JPWO2008053818A1 - Spiral pump for blood - Google Patents

Spiral pump for blood Download PDF

Info

Publication number
JPWO2008053818A1
JPWO2008053818A1 JP2008542089A JP2008542089A JPWO2008053818A1 JP WO2008053818 A1 JPWO2008053818 A1 JP WO2008053818A1 JP 2008542089 A JP2008542089 A JP 2008542089A JP 2008542089 A JP2008542089 A JP 2008542089A JP WO2008053818 A1 JPWO2008053818 A1 JP WO2008053818A1
Authority
JP
Japan
Prior art keywords
pump
rotating body
spiral
blood
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008542089A
Other languages
Japanese (ja)
Other versions
JP5298854B2 (en
Inventor
裕輔 阿部
裕輔 阿部
英和 三浦
英和 三浦
逸郎 斎藤
逸郎 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imed Japan
Original Assignee
Imed Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imed Japan filed Critical Imed Japan
Priority to JP2008542089A priority Critical patent/JP5298854B2/en
Publication of JPWO2008053818A1 publication Critical patent/JPWO2008053818A1/en
Application granted granted Critical
Publication of JP5298854B2 publication Critical patent/JP5298854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2205Conventional flow pattern
    • F04D29/2222Construction and assembly
    • F04D29/2227Construction and assembly for special materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/419Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/188Rotors specially for regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2238Special flow patterns
    • F04D29/2255Special flow patterns flow-channels with a special cross-section contour, e.g. ejecting, throttling or diffusing effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices

Abstract

【要 約】【課 題】 流入ポートを周側面に開口でき、かつ回転軸に偏心的なトルクがかからない回転式ポンプを実現する。【解決手段】 外周部分に液体の透過孔を有する円板状の回転体3と、この回転体3の一方の側面に、外周部分に向かって開口し、回転体の回転方向に従って断面積が減少するらせん状の流入路2を設ける。【選択図】 図3[Summary] [Problem] To achieve a rotary pump that can open the inflow port on the peripheral side and does not apply eccentric torque to the rotating shaft. A disk-shaped rotating body 3 having a liquid permeation hole in an outer peripheral portion and an opening on one side surface of the rotating body 3 toward the outer peripheral portion, and a cross-sectional area is reduced in accordance with the rotating direction of the rotating body. A spiral inflow passage 2 is provided. [Selection] Figure 3

Description

本発明は、血液用として好適な新しい構造のらせん流ポンプに関する。   The present invention relates to a spiral flow pump having a new structure suitable for blood.

液体用ポンプにはさまざまなものがあるが、回転式としてはターボタイプの遠心ポンプ、軸流ポンプ、および斜流ポンプが、容積移動タイプではロータリーポンプやローラポンプが、特殊なものとしては円板と液体との間の摩擦を利用する摩擦ポンプがある。遠心ポンプではインペラの軸線方向中央に流入ポートが、周側面に流出ポートがそれぞれ開口する。軸流ポンプではインペラの軸線方向前後に流入出ポートがそれぞれ開口する。斜流ポンプは遠心ポンプと同様である。   There are various types of liquid pumps, but centrifugal type centrifugal pumps, axial flow pumps, and diagonal flow pumps are rotary types, rotary pumps and roller pumps are volume type, and discs are special types. There are friction pumps that utilize the friction between the liquid and the liquid. In the centrifugal pump, an inflow port is opened at the center of the impeller in the axial direction, and an outflow port is opened at the peripheral side surface. In the axial flow pump, the inflow and outflow ports open before and after the impeller in the axial direction. A mixed flow pump is similar to a centrifugal pump.

血液用ポンプとしては、たとえば人工心臓用などを考えると、埋め込み容積が小さく、また血液流の配管に障害のないよう、少なくとも流入ポート、望ましくは流出ポートを含めて、インペラの周側面に開口していることが必要である。これらのポンプでは、インペラの回転方向の圧力分布が一様であるため軸に偏心的なトルクはかからないが、いずれも流入ポートが周側面に開口できないため、たとえば完全置換型人工心臓用など、用途によっては組み込みの面で不都合を生じており、ベンドやエルボなどの管路の使用によって対処せざるを得ず、埋め込み容積が増加するなどの問題点があった。またロータリーポンプ、ローラポンプや摩擦ポンプでは流入ポートを周側面に開口させることができるが、これらのポンプでは、いずれも回転体の回転方向の圧力分布が一様でないため駆動軸に偏心的なトルクがかかる。従って、駆動軸の対摩耗性を向上させるためには強固な軸受機構が必要であるという問題点があった。   As a blood pump, for example, for an artificial heart, the implant volume is small, and at least the inflow port, preferably the outflow port, is opened on the peripheral side surface of the impeller so that there is no obstacle to the blood flow piping. It is necessary to be. These pumps have a uniform pressure distribution in the rotational direction of the impeller, so no eccentric torque is applied to the shaft, but none of the inflow ports can open to the peripheral side, so for example, for use in a fully-replaceable artificial heart In some cases, there is an inconvenience in terms of assembling, and there is a problem that the embedding volume increases because it is necessary to cope with the use of pipes such as bends and elbows. In addition, rotary pumps, roller pumps, and friction pumps can open the inflow port on the peripheral side, but in these pumps, the pressure distribution in the rotational direction of the rotating body is not uniform, and therefore eccentric torque is applied to the drive shaft. It takes. Therefore, there is a problem that a strong bearing mechanism is required to improve the wear resistance of the drive shaft.

一方、特許文献1にはいわゆるサイドチャンネルポンプとして、自動車の燃料タンクに燃料を圧送する燃料ポンプが記載されている。図13はその断面図で、1は流入ポート、2は流入路、3はインペラ(回転体)、4は流出路、5は流出ポートである。流出ポート1に記載されている接続する流入路2は連続的に流れ方向に縮小しており、流出ポート5に接続する流出路4は連続的に流れ方向に拡大して形成されている。インペラ3の羽根によって仕切られてチャンバが形成され、流入路、チャンバ、流出路で圧送室を構成しており、インペラ3の矢印方向の回転により流入路からチャンバを経て流出路に向かう溢流が発生し、流入ポート1から流出ポート5に向けて液体が圧送される。   On the other hand, Patent Document 1 describes a fuel pump that pumps fuel to a fuel tank of an automobile as a so-called side channel pump. FIG. 13 is a sectional view thereof, wherein 1 is an inflow port, 2 is an inflow channel, 3 is an impeller (rotary body), 4 is an outflow channel, and 5 is an outflow port. The inflow path 2 connected to the outflow port 1 is continuously reduced in the flow direction, and the outflow path 4 connected to the outflow port 5 is continuously enlarged in the flow direction. The impeller 3 is partitioned by the blades of the impeller 3 to form a chamber, and the inflow passage, the chamber, and the outflow passage form a pressure feeding chamber. By the rotation of the impeller 3 in the direction of the arrow, the overflow from the inflow passage through the chamber to the outflow passage The liquid is pumped from the inflow port 1 toward the outflow port 5.

サイドチャンネルポンプは流入ポートを周側面に開口できるという点において血液用ポンプとして好適であるが、やはり軸に偏心的なトルクがかかるという問題点がある。
特表2006−526110号公報
The side channel pump is suitable as a blood pump in that the inflow port can be opened to the peripheral side surface, but there is also a problem that an eccentric torque is applied to the shaft.
JP-T-2006-526110

本発明は、従来の回転式ポンプにおけるこうした問題点を解消し、サイドチャンネルポンプを血液用としていっそう好適なものとすることを目的とする。   An object of the present invention is to eliminate such problems in the conventional rotary pump and make the side channel pump more suitable for blood.

本発明は、外周部分に液体の通路を有する円板状の回転体と、この回転体の一方の側面に、前記外周部分に向けて開口し、回転体の回転方向に従ってほぼ全周にわたり断面積が減少するらせん状の流入路を有することを特徴とする血液用らせん流ポンプ、あるいは前記回転体の他方の側面に、前記外周部分に向けて開口し、前記回転体の回転方向に従ってほぼ全周にわたり断面積が増加するらせん状の流出路を有することを特徴とする前記の血液用らせん流ポンプであり、望ましくは前記回転体が円板の外周に半径方向の板状部材を取り付けた形状であり、前記板状部材が平面形状、あるいは曲面形状である前記の血液用らせん流ポンプである。   The present invention provides a disc-shaped rotating body having a liquid passage in the outer peripheral portion, and opens on one side surface of the rotating body toward the outer peripheral portion, and has a cross-sectional area over substantially the entire circumference according to the rotating direction of the rotating body. A spiral flow pump for blood, or an opening on the other side surface of the rotating body toward the outer peripheral portion, and substantially the entire circumference according to the rotation direction of the rotating body. The spiral flow pump for blood, characterized in that it has a spiral outflow passage whose cross-sectional area increases over the area, and preferably the rotary body has a shape in which a radial plate-like member is attached to the outer periphery of the disc. In the blood spiral pump, the plate-like member has a planar shape or a curved shape.

あるいはまた本発明は、流入路、または流出路の内側回転中心寄りにステータを取り付けるとともに、前記回転体の回転中心寄り部分を空間としてロータとし、前記ステータの外側に配置されるようにして前記ステータとロータでモータを構成するようにした前記の血液用らせん流ポンプである。
なお、「ほぼ全周にわたり」としたのは、理論的には全周にわたりらせん状であるが、加工上の問題から、流路の端部にわずかにらせん状でない部分が残ることが考えられるためである。
Alternatively, in the present invention, the stator is attached near the inner rotation center of the inflow passage or the outflow passage, and the portion near the rotation center of the rotating body is used as a space, and the stator is disposed outside the stator. And the above-described spiral pump for blood, in which a motor is constituted by a rotor.
Note that “almost all around” is theoretically spiral around the entire circumference, but due to processing problems, it is possible that a slightly non-spiral portion remains at the end of the flow path. Because.

本発明によれば、流入ポートを回転体の周側面に開口でき、かつ軸に偏心的なトルクがかからず、コンパクトで密閉性にすぐれ、長時間使用可能な血液用ポンプが実現されるという、すぐれた効果を奏する。   According to the present invention, an inflow port can be opened on the peripheral side surface of the rotating body, and an eccentric torque is not applied to the shaft, and a blood pump that can be used for a long time is realized with a compact and excellent sealing performance. Has an excellent effect.

本発明の基本構成は2つの要素原理からなる。1つは、回転体とほぼ全周にわたるらせん状流入路からなるポンプ原理、もう1つはこのポンプ原理に付加して液体力学的に回転軸トルクの偏心を防止するほぼ全周にわたるらせん状の流出路である。回転体は、液体を流入路側から流出路側へ移動させるためのものであるから、液体を回転方向に移動させ、かつ液体に、回転体を軸方向に通過させる構造のものであればよい。たとえば外周部分に複数の液体の透過孔などの通路を有する円板状、あるいは円板の外周に半径方向の板状部材を取り付けた形状のものなどが好ましく、さらに板状部材を曲面形状としたり、回転軸に対して傾斜させて、回転に伴って内部の液体に軸方向の分力が発生するようにすることが好ましい。   The basic configuration of the present invention consists of two element principles. One is a pump principle composed of a rotating body and a spiral inflow passage extending almost all around, and the other is a spiral principle extending almost entirely around the pump principle to prevent eccentricity of the rotational shaft torque in addition to this pump principle. It is an outflow channel. Since the rotating body is for moving the liquid from the inflow path side to the outflow path side, the rotating body only needs to have a structure that moves the liquid in the rotation direction and allows the liquid to pass through the rotating body in the axial direction. For example, a disk shape having a passage such as a plurality of liquid permeation holes in the outer peripheral portion or a shape in which a radial plate-like member is attached to the outer periphery of the disk is preferable. It is preferable to incline with respect to the rotation axis so that a component force in the axial direction is generated in the internal liquid with rotation.

本発明の第1の実施例を図面により説明する。図1は実施例のらせん流ポンプの断面図、図2はこれを分解して示す斜視図、図3はさらに要部のみを示す斜視図で、1は流入ポート、2はらせん状の流入路、3は回転体、31aは回転体の円板の外周に設けられた半径方向の板状部材、32は回転体の円板部分に設けられた導通孔、4はらせん状の流出路、5は流出ポート、6は回転体3の回転軸、7は軸受、8は軸受部のシール部材である。らせん状の流入路2および流出路4は回転体3の板状部材31aに対向している。図1に示すように流入ポート1、流出ポート5は同じ方向に向いているので、人工心臓などに採用しやすい。   A first embodiment of the present invention will be described with reference to the drawings. 1 is a sectional view of a spiral flow pump of the embodiment, FIG. 2 is an exploded perspective view of the spiral pump, FIG. 3 is a perspective view of only a main part, 1 is an inlet port, 2 is a spiral inlet channel 3 is a rotating body, 31a is a radial plate-shaped member provided on the outer periphery of the disk of the rotating body, 32 is a conduction hole provided in a disk portion of the rotating body, 4 is a spiral outflow path, 5 Is an outflow port, 6 is a rotating shaft of the rotating body 3, 7 is a bearing, and 8 is a seal member of the bearing portion. The spiral inflow passage 2 and outflow passage 4 are opposed to the plate-like member 31a of the rotating body 3. As shown in FIG. 1, since the inflow port 1 and the outflow port 5 face in the same direction, it is easy to adopt for an artificial heart or the like.

図4は図1〜3に示した流入路2、回転体3、流出路4を円周方向に展開した概念図で、図4両端の切断部A、Bが実際には連続している。回転体3の回転方向を矢印で示すように紙面右から左とすれば、板状部材31aも同じ方向に移動するので、板状部材31aの中間にある液体が移動し、これに接している流入路側の液体も板状部材間の液体との摩擦で同じ方向に移動しようとするが、移動するにつれて流入路の断面が小さくなるので液体は次第に流出路側に押し出され、結果として液体は流入路2側から流出路4側へ移動することになる。このように液体の移動が液体間の摩擦によっているため、本発明のらせん流ポンプは血液のような粘度のある液体に対して有効である。   FIG. 4 is a conceptual diagram in which the inflow path 2, the rotating body 3, and the outflow path 4 shown in FIGS. 1 to 3 are developed in the circumferential direction, and the cut portions A and B at both ends of FIG. 4 are actually continuous. If the rotation direction of the rotator 3 is changed from the right to the left as shown by the arrow, the plate-like member 31a also moves in the same direction, so that the liquid in the middle of the plate-like member 31a moves and is in contact therewith. The liquid on the inflow path side also tries to move in the same direction due to friction with the liquid between the plate-like members, but the cross section of the inflow path becomes smaller as it moves, so that the liquid is gradually pushed out to the outflow path side. It moves to the outflow path 4 side from 2 side. Thus, since the movement of the liquid depends on the friction between the liquids, the spiral flow pump of the present invention is effective for a viscous liquid such as blood.

さらに血液用ポンプとしては、系内に高熱を発生したり、詰まりを生じるなどのことのないよう、配慮が必要である。図1において7はころがり軸受である。アウタレースに重ねて金属製のカラーが挿入され、これに回転軸6に嵌めたV字状のリップを有するシール部材が接し、軸受に対して液体をシールしている。リップとカラーとは滑り接触になるが、局部的な摩擦熱の発生を防止するため、この部分の冷却あるいは潤滑の目的でポンプ内の液体の一部が流れるよう、回転体3の円板部に導通孔32を設けている。この他、局部的な熱発生や高速流による血液の破壊を防止するため、流路内に極端にせまい断面が生じるのを避け、ポンプの効率は多少犠牲にしても板状部材と周囲のケーシングとの隙間などは大きめに、たとえば0.3〜0.5mm程度にすることが必要である。また、錆等の発生を防止するため、ケーシング、インペラ等のポンプの材質はポリカーボネイトなどの樹脂や、ステンレス鋼やチタン等のさびない金属が好ましい。   Furthermore, consideration must be given to the blood pump so as not to generate high heat in the system or cause clogging. In FIG. 1, 7 is a rolling bearing. A metal collar is inserted over the outer race, and a seal member having a V-shaped lip fitted on the rotating shaft 6 is in contact with the outer collar to seal the liquid against the bearing. The lip and the collar are in sliding contact, but in order to prevent the generation of localized frictional heat, the disc part of the rotating body 3 is used so that a part of the liquid in the pump flows for the purpose of cooling or lubricating this part. A conduction hole 32 is provided in the inner wall. In addition, in order to prevent local heat generation and blood destruction due to high-speed flow, avoid the formation of extremely narrow cross sections in the flow path, and the plate-like member and surrounding casing even if the efficiency of the pump is somewhat sacrificed It is necessary to make the gap between and the like large, for example, about 0.3 to 0.5 mm. Moreover, in order to prevent generation | occurrence | production of rust etc., as for the material of pumps, such as a casing and an impeller, resin, such as polycarbonate, and non-rusting metals, such as stainless steel and titanium, are preferable.

ポンプは目的に応じて流量一定、あるいは圧力一定などの状況を実現するため回転数制御を行う必要がある。図1において9は駆動軸、91はその先端に取り付けられたカップリング、92aはカップリングに取り付けられた磁石、92bは回転体3の円板部の磁石92aに対応する位置に埋め込まれた磁石である。駆動軸9には当然モータが取り付けられるが、図示は省略した。このように磁石による遠隔力を利用して駆動することにより、回転軸6をケーシング内に封じ込め、貫通部を設けないで液体の漏洩を防止するとともに、モータなどの駆動部分のポンプ本体への着脱を容易にしている。   The pump needs to perform rotation speed control in order to realize a situation where the flow rate is constant or the pressure is constant according to the purpose. In FIG. 1, 9 is a drive shaft, 91 is a coupling attached to the tip thereof, 92a is a magnet attached to the coupling, and 92b is a magnet embedded at a position corresponding to the magnet 92a of the disk portion of the rotating body 3. It is. Of course, a motor is attached to the drive shaft 9, but the illustration is omitted. By driving by using the remote force by the magnet in this way, the rotating shaft 6 is sealed in the casing, the liquid is prevented from leaking without providing the through portion, and the driving portion such as a motor is attached to and detached from the pump body. Making it easy.

図1〜3に示した本実施例のポンプによる効果を実証した。ポンプ室、らせん状の流入路、同じく流出路および板状部材を備える回転体はアクリル樹脂を三次元数値制御加工機により切削して製作した。ポンプ室の外径は68mmで幅は14mmである。ポンプ室を2分割構造とし、それぞれらせん状の流入路および流出路と一体にして形成した。流入路と流出路は同形状であり、ポンプ室を挟んで回転体の板状部材に対向して配置した。らせん状の流入路および流出路は外径が68mm、内径が48mm、流入口、流出口での形状は一辺が10mmの正方形で右回りに配置され、軸線方向に対して右ねじのらせん形状である。流路断面積は徐々に小さくなっていくが、そのピッチは一回転あたり10mmでちょうど1周する。   The effect of the pump of this example shown in FIGS. The rotating body including the pump chamber, the spiral inflow passage, the outflow passage, and the plate member was manufactured by cutting acrylic resin with a three-dimensional numerical control processing machine. The pump chamber has an outer diameter of 68 mm and a width of 14 mm. The pump chamber was divided into two parts and formed integrally with the spiral inflow path and outflow path, respectively. The inflow path and the outflow path have the same shape, and are arranged to face the plate member of the rotating body with the pump chamber interposed therebetween. The spiral inflow and outflow channels are 68mm outside diameter, 48mm inside diameter, and the shape at the inlet and outlet is a square with a side of 10mm and is arranged in a clockwise direction. is there. The cross-sectional area of the channel gradually decreases, but the pitch is 10 mm per revolution, making one round.

ポンプ室内に配置される回転体は円板形状で、中央円板部の外径が48mm、その外側に板状部材を設けた最大外径が67mm、幅(厚さ)13mmであり、ポンプ室との間に0.5mmの隙間を設けた。中央の円板部にはネオジウム鉄磁石(直径10mm、厚さ6mm)が6個放射状かつ隣り合う磁石が互いに軸線方向逆向きの磁化方向を持つように埋め込んだ。ポンプ外部に設置された同様の円板による磁気結合を介して外部に置かれたモータにより駆動した。回転体は、その中心に取り付けられた金属製の軸(直径6mm、長さ25.5mm)とポンプ室内に取り付けたステンレス製ボールとポリアセタール製ケースによって構成されるボールベアリング(内径6mm、外径19mm、幅(高さ)6mm)2個によって支持した。   The rotating body arranged in the pump chamber is disk-shaped, the outer diameter of the central disk part is 48mm, the maximum outer diameter with a plate-like member provided on the outside is 67mm, and the width (thickness) is 13mm. A gap of 0.5 mm was provided between In the central disc part, six neodymium iron magnets (diameter 10mm, thickness 6mm) were embedded so that adjacent radial magnets had magnetization directions opposite to each other in the axial direction. It was driven by a motor placed outside through magnetic coupling with a similar disk installed outside the pump. The rotating body consists of a metal shaft (diameter 6 mm, length 25.5 mm) attached to the center of the rotating body, a ball bearing (inner diameter 6 mm, outer diameter 19 mm, Supported by 2 pieces (width (height) 6mm).

ポンプの特性はドノバン型モック回路を用いて測定した。回路の容量は約4Lである。流量の計測には電磁流量計(日本光電製 本体MFV-2100 およびFF-106T)を用いた。液体としては生理食塩液を想定して0.9%食塩水を用いた。圧力の測定にはダイヤフラム式圧力センサ(日本光電製、本体MEG−6108、アンプユニットAP-610J、プローブ
P10EZ-1)を用い、両ポートの近傍に取り付け差圧を測定した。試作ポンプの純粋な水力的性能を明らかにするために軸入力に対するポンプ出力を測定しポンプ効率を算出した。モータはオリエンタルモータ社製三相DCブラシレスモータFBM5120W-Aを同社製インバータにて回転数一定にて駆動した。小野測器社製トルクディテクタSS-005およびトルクコンバータTS-2600にて軸トルクを測定した。
The characteristics of the pump were measured using a Donovan mock circuit. The capacity of the circuit is about 4L. An electromagnetic flow meter (Nihon Kohden main body MFV-2100 and FF-106T) was used to measure the flow rate. As the liquid, a 0.9% saline solution was used assuming a physiological saline solution. Diaphragm pressure sensor (manufactured by Nihon Kohden, main unit MEG-6108, amplifier unit AP-610J, probe)
Using P10EZ-1), the differential pressure was measured in the vicinity of both ports. In order to clarify the pure hydraulic performance of the prototype pump, the pump output relative to the shaft input was measured and the pump efficiency was calculated. The motor was driven by a three-phase DC brushless motor FBM5120W-A manufactured by Oriental Motor Co., Ltd., at a constant rotation speed by an inverter manufactured by the same company. The shaft torque was measured with Ono Sokki Torque Detector SS-005 and Torque Converter TS-2600.

以上のような構成で行った試作ポンプの揚程試験の結果を説明する。平面形状の板状部材は、13mm×10.5mm、厚さ2mmで12枚である。この場合、揚力は原理的に発生せず、らせん状の流入路とらせん状の流出路のらせん状の半径は同一であるので遠心力による作用もない。したがって摩擦力によってのみポンプ作用が得られる構造のポンプとなる。なお、回転体に対して両側が対称形であるので、モータの回転を反転することで正逆両方向の流れを得ることができる。モータを定速運転させて、回転数1000rpm、1200rpm、1500rpm、1700rpmにおけるポンプ特性と効率をそれぞれ図5と図6に示す。横軸はポンプ出力すなわち流量(L/min)で、図5の縦軸は負荷圧(圧力差、mmHg)、図6の縦軸は効率(%)である。1500rpmのとき10L/minの流量に対して146mmHgの負荷圧が得られた。また締め切り圧は1000rpm、1200rpm、1500rpm、1700rpmのときそれぞれ105mmHg、152mmHg、237mmHg、309mmHgであった。効率は流量が大きいほど向上し最大32%であった。負荷圧は流量に対して直線的に減少する傾向をもち、摩擦ポンプや軸流ポンプに近い特性であった。   The results of the head test of the prototype pump performed with the above configuration will be described. The planar plate-like members are 12 pieces of 13 mm × 10.5 mm and a thickness of 2 mm. In this case, lift is not generated in principle, and since the spiral radius of the spiral inflow path and the spiral outflow path are the same, there is no effect of centrifugal force. Therefore, the pump has a structure in which the pump action can be obtained only by the frictional force. In addition, since both sides are symmetrical with respect to the rotating body, the flow in both forward and reverse directions can be obtained by reversing the rotation of the motor. FIG. 5 and FIG. 6 show the pump characteristics and efficiency at the rotation speeds of 1000 rpm, 1200 rpm, 1500 rpm, and 1700 rpm, respectively, when the motor is operated at a constant speed. The horizontal axis is the pump output, that is, the flow rate (L / min), the vertical axis in FIG. 5 is the load pressure (pressure difference, mmHg), and the vertical axis in FIG. 6 is the efficiency (%). A load pressure of 146 mmHg was obtained at a flow rate of 10 L / min at 1500 rpm. The deadline pressure was 105 mmHg, 152 mmHg, 237 mmHg, and 309 mmHg at 1000 rpm, 1200 rpm, 1500 rpm, and 1700 rpm, respectively. Efficiency increased with increasing flow rate and was up to 32%. The load pressure had a tendency to decrease linearly with respect to the flow rate, and was close to that of a friction pump or an axial flow pump.

本発明の第2の実施例を図7、8により説明する。本発明における板状部材は液体を回転体3の回転方向に移動させるものであるから、実施例1に示したように円板に半径方向に取り付けた平板状のものでもよいが、例えばタービン翼のように揚力を用いてポンプ作用をさらに発揮させるのであれば、図7、8に示すように板状部材31bに曲面形状を持たせることが望ましい。図7は回転体の斜視図、図8は回転体の円周方向に展開した展開図で、31bは曲面形状の板状部材である。板状部材に曲面形状を持たせた場合、液体は発生する揚力により回転方向(図7、紙面右から左)に移動すると同時に板状部材31bの曲面形状に従って軸方向にも移動する。これに伴い液体は流出路にらせん流をなして流出する。   A second embodiment of the present invention will be described with reference to FIGS. Since the plate-like member in the present invention moves the liquid in the rotation direction of the rotating body 3, it may be a flat plate attached in a radial direction to the disk as shown in the first embodiment. As shown in FIGS. 7 and 8, it is desirable to give the plate-like member 31b a curved shape if the pumping action is to be further exerted using lift. 7 is a perspective view of the rotating body, FIG. 8 is a developed view of the rotating body in the circumferential direction, and 31b is a curved plate member. When the plate-like member has a curved surface shape, the liquid moves in the rotational direction (FIG. 7, right to left in FIG. 7) by the generated lift, and simultaneously moves in the axial direction according to the curved shape of the plate-like member 31b. Along with this, the liquid flows out in a spiral flow in the outflow path.

このように、本発明のらせん流ポンプは液体の摩擦力、もしくはタービン力によりポンプ作用を発揮するものであるから、板状部材の形状をこれらの平面、あるいは曲面としたり取り付け角度を変えたりすることにより、多様なポンプ作用を期待することができる。
実施例2のらせん流ポンプの実証試験の結果を説明する。板状部材は揚力を発生する翼形である。回転体のサイズは同じとし、板状部材は一枚当あたり20°を占有する翼12枚とした。また回転面と翼の上面および下面の接線のなす角度は周に対して比例するように設計した。回転面と翼上面の接線のなす角度はその入口で0°、出口で82°とし、回転面と翼下面の接線なす角度は入口で60°、出口で85°とした。回転数1000rpm、1500rpm、1700rpmにおけるポンプ特性と効率を図9と図10に示す。横軸はポンプ出力すなわち流量(L/min)で、図9の縦軸は負荷圧(圧力差、mmHg)、図10の縦軸は効率(%)である。1500rpmのとき10L/minの流量に対して127mmHgの負荷圧が得られ、また締め切り圧は1000rpm、1500rpm、1700rpmのときそれぞれ107mmHg、242mmHg、316mmHgであった。効率は流量が大きいほど向上し最大30%であった。前述のインペラ3と同様に負荷圧は流量に対して直線的に減少する傾向をもち、同様に摩擦ポンプや軸流ポンプに近い特性であった。
As described above, the spiral flow pump of the present invention exerts the pump action by the frictional force of the liquid or the turbine force. Therefore, the shape of the plate-like member is changed to these planes or curved surfaces, or the mounting angle is changed. Therefore, various pumping actions can be expected.
The result of the verification test of the spiral flow pump of Example 2 will be described. The plate-like member is an airfoil that generates lift. The size of the rotating body was the same, and the plate member was 12 blades occupying 20 ° per sheet. The angle formed by the tangent line between the rotating surface and the upper and lower surfaces of the blade was designed to be proportional to the circumference. The angle formed by the tangent between the rotating surface and the blade upper surface was 0 ° at the inlet and 82 ° at the outlet, and the angle formed by the tangent between the rotating surface and the blade lower surface was 60 ° at the inlet and 85 ° at the outlet. The pump characteristics and efficiency at 1000 rpm, 1500 rpm, and 1700 rpm are shown in FIGS. The horizontal axis is the pump output, that is, the flow rate (L / min), the vertical axis in FIG. 9 is the load pressure (pressure difference, mmHg), and the vertical axis in FIG. 10 is the efficiency (%). A load pressure of 127 mmHg was obtained for a flow rate of 10 L / min at 1500 rpm, and the closing pressures were 107 mmHg, 242 mmHg, and 316 mmHg at 1000 rpm, 1500 rpm, and 1700 rpm, respectively. Efficiency increased with increasing flow rate, up to 30%. Like the impeller 3 described above, the load pressure has a tendency to decrease linearly with respect to the flow rate, and similarly has characteristics similar to those of a friction pump and an axial flow pump.

以上の実験結果より明らかなように、本発明のらせん流ポンプは、このサイズのポンプとしては性能が非常に高く、小型高性能のポンプである。   As is clear from the above experimental results, the spiral flow pump of the present invention is a highly efficient pump of this size, and is a small high performance pump.

本発明の第3の実施例を図11により説明する。この図は、さきに示した図3と同様、実施例の血液用らせん流ポンプを分解して示す斜視図である。板状部材31bは図7と同様の曲面形状としたが、平面形状でもかまわない。実施例1、2との相違は、実施例1、2で図示していない駆動用のモータをポンプ内に取り込み、回転軸および軸受をなくしたことである。図11においてSはモータのステータ、回転体3Aはモータのロータである。すなわち、ステータSは鉄心およびこれに巻き付けたコイルであり、流入路または流出路のいずれか一方、この例では流出路の内側中心寄りの位置に取り付けられている。また、ロータは図7に示したものの中央を抜いて中空にした構造である。内部には永久磁石が配置されている。したがってロータの円柱状の空間内にステータSが位置し、ステータのコイルとロータの永久磁石とで同期モータが構成される。ロータは動圧により非接触で支持される。ステータの鉄心は防錆のため薄いステンレス鋼板でカバーすることが望ましい。   A third embodiment of the present invention will be described with reference to FIG. This figure is an exploded perspective view of the spiral pump for blood according to the embodiment, similar to FIG. 3 shown above. The plate-like member 31b has a curved surface shape similar to that shown in FIG. 7, but may have a planar shape. The difference from the first and second embodiments is that a driving motor (not shown in the first and second embodiments) is taken into the pump and the rotating shaft and the bearing are eliminated. In FIG. 11, S is a stator of the motor and the rotating body 3A is a rotor of the motor. That is, the stator S is an iron core and a coil wound around the iron core, and is attached to either the inflow path or the outflow path, in this example, at a position closer to the inner center of the outflow path. Further, the rotor has a structure in which the center shown in FIG. A permanent magnet is arranged inside. Therefore, the stator S is located in the cylindrical space of the rotor, and a synchronous motor is constituted by the stator coil and the rotor permanent magnet. The rotor is supported without contact by dynamic pressure. It is desirable to cover the stator core with a thin stainless steel plate to prevent rust.

