JPWO2008012876A1 - Shock absorbing member - Google Patents

Shock absorbing member Download PDF

Info

Publication number
JPWO2008012876A1
JPWO2008012876A1 JP2008526630A JP2008526630A JPWO2008012876A1 JP WO2008012876 A1 JPWO2008012876 A1 JP WO2008012876A1 JP 2008526630 A JP2008526630 A JP 2008526630A JP 2008526630 A JP2008526630 A JP 2008526630A JP WO2008012876 A1 JPWO2008012876 A1 JP WO2008012876A1
Authority
JP
Japan
Prior art keywords
less
load
cylindrical
absorbing member
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008526630A
Other languages
Japanese (ja)
Inventor
繁之 春山
繁之 春山
玳▲行▼ 陳
玳▲行▼ 陳
茂隆 森田
茂隆 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Prefectural Government
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Fukuoka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Fukuoka Prefectural Government filed Critical Hitachi Metals Ltd
Publication of JPWO2008012876A1 publication Critical patent/JPWO2008012876A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

全体が、アルミニウム合金、マグネシウム合金、鉄、及び鋼のいずれか1又は2以上の金属材からなり、側壁の縦断面形状が波形で、横断面形状が、円形、長円形、及び角部を丸くした角形のいずれか1となった筒体部(11)を有し、衝撃荷重を受けて変形する衝撃吸収部材であって、筒体部(11)の横断面形状が前記円形の場合にはその平均半径、円形以外の場合はその外周の平均長さと同一の円周を有する円形の半径をR、筒体部(11)の肉厚をt、筒体部(11)に形成された波形の波長をλ、及び波形の振幅をaとした際に、t/Rが0.0150以上、a/Rが0.036以上、及びλ/Rが0.2以上0.89以下で、筒体部(11)を少なくとも一端から等速で押圧した場合、両端部を除く波形が均等変形し、かつ筒体部(11)の受ける荷重の瞬時低下量がそれ以前に受けた最大荷重の10%以内の荷重変動を有して、筒体部(11)の受ける荷重が単調増加する。The whole is made of one or more metal materials of aluminum alloy, magnesium alloy, iron, and steel, and the vertical cross-sectional shape of the side wall is corrugated, and the cross-sectional shape is circular, oval, and rounded corners. An impact-absorbing member that has a cylindrical body portion (11) that is any one of the squares and deforms in response to an impact load, and when the cross-sectional shape of the cylindrical body portion (11) is the circular shape, In the case of other than a circle, the radius of a circle having the same circumference as the average length of the outer circumference thereof is R, the thickness of the cylindrical body portion (11) is t, and the waveform formed in the cylindrical body portion (11). Where t / R is not less than 0.0150, a / R is not less than 0.036, and λ / R is not less than 0.2 and not more than 0.89. When the body part (11) is pressed from at least one end at a constant speed, the waveform excluding both end parts is uniformly deformed, and the tubular body part The instantaneous decrease in the load received by (11) has a load fluctuation within 10% of the maximum load received before that, and the load received by the cylindrical portion (11) increases monotonously.

Description

本発明は、塑性変形して衝撃エネルギーを効果的に吸収できる衝撃吸収部材に係り、更に詳細には、例えば自動車の衝突時における衝撃を吸収し、搭乗者の安全を確保すると共に、車体へ与える損傷も低減可能な衝撃吸収部材に関する。 The present invention relates to an impact absorbing member capable of effectively absorbing impact energy by plastic deformation, and more specifically, for example, absorbing an impact at the time of a car collision to ensure the safety of an occupant and give it to a vehicle body. The present invention relates to an impact absorbing member capable of reducing damage.

従来、例えば自動車に装着される衝撃吸収部材は、一般的に鉄板金製又はアルミニウム押出材製の筒状体で構成されていた。しかし、このような衝撃吸収部材は、衝撃を受けた初期に荷重のピークが現れるため、搭乗者及び車体へ与えるダメージが大きいという欠点があった。
そこで、衝突時における搭乗者の安全確保及び車体へのダメージを低減するため、衝撃吸収部材には、以下の要件が求められていた。
a)初期に発生する荷重のピークを低減すること。
b)発生する荷重の振幅のうち荷重が低下する領域は、衝撃エネルギーの吸収効率の低下を意味するため、荷重の瞬時低下量を小さくして荷重を単調に増加させ、衝撃エネルギーの吸収効率を良好にすること。
このような衝撃吸収部材としては、表面にうねりが形成されたアルミ押出型材(例えば、日本国特開平6−344023号公報参照)、及び蛇腹形状を持った車輌用衝撃吸収体(例えば、日本国特開2002−104107号公報参照)が開示されている。
Conventionally, for example, an impact absorbing member to be mounted on an automobile is generally constituted by a cylindrical body made of iron sheet metal or aluminum extruded material. However, such an impact absorbing member has a drawback that a load peak appears in the initial stage of receiving an impact, so that damage to the passenger and the vehicle body is large.
Therefore, in order to ensure the safety of the passenger at the time of collision and reduce damage to the vehicle body, the following requirements are required for the impact absorbing member.
a) To reduce the load peak that occurs in the initial stage.
b) The region where the load decreases in the amplitude of the generated load means a decrease in the impact energy absorption efficiency. Therefore, the instantaneous decrease amount of the load is reduced to increase the load monotonously, and the impact energy absorption efficiency is increased. Make it good.
As such an impact absorbing member, an aluminum extrusion mold material having a swell formed on its surface (see, for example, Japanese Patent Laid-Open No. 6-344023), and a vehicle shock absorber having an accordion shape (for example, Japan) JP 2002-104107 A) is disclosed.

前記したうねり又は蛇腹形状を形成した衝撃吸収部材は、初期に発生する荷重のピークを低減することはできる。しかし、このような衝撃吸収部材は、形成された波形の形状によって、不安定な変形を起こしたり、また受ける荷重の瞬時低下量の低減が不十分(従来は、荷重の瞬時低下量がそれ以前に受けた最大荷重の20〜30%程度)であるため、衝撃エネルギーの吸収性能が十分でなかった。 The shock absorbing member having the above-described swell or bellows shape can reduce the peak of the load that occurs in the initial stage. However, such shock absorbing members may be unstablely deformed depending on the shape of the formed corrugation, and the amount of instantaneous decrease in load may not be sufficiently reduced. The impact energy absorption performance was not sufficient.

本発明はかかる事情に鑑みてなされたもので、衝撃荷重を受けた場合に、初期に発生する荷重のピークを低減でき、しかも衝撃吸収部材の受ける荷重の瞬時低下量を従来よりも抑制することで、衝撃エネルギーの吸収性能に優れた衝撃吸収部材を提供することを目的とする。 The present invention has been made in view of such circumstances. When an impact load is received, the peak of the load that occurs in the initial stage can be reduced, and the instantaneous decrease in the load received by the impact absorbing member can be suppressed more than before. Then, it aims at providing the impact-absorbing member excellent in the impact energy absorption performance.

前記目的に沿う第1の発明に係る衝撃吸収部材は、全体が、アルミニウム合金、マグネシウム合金、鉄、及び鋼のいずれか1又は2以上の金属材からなり、側壁の縦断面形状が波形で、横断面形状が、円形、長円形、及び角部を丸くした角形のいずれか1となった筒体部を有し、衝撃荷重を受けて変形する衝撃吸収部材であって、
前記筒体部の横断面形状が前記円形の場合にはその平均半径、該円形以外の場合はその外周の平均長さと同一の円周を有する円形の半径をR、前記筒体部の肉厚をt、変形を受ける前、即ち製造時(未使用状態)の該筒体部に形成された波形の波長をλ、及び該波形の振幅をaとした際に、t/Rが0.0150以上、a/Rが0.036以上、及びλ/Rが0.2以上0.89以下で、前記筒体部を少なくとも一端から等速で押圧した場合、両端部を除く前記波形が均等変形し、かつ前記筒体部の受ける荷重の瞬時低下量がそれ以前に受けた最大荷重の10%以内の荷重変動を有して、前記筒体部の受ける荷重が単調増加する。
このように、衝撃吸収部材は、側壁の縦断面形状が波形となった筒体部を有するので、筒体部に蛇腹状の塑性変形を誘起させ、衝撃荷重を受けた際の初期に発生する荷重のピークを従来よりも低減できる。また、筒体部は、波形が均等変形し、しかも筒体部の受ける荷重の瞬時低下量を従来よりも低減できるので、衝撃エネルギーの吸収性能を従来よりも向上できる。
これにより、この衝撃吸収部材を、例えば自動車に設置した場合、衝撃吸収部材が自動車の衝突時における衝撃を吸収し、搭乗者の安全を確保すると共に、車体へ与える損傷も低減できる。
The impact-absorbing member according to the first invention that meets the above-mentioned object is entirely made of one or more metal materials of aluminum alloy, magnesium alloy, iron, and steel, and the longitudinal sectional shape of the side wall is corrugated, A cross-sectional shape is a shock absorbing member that has a cylindrical body portion that is any one of a circle, an oval, and a square with rounded corners, and deforms in response to an impact load,
When the cross-sectional shape of the cylindrical body is the circular shape, the average radius thereof, and when the cross-sectional shape is other than the circular shape, R represents a circular radius having the same circumference as the average length of the outer periphery thereof, and the thickness of the cylindrical body portion. T / R is 0.0150, where t is the waveform wavelength before the deformation, that is, the wavelength of the waveform formed in the cylindrical portion at the time of manufacture (unused state) is λ, and the amplitude of the waveform is a. As described above, when a / R is 0.036 or more and λ / R is 0.2 or more and 0.89 or less and the cylindrical body portion is pressed at a constant speed from at least one end, the waveform excluding both end portions is uniformly deformed. In addition, the instantaneous decrease amount of the load received by the cylindrical body portion has a load fluctuation within 10% of the maximum load previously received, and the load received by the cylindrical body portion increases monotonously.
As described above, the shock absorbing member has the cylindrical body portion having the corrugated vertical cross-sectional shape of the side wall. Therefore, the shock absorbing member induces bellows-like plastic deformation in the cylindrical body portion, and is generated at the initial stage when receiving an impact load. The load peak can be reduced as compared with the prior art. Moreover, since the waveform of the cylindrical portion is uniformly deformed and the amount of instantaneous decrease in the load received by the cylindrical portion can be reduced as compared with the conventional case, the impact energy absorption performance can be improved as compared with the conventional case.
Thereby, when this impact absorbing member is installed in, for example, an automobile, the impact absorbing member absorbs an impact at the time of collision of the automobile, ensuring the safety of the passenger and reducing the damage to the vehicle body.

本発明に係る衝撃吸収部材において、前記t/R、a/R、及びλ/Rが、以下の関係を満足することが好ましい。
(1)t/Rが0.0150以上0.0179以下の場合、a/R:0.054以上、λ/R:0.2以上0.4以下
(2)t/Rが0.0179超0.0357以下の場合、a/R:0.036以上、λ/R:0.2以上0.5以下
(3)t/Rが0.0357超0.0537以下の場合、a/R:0.036以上、λ/R:0.2以上0.65以下
(4)t/Rが0.0537超0.0714以下の場合、a/R:0.036以上、λ/R:0.2以上0.89以下
(5)t/Rが0.0714超の場合、a/R:0.036以上、λ/R:0.2以上0.89以下
これにより、衝撃吸収性能に優れた衝撃吸収部材を、必要とする筒体部の大きさ、及びその肉厚に応じて、容易に設計できる。
In the impact absorbing member according to the present invention, it is preferable that the t / R, a / R, and λ / R satisfy the following relationship.
(1) When t / R is 0.0150 or more and 0.0179 or less, a / R: 0.054 or more, λ / R: 0.2 or more and 0.4 or less (2) t / R exceeds 0.0179 When 0.0357 or less, a / R: 0.036 or more, λ / R: 0.2 or more and 0.5 or less (3) When t / R is more than 0.0357 and 0.0537 or less, a / R: 0.036 or more, λ / R: 0.2 or more and 0.65 or less (4) When t / R is more than 0.0537 and 0.0714 or less, a / R: 0.036 or more, λ / R: 0. 2 or more and 0.89 or less (5) When t / R is more than 0.0714, a / R: 0.036 or more, λ / R: 0.2 or more and 0.89 or less. The shock absorbing member can be easily designed according to the required size of the cylindrical portion and its thickness.

本発明に係る衝撃吸収部材において、前記筒体部は鋳物であることが好ましい。
これにより、形成可能な筒体部の形状の自由度は高くなるので、筒体部への波形の成形を容易にできる。
また、衝撃吸収部材は、フランジ部によって他部品へ取付けられるが、このフランジ部と筒体部との一体成形も容易にできる。
そして、筒体部は、波形の成形に際して機械加工を行う必要がないので、筒体部に加工硬化を発生させることなく筒体部を製造できる。これにより、衝撃吸収部材の使用にあっては、筒体部が安定した変形を行う。
In the impact absorbing member according to the present invention, it is preferable that the cylindrical portion is a casting.
Thereby, since the freedom degree of the shape of the cylinder part which can be formed becomes high, the shaping | molding of the waveform to a cylinder part can be made easy.
In addition, the shock absorbing member is attached to other parts by the flange portion, and the flange portion and the cylindrical body portion can be easily formed integrally.
And since a cylinder part does not need to perform machining at the time of waveform shaping, it can manufacture a cylinder part, without generating work hardening in a cylinder part. Thereby, in use of an impact-absorbing member, a cylinder part performs the deformation | transformation which was stabilized.

本発明に係る衝撃吸収部材において、前記筒体部の両側を除く部分には、該筒体部の内周及び外周のいずれか一方又は双方に沿って設けられ、該筒体部の変形に対して該筒体部の横断面形状を保持可能な1又は複数の補強部材が設けられていることが好ましい。
これにより、筒体部は、例えば、座屈が生じることなく、安定した変形を行う。
In the impact absorbing member according to the present invention, the portion excluding both sides of the cylindrical body portion is provided along one or both of the inner periphery and the outer periphery of the cylindrical body portion, and against the deformation of the cylindrical body portion. It is preferable that one or a plurality of reinforcing members capable of holding the cross-sectional shape of the cylindrical body portion be provided.
Thereby, a cylinder part performs a stable deformation | transformation, for example, without buckling.

本発明の第1の実施例に係る衝撃吸収部材の側断面図である。It is a sectional side view of the impact-absorbing member which concerns on 1st Example of this invention. (A)〜(D)はそれぞれ衝撃吸収部材の筒体部の変形状態を示す説明図である。(A)-(D) is explanatory drawing which shows the deformation | transformation state of the cylinder part of an impact-absorbing member, respectively. (A)、(B)はそれぞれ衝撃吸収部材の筒体部の形状と変形モードとの関係を示す説明図である。(A), (B) is explanatory drawing which shows the relationship between the shape of the cylinder part of an impact-absorbing member, and a deformation mode, respectively. (A)、(B)はそれぞれ衝撃吸収部材の筒体部の形状と変形モードとの関係を示す説明図である。(A), (B) is explanatory drawing which shows the relationship between the shape of the cylinder part of an impact-absorbing member, and a deformation mode, respectively. 衝撃吸収部材の筒体部の形状と変形モードとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the shape of the cylinder part of an impact-absorbing member, and a deformation mode. 衝撃吸収部材の筒体部が受けた荷重と変位との関係を示す説明図である。It is explanatory drawing which shows the relationship between the load and the displacement which the cylinder part of the impact-absorbing member received. 本発明の第2の実施例に係る衝撃吸収部材の筒体部が受けた荷重と変位との関係を示す説明図である。It is explanatory drawing which shows the relationship between the load and the displacement which the cylindrical part of the impact-absorbing member which concerns on 2nd Example of this invention received. 本発明の第3の実施例に係る衝撃吸収部材の筒体部が受けた荷重と変位との関係を示す説明図である。It is explanatory drawing which shows the relationship between the load and the displacement which the cylindrical part of the impact-absorbing member which concerns on 3rd Example of this invention received.

続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
図1に示すように、本発明の第1の実施例に係る衝撃吸収部材10は、全体が金属材からなり側壁の縦断面形状(即ち、衝撃吸収部材10の軸心を含む面で切断された側壁の形状)が波形となった筒体部11を有し、衝撃荷重を受けて変形するものである。筒体部11は、少なくとも一端から等速で押圧された場合、両端部を除く波形が均等変形し、かつ筒体部11の受ける荷重の瞬時低下量がそれ以前に受けた最大荷重の10%以内の荷重変動を有して、筒体部11の受ける荷重が単調増加する。これらについて詳細に説明する。
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, the shock absorbing member 10 according to the first embodiment of the present invention is made of a metal material and cut along a longitudinal sectional shape of a side wall (that is, a plane including the axis of the shock absorbing member 10). It has a cylindrical body portion 11 having a corrugated side wall shape and is deformed by receiving an impact load. When the cylindrical portion 11 is pressed from at least one end at a constant speed, the waveform excluding both ends is uniformly deformed, and the instantaneous decrease in the load received by the cylindrical portion 11 is 10% of the maximum load received before that. The load received by the cylindrical body portion 11 increases monotonously with a load fluctuation within. These will be described in detail.

筒体部11は、鋳物であって、筒体部11を形成する金属材は、アルミニウム合金、マグネシウム合金、鉄、及び鋼のいずれか1又は2以上である。金属材の性能は、具体的には、例えば、0.2%耐力が100〜400MPa程度、引張強さが200〜600MPa程度、伸びが10〜40%程度である。
ここで、筒体部11がアルミニウム合金鋳物の場合は、軽量で、しかも衝撃エネルギーの吸収効率に優れる。また、マグネシウム合金鋳物の場合は、その比重が他の金属材と比較して小さいため最軽量である。そして、鉄鋳物の場合は、低価格であり経済的である。更に、鋼鋳物の場合は、強度及び延性に優れるため、他の金属材と比較して大きな衝撃エネルギーを吸収することが可能である。
The cylinder part 11 is a casting, and the metal material forming the cylinder part 11 is any one or more of an aluminum alloy, a magnesium alloy, iron, and steel. Specifically, the performance of the metal material is, for example, a 0.2% proof stress of about 100 to 400 MPa, a tensile strength of about 200 to 600 MPa, and an elongation of about 10 to 40%.
Here, when the cylinder part 11 is an aluminum alloy casting, it is lightweight and excellent in impact energy absorption efficiency. Moreover, in the case of a magnesium alloy casting, since the specific gravity is small compared with another metal material, it is the lightest. And in the case of an iron casting, it is inexpensive and economical. Furthermore, in the case of a steel casting, since it is excellent in strength and ductility, it is possible to absorb a large impact energy as compared with other metal materials.

衝撃吸収部材10の筒体部11の両側には、筒体部11の変形の際の横断面形状(即ち、筒体部11の軸心と直交する面で切断された形状)を維持させるフランジ部12、13が設けられている。筒体部11は鋳物であるので、フランジ部12、13を筒体部11と一体的に製造できる。この場合、衝撃吸収部材10は、例えば、従来公知の中子を用いた金型鋳造又は砂型鋳造により製造する。
なお、筒体部とフランジ部とを個別に製造し、例えば溶接によって接合してもよい。この場合、筒体部とフランジ部とを構成する各金属材を、異なる種類にしてもよい。
On both sides of the cylindrical body portion 11 of the shock absorbing member 10, flanges that maintain the cross-sectional shape when the cylindrical body portion 11 is deformed (that is, the shape cut by a plane orthogonal to the axial center of the cylindrical body portion 11). Parts 12 and 13 are provided. Since the cylindrical part 11 is a casting, the flange parts 12 and 13 can be manufactured integrally with the cylindrical part 11. In this case, the impact absorbing member 10 is manufactured, for example, by die casting or sand casting using a conventionally known core.
In addition, you may manufacture a cylinder part and a flange part separately, and may join by welding, for example. In this case, you may make each metal material which comprises a cylinder part and a flange part into a different kind.

筒体部11は、その横断面形状が円形となっており、その一方側から他方側へかけて、最大外径Dと最小内径dがそれぞれ同一で、しかも同一の肉厚(厚み)tで構成されている。
なお、筒体部の横断面形状は、長円形(例えば、楕円形又は卵形)又は角形(例えば、三角形又は五角形などの多角形、正方形、又は長方形)でもよい。ここで、筒体部の横断面形状を角形とした場合は、平断面視して角部となる部分を面取りして丸みを設ける。
また、円形の筒体部は、筒体部の一方側から他方側へかけて縮径させたテーパ状としてもよく、長円形又は角形の場合には、その内幅を筒体部の一方側から他方側へかけて縮幅させた形状としてもよい。
ここで、テーパ状とする場合は、テーパ角度、即ち筒体部の一方側端面に対する側壁の傾斜角度を、例えば60度以上90度未満程度に設定する。
そして、筒体部の肉厚は、筒体部の一方側から他方側へかけて徐々に薄くしたり、また部分的に薄く(例えば、長手方向の中央部を他の部分よりも薄く)してもよい。
The cylindrical portion 11 has a circular cross-sectional shape, and the maximum outer diameter D and the minimum inner diameter d are the same from one side to the other side, and the same thickness (thickness) t. It is configured.
The cross-sectional shape of the cylindrical portion may be oval (for example, oval or oval) or square (for example, a polygon such as a triangle or pentagon, a square, or a rectangle). Here, when the cross-sectional shape of the cylindrical body portion is a square, the corner portion is chamfered in a plan view to provide a roundness.
In addition, the circular cylindrical portion may have a tapered shape with a diameter reduced from one side to the other side of the cylindrical portion, and in the case of an oval or a rectangular shape, the inner width is set to one side of the cylindrical portion. It is good also as the shape shrunk | reduced from one side to the other side.
Here, in the case of the taper shape, the taper angle, that is, the inclination angle of the side wall with respect to the one end face of the cylindrical body portion is set to, for example, about 60 degrees or more and less than 90 degrees.
Then, the thickness of the cylindrical body portion is gradually reduced from one side to the other side of the cylindrical body portion, or partially thinned (for example, the central portion in the longitudinal direction is thinner than the other portions). May be.

筒体部11の平均半径(即ち、筒体部11の最大外径Dと最小内径dの平均値φの半分)Rは、例えば、20mm以上70mm以下程度、肉厚tは、例えば、0.5mm以上10mm以下程度である。なお、筒体部の横断面形状が円形以外の場合、即ち長円形又は角形の場合は、その外周の平均長さと同一の円周を有する円形の半径を、前記した大きさとする。また、フランジ部12、13の厚みは、2mm以上50mm以下程度である。
この筒体部11の軸方向の長さについては、例えば、衝撃吸収部材10を自動車のバンパーのステイ(固定部)に使用する場合、筒体部11の軸方向の長さを50mm以上400mm以下程度とするが、これに限定されるものではない。しかし、筒体部11の長さが長くなり過ぎれば(例えば、500mm以上)、衝撃吸収部材10が衝撃荷重を受けることで、筒体部11に折れ曲がりが発生する恐れがある。
The average radius (that is, half of the average value φ of the maximum outer diameter D and the minimum inner diameter d) R of the cylindrical body portion 11 is, for example, about 20 mm to 70 mm, and the wall thickness t is, for example, 0. It is about 5 mm or more and 10 mm or less. In addition, when the cross-sectional shape of a cylinder part is other than a circle, ie, when it is an oval or a square, the radius of the circle which has the circumference same as the average length of the outer periphery is made into the above-mentioned magnitude | size. Moreover, the thickness of the flange parts 12 and 13 is about 2 mm or more and 50 mm or less.
Regarding the axial length of the cylindrical portion 11, for example, when the impact absorbing member 10 is used for a stay (fixed portion) of a bumper of an automobile, the axial length of the cylindrical portion 11 is 50 mm or more and 400 mm or less. However, the present invention is not limited to this. However, if the length of the cylindrical portion 11 becomes too long (for example, 500 mm or more), the impact absorbing member 10 may receive an impact load, and the cylindrical portion 11 may be bent.

そこで、図1に示すように、筒体部11の両側を除く部分(ここでは、筒体部11の軸方向中央部)に、筒体部11の内周に沿って円盤状の補強部材14を設ける。この補強部材14の厚みは、5mm以上20mm以下程度である。補強部材14は、筒体部11とは個別に製造して、例えば溶接により接続してもよいが、筒体部11と一体的に製造することが好ましい。なお、更に、筒体部の外周に沿ってリング状の補強部材を設けてもよく、またこのリング状の補強部材のみを設けてもよい。
補強部材14を設けることで、筒体部11の変形に対して、断面円形の形状を崩すことなく、その形を保持することができる。
なお、この補強部材は、筒体部の長さに応じて複数設けてもよく、一方、筒体部の長さが短ければ設けなくてもよい。
Therefore, as shown in FIG. 1, a disk-shaped reinforcing member 14 is formed along the inner periphery of the cylindrical portion 11 in a portion excluding both sides of the cylindrical portion 11 (here, the central portion in the axial direction of the cylindrical portion 11). Is provided. The thickness of the reinforcing member 14 is about 5 mm or more and 20 mm or less. The reinforcing member 14 may be manufactured separately from the cylindrical body 11 and connected by, for example, welding, but it is preferable to manufacture the reinforcing member 14 integrally with the cylindrical body 11. Furthermore, a ring-shaped reinforcing member may be provided along the outer periphery of the cylindrical body portion, or only this ring-shaped reinforcing member may be provided.
By providing the reinforcing member 14, the shape of the cylindrical body portion 11 can be maintained without breaking the circular shape of the cross section.
Note that a plurality of reinforcing members may be provided according to the length of the cylindrical body portion, and may not be provided if the length of the cylindrical body portion is short.

筒体部11の側壁の波形は、一定の振幅が一定の周期で繰り返し形成された形状である。この波形は、例えば、正弦曲線(y=a・sin(2πλ)x、ここでaは波形の振幅、λは波形の波長、xは側壁の長さ)、三角波、ギザギザ波、円弧と直線とを組み合わせた波により形成できる。
このような形状の筒体部11を、その一端から筒体部11の軸心に沿って等速で押圧した場合、筒体部11に蛇腹状の塑性変形、つまり波形を形成する断面U字状又はV字状の突出部15、16が潰れる(即ち、頂点付近で曲がる)変形を誘起させるものであり、その形状として、以下の変形モードが現れる。
(a)蛇腹状の塑性変形が波形の形状に沿うことなく発生する変形モード。
(b)蛇腹状の塑性変形が波形の形状に沿って変形するが、複数の突出部が1個ずつ順次潰れていく変形モード。
(c)蛇腹状の塑性変形が波形の形状に沿って変形し、しかも複数の突出部が略同時期に潰れる変形モード。
The waveform of the side wall of the cylindrical part 11 has a shape in which a constant amplitude is repeatedly formed at a constant period. This waveform is, for example, a sine curve (y = a · sin (2πλ) x, where a is the amplitude of the waveform, λ is the wavelength of the waveform, and x is the length of the side wall), triangular wave, jagged wave, arc and straight line Can be formed by combining waves.
When the cylindrical body portion 11 having such a shape is pressed from one end thereof at a constant speed along the axial center of the cylindrical body portion 11, a U-shaped cross section that forms a bellows-like plastic deformation, that is, a waveform, on the cylindrical body portion 11. Or V-shaped protrusions 15 and 16 are crushed (that is, bent near the apex), and the following deformation modes appear as the shape.
(A) Deformation mode in which bellows-like plastic deformation occurs without following the waveform shape.
(B) A deformation mode in which the bellows-shaped plastic deformation is deformed along the waveform shape, but the plurality of protrusions are sequentially crushed one by one.
(C) A deformation mode in which the bellows-shaped plastic deformation is deformed along the waveform shape, and the plurality of protrusions are crushed substantially at the same time.

ここで、前記した(a)〜(c)の各変形モードで変形した筒体部の波形の模式図を、図2(A)〜(D)に示す。この図2(A)〜(D)の破線で示す模式図は、筒体部の変形前の形状であり、実線で示す模式図は、筒体部の変形が図2の左側から右側へ進行する際の変形途中の筒体部の断面形状である。なお、波形が設けられていない筒体部を一端から押圧すると、規則的にしわが形成されて圧潰変形する場合がある。このしわの波長は、筒体部の材料特性にはよらず、筒体部の半径と肉厚によってのみ決まることが分かっている。
(a)の変形モードとしては、図2(A)に示すように、筒体部に設けた波形の波長が、波形が無い場合の筒体部に発生するしわの波長より大きいため、波形に沿わないしわが形成される場合、又は図2(B)に示すように、逆に波形が無い場合の筒体部に発生するしわの波長より小さいため、波形に沿わないしわが形成される場合がある。
(b)の変形モードは、図2(C)に示すように、波形に沿ってしわが生じる変形で、筒体部の波形が一つ一つ順次潰れていく。
(c)の変形モードは、図2(D)に示すように、波形に沿ってしわが生じる変形で、かつ筒体部の波形が同時に潰れていく。ここで、同時とは、各突出部の変形の時間的なばらつきが、全突出部の変形に要する全時間の3%以下(更には2%以下)の範囲も含まれる。
Here, the schematic diagram of the waveform of the cylindrical part deformed in each of the deformation modes (a) to (c) described above is shown in FIGS. 2 (A) to 2 (D) are schematic diagrams showing the shape of the cylindrical body before the deformation, and in the schematic diagram shown by the solid line, the deformation of the cylindrical body part proceeds from the left side to the right side of FIG. It is the cross-sectional shape of the cylinder part in the middle of a deformation | transformation at the time of doing. In addition, when the cylinder part in which the waveform is not provided is pressed from one end, wrinkles may be regularly formed and may be crushed. It has been found that the wavelength of this wrinkle is determined only by the radius and the thickness of the cylindrical part, regardless of the material properties of the cylindrical part.
As a deformation mode (a), as shown in FIG. 2 (A), the wavelength of the waveform provided in the cylindrical portion is larger than the wavelength of wrinkles generated in the cylindrical portion when there is no waveform. In the case where a wrinkle or wrinkle is formed, or as shown in FIG. 2B, the wrinkle wavelength is smaller than the wavelength of the wrinkle generated in the cylindrical portion when there is no corrugation. .
In the deformation mode (b), as shown in FIG. 2 (C), wrinkles are generated along the waveform, and the waveform of the cylindrical portion is sequentially collapsed one by one.
As shown in FIG. 2D, the deformation mode (c) is a deformation in which wrinkles are generated along the waveform, and the waveform of the cylindrical portion is simultaneously crushed. Here, the term “simultaneously” includes a range in which the variation in deformation of each protrusion is 3% or less (more than 2%) of the total time required for deformation of all protrusions.

衝撃吸収性能に優れる変形モード(c)を実現するために、筒体部として、JIS AC4CH−T4(0.2%耐力:87MPa、引張強さ:192MPa、伸び:18%)のアルミニウム合金製の円筒体を使用し、この円筒体を一端から等速で押圧して潰す数値圧潰解析(有限要素法による)を行って、変形モードが発生する筒体部の形状について検討した。なお、この検討に際しては、筒体部の平均半径(R)、筒体部の肉厚(t)、筒体部に形成された波形の波長(λ)、及び波形の振幅(a)を使用し、筒体部の半径に対する筒体部の肉厚(t/R)、波形の振幅(a/R)、波形の波長(λ/R)を調査した。ここで、波形の波長とは、隣り合う突出部の頂点の間隔、即ち未使用時の筒体部の長さを筒体部に形成される外側突出部15又は内側突出部16の個数で割った長さを意味し、波形の振幅とは、筒体部の最大外径と最大内径の平均値を基準とした筒体部の外側への突出量、即ち膨らみの程度を意味する。 In order to realize the deformation mode (c) excellent in shock absorbing performance, the cylindrical part is made of an aluminum alloy of JIS AC4CH-T4 (0.2% proof stress: 87 MPa, tensile strength: 192 MPa, elongation: 18%). Using a cylindrical body, numerical crushing analysis (by the finite element method) was performed by pressing this cylindrical body from one end at a constant speed to crush it, and the shape of the cylindrical portion where the deformation mode occurs was examined. In this examination, the average radius (R) of the cylindrical part, the thickness (t) of the cylindrical part, the wavelength (λ) of the waveform formed in the cylindrical part, and the amplitude (a) of the waveform are used. Then, the thickness (t / R) of the cylindrical portion relative to the radius of the cylindrical portion, the amplitude (a / R) of the waveform, and the wavelength (λ / R) of the waveform were investigated. Here, the waveform wavelength is obtained by dividing the interval between the apexes of adjacent protrusions, that is, the length of the cylindrical part when not in use, by the number of outer protrusions 15 or inner protrusions 16 formed on the cylindrical part. The amplitude of the waveform means the amount of protrusion to the outside of the cylindrical portion based on the average value of the maximum outer diameter and the maximum inner diameter of the cylindrical portion, that is, the degree of swelling.

以下、Rを56mmとし、tを1.0、2.0、3.0、4.0、5.0、5.0超mmとした場合に、λを13〜52mmの範囲で、aを1〜5mmの範囲でそれぞれ変更した結果について説明する。この解析結果は、(t/R)が0.0150以上の条件について、t(t/R)、a/R、及びλ/Rを3軸(x軸方向、y軸方向、z軸方向)にとることで、3次元的に現すことができるが、説明の便宜上、tが1.0mm、2.0mm、3.0mm、4.0mm、及び5.0mmでのa/Rとλ/Rとの関係を示した図3(A)、(B)、図4(A)、(B)、及び図5を参照しながら説明する。なお、図中において、変形モード(a)〜(c)は、前記した各変形モードに対応しており、変形モード(d)とは、変形モード(c)となる場合がほとんどであるが、局部的に変形モード(b)も発生する恐れがある部分を意味する。 Hereinafter, when R is 56 mm, and t is 1.0, 2.0, 3.0, 4.0, 5.0, and 5.0 mm, λ is in the range of 13 to 52 mm, and a is The result changed in the range of 1 to 5 mm will be described. This analysis result shows that t (t / R), a / R, and λ / R are three axes (x-axis direction, y-axis direction, z-axis direction) under the condition that (t / R) is 0.0150 or more. However, for convenience of explanation, a / R and λ / R when t is 1.0 mm, 2.0 mm, 3.0 mm, 4.0 mm, and 5.0 mm. The relationship will be described with reference to FIGS. 3 (A), 3 (B), 4 (A), 4 (B), and FIG. In the figure, the deformation modes (a) to (c) correspond to the respective deformation modes described above, and the deformation mode (d) is mostly the deformation mode (c). This means a portion where the deformation mode (b) may also occur locally.

図3(A)に示すように、tを1.0mmとし、筒体部の半径に対して肉厚を薄くした場合(t/R=0.0179)、筒体部の外側への膨らみを大きくし、同一長さの筒体部に形成される突出部の個数を多くすること(即ち、λを小さくすること)で、筒体部に前記した変形モード(c)を発現させることができる。
次に、図3(B)に示すように、tを2.0mmとし、筒体部の半径に対する肉厚を図2(A)の場合よりも厚くした場合(t/R=0.0357)、筒体部の外側への膨らみを小さくし、筒体部に形成される突出部の個数を減らしても(即ち、λを大きくしても)、筒体部に前記した変形モード(c)を発現させることができる。
そして、図4(A)に示すように、tを3.0mmとし、筒体部の半径に対する肉厚を更に厚くすると(t/R=0.0537)、筒体部に形成される突出部の個数を更に減らしても、筒体部に前記した変形モード(c)を発現させることができる。
As shown in FIG. 3A, when t is set to 1.0 mm and the thickness is reduced with respect to the radius of the cylindrical portion (t / R = 0.0179), the outward expansion of the cylindrical portion is caused. By enlarging and increasing the number of protrusions formed on the same length of the cylindrical portion (that is, by reducing λ), the deformation mode (c) described above can be expressed in the cylindrical portion. .
Next, as shown in FIG. 3 (B), when t is 2.0 mm and the thickness with respect to the radius of the cylindrical portion is made thicker than in FIG. 2 (A) (t / R = 0.0357). The deformation mode (c) described above is applied to the cylindrical portion even if the bulge to the outside of the cylindrical portion is reduced and the number of protrusions formed on the cylindrical portion is reduced (that is, λ is increased). Can be expressed.
As shown in FIG. 4A, when t is set to 3.0 mm and the thickness with respect to the radius of the cylindrical portion is further increased (t / R = 0.0537), the protruding portion formed in the cylindrical portion. Even if the number is further reduced, the deformation mode (c) described above can be expressed in the cylindrical body portion.

また、図4(B)に示すように、tを4.0mmとし、筒体部の半径に対する肉厚を更に厚くした場合(t/R=0.0714)、筒体部に形成される突出部の個数を更に減らしても、筒体部に前記した変形モード(c)を発現させることができる。
更に、図5に示すように、tを5.0mmとし、筒体部の半径に対する肉厚を更に厚くした場合(t/R=0.0893)、肉厚が厚くなり過ぎるため、突出部が曲がりにくくなり、筒体部に前記した変形モード(c)を発現できる領域を、更に拡大できなくなる。
以上の結果から、筒体部に前記した変形モード(c)を発現させるには、t/Rが0.0150以上、a/Rが0.036以上、及びλ/Rが0.2以上0.89以下の条件を満足する必要がある。
なお、より具体的には、以下に示す条件を満足することが好ましい。
Further, as shown in FIG. 4B, when t is set to 4.0 mm and the thickness with respect to the radius of the cylindrical body portion is further increased (t / R = 0.0714), the protrusion formed on the cylindrical body portion. Even if the number of parts is further reduced, the deformation mode (c) described above can be expressed in the cylindrical part.
Furthermore, as shown in FIG. 5, when t is 5.0 mm and the thickness of the cylindrical portion is further increased (t / R = 0.0893), the thickness becomes too thick, so that the protruding portion is It becomes difficult to bend, and the region where the above-described deformation mode (c) can be expressed in the cylindrical body portion cannot be further expanded.
From the above results, in order to develop the deformation mode (c) described above in the cylindrical part, t / R is 0.0150 or more, a / R is 0.036 or more, and λ / R is 0.2 or more and 0. It is necessary to satisfy the condition of 89 or less.
More specifically, it is preferable to satisfy the following conditions.

(1)t/Rが0.0150以上0.0179以下の場合、a/Rを0.054超(好ましくは、0.06以上、更に好ましくは、0.07以上)とし、λ/Rを0.2以上0.4以下(好ましくは、下限を0.25、上限を、0.35)とする。
(2)t/Rが0.0179超0.0357以下の場合、a/Rを0.036以上(好ましくは、0.04以上、更に好ましくは、0.05以上)とし、λ/Rを0.2以上0.5以下(好ましくは、下限を0.22、上限を、0.45)とする。
(3)t/Rが0.0357超0.0537以下の場合、a/Rを0.036以上(好ましくは、0.04以上、更に好ましくは、0.05以上)とし、λ/Rを0.2以上0.65以下(好ましくは、下限を0.25、上限を0.5更には0.45)とする。
(1) When t / R is 0.0150 or more and 0.0179 or less, a / R is more than 0.054 (preferably 0.06 or more, more preferably 0.07 or more), and λ / R is 0.2 or more and 0.4 or less (preferably, lower limit is 0.25, upper limit is 0.35).
(2) When t / R is more than 0.0179 and not more than 0.0357, a / R is set to 0.036 or more (preferably 0.04 or more, more preferably 0.05 or more), and λ / R is set to 0.2 or more and 0.5 or less (preferably, the lower limit is 0.22 and the upper limit is 0.45).
(3) When t / R is more than 0.0357 and not more than 0.0537, a / R is set to 0.036 or more (preferably 0.04 or more, more preferably 0.05 or more), and λ / R is set to 0.2 or more and 0.65 or less (preferably, lower limit is 0.25, upper limit is 0.5 or 0.45).

(4)t/Rが0.0537超0.0714以下の場合、a/Rを0.036以上(好ましくは、0.04以上、更に好ましくは、0.05以上)とし、λ/Rを0.2以上0.89以下(好ましくは、下限を0.25、上限を0.5更には0.45)とする。
(5)t/Rが0.0714超の場合、a/Rを0.036以上(好ましくは、0.04以上、更に好ましくは、0.05以上)とし、λ/Rを0.2以上0.89以下(好ましくは、下限を0.3、上限を0.7更には0.5)とする。
(4) When t / R is more than 0.0537 and 0.0714 or less, a / R is set to 0.036 or more (preferably 0.04 or more, more preferably 0.05 or more), and λ / R is set to 0.2 or more and 0.89 or less (preferably, lower limit is 0.25, upper limit is 0.5 or 0.45).
(5) When t / R exceeds 0.0714, a / R is set to 0.036 or more (preferably 0.04 or more, more preferably 0.05 or more), and λ / R is set to 0.2 or more. 0.89 or less (preferably, the lower limit is 0.3, and the upper limit is 0.7 or 0.5).

以上に示した(1)〜(5)の条件においては、a/Rの上限値を記載していない。これは、a/Rが大きくなれば、筒体部の外側への膨らみが大きくなり過ぎるため、筒体部が潰れ易くなり、容易に変形モード(c)を発現できるからである。
しかし、この場合、衝撃吸収部材は、衝撃荷重を十分に受けることができなくなるので、使用上はa/Rを0.15以下、更には0.10以下に設定することが好ましい。
なお、筒体部が、その一方側から他方側へかけて同一直径となっている場合は、その半径を前記した条件に適合させて、筒体部の形状を規定する。また、筒体部がテーパ状の場合は、半径が大きい方を、前記した条件に適合させて、筒体部の形状を規定する。これは、前記した変形モードが、大きな半径に影響を受け易いことに起因する。なお、この場合、筒体部の軸方向の任意の位置での半径をも、前記した条件に適合させて、筒体部の形状を規定することが好ましい。
In the above conditions (1) to (5), the upper limit value of a / R is not described. This is because if the a / R is increased, the outward bulge of the cylindrical body portion becomes too large, so that the cylindrical body portion is easily crushed and the deformation mode (c) can be easily expressed.
However, in this case, since the impact absorbing member cannot sufficiently receive the impact load, it is preferable to set a / R to 0.15 or less, and further to 0.10 or less in use.
In addition, when the cylinder part is the same diameter from the one side to the other side, the shape of a cylinder part is prescribed | regulated by adapting the radius to above-mentioned conditions. Further, when the cylindrical portion is tapered, the shape of the cylindrical portion is defined by adapting the larger radius to the above-described conditions. This is because the above-described deformation mode is easily influenced by a large radius. In this case, it is preferable that the shape of the cylindrical portion is defined by adapting the radius of the cylindrical portion at an arbitrary position in the axial direction to the above-described conditions.

このように、筒体部11の形状を規定することで、衝撃吸収部材10の使用にあっては、筒体部11の変形に際し、両端部(即ち、フランジ部12、13に接続された部分近傍:例えば、筒体部11の端から10mm程度までの範囲)を除く波形を均等変形できる。ここで、均等変形とは、筒体部11に形成された全波形の80%以上(好ましくは、90%以上)が変形することを意味する。
このとき、筒体部11の受ける荷重の瞬時低下量を、それ以前に受けた最大荷重の10%(好ましくは7%、更に好ましくは5%)以内にできる。
これにより、筒体部の受ける荷重は、従来よりも小さい荷重変動を有しながら単調増加する。
In this way, by defining the shape of the cylindrical body portion 11, when the shock absorbing member 10 is used, when the cylindrical body portion 11 is deformed, both end portions (that is, portions connected to the flange portions 12 and 13). The waveform excluding the vicinity: for example, the range from the end of the cylindrical portion 11 to about 10 mm) can be uniformly deformed. Here, uniform deformation means that 80% or more (preferably 90% or more) of the entire waveform formed in the cylindrical body portion 11 is deformed.
At this time, the instantaneous decrease amount of the load received by the cylindrical body portion 11 can be made within 10% (preferably 7%, more preferably 5%) of the maximum load received before that.
As a result, the load received by the cylinder body monotonously increases while having a smaller load variation than the conventional one.

次に、前記した数値圧潰解析した結果において、筒体部の半径を56mmとし、肉厚を2mm、3mmとして、筒体部の荷重と変位との関係を調査した結果について、図6を参照しながら説明する。ここで、筒体部に形成された波形の波長(λ)、及び波形の振幅(a)、筒体部の半径に対する筒体部の肉厚(t/R)、波形の波長(a/R)、波形の振幅(λ/R)を、それぞれ表1に示す。 Next, in the result of the numerical crush analysis described above, the relationship between the load and the displacement of the cylindrical part when the radius of the cylindrical part is 56 mm, the wall thickness is 2 mm, and 3 mm is described with reference to FIG. While explaining. Here, the wavelength (λ) of the waveform formed in the cylindrical portion, the amplitude (a) of the waveform, the thickness (t / R) of the cylindrical portion relative to the radius of the cylindrical portion, and the wavelength (a / R) of the waveform ) And the amplitude (λ / R) of the waveform are shown in Table 1, respectively.

Figure 2008012876
Figure 2008012876

図6及び表1から明らかなように、各筒体部の形状が、前記した変形モード(c)を発現できる条件を満足した実施例1〜4については、筒体部の受ける荷重の瞬時低下量が、それ以前に受けた最大荷重の10%以内の荷重変動を有して、筒体部の受ける荷重が単調増加することを確認できた。
一方、前記した変形モード(c)を発現できる条件を満足していない比較例1、2については、筒体部の受ける荷重の瞬時低下量が、それ以前に受けた最大荷重の20%以上の荷重変動を有しており、瞬時低下量の低減が不十分であった。
As is clear from FIG. 6 and Table 1, in Examples 1 to 4 in which the shape of each cylindrical portion satisfies the conditions that allow the deformation mode (c) to be expressed, instantaneous reduction in the load received by the cylindrical portion is achieved. It was confirmed that the load received by the cylinder body monotonously increased with the load fluctuation within 10% of the maximum load received before that.
On the other hand, for Comparative Examples 1 and 2 that do not satisfy the conditions that allow the deformation mode (c) to be expressed, the instantaneous decrease in the load received by the cylindrical portion is 20% or more of the maximum load received before that. The load fluctuated and the amount of instantaneous decrease was insufficient.

続いて、本発明の第2、第3の実施例に係る衝撃吸収部材の筒体部を使用して圧潰実験を行い、筒体部の荷重と変位との関係を調査した結果について、図7、図8を参照しながら説明する。なお、この実験は、前記した材料特性を備えるアルミニウム合金製の円筒体で構成された筒体部に対し、一端から等速で荷重をかけ、そのときに受けた荷重をロードセルで、また変形する筒体部の変位量を変位計で測定することにより行った。
なお、図7に示す圧潰実験に使用した第2の実施例に係る衝撃吸収部材の筒体部は、軸方向の長さ:130mm、半径:56mm、肉厚:3.5mm、波長:16.67mm、振幅:3mmであり、(t/R):0.0625、(a/R):0.054、(λ/R):0.30であった。また、図8に示す圧潰実験に使用した第3の実施例に係る衝撃吸収部材の筒体部は、軸方向の長さ:130mm、半径:56mm、肉厚:4mm、波長:19.23mm、振幅:3mmであり、(t/R):0.0714、(a/R):0.054、(λ/R):0.34であった。
このように、各筒体部の形状は、前記した変形モード(c)を発現できる条件を満足している。
Subsequently, a crushing experiment was performed using the cylindrical portion of the impact absorbing member according to the second and third embodiments of the present invention, and the result of investigating the relationship between the load and displacement of the cylindrical portion is shown in FIG. This will be described with reference to FIG. In this experiment, a load is applied at a constant speed from one end to a cylindrical body made of an aluminum alloy cylinder having the above-mentioned material characteristics, and the load received at that time is deformed by a load cell. This was done by measuring the amount of displacement of the cylindrical part with a displacement meter.
The cylindrical portion of the shock absorbing member according to the second embodiment used in the crushing experiment shown in FIG. 7 has an axial length of 130 mm, a radius of 56 mm, a thickness of 3.5 mm, and a wavelength of 16. 67 mm, amplitude: 3 mm, (t / R): 0.0625, (a / R): 0.054, (λ / R): 0.30. Moreover, the cylinder part of the impact-absorbing member according to the third example used in the crushing experiment shown in FIG. 8 has an axial length of 130 mm, a radius of 56 mm, a thickness of 4 mm, a wavelength of 19.23 mm, Amplitude: 3 mm, (t / R): 0.0714, (a / R): 0.054, (λ / R): 0.34.
Thus, the shape of each cylindrical body part satisfies the conditions under which the above-described deformation mode (c) can be exhibited.

まず、第2の実施例に係る衝撃吸収部材の筒体部について説明する。
図7から明らかなように、筒体部が荷重を受けた場合に、x1〜x3の3箇所で荷重が低下するものの、全体としては荷重が単調に増加していた。また、荷重の低下した各点x1〜x3の以前で最大荷重を示す点は、X1〜X3であった。ここで、各点X1〜X3での筒体部の変位量及びその最大荷重と、荷重が低下した点x1〜x3での筒体部の変位量及び各点X1〜X3の最大荷重に対する荷重の低下量(瞬時低下量)と、最大荷重に対する瞬時低下量の荷重変動を、表2に示す。
First, the cylindrical part of the impact absorbing member according to the second embodiment will be described.
As apparent from FIG. 7, when the cylindrical body portion receives a load, the load decreases monotonically at three locations x1 to x3, but the load increases monotonously as a whole. Moreover, the point which shows the maximum load before each point x1-x3 in which the load fell was X1-X3. Here, the displacement amount and the maximum load of the cylindrical portion at each point X1 to X3, the displacement amount of the cylindrical portion at the points x1 to x3 at which the load is reduced, and the load with respect to the maximum load at each point X1 to X3. Table 2 shows the amount of decrease (instantaneous decrease amount) and the load fluctuation of the instantaneous decrease amount with respect to the maximum load.

Figure 2008012876
Figure 2008012876

表2から明らかなように、各点x1〜x3での荷重低下量は最大で3kN程度であり、この荷重変動は、最大荷重の3%程度であった。
このように、筒体部の受ける荷重の瞬時低下量を抑制しながら、筒体部の受ける荷重を単調増加させることができることを確認できた。
As is apparent from Table 2, the load decrease amount at each point x1 to x3 was about 3 kN at the maximum, and this load fluctuation was about 3% of the maximum load.
As described above, it was confirmed that the load received by the cylinder body can be monotonously increased while suppressing the instantaneous decrease in the load received by the cylinder body.

次に、第3の実施例に係る衝撃吸収部材の筒体部について説明する。
図8から明らかなように、筒体部が荷重を受けた場合に、y1〜y6の6箇所で荷重が低下するものの、全体としては荷重が単調に増加していた。また、荷重の低下した各点y1〜y3の以前で最大荷重を示す点はY1、各点y4、y5の以前で最大荷重を示す点はY4、点y6の以前で最大荷重を示す点はY6であった。ここで、各点Y1、Y4、Y6での筒体部の変位量及びその最大荷重と、荷重が低下した点y1〜y6での筒体部の変位量及び各点Y1、Y4、Y6の最大荷重に対する荷重の低下量(瞬時低下量)と、最大荷重に対する瞬時低下量の荷重変動を、表3に示す。
Next, the cylindrical part of the impact absorbing member according to the third embodiment will be described.
As apparent from FIG. 8, when the cylindrical body portion received a load, the load decreased monotonously at six locations y <b> 1 to y <b> 6, but the load increased monotonically as a whole. The point indicating the maximum load before the points y1 to y3 where the load is reduced is Y1, the point indicating the maximum load before each point y4, y5 is Y4, and the point indicating the maximum load before the point y6 is Y6. Met. Here, the displacement amount and the maximum load of the cylindrical portion at each of the points Y1, Y4, and Y6, the displacement amount of the cylindrical portion at the points y1 to y6 where the load is reduced, and the maximum of each point Y1, Y4, and Y6 Table 3 shows the load decrease amount (instantaneous decrease amount) with respect to the load and the load fluctuation of the instantaneous decrease amount with respect to the maximum load.

Figure 2008012876
Figure 2008012876

表3から明らかなように、各点y1〜y6での荷重低下量は最大で10kN程度であり、この荷重変動は最大荷重の8%程度(10%以内)であった。
このように、この筒体部についても、筒体部の受ける荷重の瞬時低下量を抑制しながら、筒体部の受ける荷重を単調増加させることができることを確認できた。
これにより、例えば自動車の衝突時における衝撃を吸収し、搭乗者の安全を確保すると共に、車体へ与える損傷も低減できることを確認できた。
As apparent from Table 3, the load decrease amount at each point y1 to y6 was about 10 kN at the maximum, and this load fluctuation was about 8% (within 10%) of the maximum load.
As described above, it was confirmed that the load received by the cylindrical body portion can be monotonously increased while suppressing the instantaneous decrease in the load received by the cylindrical body portion.
As a result, it was confirmed that, for example, an impact at the time of a car collision can be absorbed to ensure the safety of the occupant and to reduce damage to the vehicle body.

以上、本発明の実施例を説明したが、本発明は、この実施例に限定されるものではなく、発明の要旨を変更しない範囲での変更は可能であり、前記したそれぞれの実施例や変形例の一部又は全部を組み合わせて構成することもできる。 As mentioned above, although the embodiment of the present invention has been described, the present invention is not limited to this embodiment, and can be changed without changing the gist of the invention. A part or all of the examples may be combined.

本発明に係る衝撃吸収部材は、側壁の縦断面形状が波形となった筒体部を有するので、筒体部に蛇腹状の塑性変形を誘起させ、衝撃荷重を受けた際の初期に発生する荷重のピークを従来よりも低減できる。また、筒体部は、波形が均等変形し、しかも筒体部の受ける荷重の瞬時低下量を従来よりも低減できるので、衝撃エネルギーの吸収性能を従来よりも向上できる。これによって、本発明に係る衝撃吸収部材を自動車に適用し、効率的に衝撃の緩和ができる。 Since the shock absorbing member according to the present invention has a cylindrical body portion having a corrugated vertical cross-sectional shape, the bellows-like plastic deformation is induced in the cylindrical body portion and is generated at the initial stage when receiving an impact load. The load peak can be reduced as compared with the prior art. Moreover, since the waveform of the cylindrical portion is uniformly deformed and the amount of instantaneous decrease in the load received by the cylindrical portion can be reduced as compared with the conventional case, the impact energy absorption performance can be improved as compared with the conventional case. As a result, the impact absorbing member according to the present invention is applied to an automobile, and the impact can be efficiently reduced.

Claims (4)

全体が、アルミニウム合金、マグネシウム合金、鉄、及び鋼のいずれか1又は2以上の金属材からなり、側壁の縦断面形状が波形で、横断面形状が、円形、長円形、及び角部を丸くした角形のいずれか1となった筒体部を有し、衝撃荷重を受けて変形する衝撃吸収部材であって、
前記筒体部の横断面形状が前記円形の場合にはその平均半径、該円形以外の場合はその外周の平均長さと同一の円周を有する円形の半径をR、前記筒体部の肉厚をt、該筒体部に形成された波形の波長をλ、及び該波形の振幅をaとした際に、t/Rが0.0150以上、a/Rが0.036以上、及びλ/Rが0.2以上0.89以下で、前記筒体部を少なくとも一端から等速で押圧した場合、両端部を除く前記波形が均等変形し、かつ前記筒体部の受ける荷重の瞬時低下量がそれ以前に受けた最大荷重の10%以内の荷重変動を有して、前記筒体部の受ける荷重が単調増加することを特徴とする衝撃吸収部材。
The whole is made of one or more metal materials of aluminum alloy, magnesium alloy, iron, and steel, and the vertical cross-sectional shape of the side wall is corrugated, and the cross-sectional shape is circular, oval, and rounded corners. A shock absorbing member that has a cylindrical body portion that is any one of the squares that are deformed and deforms in response to an impact load,
When the cross-sectional shape of the cylindrical body is the circular shape, the average radius thereof, and when the cross-sectional shape is other than the circular shape, R represents a circular radius having the same circumference as the average length of the outer periphery thereof, and the thickness of the cylindrical body portion. T / R is 0.0150 or more, a / R is 0.036 or more, and λ /, where t is t, R is the wavelength of the waveform formed in the cylindrical body portion, and a is the amplitude of the waveform. When R is 0.2 or more and 0.89 or less and the cylindrical part is pressed from at least one end at a constant speed, the waveform excluding both ends is uniformly deformed, and the amount of instantaneous decrease in the load received by the cylindrical part The load absorbing member has a load fluctuation within 10% of the maximum load received before, and the load received by the cylinder body monotonously increases.
請求項1記載の衝撃吸収部材において、前記t/R、a/R、及びλ/Rが、以下の関係を満足することを特徴とする衝撃吸収部材。
(1)t/Rが0.0150以上0.0179以下の場合、a/R:0.054以上、λ/R:0.2以上0.4以下
(2)t/Rが0.0179超0.0357以下の場合、a/R:0.036以上、λ/R:0.2以上0.5以下
(3)t/Rが0.0357超0.0537以下の場合、a/R:0.036以上、λ/R:0.2以上0.65以下
(4)t/Rが0.0537超0.0714以下の場合、a/R:0.036以上、λ/R:0.2以上0.89以下
(5)t/Rが0.0714超の場合、a/R:0.036以上、λ/R:0.2以上0.89以下
The shock absorbing member according to claim 1, wherein the t / R, a / R, and λ / R satisfy the following relationship.
(1) When t / R is 0.0150 or more and 0.0179 or less, a / R: 0.054 or more, λ / R: 0.2 or more and 0.4 or less (2) t / R exceeds 0.0179 When 0.0357 or less, a / R: 0.036 or more, λ / R: 0.2 or more and 0.5 or less (3) When t / R is more than 0.0357 and 0.0537 or less, a / R: 0.036 or more, λ / R: 0.2 or more and 0.65 or less (4) When t / R is more than 0.0537 and 0.0714 or less, a / R: 0.036 or more, λ / R: 0. 2 or more and 0.89 or less (5) When t / R is more than 0.0714, a / R: 0.036 or more, λ / R: 0.2 or more and 0.89 or less
請求項1及び2のいずれか1項に記載の衝撃吸収部材において、前記筒体部は鋳物であることを特徴とする衝撃吸収部材。 3. The impact absorbing member according to claim 1, wherein the cylindrical portion is a casting. 4. 請求項1〜3のいずれか1項に記載の衝撃吸収部材において、前記筒体部の両側を除く部分には、該筒体部の内周及び外周のいずれか一方又は双方に沿って設けられ、該筒体部の変形に対して該筒体部の横断面形状を保持可能な1又は複数の補強部材が設けられていることを特徴とする衝撃吸収部材。 The impact absorbing member according to any one of claims 1 to 3, wherein a portion excluding both sides of the cylindrical portion is provided along one or both of an inner periphery and an outer periphery of the cylindrical portion. An impact absorbing member comprising: one or a plurality of reinforcing members capable of maintaining a cross-sectional shape of the cylindrical portion against deformation of the cylindrical portion.
JP2008526630A 2006-07-26 2006-07-26 Shock absorbing member Pending JPWO2008012876A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/314739 WO2008012876A1 (en) 2006-07-26 2006-07-26 Shock absorbing member

Publications (1)

Publication Number Publication Date
JPWO2008012876A1 true JPWO2008012876A1 (en) 2009-12-17

Family

ID=38981191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008526630A Pending JPWO2008012876A1 (en) 2006-07-26 2006-07-26 Shock absorbing member

Country Status (2)

Country Link
JP (1) JPWO2008012876A1 (en)
WO (1) WO2008012876A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6076160B2 (en) * 2013-03-19 2017-02-08 富士重工業株式会社 vehicle
AT13754U1 (en) * 2013-06-24 2014-08-15 Otto Dipl Ing Freudenschuss Crash element
AT14645U1 (en) * 2014-11-27 2016-03-15 Otto Dipl Ing Freudenschuss Energy absorbing buffer
CN107662567B (en) * 2017-09-25 2020-04-21 芜湖智久机器人有限公司 Anticollision AGV dolly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039245A (en) * 2000-07-31 2002-02-06 Hitachi Metals Ltd Impact absorbing member made of aluminum alloy casting
JP2002070909A (en) * 2000-08-30 2002-03-08 Biiseefu:Kk Impact absorbing structure, impact absorbing device and impact absorbing method
JP2005282792A (en) * 2004-03-30 2005-10-13 Fukuoka Prefecture Shock absorbing member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039245A (en) * 2000-07-31 2002-02-06 Hitachi Metals Ltd Impact absorbing member made of aluminum alloy casting
JP2002070909A (en) * 2000-08-30 2002-03-08 Biiseefu:Kk Impact absorbing structure, impact absorbing device and impact absorbing method
JP2005282792A (en) * 2004-03-30 2005-10-13 Fukuoka Prefecture Shock absorbing member

Also Published As

Publication number Publication date
WO2008012876A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP3912422B2 (en) Crash box
JP5949925B2 (en) Crash box and car body
JP4371059B2 (en) Shock absorbing member
JP4792036B2 (en) Shock absorbing member for vehicle
JP4350731B2 (en) Shock absorbing member for vehicle
JP5488069B2 (en) Crash box and car body
JP4386036B2 (en) Crash box
JP4375239B2 (en) Shock absorbing member and shock energy absorbing method
WO2013024883A1 (en) Shock absorbing member
JPWO2005075254A1 (en) Vehicle shock absorber
JPWO2008012876A1 (en) Shock absorbing member
JP4133302B2 (en) Energy absorption member for car body
JP4604740B2 (en) Shock absorbing member
JP5235007B2 (en) Crash box
JP5034793B2 (en) Shock absorption method
JPH09277953A (en) Shock absorbing member
JP4036234B2 (en) Crash box
JP5632147B2 (en) Crash box
JPH09277954A (en) Tapered impact absorbing member
JP5632142B2 (en) Crash box
JP5056198B2 (en) Shock absorption structure of automobile body
JP4543778B2 (en) Shock absorbing member
JP2005325968A (en) Impact energy absorbing structural member
JP2006159934A (en) Impact absorption member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120