JP2004278375A - Axial flow pump - Google Patents

Axial flow pump Download PDF

Info

Publication number
JP2004278375A
JP2004278375A JP2003069196A JP2003069196A JP2004278375A JP 2004278375 A JP2004278375 A JP 2004278375A JP 2003069196 A JP2003069196 A JP 2003069196A JP 2003069196 A JP2003069196 A JP 2003069196A JP 2004278375 A JP2004278375 A JP 2004278375A
Authority
JP
Japan
Prior art keywords
flow pump
axial flow
cylindrical body
outer peripheral
motor rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003069196A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fukui
康裕 福井
Akio Funakubo
昭夫 舟久保
Kazuyoshi Fukunaga
一義 福長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003069196A priority Critical patent/JP2004278375A/en
Publication of JP2004278375A publication Critical patent/JP2004278375A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axial flow pump causing no coagulation of blood in a bearing part, causing no failure, and having durability in a blood pump for an artificial heart. <P>SOLUTION: A motor stator 3d is arranged in an outer peripheral part of a pipe body 3 having a spindle-shaped recessed part 3b in an inner peripheral part; a permanent magnet 4d is sealed on the swelling inside of an outside cylindrical body 4a of swelling the outer peripheral part in a spindle shape; a motor rotor 4 formed by arranging a screw type impeller 4c in a central part of the outside cylindrical body 4a is arranged by loosely fitting to the pipe body 3; and clearance 3c between an outer peripheral surface of the motor rotor 4 and an inner peripheral surface of the pipe body 3 is formed as a dynamic pressure bearing by a hydraulic fluid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は軸流ポンプ、特に人工心臓の血液輸送用ポンプとして有用な軸流ポンプに関する。
【0002】
【従来の技術】
従来のこの種の人工心臓用ポンプとしては、軸流ポンプのプロペラから離れた位置に設置されたモータが、長い駆動軸を介して前記プロペラを駆動するようにしたものが知られている(例えば特許文献1参照。)。
【0003】
又、これは人工心臓用ポンプではないが、流体通路の管体の外周に固定子巻線を設けると共に外周に回転子コアと環状の永久磁石とを備えた軸流ポンプのインペラーを、前記流体通路の管体内のスピンドルに回転自在に設けた例がある(例えば特許文献2参照。)。
【0004】
【特許文献1】
特開平7−178165号公報
【特許文献2】
特開平11−37079号公報
【0005】
【発明が解決しようとする課題】
従来の技術による前記軸流ポンプを人工心臓の血液ポンプとして使用したとき、ポンプの軸受部に浸入した血液中の壊れ易い血小板などが軸受部内で凝固し、血液ポンプの回転を妨げたり、これら凝固したものが血液に乗って運ばれて血管を詰まらせたりすることがあるという問題があった。又、血液には潤滑性がないので、前記軸受部に摩耗を生じ易く、耐久性に限界があるという問題があった。
【0006】
本発明は前記の問題点を解消し、ポンプの軸受部で血液が凝固することがなく、軸受部の摩耗やポンプの故障を生じないような従来よりも耐久性が向上した軸流ポンプを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は上記の目的を達成すべく、流体の流路を形成する管体の外周部にモータステータを設けると共に該管体内にインペラーを具備したモータロータを設けた軸流ポンプにおいて、該モータロータを前記管体の内周より少許小径の外周を有する外側筒体内に設け、これら外側筒体の外周面と前記管体の内周面との間に前記流体を用いた動圧軸受を形成した。
【0008】
【発明の実施の形態】
本発明の第1の実施の形態を図1により説明する。
【0009】
図1は本実施の形態の軸流ポンプ1の回転中心に沿った縦断面図であり、2は流体が流れる管路を示す。
【0010】
軸流ポンプ1は、前記管路2の一部を形成する管体3と、該管体3内に回動自在に支承されたモータロータ4とよりなる。
【0011】
該モータロータ4は、全周にわたり中央部を山形に膨出させて紡錘形に形成した外側筒体4aと、該外側筒体4aの内側に該外側筒体4aと同心の円筒孔4b内に設けたスクリュー式のインペラー4cとよりなる。
【0012】
前記管体3は、前記外側筒体4aの外形形状にあわせて内側を全周にわたり山形に凹まして形成した紡錘形の凹部3bを有しており、前記外側筒体4aの外周部と前記管体3の紡錘形の凹部3bの内周部との隙間3cには、少なくとも所要の最小間隙(例えば0.1mm)を有して遊嵌するように形成されている。更に前記外側筒体4aの外周部にリング溝又はねじ溝を設けて、動圧軸受を形成している。
【0013】
前記管体3の外周部にはモータステータ3dが設けられており、又、内方の前記外側筒体4aの山形に膨出した部分には永久磁石4dが封入されていて、これらモータステータ3d及び永久磁石4dの作用によってモータロータ4の回転駆動が行なわれる。
【0014】
次に、本実施の形態の作動及び効果について説明する。
【0015】
モータステータ3dの巻線に電流を流して、前記モータロータ4を矢印Bの方向に回転駆動すると、スクリュー式のインペラー4cの作用によって矢印Aの方向に流体が流れる。
【0016】
この流体の一部は、モータロータ4の外周部と管体3との間の間隙3cにも流れ込むが、外側筒体4aの外形が紡錘形の動圧軸受となっているため、モータロータ4と管体3との間に巻き込んだ流体の動圧によってモータロータ4が浮上して、両者間の間隙3cが所要の間隙値に保たれるように作用する。
【0017】
即ち、斜めに配置した動圧軸受は、ジャーナル軸受及びスラスト軸受として機能するので、スラスト軸受は不要であり、又、従来の滑り軸受と比較して大きな軸受隙間を実現することができる。
【0018】
たとえば、この流体が血液であった場合でも、血液中にある血小板や血球等の小粒子が潰れて糊状になるようなことがなく、人工心臓の血液ポンプとして安全である。
【0019】
又、構造が簡単なので、血液ポンプとして必要な装置の小形化にも容易に対応できる。
【0020】
尚、本実施の形態では、前記外側筒体4aの紡錘形の膨出部の形状を頂面に平坦部を有する富士山形としたが、これは円弧状に膨出した頂面に形成してもよい。