ポンプそのものの形状、寸法はこれまでの各実施例とほぼ同様であるが、外径は68mm、幅は14mm、流入路2、流出路4は同形状で外径68mm、内径48mmで、流入ポート1、流出ポート5での形状は1辺10mmの正方形である。ロータ3Aは外径が67mm、円環部分の外径が48mm、幅13mmであり、ポンプ室との間に0.5mmの隙間を設けている。ロータ3Aの円環の内部にはネオジウム鉄磁石が6個、放射状で、かつ隣り合う磁石が互いに軸方向逆向きの磁化方向を有するように埋め込んである。   The shape and dimensions of the pump itself are almost the same as the previous examples, but the outer diameter is 68 mm, the width is 14 mm, the inflow path 2 and the outflow path 4 are the same shape, the outer diameter is 68 mm, the inner diameter is 48 mm, and the inflow port 1. The shape at the outflow port 5 is a square with a side of 10 mm. The rotor 3A has an outer diameter of 67 mm, an annular part has an outer diameter of 48 mm, a width of 13 mm, and a gap of 0.5 mm is provided between the rotor 3A and the pump chamber. The inner ring of the rotor 3A is embedded with six neodymium iron magnets that are radial and adjacent magnets have magnetization directions opposite to each other in the axial direction.

板状部材を平面形状としたときの本実施例のポンプは、回転数2000rpmのとき170mmHgの負荷圧に対して毎分20L/minの流量を維持し、そのときのポンプ効率は32%であった。これはこのサイズの血液用ポンプとして異例の高出力であるとともに、米国国立予防衛生研究所(NIH)の定める要求性能(平均大動脈圧110mmHg、左心流量8L/min以上)を大きく上回るものである。   When the plate-like member has a planar shape, the pump of this example maintains a flow rate of 20 L / min per load pressure of 170 mmHg at a rotational speed of 2000 rpm, and the pump efficiency at that time is 32%. It was. This is an unusually high output for a blood pump of this size, and greatly exceeds the performance required by the National Institute of Preventive Health (NIH) (average aortic pressure 110 mmHg, left heart flow rate of 8 L / min or more). .

本実施例では駆動用モータをポンプに内蔵させることにより密封性をいっそう高めることができ、軸も軸受もないので偏心的なトルクや局部的な高熱の発生もなく、血液用として好適である。ただし、手術室の人工心肺などのように使い捨ての用途においては、このようなモータ内蔵形は不要であり、実施例1、2のようなモータ着脱形が適している。
本発明のらせん流ポンプではほぼ全周にわたるらせん状流入路と回転体でポンプ作用が行われるため、回転体の周側面に入力ポートが開口する新しい回転式ポンプを実現することができる。しかもこのポンプは、ターボポンプの構成に近似するため、液体力学的な方法で回転軸トルクの偏心を防止できる。らせん状の流入路に加えてらせん状の流出路を備えるようにすると、このらせん流ポンプでは、摩擦力で液体が回転方向に移動するため流入路2内と流出路4内の両方で回転方向に圧力勾配が生じる。この圧力勾配は、図4ではいずれも紙面右から左にかけて高くなるが、回転体3にかかる回転方向の圧力分布はらせん状流出路4内の圧力とらせん状流入路2内の圧力との差(圧力差)となる。したがって、らせん状流入路2とらせん状流出路4に同じ形状のものを使用すれば圧力差は一定となるため、回転体3にかかる回転方向の圧力分布は一様となり、回転軸6に偏心的なトルクはかからない。
In this embodiment, a sealing motor can be further enhanced by incorporating a drive motor in the pump, and since there is no shaft or bearing, there is no occurrence of eccentric torque or high local heat, which is suitable for blood. However, in a disposable application such as a heart-lung machine in an operating room, such a motor built-in type is unnecessary, and a motor detachable type as in Examples 1 and 2 is suitable.
In the helical flow pump of the present invention, since the pumping action is performed by the spiral inflow path and the rotating body over almost the entire circumference, it is possible to realize a new rotating pump in which an input port opens on the peripheral side surface of the rotating body. In addition, since this pump approximates the configuration of a turbo pump, it is possible to prevent eccentricity of the rotating shaft torque by a hydrodynamic method. If a spiral outflow path is provided in addition to the spiral inflow path, this spiral flow pump moves the liquid in the rotational direction by frictional force, so the rotational direction is both in the inflow path 2 and in the outflow path 4. A pressure gradient is generated. In FIG. 4, this pressure gradient increases from right to left in the drawing, but the pressure distribution in the rotational direction applied to the rotating body 3 is the difference between the pressure in the spiral outflow passage 4 and the pressure in the spiral inflow passage 2. (Pressure difference). Therefore, if the same shape is used for the spiral inflow path 2 and the spiral outflow path 4, the pressure difference becomes constant, so the pressure distribution in the rotational direction applied to the rotating body 3 becomes uniform, and the rotating shaft 6 is eccentric. No torque is applied.

また、実施例2のらせん流ポンプでは、液体が回転方向に移動すると同時に板状部材の曲面形状に従って軸方向にも移動する。この場合、らせん状の流入路2の断面積は液体の移動に伴い一様に減少するため、流入路2内の圧力分布は一様となる。また、らせん状の流出路4の断面積は液体の移動に伴い一様に増加するため、同様に流出路4内の圧力分布も一様となる。したがって、回転体3にかかる回転方向の圧力分布は一様となり、回転軸6に偏心的なトルクはかからない。   Further, in the spiral flow pump of the second embodiment, the liquid moves in the rotational direction and simultaneously moves in the axial direction according to the curved surface shape of the plate member. In this case, since the cross-sectional area of the spiral inflow passage 2 decreases uniformly with the movement of the liquid, the pressure distribution in the inflow passage 2 becomes uniform. Further, since the cross-sectional area of the spiral outflow passage 4 uniformly increases as the liquid moves, the pressure distribution in the outflow passage 4 is also uniform. Therefore, the pressure distribution in the rotation direction applied to the rotating body 3 is uniform, and no eccentric torque is applied to the rotating shaft 6.

板状部材の形状や構造を変えて摩擦力と揚力の両方を利用してポンプ作用を発揮させる場合には、ポンプ内の圧力分布も上記2者の中間となるが、いずれも回転体の回転方向の圧力分布は一様となるため回転軸に偏心的なトルクはかからない。
なお、軸受としてボールベアリングの例を示したが、回転軸に偏心的なトルクがかからないため、非接触形軸受を用いることもできる。非接触形軸受として磁気軸受、流体軸受などが知られているが、たとえばすべり面に液体を導入して浮上させる動圧型液体潤滑軸受として、近年DLC(Diamond
like Carbon,ダイヤモンド様炭素被膜)などのすぐれた軸受材が開発されており、軽荷重であれば厚さ数十μmで30年程度の長寿命が期待できる。しかも前記したようなシールや冷却などの問題もない。
When changing the shape and structure of the plate-like member and using both frictional force and lift force to exert the pump action, the pressure distribution in the pump is also intermediate between the above two, but both of them rotate the rotating body Since the pressure distribution in the direction is uniform, no eccentric torque is applied to the rotating shaft.
In addition, although the example of the ball bearing was shown as a bearing, since eccentric torque is not applied to a rotating shaft, a non-contact type bearing can also be used. As a non-contact type bearing, a magnetic bearing, a fluid bearing, and the like are known. For example, DLC (Diamond) has recently been used as a dynamic pressure type liquid lubricated bearing for introducing a liquid to a sliding surface to float.
Excellent bearing materials such as carbon (diamond-like carbon coating) have been developed, and a long life of about 30 years can be expected at a thickness of several tens of μm for light loads. Moreover, there are no problems such as sealing and cooling as described above.

また流入路、流出路は360度で1条のみの1重のらせんとは限らず、2重、3重等の多重らせんを用いてもよい。これによってらせん状の流入路と流出路の形状が異なっても、回転軸に偏心的なトルクがかからないようにすることができる。
2重らせんのとした場合の血液用らせん流ポンプの一例を図12に示す。さきに示した図4に対応する展開概念図である。
In addition, the inflow path and the outflow path are not limited to a single helix of only one line at 360 degrees, and multiple helixes such as double or triple may be used. As a result, even if the shapes of the spiral inflow path and the outflow path are different, eccentric torque can be prevented from being applied to the rotating shaft.
FIG. 12 shows an example of a spiral pump for blood in the case of a double helix. FIG. 5 is a developed conceptual diagram corresponding to FIG. 4 shown above.

また、以上すべて流入路と流出路を対称に配置したポンプの例で説明したが、用途によっては必ずしも流出路を設けなくてもよく、流入路と回転体だけでもポンプとして作用する。   In addition, the example of the pump in which the inflow path and the outflow path are symmetrically arranged has been described above. However, depending on the application, the outflow path may not necessarily be provided, and only the inflow path and the rotating body act as a pump.

本発明第1の実施例のらせん流ポンプの断面図である。It is sectional drawing of the helical flow pump of the 1st Example of this invention. 図1のらせん流ポンプを分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the spiral flow pump of FIG. 図1のらせん流ポンプの要部のみを示す斜視図である。It is a perspective view which shows only the principal part of the spiral flow pump of FIG. 本発明第1の実施例のらせん流ポンプにおける流入路、回転体、流出路を円周方向に展開した展開図である。It is the expanded view which expand | deployed the inflow path, the rotary body, and the outflow path in the spiral flow pump of 1st Example of this invention to the circumferential direction. 本発明第1の実施例のらせん流ポンプのポンプ特性を示すグラフである。It is a graph which shows the pump characteristic of the spiral flow pump of 1st Example of this invention. 本発明第1の実施例のらせん流ポンプのポンプ効率を示すグラフである。It is a graph which shows the pump efficiency of the spiral flow pump of 1st Example of this invention. 本発明第2の実施例の回転体を示す斜視図である。It is a perspective view which shows the rotary body of the 2nd Example of this invention. 同じく本発明第2の実施例の回転体を円周方向に展開した展開図である。Similarly, it is the development which developed the rotating body of the 2nd example of the present invention in the circumference direction. 本発明第2の実施例のらせん流ポンプのポンプ特性を示すグラフである。It is a graph which shows the pump characteristic of the spiral flow pump of the 2nd Example of this invention. 本発明第2の実施例のらせん流ポンプのポンプ効率を示すグラフである。It is a graph which shows the pump efficiency of the spiral flow pump of the 2nd Example of this invention. 本発明第3の実施例のらせん流ポンプを分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the helical flow pump of the 3rd Example of this invention. 本発明のらせん流ポンプにおける流入路、流出路を二重らせんとしたときの円周方向に展開した展開図である。It is the expanded view developed in the circumferential direction when the inflow path and the outflow path in the spiral flow pump of the present invention are double spirals. 従来公知の燃料ポンプの要部を示す断面図である。It is sectional drawing which shows the principal part of a conventionally well-known fuel pump.

符号の説明Explanation of symbols

1 流入ポート
2 流入路
3 回転体
3A ロータ(回転体)
4 流出路
5 流出ポート
6 回転軸
7 軸受
8 シール部材
9 駆動軸
31、31a、31b 板状部材
32 導通孔
91 カップリング
92a、92b 磁石
S ステータ
DESCRIPTION OF SYMBOLS 1 Inflow port 2 Inflow path 3 Rotating body 3A Rotor (rotating body)
4 Outflow path 5 Outflow port 6 Rotating shaft 7 Bearing 8 Seal member 9 Drive shaft 31, 31a, 31b Plate member 32 Conducting hole 91 Coupling 92a, 92b Magnet S Stator

Claims (10)

