JPWO2008041572A1 - Method for producing soy protein composition - Google Patents

Method for producing soy protein composition Download PDF

Info

Publication number
JPWO2008041572A1
JPWO2008041572A1 JP2008537483A JP2008537483A JPWO2008041572A1 JP WO2008041572 A1 JPWO2008041572 A1 JP WO2008041572A1 JP 2008537483 A JP2008537483 A JP 2008537483A JP 2008537483 A JP2008537483 A JP 2008537483A JP WO2008041572 A1 JPWO2008041572 A1 JP WO2008041572A1
Authority
JP
Japan
Prior art keywords
soybean
protein
raw material
soy protein
protein composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008537483A
Other languages
Japanese (ja)
Other versions
JP5212107B2 (en
Inventor
齋藤 努
努 齋藤
俊夫 桐山
俊夫 桐山
昌明 宮本
昌明 宮本
佐藤 亮太郎
亮太郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP2008537483A priority Critical patent/JP5212107B2/en
Publication of JPWO2008041572A1 publication Critical patent/JPWO2008041572A1/en
Application granted granted Critical
Publication of JP5212107B2 publication Critical patent/JP5212107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean

Abstract

大豆原料から風味,乳化力,ゲル強度の向上した、大豆蛋白質組成物を工業的規模で効率的に生産する。オカラを含んだ大豆原料から蛋白質を抽出する際に、大豆原料スラリー中にカルシウム等の第2族元素を存在させ、加温することで、β−コングリシニンおよびグリシニンを効率良く抽出でき、かつ、脂質会合性蛋白質の抽出を抑制できる。The soybean protein composition with improved flavor, emulsifying power and gel strength is produced efficiently from the soybean raw material on an industrial scale. When extracting protein from soybean raw material containing okara, β-conglycinin and glycinin can be efficiently extracted by allowing Group 2 elements such as calcium to be present in the soybean raw material slurry and heating. Extraction of associating proteins can be suppressed.

Description

本発明は、大豆原料から風味,乳化力,ゲル強度の向上した、大豆蛋白質組成物を工業的規模で効率的に生産するための方法に関する。   The present invention relates to a method for efficiently producing a soy protein composition with improved flavor, emulsifying power and gel strength from a soy material on an industrial scale.

大豆蛋白質組成物は、古くから優れた食品蛋白質源として利用されるばかりでなく、乳化力、ゲル形成力などの様々な機能特性を備えていることから、食品素材あるいは食品改質素材として、食肉製品,水産練り製品,惣菜,パン,製菓,飲料用素材等に幅広く用いられている。また、大豆蛋白質が血中コレステロールを減少させることが明らかになり、その栄養生理機能が着目されている。   Soy protein compositions have been used not only as an excellent food protein source for a long time, but also have various functional properties such as emulsifying power and gel forming power. Widely used in products, marine products, side dishes, bread, confectionery, beverage materials, etc. In addition, it has been clarified that soy protein reduces blood cholesterol, and its nutritional physiological function has attracted attention.

大豆蛋白質の主要な構成成分はβ−コングリシニン(7Sグロブリン)とグリシニン(11Sグロブリン)であり、この両者が乳化力,ゲル形成力などの大豆蛋白質の様々な機能特性の発現に中心的な役割を果たしている。しかしながら、大豆蛋白質を含む素材は独特の風味を有することから、食品への利用が制限されているが、この独特な風味は、大豆蛋白質に残存している脂質部分に因るところが大きいことが知られており、その改善が望まれている。大豆由来の蛋白質には、プロテインボディー,オイルボディー等の生体膜を構成する、極性脂質との親和力の高い蛋白質(脂質会合性蛋白質)が存在し、これは工業的に生産する分離大豆たん白の約35%をも占めていることが佐本らにより報告されている(非特許文献1)。この脂質会合性蛋白質は膜蛋白質を主体とする蛋白質群の総称で、特にSDS−ポリアクリルアミド電気泳動による推定分子量において主に34kDa,24kDa,18kDaを示す蛋白質を含み、クロロホルム:メタノール=2:1の有機溶媒により抽出される極性脂質を10〜12重量%程度含有する。   The main components of soy protein are β-conglycinin (7S globulin) and glycinin (11S globulin), both of which play a central role in the expression of various functional properties of soy protein such as emulsifying power and gel forming power. Plays. However, since the material containing soy protein has a unique flavor, its use in foods is limited, but it is known that this unique flavor is largely due to the lipid part remaining in soy protein. The improvement is desired. Proteins derived from soybeans include proteins with high affinity with polar lipids (lipid-associated proteins) that make up biological membranes such as protein bodies and oil bodies, and this is the product of isolated soybean protein produced industrially. Samoto et al. Reported that it accounts for about 35% (Non-patent Document 1). This lipid-associated protein is a general term for a group of proteins mainly composed of membrane proteins. In particular, it includes proteins showing 34 kDa, 24 kDa and 18 kDa in estimated molecular weights by SDS-polyacrylamide electrophoresis, and chloroform: methanol = 2: 1. It contains about 10 to 12% by weight of polar lipid extracted with an organic solvent.

特許文献1では、34kDaに相当するGly m Iを減少させた大豆蛋白質組成物は、色,風味,ゲル強度においても、工業的に生産する分離大豆たん白に比べ改善されることが見出されている。特許文献2では、34kDa付近の蛋白質が実質的に低減された大豆蛋白質組成物が、レトルト処理を行っても、色,風味の悪化が起こりにくいことを見出している。分離大豆たん白の品質の向上には、脂質会合性蛋白質を低減させることがポイントであり、これまでに数多くの試みがなされている。特許文献1では、高濃度の塩類が溶解した水溶液で、特許文献3では大豆蛋白質を酸性下に処理することで、選択的に沈降させて除去する方法を開示しているが、工業的規模での生産は困難であった。   In Patent Document 1, it has been found that the soy protein composition having a reduced Gly m I equivalent to 34 kDa is improved in color, flavor and gel strength as compared with industrially produced isolated soy protein. ing. In Patent Document 2, it has been found that a soy protein composition in which a protein around 34 kDa is substantially reduced does not easily deteriorate in color and flavor even if it is subjected to a retort treatment. In order to improve the quality of the isolated soybean protein, the point is to reduce the lipid-associated protein, and many attempts have been made so far. Patent Document 1 discloses an aqueous solution in which high-concentration salts are dissolved, and Patent Document 3 discloses a method for selectively precipitating and removing soy protein by treatment under acidic conditions, but on an industrial scale. Production was difficult.

また、いわゆるアルコールコンセントレートとして、極性の高いアルコール水溶液で、脱脂大豆等を処理する方法が、工業的な方法として古くから実施されているが、蛋白質が変性するため、水への溶解性が低下することが知られている。特許文献4では、低変性脱脂大豆を、60〜85容量%の低濃度アルコール水溶液を、続けて高濃度のアルコール水溶液を用いて40℃未満の温度下で処理し、温和な条件で乾燥して濃縮大豆たん白を得、これから更に極性脂質を低減した分離大豆蛋白質を得られることを開示している。しかしながら、この方法は特殊な設備を必要とし、工程も煩雑であり、さらには有機溶媒を扱わねばならないなどの問題がある。   In addition, as a so-called alcohol concentrate, a method of treating defatted soybeans, etc. with a highly polar alcohol aqueous solution has been practiced as an industrial method for a long time. However, since protein is denatured, the solubility in water decreases. It is known to do. In Patent Document 4, low-denatured defatted soybeans are treated at a temperature of less than 40 ° C. with a low-concentration aqueous alcohol solution of 60 to 85% by volume and subsequently with a high-concentration aqueous alcohol solution, and dried under mild conditions. It is disclosed that a concentrated soybean protein can be obtained, and from this, a separated soybean protein with further reduced polar lipids can be obtained. However, this method requires special equipment, has a complicated process, and has a problem that an organic solvent must be handled.

特許文献5では、大豆蛋白質を含む溶液を微酸性下で加温した後、pH5.6〜6.6において、β−コングリシニンを多く含む可溶性画分と、グリシニンおよび脂質会合性蛋白質に富む不溶性画分を分画する方法が挙げられている。特許文献6では、脱脂大豆から大豆蛋白質の抽出に、少量のカルシウム塩を添加することで、カルシウムに対する、β−コングリシニンとグリシニンの反応性の違いをもとにして、β−コングリシニンに富む画分を可溶性画分に、グリシニンに富む画分を不溶性画分に、それぞれ分画する方法を提案している。これらの分離はどちらもβ−コングリシニンとグリシニン両成分の分画が目的であり、大豆原料からの、風味,乳化力,ゲル強度の向上した、β−コングリシニンとグリシニンを共に含んだ大豆蛋白質の回収については何ら言及されていない。   In Patent Document 5, after heating a solution containing soy protein under slightly acidic conditions, a soluble fraction rich in β-conglycinin and an insoluble fraction rich in glycinin and lipid-associated protein at pH 5.6 to 6.6 are obtained. The method of fractionation is mentioned. In Patent Document 6, a fraction rich in β-conglycinin based on the difference in reactivity between β-conglycinin and glycinin with respect to calcium by adding a small amount of calcium salt to the extraction of soybean protein from defatted soybeans. Has been proposed for fractionating a soluble fraction into a soluble fraction and a fraction rich in glycinin into an insoluble fraction. Both of these separations are aimed at fractionation of both β-conglycinin and glycinin components, and recovery of soybean protein containing both β-conglycinin and glycinin with improved flavor, emulsifying power and gel strength from soybean raw materials There is no mention about.

以上の方法により、脂質会合性蛋白質もしくはこれに由来すると想定される極性脂質は、蛋白質組成物から低減できるが、分画操作が煩雑であったり、有機溶媒を使用せねばならなかったり、必要な画分も除去してしまったりと、工業的規模での実施にはいずれも課題が残っていた。   By the above method, the lipid-associated protein or the polar lipid assumed to be derived from the protein can be reduced from the protein composition, but the fractionation operation is complicated, an organic solvent must be used, Even if fractions were removed, there were still problems in implementation on an industrial scale.

特開平07-236427号公報Japanese Unexamined Patent Publication No. 07-236427 特開平08-332029号公報Japanese Unexamined Patent Publication No. 08-332029 特開平10-070959号公報Japanese Patent Laid-Open No. 10-070959 特開2000-325023号公報JP 2000-325023 国際公開第02/028198号International Publication No. 02/028198 特開昭48-056843号公報JP 48-056843 A Biosci. Biotechnol. Biochem., 62(5), 935-940 (1998)Biosci. Biotechnol. Biochem., 62 (5), 935-940 (1998)

本発明の目的は、大豆原料から風味,乳化力,ゲル強度の向上した、大豆蛋白質組成物を工業的規模で効率的に生産するための方法を提供することにある。   An object of the present invention is to provide a method for efficiently producing a soy protein composition with improved flavor, emulsifying power and gel strength from a soybean raw material on an industrial scale.

本発明者らは、オカラを含んだ大豆原料から蛋白質を抽出する際に、大豆原料スラリー中にカルシウム等の第2族元素を存在させ、加温することで、脂質会合性蛋白質を不溶化させ、これらの抽出を抑制する一方で、β−コングリシニンおよびグリシニンからなる蛋白質を効率的に抽出できることを見出し、この発明を完成させた。即ち本発明は、
(1)オカラを含んだ大豆原料のスラリーを、第2族元素を含む状態で加温し、可溶性成分を抽出し、不溶性画分を除去する際に、抽出時のスラリーpHが、6.6を超え8.3未満であり、抽出時の第2族元素のスラリー中濃度が、17×[pH]−105(mM)以上であることを特徴とする、大豆蛋白質組成物の製造法。
(2)抽出時の第2族元素の大豆原料スラリー中濃度が、73×[pH]−420(mM)以下である、(1)に記載の、大豆蛋白質組成物の製造法。
(3)加温温度が30℃以上70℃未満である、(1)に記載の大豆蛋白質組成物の製造法。
(4)極性脂質が蛋白質中4重量%以下である、(1)に記載の大豆蛋白質組成物の製造法。
である。
When extracting protein from soybean raw material containing okara, the present inventors make a group 2 element such as calcium present in the soybean raw material slurry and heat it to insolubilize the lipid-associated protein, While suppressing these extractions, the inventors have found that a protein comprising β-conglycinin and glycinin can be efficiently extracted, and completed the present invention. That is, the present invention
(1) When the slurry of soybean raw material containing okara is heated in a state containing a Group 2 element, the soluble component is extracted, and the insoluble fraction is removed, the slurry pH at the time of extraction exceeds 6.6. A method for producing a soy protein composition, wherein the concentration of the Group 2 element in the slurry is less than 8.3, and the concentration of the Group 2 element in the slurry is 17 × [pH] −105 (mM) or more.
(2) The method for producing a soybean protein composition according to (1), wherein the concentration of the Group 2 element in the soybean raw material slurry at the time of extraction is 73 × [pH] −420 (mM) or less.
(3) The manufacturing method of the soybean protein composition as described in (1) whose heating temperature is 30 degreeC or more and less than 70 degreeC.
(4) The method for producing a soybean protein composition according to (1), wherein the polar lipid is 4% by weight or less in the protein.
It is.

本発明によれば、風味,乳化力,ゲル強度の向上した分離大豆蛋白等の大豆蛋白質組成物を、工業的規模で効率的に製造することが出来る。従来からある用途(食肉製品,水産練り製品,惣菜,健康食品等)での利用性の向上のみならず、風味や物性の制約により、利用が困難であった大豆蛋白質組成物を主体とした水中油型乳化物食品や小麦粉製品等にも使用が可能となる。   According to the present invention, a soy protein composition such as separated soy protein having improved flavor, emulsifying power and gel strength can be efficiently produced on an industrial scale. Oil-in-water based mainly on soy protein compositions that have been difficult to use due to restrictions on flavor and physical properties as well as improving usability in conventional applications (meat products, marine products, side dishes, health foods, etc.) It can also be used for mold emulsion foods and flour products.

以下、本発明を具体的に説明する。大豆蛋白質組成物とは大豆蛋白質を主成分とする組成物のことであり、本発明で用いる大豆原料は、通常の大豆や特定の蛋白質の遺伝子を欠失した大豆に由来する、丸大豆,脱脂大豆,濃縮大豆蛋白等で、オカラ(不溶性繊維分)を含んだ、大豆蛋白質を抽出する原料となり得るものを指す。一般的には、n−ヘキサンを抽出溶剤として低温抽出を行った脱脂大豆が出発原料として適当であり、特にNSI(窒素可溶係数)が60以上、好ましくは80以上の低変性脱脂大豆が良い。あるいは、このような脱脂大豆に蛋白質の等電点付近の酸性水を加えてホエー成分を除去した、酸コンセントレートも使用できる。   Hereinafter, the present invention will be specifically described. The soy protein composition is a composition mainly composed of soy protein, and the soy material used in the present invention is derived from normal soybean or soybean lacking a specific protein gene, whole soybean, defatted This refers to soy, concentrated soy protein, etc. that can be used as a raw material for extracting soy protein, including okara (insoluble fiber content). Generally, defatted soybeans obtained by low-temperature extraction using n-hexane as an extraction solvent are suitable as starting materials, and particularly low denatured defatted soybeans having an NSI (nitrogen solubility coefficient) of 60 or more, preferably 80 or more are good. . Alternatively, acid concentrate in which whey components are removed by adding acidic water near the isoelectric point of protein to such defatted soybeans can also be used.

次にオカラを含んだ大豆原料から、蛋白質を抽出する態様について説明する。抽出溶媒には水または温水を用い、加水倍率は原料固形分に対し通常5倍以上20倍以下が例示できる。この原料に加水した状態を大豆原料スラリーと呼ぶ。加水倍率に応じて、大豆原料スラリー中の第2族元素濃度を所定に調整する。また、回収歩留向上のため、抽出,分離操作を複数回実施することがあるが、その場合も、抽出毎に大豆原料スラリー中の第2族元素濃度を所定に調整する。ここで用いる回収歩留りとは、用いた大豆原料固形分に対する、調製された大豆蛋白質組成分の固形分の割合を指す。   Next, the aspect which extracts protein from the soybean raw material containing okara is demonstrated. Water or warm water is used as the extraction solvent, and the rate of hydrolysis is usually 5 to 20 times the solid content of the raw material. The state of water added to this raw material is called soybean raw material slurry. The group 2 element concentration in the soybean raw material slurry is adjusted to a predetermined value according to the addition ratio. In addition, extraction and separation operations may be performed a plurality of times to improve the recovery yield. In this case as well, the Group 2 element concentration in the soybean raw material slurry is adjusted to a predetermined value for each extraction. The recovery yield used here refers to the ratio of the solid content of the prepared soy protein composition to the soy material solid content used.

本発明で用いる、大豆原料スラリー中に存在する第2族元素は、カルシウム,マグネシウムから選ばれる1種以上を指す。大豆原料スラリーに添加する場合、塩化物,硫酸塩,炭酸塩,有機酸塩等の塩や水酸化物、酸化物を用いることができる。添加時期は抽出水に予め混合しておくことが望ましいが、大豆原料スラリーを調製後、加温前に添加しても構わない。大豆原料スラリーにおける第2族元素の濃度は、抽出pHに依存し、17×[pH]−105(mM)以上、好ましくは、且つ、73×[pH]−420(mM)以下、更に好ましくは、24×[pH]−150(mM)以上且つ、73×[pH]−460(mM)以下に調整する。上記範囲内であれば、回収歩留を高く維持したまま、クロロホルム・メタノール抽出量で表される極性脂質量を低減できる。17×[pH]−105(mM)未満の場合は、極性脂質量の低減効果が不十分であり、73×[pH]−420(mM)以上の場合は、極性脂質量は低減できるが、回収歩留を高くしにくい。また、大豆原料スラリーに添加する第2族元素には、大豆自身が持つ第2族元素も勘案し所定量とする。また、これら第2族元素を多く含む硬水を、抽出水の一部または全部に使用しても良い。   The Group 2 element present in the soybean raw material slurry used in the present invention indicates one or more selected from calcium and magnesium. When added to the soybean raw material slurry, salts such as chlorides, sulfates, carbonates and organic acid salts, hydroxides and oxides can be used. It is desirable that the addition time be preliminarily mixed with the extracted water, but it may be added after the soybean raw material slurry is prepared and before heating. The concentration of the group 2 element in the soybean raw material slurry depends on the extraction pH, and is 17 × [pH] −105 (mM) or more, preferably 73 × [pH] −420 (mM) or less, more preferably 24 × [pH] −150 (mM) or more and 73 × [pH] −460 (mM) or less. If it is in the said range, the amount of polar lipids represented by the amount of chloroform / methanol extraction can be reduced while maintaining a high recovery yield. When it is less than 17 × [pH] −105 (mM), the effect of reducing the amount of polar lipid is insufficient, and when it is 73 × [pH] −420 (mM) or more, the amount of polar lipid can be reduced. It is difficult to increase the recovery yield. In addition, the Group 2 element added to the soybean raw material slurry is set to a predetermined amount in consideration of the Group 2 element of the soybean itself. Further, hard water containing a large amount of these Group 2 elements may be used for some or all of the extracted water.

抽出pHは、pH6.6を超えpH8.3を超えない範囲で、好ましくはpH6.7以上pH8.0以下で設定する。pH6.6以下では、グリシニンの溶解度が低下するため、グリシニンが抽出されない場合がある。pH8.3以上では、必要となる第2族元素が多量となり、最終製品の品質に影響を及ぼす恐れがある。同じ理由で、pH8.3未満でも第2族元素濃度は100mM以下が望まれる。抽出pHの調整は、水酸化ナトリウム,水酸化カリウム,炭酸水素ナトリウム等のアルカリ剤の添加により行う。   The extraction pH is set in a range exceeding pH 6.6 and not exceeding pH 8.3, preferably pH 6.7 or more and pH 8.0 or less. If the pH is 6.6 or lower, the solubility of glycinin decreases, so glycinin may not be extracted. Above pH 8.3, a large amount of Group 2 elements are required, which may affect the quality of the final product. For the same reason, the group 2 element concentration is desired to be 100 mM or less even when the pH is less than 8.3. The extraction pH is adjusted by adding an alkali agent such as sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate or the like.

次に大豆原料スラリーを第2族元素の存在下で加温する態様について説明する。加温する温度は、30〜70℃、好ましくは35〜65℃、より好ましくは45〜55℃が良い。下限温度未満では、抽出率を高くしにくく、一方、上限温度以上でも、蛋白質成分の変性が進行し、抽出率を高くしにくい。加温時間は5分間以上であれば特に限定されないが、通常は抽出操作と同時に行なうために、5分から60分間以内が例示できる。   Next, a mode in which the soybean raw material slurry is heated in the presence of the Group 2 element will be described. The temperature to heat is 30-70 degreeC, Preferably it is 35-65 degreeC, More preferably, 45-55 degreeC is good. If the temperature is lower than the lower limit temperature, it is difficult to increase the extraction rate. On the other hand, if the temperature is higher than the upper limit temperature, denaturation of the protein component proceeds and it is difficult to increase the extraction rate. The heating time is not particularly limited as long as it is 5 minutes or longer, but normally it is performed simultaneously with the extraction operation, and can be exemplified within 5 to 60 minutes.

次に大豆原料スラリーから不溶性画分を除去する態様について説明する。本発明における固液分離の方法は、例えば遠心分離機を使用することが好ましい。遠心分離機は、バッチ式,横型連続式,縦型連続式等のいずれを使用しても良い。より高度に不溶性残渣を除去したい場合には、これら複数の遠心分離機を組合せることが好ましい。遠心分離機の運転条件は、流量,遠心力,遠心時間を適宜設定することができる。遠心分離の最も重要な条件である分離時の遠心力は、G(重力加速度:×g)として示されるが、本発明で行なう遠心分離は、少なくとも1つ以上の工程で3,000×g以上、好ましくは4,000×g以上であることが望ましい。また、通常の工業的な遠心分離機では、15,000×g以下が現実的であり、これを超える条件では、装置が複雑となり好ましくない。   Next, the aspect which removes an insoluble fraction from a soybean raw material slurry is demonstrated. The solid-liquid separation method in the present invention preferably uses, for example, a centrifuge. The centrifuge may be any of batch type, horizontal type continuous type, vertical type continuous type and the like. When it is desired to remove insoluble residues to a higher degree, it is preferable to combine these centrifuges. As the operating conditions of the centrifuge, the flow rate, centrifugal force, and centrifugation time can be set as appropriate. Centrifugal force during separation, which is the most important condition for centrifugation, is indicated as G (gravity acceleration: xg). Centrifugation performed in the present invention is preferably 3,000 xg or more, preferably at least in one or more steps. Is preferably 4,000 × g or more. In addition, in an ordinary industrial centrifuge, 15,000 × g or less is realistic, and conditions exceeding this are not preferable because the apparatus becomes complicated.

大豆原料スラリーの固液分離の程度は、セルロースやヘミセルロースからなる食物繊維の、可溶性画分への残存量として示すことができる。本発明における固液分離の程度は、分離した可溶性画分すなわち抽出液中の食物繊維含量が、可溶性画分の固形分あたり1.0重量%未満、好ましくは0.7重量%未満、より好ましくは0.5g重量%未満が適切である。食物繊維含量が1.0重量%以上であると、脂質会合性蛋白質が可溶性画分に混入してしまい、品質に影響を及ぼし易くなる。また、0.5重量%未満では、本測定方法では測定限界以下となるので、食物繊維含量の下限設定は難しい。   The degree of solid-liquid separation of the soybean raw material slurry can be shown as the residual amount of dietary fiber made of cellulose or hemicellulose in the soluble fraction. The degree of solid-liquid separation in the present invention is such that the dietary fiber content in the separated soluble fraction, ie, the extract, is less than 1.0% by weight, preferably less than 0.7% by weight, more preferably 0.5g weight per solid content of the soluble fraction. Less than% is appropriate. When the dietary fiber content is 1.0% by weight or more, the lipid-associated protein is mixed into the soluble fraction, and the quality is easily affected. Also, if it is less than 0.5% by weight, it is difficult to set the lower limit of the dietary fiber content because this measurement method is below the measurement limit.

固液分離のpHは、抽出と同じpHが好ましい。特にpH6.6以下では、溶解度が低下したグリシニンが、不溶性画分に移行し易くなる。また、抽出から分離までの工程は抽出と同様の温度で行うことが好ましい。この際、亜硫酸水素ナトリウム等の塩,システイン,その他のS-S結合開裂剤等の還元剤を添加することで、抽出工程,分離工程での蛋白質分子間のS-S結合を抑制することができ、分離工程を安定的に行うことができる。   The pH for solid-liquid separation is preferably the same as that for extraction. Particularly at pH 6.6 or less, glycinin having a reduced solubility tends to migrate to the insoluble fraction. Moreover, it is preferable to perform the process from extraction to separation at the same temperature as extraction. At this time, by adding a reducing agent such as a salt such as sodium bisulfite, cysteine, and other SS bond cleaving agents, SS bonds between protein molecules in the extraction process and the separation process can be suppressed. Can be performed stably.

この操作により、脂質会合性蛋白質が分離されるが、その結果は蛋白質中の極性脂質含量として確認することができる。上述した方法により得られた脂質会合性蛋白質が低減された蛋白質組成物は、その極性脂質含量が好ましくは蛋白質中4重量%以下であり、更に好ましくは3重量%以下である。また下限として1重量%以上が好ましい。   By this operation, the lipid-associated protein is separated, and the result can be confirmed as the polar lipid content in the protein. The protein composition with reduced lipid-associated protein obtained by the above-described method preferably has a polar lipid content of 4% by weight or less, more preferably 3% by weight or less in the protein. Further, the lower limit is preferably 1% by weight or more.

得られた脂質会合性蛋白質を低減した大豆蛋白質抽出液から、大豆蛋白質組成物を調製する方法を例示する。全脂大豆もしくは脱脂大豆を原料とし、上述した方法により抽出した抽出液である、全脂大豆豆乳もしくは脱脂豆乳の固形分を、そのまま濃縮しもしくは濃縮せずに、乾燥することで、全脂豆乳粉末もしくは脱脂豆乳粉末である、大豆蛋白質組成物を得ることができる。また、抽出液である脱脂豆乳に酸を添加し、蛋白質をpH4.5前後で等電点沈殿させ、ホエー等の水溶性成分を除去して得られる沈殿画分に、所定量の水を加え、中和、乾燥して分離大豆蛋白である大豆蛋白質組成物を製造することができる。または、ホエー成分を含まない酸コンセントレートを原料とし、抽出液の固形分をそのまま濃縮し、もしくは濃縮せずに、乾燥することでも、大豆蛋白質組成物を製造することができる。あるいは、上記各組成物を、乾燥せずに溶液や水和物のままで、大豆蛋白質組成物として使用することも可能である。   A method for preparing a soy protein composition from the obtained soy protein extract with reduced lipid-associated protein will be exemplified. Whole fat soy milk is obtained by drying the solid content of full fat soy milk or defatted soy milk, which is an extract extracted from the whole fat soybean or defatted soybean as a raw material, with or without being concentrated as it is. A soy protein composition that is powder or defatted soymilk powder can be obtained. In addition, acid is added to the defatted soymilk extract, the protein is isoelectrically precipitated at around pH 4.5, and a predetermined amount of water is added to the precipitate fraction obtained by removing water-soluble components such as whey. The soybean protein composition which is a separated soybean protein can be produced by neutralization and drying. Alternatively, the soy protein composition can also be produced by using an acid concentrate containing no whey component as a raw material, and concentrating the solid content of the extract as it is, or drying without concentrating. Or it is also possible to use said each composition as a soy protein composition in a solution and a hydrate without drying.

乾燥する前の大豆蛋白質溶液を必要により殺菌することができる。殺菌には例えば加熱殺菌をあげることができ、公知の低温保持殺菌(LTLT),高温保持殺菌(HTLT),高温短時間殺菌(HTST),超高温瞬間殺菌(UHT)が例示できる。特に、直接蒸気加熱による殺菌は、蛋白質のゲル化等の物性に好ましい熱履歴を与えることができ、殺菌法として好ましい。あるいはさらに、プロテアーゼ等の酵素処理を行うこともできる。   If necessary, the soy protein solution before drying can be sterilized. Examples of sterilization include heat sterilization, and examples include known low temperature sterilization (LTLT), high temperature sterilization (HTLT), high temperature short time sterilization (HTST), and ultra high temperature instantaneous sterilization (UHT). In particular, sterilization by direct steam heating can give a favorable heat history to physical properties such as protein gelation and is preferable as a sterilization method. Alternatively, an enzyme treatment such as protease can also be performed.

本発明の大豆蛋白組成物は、β−コングリシニンとグリシニン画分に各々分取するものではないので、原料大豆中の両画分の重量比をそのまま保つ。例えば米国産の一般的な大豆の場合、β−コングリシニンとグリシニンを通常1:2〜4:5の範囲の重量比で含んでいる。   Since the soybean protein composition of the present invention is not fractionated into β-conglycinin and glycinin fractions, the weight ratio of both fractions in the raw soybean is maintained as it is. For example, common soybeans from the United States contain β-conglycinin and glycinin in a weight ratio usually in the range of 1: 2 to 4: 5.

本発明により得られる大豆蛋白質組成物は、風味,物性が良く、種々の食品に利用することができる。例えば、豆腐,油揚類,湯葉,豆乳等の伝統的大豆製品や、豆乳ヨーグルト,大豆チーズ等の大豆発酵物、組織状大豆蛋白,繊維状蛋白,膜状蛋白等の加工食品素材や、麺類や鳥獣魚介肉煉製品等への練込み使用などに使用できる。   The soy protein composition obtained by the present invention has good flavor and physical properties and can be used for various foods. For example, traditional soy products such as tofu, fried chicken, yuba, soy milk, soy fermented products such as soy milk yogurt, soy cheese, processed food materials such as structured soy protein, fibrous protein, and membrane protein, noodles, It can be used for kneading into avian or fishery products.

本発明に用いた分析方法を以下に記載する。
*食物繊維含量:可溶性画分すなわち抽出液を凍結乾燥により粉末化し、これをサンプルとして酵素-重量法(プロスキー変法)により測定した。
*粗蛋白質:ケールダール法に基づき窒素含量を求め、係数6.25をかけて粗蛋白質に換算した。
*SDS−ポリアクリルアミド電気泳動:Laemmli(Nature,227,680 (1970))の方法に基づきゲル濃度10−20%のグラディエントゲルで分析した。アプライ量は10μgとした。β−コングリシニンとグリシニンの重量比を数値化するため、電気泳動で得られたパターンのデンシトメトリーによる面積比に基づき算出した。ここでいうβ−コングリシニン含量はα,α',βサブユニットの総量を指し、グリシニン含量は酸性ポリペプチド(A)と塩基性ポリペプチド(B)の総量を指す。
*極性脂質含量:試料乾物に対してクロロホルム・メタノールの混合液(容量比、2:1)を約50倍加え、還流抽出される固形分の重量比をクロメタ油分として測定した。
*ゲル強度:4.5倍量の水で溶解させた大豆蛋白質組成物粉末を80℃湯浴中で30分間以上加熱し、放冷後、山電社製のクリープメーター「RE-3305」を用い、φ5mm球プランジャーで測定し、破断荷重(gf)と破断変形(mm)を乗じたゼリー強度として算出した。
*風味:5%水溶液を調製し、官能評価にて比較した。風味(無味[10点]から、悪い[1点])について20人のパネラーによって品質の官能評価を行ない、その平均値を示した。
*NSI(窒素溶解度指数):AOCS(American Oil Chemist's Society)の公式分析法BA-11-65 NSIに従って測定した。
*TCA(トリクロロ酢酸)可溶化率:蛋白質組成物の2重量%水溶液に、0.44Mトリクロロ酢酸(TCA)を等量加え、可溶性蛋白質の割合をケルダール法により測定した。
The analysis method used in the present invention is described below.
* Dietary fiber content: Soluble fraction, ie, extract was pulverized by freeze-drying, and this was measured as a sample by enzyme-weight method (Prosky modified method).
* Crude protein: The nitrogen content was determined based on the Kjeldahl method and converted to crude protein by applying a coefficient of 6.25.
* SDS-polyacrylamide electrophoresis: Based on the method of Laemmli (Nature, 227, 680 (1970)), analysis was performed on a gradient gel having a gel concentration of 10 to 20%. The amount applied was 10 μg. In order to quantify the weight ratio of β-conglycinin and glycinin, the weight ratio of the pattern obtained by electrophoresis was calculated based on the area ratio by densitometry. The β-conglycinin content here refers to the total amount of α, α ′, β subunits, and the glycinin content refers to the total amount of acidic polypeptide (A) and basic polypeptide (B).
* Polar lipid content: A mixed solution of chloroform and methanol (volume ratio, 2: 1) was added about 50 times to the dry sample, and the weight ratio of the solid content extracted under reflux was measured as chroma oil.
* Gel strength: Soy protein composition powder dissolved in 4.5 times the amount of water was heated in a 80 ° C hot water bath for 30 minutes or more, allowed to cool, and then a Yamaden Corporation creep meter "RE-3305" Measured with a 5 mm sphere plunger and calculated as the jelly strength multiplied by the breaking load (gf) and the breaking deformation (mm).
* Flavor: 5% aqueous solutions were prepared and compared by sensory evaluation. Sensory evaluation of quality was performed by 20 panelists on the flavor (from tasteless [10 points] to bad [1 point]), and the average value was shown.
* NSI (Nitrogen Solubility Index): Measured according to the official analysis method BA-11-65 NSI of AOCS (American Oil Chemist's Society).
* TCA (trichloroacetic acid) solubilization rate: An equal amount of 0.44M trichloroacetic acid (TCA) was added to a 2% by weight aqueous solution of the protein composition, and the proportion of soluble protein was measured by the Kjeldahl method.

以下に実施例を記載するが、この発明の技術思想がこれらの例示によって限定されるものではない。
(実験例1)各pHおよび第2族元素各濃度の検討
Examples will be described below, but the technical idea of the present invention is not limited to these examples.
(Experimental example 1) Examination of each pH and each group 2 element concentration

大豆を圧扁し、n-ヘキサンで脱脂した脱脂大豆(NSI:91)1重量部に10重量部の水を加えた大豆原料スラリーに対し、第2族元素濃度および抽出pHを変え、50℃で60分間抽出した。大豆原料スラリーを4,000×gで15分間遠心分離を行い、抽出液を得た。各抽出液の食物繊維含量は0.5重量%の測定限界未満であった。各々に塩酸を加え、pH4.5に調整し、2,000×gで15分間遠心分離を行い、等電点沈殿カードを得た。これらのカードを凍結乾燥し、回収歩留と極性脂質量を測定し、比較した。大豆原料スラリー中の第2族元素濃度は、必要に応じて塩化カルシウムを添加することで調整した。なお、表中に掲げる各々の数値は、抽出pH7.0,第2族元素濃度13mMで抽出した際の回収歩留および蛋白質当りの極性脂質量をそれぞれ100%として、各々との相対値(%)として算出した。また、抽出物の各値は表3に示した基準で評価した。   50% of the concentration of Group 2 element and extraction pH was changed to a soybean raw material slurry of 10 parts by weight of water added to 1 part by weight of defatted soybean (NSI: 91) that was defatted with soybeans and defatted with n-hexane. For 60 minutes. The soybean raw material slurry was centrifuged at 4,000 × g for 15 minutes to obtain an extract. The dietary fiber content of each extract was below the measurement limit of 0.5% by weight. Hydrochloric acid was added to each to adjust to pH 4.5, and centrifuged at 2,000 × g for 15 minutes to obtain an isoelectric point precipitation card. These cards were freeze-dried, and the recovery yield and the amount of polar lipid were measured and compared. The group 2 element concentration in the soybean raw material slurry was adjusted by adding calcium chloride as necessary. In addition, each numerical value listed in the table is a relative value (%) with the recovery yield and the amount of polar lipid per protein when extracted at an extraction pH of 7.0 and a Group 2 element concentration of 13 mM as 100% respectively. ). Each value of the extract was evaluated according to the criteria shown in Table 3.

[表1]各pHと第2族元素各濃度での、大豆蛋白組成物の回収歩留

Figure 2008041572
[Table 1] Recovery yield of soy protein composition at each pH and each group 2 element concentration
Figure 2008041572

[表2]各pHと第2族元素各濃度での、大豆蛋白組成物の極性脂質量

Figure 2008041572
[Table 2] Polar lipid content of soy protein composition at each pH and group 2 element concentration
Figure 2008041572

[表3]回収歩留と極性脂質量の比較基準

Figure 2008041572
[Table 3] Comparison criteria for recovery yield and polar lipid content
Figure 2008041572

[表4]各pHと第2族元素各濃度での、大豆蛋白組成物の回収歩留と極性脂質量比較

Figure 2008041572
[Table 4] Comparison of recovery yield and polar lipid content of soy protein composition at each pH and each group 2 element concentration
Figure 2008041572

これらの結果より、以下のことが明らかとなった。すなわち、抽出pHをアルカリ側に移動させると、回収歩留が向上するが、極性脂質量が増加する。一方、第2族元素の存在量が増えると極性脂質量を抑制できるが、回収歩留が低下する。従って、抽出pHと第2族元素の濃度をある範囲に調整することで、回収歩留を維持したまま、極性脂質量を下げる条件があることが明らかとなった。
(実験例2)各温度での検討
From these results, the following became clear. That is, when the extraction pH is moved to the alkali side, the recovery yield is improved, but the amount of polar lipid is increased. On the other hand, when the amount of Group 2 elements increases, the amount of polar lipid can be suppressed, but the recovery yield decreases. Therefore, it has been clarified that there are conditions for reducing the amount of polar lipid while maintaining the recovery yield by adjusting the extraction pH and the concentration of the Group 2 element within a certain range.
(Experiment 2) Examination at each temperature

実験例1記載の脱脂大豆1重量部に10重量部の水を加えた大豆原料スラリーに対し、塩化カルシウム0.01重量部(大豆原料スラリー中に第2族元素濃度として21mM存在)を添加した後、希水酸化ナトリウム溶液でpH7.0に調整し、温度を10,20,30,40,50,60℃の各条件で60分間抽出を行った。この大豆原料スラリーを4,000×gで15分間遠心分離を行い、各抽出液を得た。各抽出液の食物繊維含量は0.5重量%の測定限界未満であった。各々に塩酸を加え、pH4.5に調整し、2,000×gで15分間遠心分離を行い、等電点沈殿カードを得た。これらのカードを凍結乾燥し、実験例1に従って回収歩留と極性脂質量を測定し、比較評価した。併せて、上記の50℃抽出した大豆原料スラリーを、2,000×gで遠心分離し、比較実験例1とした。   After adding 0.01 parts by weight of calcium chloride (21 mM as group 2 element concentration in the soybean raw material slurry) to the soybean raw material slurry obtained by adding 10 parts by weight of water to 1 part by weight of the defatted soybean described in Experimental Example 1, The pH was adjusted to 7.0 with a dilute sodium hydroxide solution, and extraction was performed for 60 minutes at each temperature of 10, 20, 30, 40, 50, and 60 ° C. This soybean raw material slurry was centrifuged at 4,000 × g for 15 minutes to obtain each extract. The dietary fiber content of each extract was below the measurement limit of 0.5% by weight. Hydrochloric acid was added to each to adjust to pH 4.5, and centrifuged at 2,000 × g for 15 minutes to obtain an isoelectric point precipitation card. These cards were freeze-dried, and the recovery yield and the amount of polar lipids were measured according to Experimental Example 1 for comparative evaluation. In addition, the soybean raw material slurry extracted at 50 ° C. was centrifuged at 2,000 × g to obtain Comparative Experiment Example 1.

[表5]各温度での、大豆蛋白組成物の回収歩留と極性脂質量比較

Figure 2008041572
[Table 5] Comparison of recovery yield and polar lipid content of soy protein composition at each temperature
Figure 2008041572

これらの結果、抽出温度は30,40,50,60℃が回収歩留を維持したまま、極性脂質量を下げる条件に合致していた。一方、抽出温度10,20℃は極性脂質量を抑制できるが、回収歩留が低下してしまうことがわかった。また、2,000×gで遠心分離した比較実験例1では、食物繊維含量1.2%(相対歩留100%,相対極性脂質量95%)であり、遠心分離条件で食物繊維含量に影響が認められた。   As a result, the extraction temperatures were 30, 40, 50, and 60 ° C., which met the conditions for reducing the amount of polar lipids while maintaining the recovery yield. On the other hand, it was found that the extraction temperature of 10 and 20 ° C. can suppress the amount of polar lipid, but the recovery yield decreases. In Comparative Experimental Example 1, which was centrifuged at 2,000 × g, the dietary fiber content was 1.2% (relative yield 100%, relative polar lipid content 95%), and the dietary fiber content was observed under centrifugal conditions. .

(製造例1)大豆蛋白質組成物の調製1
実験例1記載の脱脂大豆1重量部に10重量部の水を加えた大豆原料スラリーに対し、塩化カルシウム0.01重量部(大豆原料スラリー中に第2族元素として21mM存在)を添加した後、希水酸化ナトリウム溶液でpH7.0に調整し、50℃で60分間攪拌しながら抽出を行った。この大豆原料スラリーを6,000×gで遠心分離し、オカラを含む不溶性画分を分離し、抽出液を得た。抽出液の食物繊維含量は0.5重量%の測定限界未満であった。この抽出液を塩酸にてpH4.5に調整後、2,000×gで遠心分離し、不溶性画分(等電点沈殿カード)および可溶性画分(ホエー)を得た。カードを固形分10重量%になるように加水し、これを希水酸化ナトリウム溶液でpH7.0に調整後、半量に分け、一方をそのまま噴霧乾燥し、分離大豆蛋白A1を得た。残りを連続式直接加熱殺菌装置にて140℃,7秒間加熱後に噴霧乾燥し、分離大豆蛋白B1を得た。A1及びB1の極性脂質量は2.3重量%であった。
(Production Example 1) Preparation of soybean protein composition 1
After adding 0.01 parts by weight of calcium chloride (21 mM as a Group 2 element in the soybean raw material slurry) to the soybean raw material slurry obtained by adding 10 parts by weight of water to 1 part by weight of the defatted soybean described in Experimental Example 1, The pH was adjusted to 7.0 with sodium hydroxide solution, and extraction was performed with stirring at 50 ° C. for 60 minutes. This soybean raw material slurry was centrifuged at 6,000 × g, and an insoluble fraction containing okara was separated to obtain an extract. The dietary fiber content of the extract was below the measurement limit of 0.5 wt%. The extract was adjusted to pH 4.5 with hydrochloric acid, and then centrifuged at 2,000 × g to obtain an insoluble fraction (isoelectric precipitation card) and a soluble fraction (whey). The curd was hydrated to a solid content of 10% by weight, adjusted to pH 7.0 with dilute sodium hydroxide solution, divided into half, and one was spray-dried as it was to obtain separated soy protein A1. The remainder was heated at 140 ° C. for 7 seconds in a continuous direct heat sterilizer and then spray-dried to obtain isolated soybean protein B1. The amount of polar lipids of A1 and B1 was 2.3% by weight.

(製造例2)大豆蛋白質組成物の調製2
実験例1記載の脱脂大豆1重量部に10重量部の水を加えた大豆原料スラリー(大豆原料スラリー中に第2族元素として13mM存在)に対し、希水酸化ナトリウム溶液でpH6.7に調整し、製造例1と同様の処理を行ない、非加熱の分離大豆蛋白A2および加熱した分離大豆蛋白B2を得た。A2及びB2の極性脂質量は2.7重量%、抽出液の食物繊維含量は0.5重量%の測定限界未満であった。
(Production Example 2) Preparation of soy protein composition 2
Adjust the pH to 6.7 with dilute sodium hydroxide solution for the soybean raw slurry (13 mM is present as a Group 2 element in the soybean raw slurry) in which 10 parts by weight of water is added to 1 part by weight of the defatted soybean described in Experimental Example 1. Then, the same treatment as in Production Example 1 was performed to obtain non-heated separated soy protein A2 and heated separated soy protein B2. The amount of polar lipids of A2 and B2 was 2.7% by weight, and the dietary fiber content of the extract was less than the measurement limit of 0.5% by weight.

(製造例3)大豆蛋白質組成物(加水分解物)の調製
製造例2の等電点沈殿カードを固形分10重量%になるように加水し、これを希水酸化ナトリウム溶液でpH7.2に調整後、70℃に温調し、蛋白質重量の0.06重量%のパパイン(日本バイオコン(株)製)を添加して20分酵素反応後、苛性ソーダにてpH7.2に調整し、連続式直接加熱殺菌装置にて140℃,7秒間加熱した。これを噴霧乾燥し、分離大豆蛋白C2を得た。0.22MのTCA(トリクロロ酢酸)可溶化率を測定したところ13%であった。
(Production Example 3) Preparation of soybean protein composition (hydrolyzate) The isoelectric precipitation card of Production Example 2 was hydrated to a solid content of 10% by weight, and this was adjusted to pH 7.2 with dilute sodium hydroxide solution. After adjustment, adjust the temperature to 70 ° C, add 0.06% by weight of papain (manufactured by Nippon Biocon Co., Ltd.), and after 20 minutes of enzyme reaction, adjust to pH 7.2 with caustic soda and continuously heat directly Heated at 140 ° C. for 7 seconds in a sterilizer. This was spray-dried to obtain isolated soybean protein C2. The 0.22M TCA (trichloroacetic acid) solubilization rate was measured and found to be 13%.

(比較製造例1)大豆蛋白質組成物の調製3
製造例1と同様に、脱脂大豆より抽出液を得た。但し、抽出時には塩化カルシウムを添加することなく、また抽出液は2,000×gで遠心分離を行なった。更に製造例1と同様に等電点沈澱を行ない、カードを中和し、連続式直接加熱殺菌装置にて140℃,7秒間加熱後に噴霧乾燥し、分離大豆蛋白Dを得た。Dの極性脂質量は4.5重量%、抽出液の食物繊維含量は1.5重量%であった。
(Comparative Production Example 1) Preparation 3 of soy protein composition
In the same manner as in Production Example 1, an extract was obtained from defatted soybeans. However, calcium chloride was not added during extraction, and the extract was centrifuged at 2,000 × g. Further, isoelectric point precipitation was performed in the same manner as in Production Example 1, the curd was neutralized, heated at 140 ° C. for 7 seconds in a continuous direct heat sterilizer, and then spray-dried to obtain isolated soybean protein D. The polar lipid content of D was 4.5% by weight, and the dietary fiber content of the extract was 1.5% by weight.

(比較製造例2)大豆蛋白質組成物(加水分解物)の調製2
比較製造例1と同様に、脱脂大豆より抽出液を得、等電点沈澱を行ない、カードを得た。製造例3と同様に、加水し、酵素反応を行ない、連続式直接加熱殺菌装置にて140℃,7秒間加熱後に噴霧乾燥し、分離大豆蛋白Eを得た。0.22MのTCA(トリクロロ酢酸)可溶化率を測定したところ14%であった。
(Comparative Production Example 2) Preparation 2 of soy protein composition (hydrolyzate)
In the same manner as in Comparative Production Example 1, an extract was obtained from defatted soybean and subjected to isoelectric precipitation to obtain a card. In the same manner as in Production Example 3, water was added, the enzyme reaction was carried out, and after heating at 140 ° C. for 7 seconds in a continuous direct heat sterilizer, spray drying was carried out to obtain isolated soybean protein E. The solubilization rate of 0.22M TCA (trichloroacetic acid) was measured and found to be 14%.

(実験例3)各種大豆蛋白質組成物の比較
製造例1記載の分離大豆蛋白B1、製造例2記載の分離大豆蛋白B2、比較製造例1の分離大豆蛋白Dについて、ゲル強度,5重量%溶液の風味に関して、分析及び官能評価を実施した。
(Experimental Example 3) Comparison of Various Soy Protein Compositions Gel strength and 5 wt% solution of isolated soy protein B1 described in Production Example 1, isolated soy protein B2 described in Production Example 2, and isolated soy protein D of Comparative Production Example 1 Analysis and sensory evaluation were conducted on the flavor of

[表6]各種大豆蛋白組成物の比較

Figure 2008041572
[Table 6] Comparison of various soy protein compositions
Figure 2008041572

その結果、ゲル強度はB1,B2がDよりも有意に高い値を示した。また、風味評価でもB1,B2がDよりも高い評価となった。特に大豆臭の低減がされており、すっきり感があるとの評価が多かった。   As a result, the gel strengths of B1 and B2 were significantly higher than D. In addition, in the flavor evaluation, B1 and B2 were higher than D. In particular, the soybean odor was reduced, and there were many evaluations that there was a refreshing feeling.

(実施例1)チーズ様食品の製造
蛋白質組成物として分離大豆蛋白C2 360gに、精製パーム油1,080g,大豆油120g,水2,440gを加え、ホモミキサーを使用して60℃,30分間予備乳化を行った。ホモゲナイザーを使用して均質化圧力5MPaで均質化を行い、乳化物を得た。得られた乳化物3,000gに50%乳酸を添加してpH5.4に調整した後、塩化ナトリウム18g,クリームチーズフレーバー15g,ローカストビーンガム1.5gを添加した。ホモゲナイザーを使用して5MPaで均質化した後、85℃達温で加熱殺菌後冷却してクリームチーズ様食品を得、実施区とした。一方、使用する蛋白質組成物を分離大豆蛋白Eに変えた以外は実施区と同様の操作によってクリームチーズ様食品を得、比較区とした。実施区で得られたクリームチーズ様食品はフレーバーのりがよく、食感も比較区の物よりも滑らかで良好であった。
(Example 1) Production of cheese-like food As a protein composition, 1,080 g of refined palm oil, 120 g of soybean oil and 2,440 g of water are added to 360 g of isolated soybean protein C2, and pre-emulsified at 60 ° C. for 30 minutes using a homomixer. Went. Homogenization was performed at a homogenization pressure of 5 MPa using a homogenizer to obtain an emulsion. After adjusting the pH to 5.4 by adding 50% lactic acid to 3,000 g of the obtained emulsion, 18 g of sodium chloride, 15 g of cream cheese flavor, and 1.5 g of locust bean gum were added. After homogenizing at 5 MPa using a homogenizer, heat sterilization was performed at a temperature of 85 ° C., followed by cooling to obtain a cream cheese-like food, which was designated as an implementation zone. On the other hand, a cream cheese-like food was obtained by the same operation as in the example except that the protein composition to be used was changed to separated soybean protein E, and used as a comparative group. The cream cheese-like food obtained in the practice group had good flavor paste, and the texture was smoother and better than that of the comparative group.

[乳化状態の比較]
乳化テストを行い、実施区と比較区のクリームチーズ様食品の乳化状態を確認した。実施区ではほとんどの蛋白質が上澄中で乳化状態にあったが、比較区では実施区よりも乳化が悪かった。
[Comparison of emulsified state]
An emulsification test was performed, and the emulsified state of the cream cheese-like food in the implementation group and the comparison group was confirmed. In the implementation zone, most of the protein was emulsified in the supernatant, but in the comparison zone, the emulsification was worse than in the implementation zone.

[表7]チーズ様食品の乳化状態評価

Figure 2008041572
[Table 7] Evaluation of emulsified state of cheese-like food
Figure 2008041572

(乳化テストの方法)
15gのクリームチーズ様食品を等量の蒸留水に懸濁後、60℃10分加熱する。加熱後遠心機にて3,000rpm,10分遠心を行い上清(乳化部分)、沈殿(乳化していない蛋白質)、油分離部分の体積を測定する。
(Emulsification test method)
15 g of cream cheese-like food is suspended in an equal volume of distilled water and heated at 60 ° C. for 10 minutes. After heating, centrifuge at 3,000 rpm for 10 minutes and measure the volume of the supernatant (emulsified part), the precipitate (protein not emulsified), and the oil separation part.

(実施例2)大豆蛋白麺の調製
蛋白質組成物として分離大豆蛋白A2を35重量部、小麦粉35重量部、澱粉3重量部、食塩5重量部、水43重量部の配合にてミキサーで5分間混合した。つぎに、製麺機にて複合・圧延して麺帯としたのち、切り歯にて幅1.2mmに切り出して麺線を得た。5分間茹でたのち試食評価を行ったところ、良好な食感であった。
(Example 2) Preparation of soy protein noodles A protein composition containing 35 parts by weight of isolated soy protein A2, 35 parts by weight of wheat flour, 3 parts by weight of starch, 5 parts by weight of salt and 43 parts by weight of water for 5 minutes in a mixer Mixed. Next, it was combined and rolled with a noodle making machine to form a noodle band, and then cut into a width of 1.2 mm with an incisor to obtain a noodle string. After eating for 5 minutes and evaluating the taste, the texture was good.

本発明により、大豆原料から風味,乳化力,ゲル強度の向上した、大豆蛋白質組成物を工業的規模で効率的に生産することが可能となった。風味,物性の向上した大豆蛋白質組成物を用いて、従来より品質に優れた高蛋白質の食品を製造することができる。   According to the present invention, it has become possible to efficiently produce a soybean protein composition having improved flavor, emulsification power and gel strength from a soybean raw material on an industrial scale. Using a soy protein composition with improved flavor and physical properties, it is possible to produce a high-protein food with better quality than before.

各pHと第2族元素各濃度での、大豆蛋白質組成物の回収歩留と極性脂質量を比較し、最適範囲を示した図である。It is the figure which compared the collection | recovery yield of the soybean protein composition and the amount of polar lipids in each pH and each group 2 element density | concentration, and showed the optimal range.

Claims (4)

オカラを含んだ大豆原料のスラリーを、第2族元素を含む状態で加温し、可溶性成分を抽出し、不溶性画分を除去する際に、抽出時のスラリーpHが、6.6を超え8.3未満であり、抽出時の第2族元素のスラリー中濃度が、17×[pH]−105(mM)以上であることを特徴とする、大豆蛋白質組成物の製造法。 When the slurry of soybean raw material containing okara is heated in a state containing a group 2 element, the soluble component is extracted, and the insoluble fraction is removed, the slurry pH at the time of extraction is more than 6.6 and less than 8.3 A method for producing a soy protein composition, wherein the concentration of the Group 2 element in the slurry at the time of extraction is 17 × [pH] −105 (mM) or more. 抽出時の第2族元素の大豆原料スラリー中濃度が、73×[pH]−420(mM)以下である、請求項1に記載の、大豆蛋白質組成物の製造法。 The manufacturing method of the soybean protein composition of Claim 1 whose density | concentration in the soybean raw material slurry of the group 2 element at the time of extraction is 73 * [pH] -420 (mM) or less. 加温温度が30℃以上70℃未満である、請求項1に記載の大豆蛋白質組成物の製造法。 The manufacturing method of the soybean protein composition of Claim 1 whose heating temperature is 30 degreeC or more and less than 70 degreeC. 極性脂質が蛋白質中4重量%以下である、請求項1に記載の大豆蛋白質組成物の製造法。 The method for producing a soy protein composition according to claim 1, wherein the polar lipid is 4% by weight or less in the protein.
JP2008537483A 2006-09-27 2007-09-26 Method for producing soy protein composition Active JP5212107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008537483A JP5212107B2 (en) 2006-09-27 2007-09-26 Method for producing soy protein composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006262372 2006-09-27
JP2006262372 2006-09-27
PCT/JP2007/068634 WO2008041572A1 (en) 2006-09-27 2007-09-26 Method for producing soybean protein composition
JP2008537483A JP5212107B2 (en) 2006-09-27 2007-09-26 Method for producing soy protein composition

Publications (2)

Publication Number Publication Date
JPWO2008041572A1 true JPWO2008041572A1 (en) 2010-02-04
JP5212107B2 JP5212107B2 (en) 2013-06-19

Family

ID=39268434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008537483A Active JP5212107B2 (en) 2006-09-27 2007-09-26 Method for producing soy protein composition

Country Status (2)

Country Link
JP (1) JP5212107B2 (en)
WO (1) WO2008041572A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107397037A (en) * 2010-08-18 2017-11-28 伯康营养科学(Mb)公司 It is improved to prepare protein solution from soybean
CN104768426A (en) * 2012-07-26 2015-07-08 索莱有限责任公司 Foaming agent for use in personal care products and industrial products
WO2014018923A2 (en) * 2012-07-26 2014-01-30 Solae, Llc Emulsifying agent for use in personal care products and industrial products
CN104146074A (en) * 2014-07-09 2014-11-19 安徽人人福豆业有限公司 Crucian and lotus seed dried bean curd and preparation method thereof
CN107518087A (en) * 2017-09-13 2017-12-29 浙江树人学院 The formula and preparation method of a kind of protein-rich soy meat

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510224B2 (en) * 1971-11-13 1980-03-14
US4307014A (en) * 1980-09-22 1981-12-22 General Foods Inc. Soybean protein isolate production
JP3406367B2 (en) * 1994-02-15 2003-05-12 森永製菓株式会社 Method for producing soy protein having mineral absorption promoting effect

Also Published As

Publication number Publication date
JP5212107B2 (en) 2013-06-19
WO2008041572A1 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4596006B2 (en) Fractionated soybean protein material, processed soybean suitable for the same, and production method thereof
Nishinari et al. Soy as a food ingredient
JP6191822B2 (en) Concentrated soy protein material
JP4569630B2 (en) Cream cheese-like food and method for producing the same
JP3315989B2 (en) Methods for improving wheat gluten
JP4389785B2 (en) Soy protein acidic gel food and production method thereof
JP5212107B2 (en) Method for producing soy protein composition
JP2005080668A (en) Soluble soybean protein having excellent functional characteristic
JPWO2010092778A1 (en) Acid-soluble soybean protein material and method for producing the same
JP5327391B2 (en) Processed soy material and soy material
Tsumura Improvement of the physicochemical properties of soybean proteins by enzymatic hydrolysis
JP5353244B2 (en) Production method of fractionated soy protein material
JP5772163B2 (en) Powdered soybean material and edible composition using the same
EP0752212B1 (en) Process for preparing fractionated soybean proteins and foods using the same
Doxastakis Lupin seed proteins
JP6462676B2 (en) Highly emulsifiable egg white hydrolyzate
JP6185713B2 (en) Highly emulsifiable egg white hydrolyzate
WO2012101733A1 (en) Powdery soybean material and edible composition using same
JP5532603B2 (en) Sterilization of low-denatured soy protein composition
JPWO2012014783A1 (en) Acid-soluble soybean protein material and method for producing the same
McHugh How tofu is processed
JPH1070959A (en) Production of fractionated soybean protein and food using the same
JP7075722B2 (en) Soybean-derived composition and its production method
Wang Refunctionalization of extruded-expelled soybean meal by hydrothermal cooking
US20050095344A1 (en) Method of preparation of highly functional soy protein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Ref document number: 5212107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350