【0021】
本発明の第2の実施の形態を図2及び図3により説明する。
【0022】
図2は本実施の形態の軸流ポンプ11の縦断面図であり、12は流体管路の一部をなす管体を示し、13は該管体12内に存するインペラーを具備したモータロータである。
【0023】
前記モータロータ13は、全周にわたり中央部を山形に膨出させて紡錘形に形成した外側筒体13aを有し、該外側筒体13aの内側に複数のインペラー13bを設けて、軸流ポンプの翼を形成している。
【0024】
前記管体12も前記外側筒体13aにあわせて、内周部を全周にわたり山形に凹ませて紡錘形の凹部12aを形成している。
【0025】
図3は、前記膨出部12aの軸直角な断面における管体12及びモータロータ13の截断面図を示す。
【0026】
又、13cは前記インペラー13b内に封入された永久磁石である。
【0027】
前記管体12の外周部にはモータステータ14があって、該モータステータ14と前記インペラー13b内に封入した永久磁石13cとによって、前記モータロータ13の回転駆動が行なわれる。
【0028】
又、前記凹部12aの内周面と前記外側筒体13aの外周面との間隙15は、少なくとも所要の最小間隙(例えば0.1mm)を有して遊嵌するように形成されている。更に前記外側筒体13aの外周部にリング溝又はねじ溝を設けて、動圧軸受を形成している。
【0029】
次に本実施の形態の作動及びその効果について説明する。
【0030】
前記モータステータ14の巻線に電流を流して、前記モータロータ13を矢印Bの方向に回転駆動すると、インペラー13bの作用によって矢印Aの方向に流体が流れる。この流体の一部はモータロータ13の外周部と管体12との間の間隙5にも流れ込むが、外側筒体13aの外形が紡錘形の動圧軸受となっているため、モータロータ13と外側の管体12との間に巻き込んだ流体の動圧によってモータロータ13が浮上して、両者間の間隙15が所要の間隙値に保たれるように作用する。
【0031】
このように本実施の形態は前記第1の実施の形態におけるのと略同じであるが、第1の実施の形態におけるスクリュー式のインペラー4cの代りに永久磁石13cを封入した複数のインペラー13bを使用するようにした点が前記第1の実施の形態とは異なる。
【0032】
【発明の効果】
このように本発明によれば、インペラーの外側に軸受部を設けたので、インペラーの内側に軸受部を有する従来のポンプよりも大きな軸受面積が得られ、又、軸受部を紡錘型としたことにより、軸受部の流体の流れがスムーズとなり、更に又、動圧軸受としたことによって軸受部で回転体と静止体とが接触しないので、血液ポンプとして使用した場合に該軸受部で血液が凝固することがなく、故障がなくて耐久性のある軸流ポンプを提供できる効果を有する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の軸流ポンプの縦断面図である。
【図2】本発明の第2の実施の形態の軸流ポンプの縦断面図である。
【図3】前記第2の実施の形態の軸流ポンプの軸直角断面における截断面図である。
【符号の説明】
1、11 軸流ポンプ
3、12 管体
3b、12a 紡錘形の凹部
3d、14 モータステータ
4、13 モータロータ
4a、13a 外側筒体
4c スクリュー(インペラー)
13b インペラー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an axial flow pump, particularly to an axial flow pump useful as a pump for transporting blood of an artificial heart.
[0002]
[Prior art]
As a conventional artificial heart pump of this type, there is known a pump in which a motor installed at a position distant from a propeller of an axial pump drives the propeller through a long drive shaft (for example, for example). See Patent Document 1.).
[0003]
Although this is not an artificial heart pump, an impeller of an axial flow pump having a stator winding provided on the outer periphery of a tube body of a fluid passage and having a rotor core and an annular permanent magnet on the outer periphery is used as the fluid pump. There is an example in which a spindle in a pipe of a passage is rotatably provided (for example, see Patent Document 2).
[0004]
[Patent Document 1]
JP-A-7-178165 [Patent Document 2]
JP-A-11-37079
[Problems to be solved by the invention]
When the axial flow pump according to the prior art is used as a blood pump for an artificial heart, fragile platelets and the like in blood that have penetrated into the bearing of the pump coagulate in the bearing, and hinder the rotation of the blood pump or prevent such coagulation. However, there is a problem that the blood may be carried on blood and clog blood vessels. In addition, since blood has no lubricating property, there is a problem that the bearing portion is liable to be worn and its durability is limited.
[0006]
The present invention solves the above-mentioned problems, and provides an axial flow pump with improved durability compared to conventional pumps in which blood does not coagulate in a bearing portion of the pump and wear of the bearing portion and failure of the pump do not occur. The purpose is to do.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an axial flow pump in which a motor stator is provided on an outer peripheral portion of a pipe forming a fluid flow path and a motor rotor having an impeller is provided in the pipe. A dynamic pressure bearing using the fluid was formed between an outer peripheral surface of the outer cylindrical body and an inner peripheral surface of the tubular body, provided in an outer cylindrical body having an outer periphery having a smaller diameter than the inner periphery of the tubular body.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention will be described with reference to FIG.
[0009]
FIG. 1 is a vertical cross-sectional view along the center of rotation of an axial flow pump 1 of the present embodiment, and reference numeral 2 denotes a pipe through which a fluid flows.
[0010]
The axial flow pump 1 includes a pipe 3 forming a part of the pipe 2 and a motor rotor 4 rotatably supported in the pipe 3.
[0011]
The motor rotor 4 is provided with an outer cylindrical body 4a whose central portion is bulged in a mountain shape over the entire circumference to form a spindle, and a cylindrical hole 4b provided inside the outer cylindrical body 4a and concentric with the outer cylindrical body 4a. It comprises a screw type impeller 4c.
[0012]
The tubular body 3 has a spindle-shaped concave portion 3b formed by recessing the inside in a chevron shape over the entire circumference in accordance with the outer shape of the outer tubular body 4a, and an outer peripheral portion of the outer tubular body 4a and the tubular body. A gap 3c between the spindle 3 and the inner periphery of the spindle-shaped recess 3b is formed so as to be loosely fitted with at least a required minimum gap (for example, 0.1 mm). Further, a ring groove or a screw groove is provided on the outer peripheral portion of the outer cylindrical body 4a to form a dynamic pressure bearing.
[0013]
A motor stator 3d is provided on an outer peripheral portion of the tube 3, and a permanent magnet 4d is sealed in a portion of the outer cylindrical body 4a which protrudes in a mountain shape. The rotation of the motor rotor 4 is performed by the action of the permanent magnet 4d.
[0014]
Next, the operation and effect of the present embodiment will be described.
[0015]
When a current flows through the winding of the motor stator 3d and the motor rotor 4 is driven to rotate in the direction of arrow B, the fluid flows in the direction of arrow A by the action of the screw impeller 4c.
[0016]
Part of this fluid also flows into the gap 3c between the outer peripheral portion of the motor rotor 4 and the tube 3, but since the outer shape of the outer tube 4a is a spindle-shaped dynamic pressure bearing, the motor rotor 4 and the tube The motor rotor 4 floats by the dynamic pressure of the fluid entrapped between the motor rotor 3 and the fluid rotor 3 so that the gap 3c therebetween is maintained at a required gap value.
[0017]
That is, since the hydrodynamic bearings arranged obliquely function as journal bearings and thrust bearings, thrust bearings are not required, and a larger bearing gap can be realized as compared with conventional slide bearings.
[0018]
For example, even when the fluid is blood, small particles such as platelets and blood cells in the blood are not crushed into a paste, which is safe as a blood pump for an artificial heart.
[0019]
Further, since the structure is simple, it is possible to easily cope with downsizing of a device required as a blood pump.
[0020]
In the present embodiment, the shape of the spindle-shaped bulging portion of the outer cylindrical body 4a is a Mt. Fuji shape having a flat portion on the top surface, but it may be formed on the arc-shaped bulging top surface. Good.
[0021]
A second embodiment of the present invention will be described with reference to FIGS.
[0022]
FIG. 2 is a longitudinal sectional view of the axial flow pump 11 according to the present embodiment, in which reference numeral 12 denotes a pipe forming a part of a fluid conduit, and reference numeral 13 denotes a motor rotor having an impeller existing in the pipe 12. .
[0023]
The motor rotor 13 has an outer cylindrical body 13a formed in a spindle shape by bulging a central portion into a mountain shape over the entire circumference. A plurality of impellers 13b are provided inside the outer cylindrical body 13a, and a blade of the axial flow pump is provided. Is formed.
[0024]
The tubular body 12 also has a spindle-shaped concave portion 12a formed by recessing the inner peripheral portion in a chevron shape over the entire periphery in accordance with the outer cylindrical body 13a.
[0025]
FIG. 3 is a cross-sectional view of the tubular body 12 and the motor rotor 13 in a cross section perpendicular to the axis of the bulging portion 12a.
[0026]
Reference numeral 13c denotes a permanent magnet sealed in the impeller 13b.
[0027]
A motor stator 14 is provided on the outer peripheral portion of the tube 12, and the motor rotor 13 is driven to rotate by the motor stator 14 and the permanent magnet 13c sealed in the impeller 13b.
[0028]
The gap 15 between the inner peripheral surface of the concave portion 12a and the outer peripheral surface of the outer cylindrical body 13a is formed so as to be loosely fitted with at least a required minimum gap (for example, 0.1 mm). Further, a ring groove or a screw groove is provided on the outer peripheral portion of the outer cylindrical body 13a to form a dynamic pressure bearing.
[0029]
Next, the operation and effects of the present embodiment will be described.
[0030]
When a current flows through the windings of the motor stator 14 and the motor rotor 13 is driven to rotate in the direction of arrow B, fluid flows in the direction of arrow A by the action of the impeller 13b. Part of this fluid also flows into the gap 5 between the outer peripheral portion of the motor rotor 13 and the tube 12, but since the outer shape of the outer cylinder 13a is a spindle-shaped dynamic pressure bearing, the outer rotor 13a and the outer tube The motor rotor 13 floats by the dynamic pressure of the fluid entrained between the body 12 and acts so that the gap 15 between them is maintained at a required gap value.
[0031]
Thus, the present embodiment is substantially the same as in the first embodiment, but a plurality of impellers 13b in which permanent magnets 13c are sealed are used instead of the screw-type impellers 4c in the first embodiment. It differs from the first embodiment in that it is used.
[0032]
【The invention's effect】
As described above, according to the present invention, since the bearing portion is provided outside the impeller, a larger bearing area can be obtained than a conventional pump having a bearing portion inside the impeller, and the bearing portion is a spindle type. As a result, the fluid flow in the bearing portion becomes smooth, and furthermore, since the rotating body and the stationary body do not come into contact with each other by using the dynamic pressure bearing, blood coagulates in the bearing portion when used as a blood pump. This has the effect of providing a durable axial flow pump without any failure.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an axial flow pump according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of an axial flow pump according to a second embodiment of the present invention.
FIG. 3 is a cross-sectional view of the axial flow pump of the second embodiment in a cross section perpendicular to the axis.
[Explanation of symbols]
1, 11 axial flow pump 3, 12 pipe 3b, 12a spindle-shaped recess 3d, 14 motor stator 4, 13 motor rotor 4a, 13a outer cylinder 4c screw (impeller)
13b impeller

Claims (3)

流体の流路を形成する管体の外周部にモータステータを設けると共に該管体内にインペラーを具備したモータロータを設けた軸流ポンプにおいて、該モータロータを前記管体の内周より少許小径の外周を有する外側筒体内に設け、これら外側筒体の外周面と前記管体の内周面との間に前記流体を用いた動圧軸受を形成したことを特徴とする軸流ポンプ。In an axial flow pump provided with a motor stator at an outer peripheral portion of a tube forming a fluid flow path and also provided with a motor rotor having an impeller in the tube, the motor rotor is provided with an outer periphery having a smaller diameter than the inner periphery of the tube. An axial flow pump, wherein the hydrodynamic bearing is provided between the outer peripheral surface of the outer cylindrical body and the inner peripheral surface of the tubular body. 前記外側筒体の全周にわたり中央部を山形に膨出させて紡錘形に形成すると共に、前記管体も前記外側筒体にあわせて内周部を全周にわたり山形に凹ませて紡錘形の凹部を形成し、前記外側筒体の膨出した外周面と前記管体の凹部の内周面との間を前記流体を用いた動圧軸受に形成したことを特徴とする請求項1に記載の軸流ポンプ。Along the entire circumference of the outer cylindrical body, a central portion is bulged in a chevron shape to form a spindle shape. The shaft according to claim 1, wherein a portion between the bulged outer peripheral surface of the outer cylindrical body and the inner peripheral surface of the concave portion of the tubular body is formed in a dynamic pressure bearing using the fluid. Flow pump. 前記インペラーは、前記外側筒体内の流路に設けたスクリューからなることを特徴とする請求項1又は請求項2に記載の軸流ポンプ。The axial flow pump according to claim 1, wherein the impeller comprises a screw provided in a flow path in the outer cylinder.
JP2003069196A 2003-03-14 2003-03-14 Axial flow pump Pending JP2004278375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069196A JP2004278375A (en) 2003-03-14 2003-03-14 Axial flow pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003069196A JP2004278375A (en) 2003-03-14 2003-03-14 Axial flow pump

Publications (1)

Publication Number Publication Date
JP2004278375A true JP2004278375A (en) 2004-10-07

Family

ID=33286298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069196A Pending JP2004278375A (en) 2003-03-14 2003-03-14 Axial flow pump

Country Status (1)

Country Link
JP (1) JP2004278375A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507257A (en) * 2003-10-09 2007-03-29 ヴェントラコー リミテッド Impeller
CN100465454C (en) * 2006-06-16 2009-03-04 三匠科技股份有限公司 Axial flow blower
JP2010528797A (en) * 2007-06-14 2010-08-26 キャロン カーディオ テクノロジー リミテッド Axial rotary pump with reduced diameter for cardiac assist
JP2012505014A (en) * 2008-10-10 2012-03-01 ミルックス・ホールディング・エスエイ Heart support pump, system, and method
US8152035B2 (en) 2005-07-12 2012-04-10 Thoratec Corporation Restraining device for a percutaneous lead assembly
US8282359B2 (en) 1999-04-23 2012-10-09 Thoratec Corporation Rotary blood pump and control system therefor
US8353686B2 (en) 2004-10-18 2013-01-15 Thoratec Corporation Rotor stability of a rotary pump
US8388649B2 (en) 2001-05-21 2013-03-05 Thoratec Corporation Staged implantation of ventricular assist devices
US8858416B2 (en) 2005-12-08 2014-10-14 Thoratec Corporation Implantable medical devices
US8876685B2 (en) 2006-10-27 2014-11-04 Thoratec Corporation Blood pump with an ultrasound transducer
US8905910B2 (en) 2010-06-22 2014-12-09 Thoratec Corporation Fluid delivery system and method for monitoring fluid delivery system
CN104258481A (en) * 2014-10-17 2015-01-07 山东科技大学 Magnetic suspension axial flow type spiral driving device
US9089635B2 (en) 2010-06-22 2015-07-28 Thoratec Corporation Apparatus and method for modifying pressure-flow characteristics of a pump
US9339598B2 (en) 2005-10-05 2016-05-17 Heartware, Inc. Axial flow pump with multi-grooved rotor
CN107165830A (en) * 2017-06-08 2017-09-15 品创联(深圳)科技有限公司 Liquid drawing device
CN107489660A (en) * 2017-09-26 2017-12-19 邓耀钊 Unrestrained pump is made in a kind of shaftless frequency conversion of brush DC
US9872976B2 (en) 2010-08-20 2018-01-23 Thoratec Corporation Assembly and method for stabilizing a percutaneous cable
US9879691B2 (en) 2014-08-22 2018-01-30 Nidec Corporation Dynamic pressure bearing pump
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11368081B2 (en) 2018-01-24 2022-06-21 Kardion Gmbh Magnetic coupling element with a magnetic bearing function
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
US11754075B2 (en) 2018-07-10 2023-09-12 Kardion Gmbh Impeller for an implantable, vascular support system
US11944805B2 (en) 2020-01-31 2024-04-02 Kardion Gmbh Pump for delivering a fluid and method of manufacturing a pump
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US12005248B2 (en) 2018-05-16 2024-06-11 Kardion Gmbh Rotor bearing system

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8870552B2 (en) 1999-04-23 2014-10-28 Thoratec Corporation Rotary blood pump and control system therefor
US8282359B2 (en) 1999-04-23 2012-10-09 Thoratec Corporation Rotary blood pump and control system therefor
US8388649B2 (en) 2001-05-21 2013-03-05 Thoratec Corporation Staged implantation of ventricular assist devices
US7798952B2 (en) 2003-10-09 2010-09-21 Thoratec Corporation Axial flow blood pump
JP2007507257A (en) * 2003-10-09 2007-03-29 ヴェントラコー リミテッド Impeller
US8366599B2 (en) 2003-10-09 2013-02-05 Thoratec Corporation Axial flow blood pump
US8827663B2 (en) 2004-10-18 2014-09-09 Thoratec Corporation Rotary stability of a rotary pump
US8353686B2 (en) 2004-10-18 2013-01-15 Thoratec Corporation Rotor stability of a rotary pump
US9956332B2 (en) 2004-12-03 2018-05-01 Heartware, Inc. Axial flow pump with multi-grooved rotor
US8152035B2 (en) 2005-07-12 2012-04-10 Thoratec Corporation Restraining device for a percutaneous lead assembly
US10251985B2 (en) 2005-10-05 2019-04-09 Heartware, Inc. Axial flow pump with multi-grooved rotor
US9339598B2 (en) 2005-10-05 2016-05-17 Heartware, Inc. Axial flow pump with multi-grooved rotor
US9737652B2 (en) 2005-10-05 2017-08-22 Heartware, Inc. Axial flow pump with multi-grooved rotor
US8858416B2 (en) 2005-12-08 2014-10-14 Thoratec Corporation Implantable medical devices
US10471193B2 (en) 2005-12-08 2019-11-12 Tc1 Llc Implantable medical devices
CN100465454C (en) * 2006-06-16 2009-03-04 三匠科技股份有限公司 Axial flow blower
US8876685B2 (en) 2006-10-27 2014-11-04 Thoratec Corporation Blood pump with an ultrasound transducer
JP2010528797A (en) * 2007-06-14 2010-08-26 キャロン カーディオ テクノロジー リミテッド Axial rotary pump with reduced diameter for cardiac assist
JP2012505014A (en) * 2008-10-10 2012-03-01 ミルックス・ホールディング・エスエイ Heart support pump, system, and method
US11376416B2 (en) 2008-10-10 2022-07-05 Peter Forsell Heart help pump, system, and method
US9839733B2 (en) 2010-06-22 2017-12-12 Tc1 Llc Apparatus and method for modifying pressure-flow characteristics of a pump
US9089635B2 (en) 2010-06-22 2015-07-28 Thoratec Corporation Apparatus and method for modifying pressure-flow characteristics of a pump
US8905910B2 (en) 2010-06-22 2014-12-09 Thoratec Corporation Fluid delivery system and method for monitoring fluid delivery system
US9872976B2 (en) 2010-08-20 2018-01-23 Thoratec Corporation Assembly and method for stabilizing a percutaneous cable
US9879691B2 (en) 2014-08-22 2018-01-30 Nidec Corporation Dynamic pressure bearing pump
CN104258481A (en) * 2014-10-17 2015-01-07 山东科技大学 Magnetic suspension axial flow type spiral driving device
US11717670B2 (en) 2017-06-07 2023-08-08 Shifamed Holdings, LLP Intravascular fluid movement devices, systems, and methods of use
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
CN107165830A (en) * 2017-06-08 2017-09-15 品创联(深圳)科技有限公司 Liquid drawing device
CN107489660A (en) * 2017-09-26 2017-12-19 邓耀钊 Unrestrained pump is made in a kind of shaftless frequency conversion of brush DC
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11804767B2 (en) 2018-01-24 2023-10-31 Kardion Gmbh Magnetic coupling element with a magnetic bearing function
US11368081B2 (en) 2018-01-24 2022-06-21 Kardion Gmbh Magnetic coupling element with a magnetic bearing function
US11229784B2 (en) 2018-02-01 2022-01-25 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US12005248B2 (en) 2018-05-16 2024-06-11 Kardion Gmbh Rotor bearing system
US11754075B2 (en) 2018-07-10 2023-09-12 Kardion Gmbh Impeller for an implantable, vascular support system
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
US11944805B2 (en) 2020-01-31 2024-04-02 Kardion Gmbh Pump for delivering a fluid and method of manufacturing a pump

Similar Documents

Publication Publication Date Title
JP2004278375A (en) Axial flow pump
JP5461172B2 (en) Rotary pump with coaxial magnetic coupling
US5580216A (en) Magnetic pump
DK2800904T3 (en) ROTODYNAMIC PUMP WITH PERMANENT MAGNETIC CONNECTION INTO THE IMPELLER
JP2009197736A (en) Blood pump and pump unit
WO2007032249A1 (en) Artificial heart pump
JP4072721B2 (en) Artificial heart pump
CN1258045C (en) Dynamic pressure bearing
WO2005052365A3 (en) Pump design for circulating supercritical carbon dioxide
JP4078245B2 (en) Artificial heart pump
JP4078833B2 (en) Double suction centrifugal pump
US6048168A (en) Lubricated ceramic/hybrid anti-friction bearing centrifugal pump
JP5828459B2 (en) Centrifugal blood pump
JP2006037918A (en) Axial-flow pump
CN114001036B (en) Miniature hydraulic suspension mechanical pump and assembly method thereof
JP4485379B2 (en) Bearing and blood pump
CN106678081A (en) Torque flow pump capable of reducing pressure pulsation
JP2002138986A (en) Motor pump
JP2009156242A (en) Flat micropump
JP2630773B2 (en) Screw centrifugal pump
JP2729637B2 (en) Screw centrifugal pump
JP5298854B2 (en) Spiral pump for blood
JPH04112994A (en) Turbo pump
JP2005146899A (en) Axial-flow pump
JP2005201054A (en) Pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302