外周部分に液体の通路を有する円板状の回転体と、この回転体の一方の側面に、前記外周部分に向けて開口し、回転体の回転方向に従ってほぼ全周にわたり断面積が減少するらせん状の流入路を有することを特徴とする血液用らせん流ポンプ。   A disk-shaped rotating body having a liquid passage in the outer peripheral portion, and a spiral opening in one side surface of the rotating body toward the outer peripheral portion, and reducing the cross-sectional area over the entire circumference according to the rotating direction of the rotating body. Spiral flow pump for blood characterized by having an inflow channel in the shape of a tube. 前記回転体の他方の側面に、前記外周部分に向けて開口し、前記回転体の回転方向に従ってほぼ全周にわたり断面積が増加するらせん状の流出路を有することを特徴とする請求項1に記載の血液用らせん流ポンプ。   2. The spiral flow-out channel having an opening toward the outer peripheral portion on the other side surface of the rotating body and having a cross-sectional area increasing substantially over the entire circumference in accordance with the rotation direction of the rotating body. The spiral pump for blood described. 前記回転体が円板の外周に半径方向の板状部材を取り付けた形状である請求項1に記載の血液用らせん流ポンプ。   The blood spiral flow pump according to claim 1, wherein the rotating body has a shape in which a radial plate-like member is attached to an outer periphery of a disc. 前記回転体が円板の外周に半径方向の板状部材を取り付けた形状である請求項2に記載の血液用らせん流ポンプ。   The spiral flow pump for blood according to claim 2, wherein the rotating body has a shape in which a plate member in the radial direction is attached to the outer periphery of the disc. 前記板状部材が平面形状である請求項3または4に記載の血液用らせん流ポンプ。   The spiral flow pump for blood according to claim 3 or 4, wherein the plate-like member has a planar shape. 前記板状部材が曲面形状である請求項3または4に記載の血液用らせん流ポンプ。   The helical flow pump for blood according to claim 3 or 4, wherein the plate-like member has a curved shape. 前記流入路または流出路が位相の異なる複数のらせんを重ね合わせた多重らせん状である請求項1ないし6のいずれかに記載の血液用らせん流ポンプ。   The blood spiral pump according to any one of claims 1 to 6, wherein the inflow path or the outflow path has a multi-spiral shape in which a plurality of spirals having different phases are overlapped. 前記回転体の回転軸と軸受とがV字状のリップを有するリングでシールされ、前記回転体にはこのシール部分に通じる導通孔が設けられている請求項1ないし7のいずれかに記載の血液用らせん流ポンプ。   The rotating shaft and bearing of the said rotary body are sealed with the ring which has a V-shaped lip, The conduction hole which leads to this seal | sticker part is provided in the said rotary body in any one of Claim 1 thru | or 7. A spiral pump for blood. 前記回転体の回転軸を支持する軸受が非接触形軸受である請求項1ないし8のいずれかに記載の血液用らせん流ポンプ。   The blood spiral flow pump according to any one of claims 1 to 8, wherein the bearing that supports the rotating shaft of the rotating body is a non-contact type bearing. 流入路、または流出路の内側回転中心寄りにステータを取り付けるとともに、前記回転体の回転中心寄り部分を空間としてロータとし、前記ステータの外側に配置されるようにして前記ステータとロータでモータを構成するようにした請求項1ないし7のいずれかに記載の血液用らせん流ポンプ。   A stator is mounted near the inner rotation center of the inflow path or the outflow path, and a rotor is used as a space near the rotation center of the rotating body, and the motor is constituted by the stator and the rotor so as to be disposed outside the stator. The spiral pump for blood according to any one of claims 1 to 7.
JP2008542089A 2006-10-28 2007-10-29 Spiral pump for blood Expired - Fee Related JP5298854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008542089A JP5298854B2 (en) 2006-10-28 2007-10-29 Spiral pump for blood

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006319286 2006-10-28
JP2006319286 2006-10-28
JP2008542089A JP5298854B2 (en) 2006-10-28 2007-10-29 Spiral pump for blood
PCT/JP2007/070988 WO2008053818A1 (en) 2006-10-28 2007-10-29 Helical flow pump for blood

Publications (2)

Publication Number Publication Date
JPWO2008053818A1 true JPWO2008053818A1 (en) 2010-02-25
JP5298854B2 JP5298854B2 (en) 2013-09-25

Family

ID=39344159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008542089A Expired - Fee Related JP5298854B2 (en) 2006-10-28 2007-10-29 Spiral pump for blood

Country Status (2)

Country Link
JP (1) JP5298854B2 (en)
WO (1) WO2008053818A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013200713A1 (en) * 2013-01-18 2014-07-24 Robert Bosch Gmbh Side channel pump with asymmetrical cross sections of the side channels

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1243345B (en) * 1990-07-16 1994-06-10 Dideco Spa CENTRIFUGAL PUMP FOR LIQUID, IN PARTICULAR BLOOD IN EXTRA-BODY CIRCULATION
DE10348008A1 (en) * 2003-10-15 2005-05-19 Siemens Ag Fuel pump
JP4592355B2 (en) * 2004-03-31 2010-12-01 株式会社東芝 Liquid feed pump, cooling system, and electrical equipment

Also Published As

Publication number Publication date
WO2008053818A1 (en) 2008-05-08
JP5298854B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP4176753B2 (en) Artificial heart pump
JP2879441B2 (en) Idler disk
JP4648602B2 (en) Viscous resistance impeller elements incorporated in pumps, turbines and transmissions
JP4548450B2 (en) Turbo blood pump
WO2014166128A1 (en) Dynamic-pressure suspension-type double-flow pump
JP2008524499A (en) Improved pump and pumping method
JPH08504490A (en) Sealless rotodynamic pump
JP4510638B2 (en) Ball bearings and vacuum pumps equipped with this type of bearing
JP2004278375A (en) Axial flow pump
JP5339565B2 (en) Fluid machinery
JP5298854B2 (en) Spiral pump for blood
WO2021143526A1 (en) Mini-type pump
US6464450B1 (en) Fuel pump
WO2005024230A2 (en) Rotary centrifugal and viscous pumps
JP2002349482A (en) Centrifugal pump for artificial heart
JP4319375B2 (en) Centrifugal pump casing design method
JP2000337292A (en) Pump
JP5028636B2 (en) Centrifugal pump
JP3125196B2 (en) Pressure-resistant waterproof seal mechanism
Blanchard et al. Performance and development of a miniature rotary shaft pump
WO2007084014A1 (en) Enhancements for swash plate pumps
US4531887A (en) Continuous blade multi-stage pump
CA2602952C (en) Magnetically driven archimedes spiral screw pump
CN116857222B (en) Impeller, pump head and impeller design method for magnetic suspension pump
RU2813399C1 (en) Centrifugal pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5298854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees