPWO2008056584A1 true JPWO2008056584A1 (en) 2010-02-25
JP5009300B2 JP5009300B2 (en) 2012-08-22

Family

ID=39364404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008543042A Expired - Fee Related JP5009300B2 (en) 2006-11-07 2007-10-31 Rubbing cloth

Country Status (5)

Country Link
JP (1) JP5009300B2 (en)
KR (1) KR101494018B1 (en)
CN (1) CN101611344A (en)
TW (1) TWI393811B (en)
WO (1) WO2008056584A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097623B2 (en) * 2008-06-09 2012-12-12 富士フイルム株式会社 Rubbing method and optical film manufacturing method
JP5097022B2 (en) * 2008-06-09 2012-12-12 富士フイルム株式会社 Fabric for rubbing and method for producing optical film
JP2011058151A (en) * 2009-09-14 2011-03-24 Aono Pile Kk Woven pile fabric and method for producing the same, and apparatus for producing woven pile fabric
TWI384100B (en) * 2010-01-25 2013-02-01 Tai Yuen Textile Co Ltd Rubbing cloth and rubbing apparatus utilizing the same
CN102243393B (en) * 2010-05-14 2013-10-16 台元纺织股份有限公司 Alignment device and method
CN102251333B (en) * 2010-05-17 2013-07-10 台元纺织股份有限公司 Aligning cloth and aligning device
CN102517745A (en) * 2011-11-28 2012-06-27 江苏阳光股份有限公司 500-Nm pure wool worsted tweed and preparation method thereof
CN103472625B (en) * 2013-08-30 2016-05-04 合肥京东方光电科技有限公司 A kind of friction cloth, its preparation method and preparation facilities
CN103558715B (en) * 2013-11-12 2016-04-06 北京京东方光电科技有限公司 Friction cloth and rubbing device
CN105589258A (en) * 2014-10-23 2016-05-18 杉原恭卫 Rubbing cloth used for LCD manufacturing
CN105807501B (en) * 2016-06-03 2018-07-06 京东方科技集团股份有限公司 Friction cloth and preparation method thereof, friction roller, friction roller pressure detection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163528A (en) * 1989-11-22 1991-07-15 Toray Ind Inc Rubbing cloth for producing liquid crystal element and production of liquid crystal element
AU2001232349A1 (en) * 2000-02-21 2001-08-27 Kanebo Gohsen Limited Modified cross-section fiber and production method therefor
JP2005091899A (en) 2003-09-18 2005-04-07 Kanebo Ltd Rubbing cloth
JP2007232938A (en) 2006-02-28 2007-09-13 Gurabitei:Kk Rubbing cloth

Also Published As

Publication number Publication date
KR101494018B1 (en) 2015-02-16
JP5009300B2 (en) 2012-08-22
TW200827503A (en) 2008-07-01
CN101611344A (en) 2009-12-23
KR20090079210A (en) 2009-07-21
TWI393811B (en) 2013-04-21
WO2008056584A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP5009300B2 (en) Rubbing cloth
JP4902545B2 (en) Conductive conjugate fiber and method for producing the same
KR101310688B1 (en) Polyester fiber and textile product comprising the same
WO2002075030A1 (en) Fiber complex and its use
JP4367038B2 (en) Fiber and fabric
JP5245234B2 (en) Polyester fiber and fiber product using the same
JP2008282006A (en) Cleaning member
JPH05263318A (en) Electrically conductive conjugate fiber
JP2010188482A (en) Compound cloth for abrasive cloth, and abrasive cloth
JP3665184B2 (en) Wiping cloth with durable static elimination
JP5463648B2 (en) Woven wiper
JP5855461B2 (en) Rubbing cloth
JP2008214807A (en) Fiber and fiber product composed of the same, and fiber brush
JP4628846B2 (en) Conductive brush
JP2008031567A (en) Aliphatic polyester fiber and fiber product made thereof
JPH11276399A (en) Wiping tape
JP7406128B2 (en) Adhesive interlining
JPH04153306A (en) Electroconductive fiber
JPH119540A (en) Wiping tape
JP4779674B2 (en) Polyester resin composition, fiber and fiber product comprising the same
JPH11276396A (en) Wiping tape
WO2022186150A1 (en) Core-sheath composite fiber, production method therefor, and fiber structure
JPH11276398A (en) Wiping tape
JPH11276397A (en) Wiping tape
JP2003278031A (en) Highly durable conductive fiber

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees