JPWO2008001560A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JPWO2008001560A1
JPWO2008001560A1 JP2008522350A JP2008522350A JPWO2008001560A1 JP WO2008001560 A1 JPWO2008001560 A1 JP WO2008001560A1 JP 2008522350 A JP2008522350 A JP 2008522350A JP 2008522350 A JP2008522350 A JP 2008522350A JP WO2008001560 A1 JPWO2008001560 A1 JP WO2008001560A1
Authority
JP
Japan
Prior art keywords
vehicle
value
model
wheel
state quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008522350A
Other languages
English (en)
Other versions
JP4370605B2 (ja
Inventor
竹中 透
透 竹中
河野 寛
寛 河野
貴行 豊島
貴行 豊島
博之 占部
博之 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Application granted granted Critical
Publication of JP4370605B2 publication Critical patent/JP4370605B2/ja
Publication of JPWO2008001560A1 publication Critical patent/JPWO2008001560A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17552Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve responsive to the tire sideslip angle or the vehicle body slip angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/02Side slip angle, attitude angle, floating angle, drift angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/02Active Steering, Steer-by-Wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/86Optimizing braking by using ESP vehicle or tire model
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • B60W2050/0033Single-track, 2D vehicle model, i.e. two-wheel bicycle model

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Feedback Control In General (AREA)

Abstract

車両モデル16で決定した規範状態量と実車1の実状態量との差(状態量偏差)を0に近づけるように実車アクチュエータ操作用制御入力とモデル操作用制御入力とをFB分配則20で決定し、それらの制御入力によりそれぞれ実車1のアクチュエータ装置3と車両モデル16とを操作する。運転操作量(ステアリング角)をステップ状に変化させたときの規範状態量の減衰性が実状態量の減衰性よりも高くなるように車両モデル16のパラメータの値を実際の車両1の運動状態に応じて可変的に設定する。これにより、実際の車両の運動に関する状態量(実状態量)を、動特性モデル(車両モデル16)上での車両の状態量(規範状態量)に近づけるように実車1のアクチュエータ装置3を制御することを実車1の運動状態によらずに適切に行う。

Description

本発明は自動車(エンジン自動車)、ハイブリッド車、自動二輪車など、複数の車輪を有する車両の制御装置に関する。
従来、例えば特開平11−91608号公報(以下、特許文献1という)、特開2000−159138号公報(以下、特許文献2という)に見られるように、車両の動特性を表すモデルを使用して、車両のヨーレート、横速度などの運動の状態量の目標値を設定し、この目標値に実際の車両の状態量を追従させるように、実際の車両に備えたアクチュエータ装置を制御する技術が知られている。
これらの特許文献1,2に見られる技術では、車両のヨーレートと横速度とを状態量として有する動特性モデルにより、車速の検出値とステアリングホイールの操舵角の検出値とから目標ヨーレートおよび目標横速度が設定される。そして、目標ヨーレートに対応して要求される車両の後輪の舵角の目標値(第1目標後輪舵角)と、目標横速度に対応して要求される車両の後輪の舵角の目標値(第2目標後輪舵角)とが算出される。さらに、これらの第1目標後輪舵角と第2目標後輪舵角とを線形結合してなる値(重み付き平均値)が、後輪の舵角の最終的な目標値として決定される。そして、この目標値に実際の車両の後輪の舵角を追従させるように、後輪の操舵用のアクチュエータが制御される。
また、例えばPCT国際公開公報WO2006/013922A1(以下、特許文献3という)に見られる如く、実際の車両の状態量を該車両の動特性モデル上での状態量に近づけるように、実際の車両のアクチュエータ装置を制御するだけでなく、動特性モデル上での状態量を実際の車両の状態量に近づけるように、動特性モデルを操作する(動特性モデルに付加的な制御入力を与える)技術が本願出願人により提案されている。
ところで、実際の車両の運動に関する状態量を、車両の動特性モデル上での状態量に追従制御する場合において、ステアリングホイールの操舵角などの入力の変化に対して、車両の動特性モデル上での状態量が振動的な応答を生じると、これに追従させる実際の車両の状態量も振動的な応答を示すこととなる。このため、実際の車両の挙動特性をできるだけ良好に保つ上では、ステアリングホイールの操舵角などの入力の変化に対する動特性モデル上での状態量の応答特性(過渡応答特性)が、実際の車両の運動状態によらずに、できるだけ減衰性の高い応答特性になることが望ましいと考えられる。
ここで、本明細書においては、「減衰性が高い」とは、対象とする系の入力をステップ状に変化させたときの状態量(制御量)の振動成分の振幅値の減衰の時定数が短いこと、すなわち、該振動成分の振幅値の減衰速度が速いことを意味する。なお、いわゆる臨界制動(クリティカル・ダンピング)または過制動(オーバー・ダンピング)の応答特性は、振動成分を持たない非振動的な応答特性であるが、減衰性が最も高い特性であるとみなす。
しかるに、前記特許文献1,2に見られる技術では、以下の理由により、上記の如き要望を十分に満足することが困難であった。すなわち、ステアリングホイールの操舵角の変化に対する実際の車両のヨーレートや横速度などの状態量の応答特性は、一般に、走行速度が比較的高い場合に、振動的な応答特性(状態量が振動しながら、定常値に収束する特性)となる傾向がある。
このため、特許文献1,2に見られる技術で、仮に、車両の動特性モデルの応答特性を実際の車両の走行速度によらずに(任意の走行速度において)、減衰性が高い特性、例えば、臨界制動または過制動の特性(非振動的な特性)に設定しておくと、特に車両の走行速度が高い状態において、該動特性モデル上の車両の状態量の応答特性と実際の車両の状態量の応答特性とが大きく乖離する。この結果、特許文献1,2に見られる技術の動特性モデル上での状態量としてのヨーレートおよび横速度のそれぞれと、実際の車両のヨーレートおよび横速度のそれぞれとの差が大きくなる。ひいては、実際の車両の状態量を動特性モデル上での状態量に追従させるためのアクチュエータ装置の要求操作量が過大になりやすい。その結果、該アクチュエータ装置の能力内でその要求操作量を満たすことが実際にはできない状況が生じやすい。そして、この場合には、実際の車両の状態量を動特性モデル上での状態量に追従させることが実際には困難となる。
従って、特許文献1,2に見られる技術では、車両の動特性モデル上での状態量の応答特性を実際の車両の走行速度によらずに、非振動的な特性など、減衰性の高い特性に設定しておくことは実際にはできない。すなわち、実際には、車両の走行速度が低速となる状況など、車両の限られた運動状態(実際の車両の状態量の応答特性が、減衰性の高い特性となる運動状態)でしか、車両の動特性モデル上での状態量の応答特性を減衰性の高い特性に設定することはできない。このため、特許文献1,2に見られる技術は、前記の要望を十分に満足することができないものとなっていた。
一方、前記特許文献3に見られる技術では、実際の車両の状態量と動特性モデルの上での状態量との偏差に応じて、実際の車両のアクチュエータ装置を操作することに加えて、車両の動特性モデルも操作して、該動特性モデル上での状態量が実際の車両の状態量に近づけられる。すなわち、該偏差は、実際の車両だけでなく、動特性モデルにもフィードバックされる。このため、実際の車両の状態量と動特性モデル上での状態量との偏差が過大になるのを抑制できる。従って、特許文献3に見られるように、実際の車両の状態量と動特性モデル上での状態量との偏差を実際の車両と動特性モデルとの両者にフィードバックするようにした場合には、実際の車両の状態量の応答特性と、動特性モデル上での車両の状態量の応答特性とが比較的大きく乖離しても、アクチュエータ装置の要求操作量が過大になるのを抑制することが可能であると考えられる。ひいては、実際の車両の状態量を動特性モデル上での状態量に適切に追従させることが可能であると考えられる。
従って、特許文献3に見られるように、実際の車両の状態量と動特性モデル上での状態量との偏差を実際の車両と動特性モデルとの両者にフィードバックするようにした場合には、実際の車両の運動状態によらずに、車両の動特性モデル上での状態量の応答特性を減衰性の高い応答特性に設定することが可能であると考えられる。
本発明は、かかる背景に鑑みてなされたものであり、減衰性の高い動特性モデルを用いて、実際の車両の運動に関する状態量を、動特性モデル上での車両の状態量に近づけるように車両のアクチュエータ装置を制御することを車両の運動状態によらずに適切に行うことができ、ひいては、車両の挙動特性を良好に保つことができる車両の制御装置を提供することを目的とする。
本発明の車両の制御装置は、かかる目的を達成するために、複数の車輪を有する車両の操縦者による該車両の運転操作状態を示す運転操作量を検出する運転操作量検出手段と、前記車両の所定の運動を操作可能に該車両に設けられたアクチュエータ装置と、実際の車両の所定の運動に関する複数種類の状態量の値の組である実状態量ベクトルを検出または推定する実状態量把握手段と、前記車両の動特性を表すモデルとしてあらかじめ定められた車両モデル上での車両の前記複数種類の状態量の値の組であるモデル状態量ベクトルを決定するモデル状態量決定手段と、前記検出または推定された実状態量ベクトルの各種類の状態量の値と前記決定されたモデル状態量ベクトルの各種類の状態量の値との偏差である状態量偏差を算出する状態量偏差算出手段とを備え、該状態量偏差を0に近づけるように少なくとも前記アクチュエータ装置の動作を制御する車両の制御装置において、
実際の車両の前記アクチュエータ装置を操作するための実車アクチュエータ操作用制御入力と前記車両モデル上での車両の運動を操作するための車両モデル操作用制御入力とを、少なくとも前記算出された状態量偏差に応じて該状態量偏差を0に近づけるように決定する状態量偏差応動制御手段と、
少なくとも前記決定された実車アクチュエータ操作用制御入力に応じて前記アクチュエータ装置の動作を制御するアクチュエータ装置制御手段とを備えると共に、
前記モデル状態量決定手段が、少なくとも前記検出された運転操作量と前記決定された車両モデル操作用制御入力とに応じて前記モデル状態量ベクトルを決定する手段であり、
前記車両モデル操作用制御入力を0に維持した状態での前記運転操作量のステップ状の変化に応じた前記モデル状態量ベクトルの各種類の状態量の値の減衰性が、前記実車アクチュエータ操作用制御入力を0に維持した状態での当該運転操作量のステップ状の変化に応じた前記実状態量ベクトルの各種類の状態量の値の減衰性よりも高い特性である高減衰特性になるように、前記車両モデルの少なくとも1つのパラメータの値を前記実際の車両の運動状態に応じて可変的に設定する車両モデル特性設定手段を備えたことを特徴とする(第1発明)。
かかる第1発明によれば、前記車両モデルの少なくとも1つのパラメータを実際の車両の運動状態に応じて可変的に設定することにより、車両の任意の運動状態において、前記モデル状態量ベクトルの各種類の状態量の値の減衰性を、実状態量ベクトルの各種類の状態量の値の減衰性よりも高い前記高減衰特性にすることができる。この場合、特に、実状態量ベクトルの各種類の状態量の値の応答特性が振動的な特性になるような車両の運動状態では、実状態量ベクトルの各種類の状態量の値の応答特性と、モデル状態量ベクトルの各種類の状態量の値の応答特性との乖離が生じるものの、前記車両モデル操作用制御入力が前記車両モデルに与えられる。このため、前記状態量偏差が過大になるのが抑制され、ひいては、前記実アクチュエータ操作用制御入力が過大になるのが抑制される。従って、実状態量ベクトルの各種類の状態量の値を適切に、モデル状態量ベクトルの各種類の状態量の値に近づける(追従させる)ことができる。そして、モデル状態量ベクトルの各種類の状態量の値の減衰性は、前記高減衰特性であるので、該状態量の値が速やかに定常値に収束する。その結果、前記運転操作量が変化したときの実状態量ベクトルの各種類の状態量の値の振動を抑制することができ、車両の挙動特性を良好に保つことができる。
よって、第1発明によれば、減衰性の高い動特性モデルとしての前記車両モデルを用いて、実際の車両の運動に関する状態量を、該車両モデル上での車両の状態量に近づけるように車両のアクチュエータ装置を制御することを車両の運動状態によらずに適切に行うことができる。ひいては、車両の挙動特性を良好に保つことができる。
なお、本明細書では、前記したように、臨界制動または過制動の応答特性は、減衰性が最も高い応答特性である。このため、本発明において、実状態量ベクトルの各種類の状態量の値の応答特性(前記実車アクチュエータ操作用制御入力を0に維持した状態での前記運転操作量のステップ状の変化に応じた応答特性)が臨界制動または過制動となるような車両の運動状態での前記高減衰特性は、臨界制動または過制動の特性を意味する。
前記第1発明では、前記運転操作量のステップ状の変化に応じた前記モデル状態量ベクトルの各種類の状態量の値の応答特性が、車両の任意の運動状態において、できるだけ振動成分を持たないことが望ましい。従って、前記高減衰特性は、臨界制動または過制動の応答特性であることが好適である(第2発明)。
この第2発明によれば、前記運転操作量が変化したときの実状態量ベクトルの各種類の状態量の値の振動を効果的に抑制し、もしくは解消することができる。その結果、車両の挙動特性をより良好な特性にすることができる。
また、前記第1または第2発明では、前記複数種類の状態量が例えば前記車両の横すべりおよびヨー軸まわりの回転に関する2種類以上の状態量を含む場合には、前記運転操作量のステップ状の変化に応じた実状態量ベクトルの各種類の状態量の値の減衰性は、実際の車両の走行速度に応じて変化する。そこで、この場合には、前記車両モデル特性設定手段は、前記車両モデルのパラメータの値を前記実際の車両の走行速度に応じて可変的に設定する(第3発明)。
この第3発明によれば、モデル状態量ベクトルの各種類の状態量の値の減衰性を的確に前記高減衰特性にすることができる。なお、前記2種類以上の状態量は、車両の横すべりに関する状態量とヨー軸まわりの回転に関する状態量とを各別に含むものでなくてもよい。例えば、車両の横すべりに関する状態量とヨー軸まわりの回転に関する状態量との2種類の線形結合値を含んでもよい。
前記第3発明では、前記モデル状態量ベクトルの各種類の状態量の値の減衰性を高めるように、車両モデルのパラメータの値を車両の走行速度に応じて可変的に設定した場合、特に、該走行速度が比較的高い速度となる車両の運動状態において、該車両モデルの固有値の絶対値が過大なものとなりやすい。なお、車両モデルの「固有値」は、該車両モデルが線形モデルである場合には、通常の意味での「固有値」を意味する。また、該車両モデルが非線形なモデルである場合には、前記車両モデル操作用制御入力を0として、前記モデル状態量ベクトルの各種類の状態量の任意の値において該車両モデルを線形近似してなるモデル(該状態量の値の近傍において線形性を有するモデル)の固有値を意味する。
上記の如く走行速度が比較的高い速度となる車両の運動状態において、車両モデルの固有値の絶対値が過大なものとなりやすい。このため、車両の走行速度が比較的高い速度域において、運転操作量の変化に応じたモデル状態量ベクトルの各種類の状態量の値の応答性(運転操作量の変化直後における各種類の状態量の値の変化速度)が実状態量ベクトルの各種類の状態量の値の応答性よりも高くなり過ぎる恐れがある。この場合、前記モデル操作用制御入力によって、前記状態量偏差を小さめに抑えることは可能である。しかるに、特に該状態量偏差に対するモデル操作用制御入力のゲインを小さめに設定した場合には、運転操作量の変化の直後における状態量偏差が大きくなり過ぎて、前記実アクチュエータ操作用制御入力が過大になる恐れがある。
そこで、第3発明では、前記車両モデル特性設定手段は、前記車両モデルの固有値の絶対値が、少なくとも前記走行速度が所定速度よりも高いときに、所定値以下になるように前記車両モデルのパラメータの値を該走行速度に応じて可変的に設定することが好ましい(第4発明)。
この第4発明によれば、前記モデル状態量ベクトルの各種類の状態量の値の減衰性を前記高減衰特性にすることに加えて、少なくとも前記走行速度が所定速度よりも高い場合に、車両モデルの固有値の絶対値が所定値以下になるように該車両モデルのパラメータの値が該走行速度に応じて設定される。このため、運転操作量のステップ状の変化に応じたモデル状態量ベクトルの各種類の状態量の値の減衰性を高めつつ、該状態量の値の応答性が実状態量ベクトルの各種類の状態量の値の応答性に対して高くなり過ぎるのを防止できる。その結果、前記状態量偏差が過大になるのをより確実に防止することができる。ひいては、前記実アクチュエータ操作用制御入力が過大になるのをより確実に防止できる。従って、実状態量ベクトルの各種類の状態量の値をモデル状態量ベクトルの各種類の状態量の値に追従させる制御をより適切に行なうことができる。
なお、第4発明では、モデル状態量ベクトルの各種類の状態量の値の減衰性と応答性とを走行速度に応じて操作することとなるので、該走行速度に応じて可変的に設定すべき車両モデルのパラメータは2つ以上必要となる。
また、前記第1〜第4発明においては、前記車両モデル特性設定手段は、前記車両モデル操作用制御入力を0に維持した状態で前記運転操作操作量をステップ状に変化させたときの該運転操作量の定常値と、前記モデル状態量ベクトルの各種類の状態量の値の定常値との関係が一定の関係に保たれるように、前記車両モデルのパラメータの値を可変的に設定することが好ましい(第5発明)。
この第5発明によれば、前記運転操作操作量をステップ状に変化させたときの該運転操作量の定常値と、前記モデル状態量ベクトルの各種類の状態量の値の定常値との関係、すなわち、車両モデルの定常特性が前記車両モデルのパラメータの値を可変的に設定しても(該パラメータの値の変更によらずに)、一定に保たれる。このため、該車両モデルの定常特性を実際の車両の定常特性(詳しくは、前記実車アクチュエータ操作用制御入力を0に維持した状態での運転操作量の定常値と、前記実状態量ベクトルの各種類の状態量の定常値との関係)とほぼ同等の特性にすることが可能となる。その結果、実際の車両の運動時の定常状態(運転操作量が一定で、且つ、路面などの環境状態が一定もしくは一様であって、過渡的な挙動が消えるまで十分に時間が経過した状態)における前記状態量偏差を常に微小に抑えることができる。ひいては、実際の車両の定常状態における前記実アクチュエータ操作用制御入力を最小限に留め、前記アクチュエータ装置が過剰に動作するのを防止できる。
本発明の車両の制御装置の実施形態を以下に説明する。
まず、図1を参照して、本明細書の実施形態における車両の概略構成を説明する。図1は、その車両の概略構成を示すブロック図である。なお、本明細書の実施形態で例示する車両は、4個の車輪(車両の前後に2個ずつの車輪)を備える自動車である。その自動車の構造自体は、公知のものでよいので、本明細書での詳細な図示および説明は省略する。
図1に示す如く、車両1(自動車)は、公知の通常の自動車と同様に、4個の車輪W1,W2,W3,W4のうちの駆動輪に回転駆動力(車両1の推進力となる回転力)を付与し、あるいは各車輪W1〜W4に制動力(車両1の制動力となる回転力)を付与する駆動・制動装置3A(駆動・制動系)と、4個の車輪W1〜W4のうちの操舵輪を操舵するステアリング装置3B(ステアリング系)と、4個の車輪W1〜W4に車体1Bを弾力的に支持するサスペンション装置3C(サスペンション系)とを備えている。車輪W1,W2,W3,W4は、それぞれ車両1の左前、右前、左後、右後の車輪である。また、駆動輪および操舵輪は、本明細書で説明する実施形態では2つの前輪W1,W2である。従って、後輪W3,W4は従動輪で、また、非操舵輪である。
ただし、駆動輪は、2つの後輪W3,W4であってもよく、あるいは、前輪W1,W2および後輪W3,W4の両者(4個の車輪W1〜W4)であってもよい。また、操舵輪は、2つの前輪W1,W2だけでなく、後輪W3,W4も含まれていてもよい。
これらの装置3A,3B,3Cは、車両1の運動を操作する機能を持つ。例えば駆動・制動装置3Aは、主に、車両1の進行方向の運動(車両1の進行方向の位置、速度、加速度など)を操作する機能を持つ。ステアリング装置3Bは、主に、車両1のヨー方向の回転運動(車両1のヨー方向の姿勢、角速度、角加速度など)を操作する機能を持つ。サスペンション装置3Cは、主に、車両1の車体1Bのピッチ方向およびロール方向の運動(車体1Bのピッチ方向およびロール方向の姿勢など)、あるいは車体1Bの上下方向の運動(車体1Bの路面からの高さ(車輪W1〜W4に対する車体1Bの上下方向の位置)など)を操作する機能を持つ。なお、本明細書では、車両1あるいは車体1Bの「姿勢」は空間的な向きを意味する。
補足すると、一般に、車両1の旋回時などに、車輪W1〜W4の横すべりが発生する。そして、この横すべりは、車両1の操舵輪の舵角、車両1のヨーレート(ヨー方向の角速度)、各車輪W1〜W4の駆動・制動力などの影響を受ける。このため、駆動・制動装置3Aやステアリング装置3Bは、車両1の横方向(左右方向)の並進運動を操作する機能も持つ。なお、車輪の「駆動・制動力」は、該車輪に路面から作用する路面反力のうち、該車輪の前後方向(詳しくは該車輪の回転面(車輪の中心点を通って該車輪の回転軸と直交する面)と路面もしくは水平面との交線の方向)の並進力成分を意味する。また、路面反力のうち、車輪の幅方向(車輪の回転軸に平行な方向)の並進力成分を「横力」、路面反力のうち、路面もしくは水平面に垂直な方向の並進力成分を「接地荷重」という。
駆動・制動装置3Aは、詳細な図示は省略するが、より詳しくは車両1の動力発生源(車両1の推進力発生源)としてのエンジン(内燃機関)と、このエンジンの出力(回転駆動力)を車輪W1〜W4のうちの駆動輪に伝達する動力伝達系とからなる駆動系と、各車輪W1〜W4に制動力を付与するブレーキ装置(制動系)とを備えている。動力伝達系には、変速装置、差動歯車装置などが含まれる。
なお、実施形態で説明する車両1は、動力発生源としてエンジンを備えるものであるが、エンジンと電動モータとを動力発生源として備えた車両(いわゆるパラレル型のハイブリッド車両)や電動モータを動力発生源として備えた車両(いわゆる電気自動車、あるいはシリーズ型のハイブリッド車両)であってもよい。
また、車両1(自動車)を運転者が操縦するために操作する操作器5(人為的操作器)として、ステアリングホイール(ハンドル)、アクセルペダル、ブレーキペダル、シフトレバーなどが車両1の車室内に備えられている。なお、操作器5の各要素の図示は省略する。
操作器5のうちのステアリングホイールは、前記ステアリング装置3Bの動作に関連するものである。すなわち、ステアリングホイールを回転操作することで、これに応じてステアリング装置3Bが動作して、車輪W1〜W4のうちの操舵輪W1,W2が操舵される。
操作器5のうちのアクセルペダル、ブレーキペダルおよびシフトレバーは、前記駆動・制動装置3Aの動作に関連するものである。すなわち、アクセルペダルの操作量(踏み込み量)に応じてエンジンに備えられたスロットル弁の開度が変化し、エンジンの吸入空気量および燃料噴射量(ひいてはエンジンの出力)が調整される。また、ブレーキペダルの操作量(踏み込み量)に応じてブレーキ装置が作動し、ブレーキペダルの操作量に応じた制動トルクが各車輪W1〜W4に付与される。また、シフトレバーを操作することで、変速装置の変速比等、該変速装置の動作状態が変化し、エンジンから駆動輪に伝達される駆動トルクの調整などが行なわれる。
なお、運転者(車両1の操縦者)によるステアリングホイールなどの各操作器5の運転操作状態は、図示を省略する適宜のセンサにより検出される。以降、この運転操作状態の検出値(センサの検出出力)を運転操作入力と呼ぶ。この運転操作入力には、ステアリングホイールの回転角であるステアリング角、アクセルペダルの操作量であるアクセルペダル操作量、ブレーキペダルの操作量であるブレーキペダル操作量、およびシフトレバーの操作位置であるシフトレバー位置の検出値が含まれる。この運転操作入力を出力するセンサが本発明における運転操作量検出手段に相当する。
本明細書の実施形態では、前記駆動・制動装置3Aおよびステアリング装置3Bは、その動作(ひいては車両1の運動)を、前記運転操作入力だけでなく、該運転操作入力以外の要因(車両1の運動状態や環境状態など)にも応じて能動的に制御可能なものとされている。ここで、「能動的に制御可能」というのは、装置3A,3Bの動作を、前記運転操作入力に対応する基本的な動作(運転操作入力に対応して決定される基本目標動作)を修正してなる動作に制御可能であることを意味する。
具体的には、駆動・制動装置3Aは、前輪W1,W2の組と後輪W3,W4の組とのうちの少なくともいずれか一方の組について、左側の車輪W1,W3の駆動・制動力と右側の車輪W2,W4の駆動・制動力との差もしくは比率を、該駆動・制動装置3Aに備えた油圧アクチュエータ、電動モータ、電磁制御弁などのアクチュエータを介して能動的に制御可能な機能(以下、この制御機能を左右動力配分制御機能という)を持つ駆動・制動装置である。
さらに具体的には、本明細書の実施形態では、駆動・制動装置3Aは、ブレーキ装置の動作によって各車輪W1〜W4に作用させる駆動・制動力(詳しくは、車両1の制動方向の駆動・制動力)を該ブレーキ装置に備えたアクチュエータを介して能動的に制御可能な駆動・制動装置(ブレーキ装置によって各車輪W1〜W4に作用させる駆動・制動力をブレーキペダルの操作量に応じて決定される基本的な駆動・制動力から増減制御可能な駆動・制動装置)である。従って、駆動・制動装置3Aは、前輪W1,W2の組と後輪W3,W4の組との両者の組について、ブレーキ装置による左側の車輪W1,W3の駆動・制動力と右側の車輪W2,W4の駆動・制動力との差もしくは比率を、アクチュエータを介して能動的に制御可能な駆動・制動装置(前輪W1,W2の組と後輪W3,W4の組との両者の組について左右動力配分制御機能を持つ駆動・制動装置)である。
なお、駆動・制動装置3Aは、ブレーキ装置の動作による各車輪W1〜W4の駆動・制動力を能動的に制御する機能に加えて、駆動・制動装置3Aの駆動系の動作によって駆動輪である前輪W1,W2に作用させる駆動・制動力の差もしくは比率を、該駆動系に備えたアクチュエータを介して能動的に制御可能な機能を持つものであってもよい。
このように左右動力配分制御機能を持つ駆動・制動装置3Aとしては、公知のものを使用すればよい。
補足すると、上記のように左右動力配分制御機能を持つ駆動・制動装置3Aは、その制御機能によって、車両1のヨー方向の回転運動や、横方向の並進運動を能動的に操作する機能も持つこととなる。
なお、駆動・制動装置3Aには、左右動力配分制御機能に係わるアクチューエータのほか、ブレーキ装置の制動トルク発生用のアクチュエータや、エンジンのスロットル弁を駆動するアクチュエータ、燃料噴射弁を駆動するアクチュエータ、変速装置の変速駆動を行なうアクチュエータなども含まれる。
また、前記ステアリング装置3Bは、例えば、操舵輪である前輪W1,W2をステアリングホイールの回転操作に応じてラック・アンド・ピニオンなどの操舵機構を介して機械的に操舵する機能に加えて、必要に応じて電動モータなどのアクチュエータにより前輪W1,W2を補助的に操舵可能なステアリング装置(前輪W1,W2の舵角をステアリングホイールの回転角に応じて機械的に定まる舵角から増減制御可能なステアリング装置)である。あるいは、ステアリング装置3Bは、前輪W1,W2の操舵をアクチュエータの駆動力だけを使用して行なうステアリング装置(所謂、ステアリング・バイ・ワイヤのステアリング装置)である。従って、ステアリング装置3Bは前輪W1,W2の舵角をアクチュエータを介して能動的に制御可能なステアリング装置(以下、アクティブステアリング装置という)である。
ステアリング装置3Bが操舵輪W1,W2をステアリングホイールの回転操作に応じて機械的に操舵することに加えて、補助的にアクチュエータにより操舵輪を操舵するアクティブステアリング装置(以下、このようなアクティブステアリング装置をアクチュエータ補助型のステアリング装置という)である場合には、ステアリングホイールの回転操作により機械的に決定される操舵輪の舵角と、アクチュエータの動作による舵角(舵角の補正量)との合成角度が操舵輪の舵角になる。
また、ステアリング装置3Bが操舵輪W1,W2の操舵をアクチュエータの駆動力だけを使用して行なうアクティブステアリング装置(以下、このようなアクティブステアリング装置をアクチュエータ駆動型のステアリング装置という)である場合には、少なくともステアリング角の検出値に応じて操舵輪の舵角の目標値が決定され、操舵輪の実際の舵角がその目標値になるようにアクチュエータが制御される。
このように操舵輪W1,W2の舵角をエクチュエータを介して能動的な制御可能なステアリング装置3B(アクティブステアリング装置)としては、公知のものを使用すればよい。
なお、本明細書の実施形態におけるステアリング装置3Bは、前輪W1,W2の舵角をアクチュエータを介して能動的に制御可能なアクティブステアリング装置であるが、ステアリングホイールの回転操作に応じた前輪W1,W2の機械的な操舵だけを行なうもの(以下、機械式ステアリング装置という)であってもよい。また、全ての車輪W1〜W4を操舵輪とする車両では、ステアリング装置は、前輪W1,W2および後輪W3,W4の両者の舵角をアクチュエータを介して能動的に制御可能なものであってもよい。あるいは、該ステアリング装置は、ステアリングホイールの回転操作に応じた前輪W1,W2の操舵をラック・アンド・ピニオンなどの機械的な手段だけで行なうと共に、後輪W3,W4の舵角だけをアクチュエータを介して能動的に制御可能なものであってもよい。
前記サスペンション装置3Cは、本明細書の実施形態では、例えば車両1の運動に応じて受動的に動作するサスペンション装置である。
ただし、サスペンション装置3Cは、例えば車体1Bと車輪W1〜W4との間に介在するダンパーの減衰力や硬さ等を電磁制御弁や電動モータなどのアクチュエータを介して可変的に制御可能なサスペンション装置であってもよい。あるいは、サスペンション装置3Cは、油圧シリンダまたは空圧シリンダによってサスペンション(サスペンション装置3Cのばね等の機構部分)のストローク(車体1Bと各車輪W1〜W4との間の上下方向の変位量)、または車体1Bと車輪W1〜W4との間で発生するサスペンションの上下方向の伸縮力を直接的に制御可能なサスペンション装置(いわゆる電子制御サスペンション)であってもよい。サスペンション装置3Cが上記のようにダンパの減衰力や硬さ、サスペンションのストロークもしくは伸縮力を制御可能なサスペンション装置(以下、アクティブサスペンション装置という)である場合には、該サスペンション装置3Cは、その動作を能動的に制御可能である。
以降の説明では、駆動・制動装置3A、ステアリング装置3B、およびサスペンション装置3Cのうち、前記の如く能動的に動作を制御可能なものを総称的にアクチュエータ装置3ということがある。本明細書の実施形態では、該アクチュエータ装置3には、駆動・制動装置3Aおよびステアリング装置3Bが含まれる。なお、サスペンション装置3Cがアクティブサスペンション装置である場合には、該サスペンション装置3Cもアクチューエタ装置3に含まれる。
また、車両1には、前記各アクチュエータ装置3に備えるアクチュエータの操作量(アクチュエータに対する制御入力。以下、アクチュエータ操作量という)を前記運転操作入力などに応じて決定し、そのアクチュエータ操作量によって各アクチュエータ装置3の動作を制御する制御装置10が備えられている。この制御装置10は、マイクロコンピュータなどを含む電子回路ユニットから構成される。該制御装置10には、操作器5のセンサから前記運転操作入力が入力されると共に、図示しない各種のセンサから、車両1の走行速度、ヨーレートなどの車両1の状態量の検出値や車両1の走行環境の情報などが入力される。そして、該制御装置10は、それらの入力を基に、所定の制御処理周期でアクチュエータ操作量を逐次決定し、各アクチュエータ装置3の動作を逐次制御する。
以上が、本明細書の実施形態における車両1(自動車)の全体的な概略構成である。この概略構成は、以下に説明するいずれの実施形態においても同じである。
補足すると、本明細書の実施形態では、前記駆動・制動装置3A、ステアリング装置3B、およびサスペンション装置3Cのうち、本発明におけるアクチュエータ装置(本発明を適用して動作制御を行なうアクチュエータ装置)に相当するものは、駆動・制動装置3A、あるいは、該駆動・制動装置3Aおよびステアリング装置3Bである。
また、制御装置10は、その制御処理機能によって本発明における種々の手段を実現している。


[第1実施形態]
次に、第1実施形態における制御装置10の制御処理の概略を図2を参照して説明する。図2は制御装置10の全体的な制御処理機能の概略を示す機能ブロック図である。なお、以降の説明では、実際の車両1を実車1という。
図2中の実車1を除く部分(より正確には、実車1と、後述のセンサ・推定器12に含まれるセンサとを除く部分)が制御装置10の主な制御処理機能である。図2中の実車1は、前記駆動・制動装置3A、ステアリング装置3B、およびサスペンション装置3Cを備えている。
図示の如く、制御装置10は、センサ・推定器12、規範操作量決定部14、規範動特性モデル16、減算器18、フィードバック分配則(FB分配則)20、フィードフォワード則(FF則)22、アクチュエータ動作目標値合成部24、およびアクチュエータ駆動制御装置26を主な処理機能部として備えている。なお、図2中の実線の矢印は、各処理機能部に対する主たる入力を示し、破線の矢印は、各処理機能部に対する補助的な入力を示している。
制御装置10は、これらの処理機能部の処理を所定の制御処理周期で実行し、該制御処理周期毎に逐次、アクチュエータ操作量を決定する。そして、そのアクチュエータ操作量に応じて実車1のアクチュエータ装置3の動作を逐次制御する。
以下に、制御装置10の各処理機能部の概要と全体的な処理の概要とを説明する。なお、以降、制御装置10の各制御処理周期で決定される変数の値に関し、現在の(最新の)制御処理周期の処理で最終的に得られる値を今回値、前回の制御処理周期の処理で最終的に得られた値を前回値という。
制御装置10は、各制御処理周期において、まず、センサ・推定器12により実車1の状態量や実車1の走行環境の状態量を検出または推定する。本実施形態では、センサ・推定器12の検出対象または推定対象には、例えば実車1のヨー方向の角速度であるヨーレートγact、実車1の走行速度Vact(対地速度)、実車1の重心点の横すべり角である車両重心点横すべり角βact、実車1の前輪W1,W2の横すべり角である前輪横すべり角βf_act、実車1の後輪W3,W4の横すべり角である後輪横すべり角βr_act、実車1の各車輪W1〜W4に路面から作用する反力である路面反力(駆動・制動力、横力、接地荷重)、実車1の各車輪W1〜W4のスリップ比、実車1の前輪W1,W2の舵角δf_actが含まれる。
これらの検出対象または推定対象のうちの、車両重心点横すべり角βactは、実車1を上方から見たときの(水平面上での)該実車1の走行速度Vactのベクトルが実車1の前後方向に対してなす角度である。また、前輪横すべり角βf_actは、実車1を上方から見たときの(水平面上での)前輪W1,W2の進行速度ベクトルが前輪W1,W2の前後方向に対してなす角度である。また、後輪横すべり角βr_actは、実車1を上方から見たときの(水平面上での)後輪W3,W4の進行速度ベクトルが後輪W3,W4の前後方向に対してなす角度である。また、舵角δf_actは、実車1を上方から見たときの(水平面上での)前輪W1,W2の回転面が実車1の前後方向に対してなす角度である。
なお、前輪横すべり角βf_actは、各前輪W1,W2毎に検出または推定してもよいが、いずれか一方の前輪W1またはW2の横すべり角を代表的にβf_actとして検出または推定したり、あるいは、両者の横すべり角の平均値をβf_actとして検出または推定してもよい。後輪横すべり角βr_actについても同様である。
さらに、センサ・推定器12の推定対象として、実車1の車輪W1〜W4とこれに接する実際の路面との間の摩擦係数(以下、該摩擦係数の推定値を推定摩擦係数μestmという)が含まれる。なお、推定摩擦係数μestmの頻繁な変動を生じないように、摩擦係数の推定処理にはローパス特性のフィルタリング処理などを介在させることが好ましい。
センサ・推定器12は、上記の検出対象または推定対象を検出または推定するために実車1に搭載された種々のセンサを備えている。該センサとしては、例えば実車1の角速度を検出するレートセンサ、実車1の前後方向および左右方向の加速度を検出する加速度センサ、実車1の走行速度(対地速度)を検出する速度センサ、実車1の各車輪W1〜W4の回転速度を検出する回転速度センサ、実車1の各車輪W1〜W4に路面から作用する路面反力を検出する力センサなどが含まれる。
この場合、センサ・推定器12は、その検出対象または推定対象のうち、実車1に搭載したセンサによって直接的に検出できない推定対象については、その推定対象と相関性のある状態量の検出値や、制御装置10が決定したアクチュエータ操作量の値もしくは目標値を基に、オブザーバなどにより推定する。例えば車両重心点横すべり角βactは、実車1に搭載した加速度センサの検出値などを基に推定される。また、例えば摩擦係数は、加速度センサの検出値などを基に、公知の手法により推定される。
補足すると、センサ・推定器12は、本発明における実状態量把握手段としての機能を持つ。本実施形態では、車両の運動に関する状態量の種類として、車両のヨーレートと車両重心点横すべり角とを用いる。この場合、ヨーレートは、車両のヨー方向の回転運動に関する状態量としての意味を持ち、車両重心点横すべり角は、車両の横すべり(車両の横方向の並進運動)に関する状態量としての意味を持つ。従って、前記ヨーレートγactおよび車両重心点横すべり角βactの組が本発明における実状態量ベクトルとしてセンサ・推定器12により検出または推定される。
以降、センサ・推定器12により検出または推定する実車1の状態量などの名称にしばしば「実」を付する。例えば、実車1のヨーレートγact、実車1の走行速度Vact、実車1の車両重心点横すべり角βactをそれぞれ実ヨーレートγact、実走行速度Vact、実車両重心点横すべり角βactという。
次いで、制御装置10は、規範操作量決定部14により、後述する規範動特性モデル16に対する入力としての規範モデル操作量を決定する。この場合、規範操作量決定部14には、前記操作器5のセンサで検出される運転操作入力が入力され、少なくとも該運転操作入力に基づいて規範モデル操作量が決定される。
より詳しくは、本実施形態では、規範操作量決定部14が決定する規範モデル操作量は、後述する規範動特性モデル16上での車両の前輪の舵角(以下、モデル前輪舵角という)である。このモデル前輪舵角を決定するために、前記運転操作入力のうちのステアリング角θh(今回値)が規範操作量決定部14に主たる入力量として入力される。さらに、センサ・推定器12によって検出または推定された実走行速度Vact(今回値)および推定摩擦係数μestm(今回値)と、規範動特性モデル16上での車両の状態量(前回値)とが規範操作量決定部14に入力される。そして、規範操作量決定部14は、これらの入力を基にモデル前輪舵角を決定する。なお、モデル前輪舵角は、基本的には、ステアリング角θhに応じて決定すればよい。但し、本実施形態では、規範動特性モデル16に入力するモデル前輪舵角に所要の制限を掛ける。この制限を掛けるために、規範操作量決定部14には、ステアリング角θh以外に、Vact,μestmなどが入力される。
補足すると、規範モデル操作量の種類は、一般的には、規範動特性モデル16の形態や、該規範動特性モデル16により決定しようとする状態量の種類に依存する。また、規範動特性モデル16に規範操作量決定部14を含めてもよい。規範動特性モデル16が運転操作入力そのものを必要入力とするように構成されている場合には、規範操作量決定部14を省略してもよい。
次いで、制御装置10は、規範動特性モデル16により実車1の規範とする運動(以降、規範運動という)の状態量である規範状態量を決定して出力する。規範動特性モデル16は、車両の動特性を表す、あらかじめ定められたモデルであり、前記規範モデル操作量を含む所要の入力を基に、規範運動の状態量(規範状態量)を逐次決定する。該規範運動は、基本的には、運転者にとって好ましいと考えられる実車1の理想的な運動もしくはそれに近い運動を意味する。
この場合、規範動特性モデル16には、規範操作量決定部14で決定された規範モデル操作量と、後述するFB分配則20で決定された、規範動特性モデル16の操作用の制御入力(フィードバック制御入力)Mvir,Fvirなどが入力される。そして、規範動特性モデル16は、それらの入力に基づいて規範運動(ひいては規範状態量の時系列)を決定する。
より詳しくは、本実施形態では、規範動特性モデル16によって決定して出力する規範状態量は、車両のヨー方向の回転運動に関する規範状態量と車両の横方向の並進運動(
横すべり運動)に関する規範状態量との組である。車両のヨー方向の回転運動に関する規範状態量は、例えばヨーレートの規範値γd(以降、規範ヨーレートγdということがある)であり、車両の横方向の並進運動に関する規範状態量は、例えば車両重心点横すべり角の規範値βd(以降、規範車両重心点横すべり角βdということがある)である。これらの規範状態量γd,βdを制御処理周期毎に逐次決定するために、規範モデル操作量としての前記モデル前輪舵角(今回値)と、前記フィードッバック制御入力Mvir,Fvir(前回値)とが入力される。この場合、本実施形態では、規範動特性モデル16上の車両の走行速度を実走行速度Vactに一致させる。このために、規範動特性モデル16には、センサ・推定器12によって検出または推定された実走行速度Vact(今回値)も入力される。そして、規範動特性モデル16は、これらの入力を基に、該規範動特性モデル16上での車両のヨーレートおよび車両重心点横すべり角を決定し、それを規範状態量γd,βdとして出力する。
なお、規範動特性モデル16に入力するフィードバック制御入力Mvir,Fvirは、実車1の走行環境(路面状態など)の変化(規範動特性モデル16で考慮されていない変化)や、規範動特性モデル16のモデル化誤差、あるいは、センサ・推定器12の検出誤差もしくは推定誤差などに起因して、実車1の運動と規範運動とがかけ離れる(乖離する)のを防止する(規範運動を実車1の運動に近づける)ために規範動特性モデル16に付加的に入力するフィードバック制御入力である。該フィードバック制御入力Mvir,Fvirは、本実施形態では、規範動特性モデル16上の車両に仮想的に作用させる仮想外力である。この仮想外力Mvir,FvirのうちのMvirは、規範動特性モデル16上の車両の重心点まわりに作用させるヨー方向の仮想的なモーメントであり、Fvirは該重心点に作用させる横方向の仮想的な並進力である。
補足すると、前記規範状態量γd,βdの組は、本発明におけるモデル状態量ベクトルに相当し、規範動特性モデル16が本発明における車両モデルに相当する。そして、規範操作量決定部14および規範動特性モデル16の処理によって、本発明におけるモデル状態量決定手段が構成される。本実施形態では、規範動特性モデル16の処理には、本発明における車両モデル特性設定手段としての機能が含まれる。
次いで、制御装置10は、センサ・推定器12によって検出または推定された実状態量(規範状態量と同じ種類の実状態量)と、規範動特性モデル16によって決定した規範状態量との差である状態量偏差を減算器18で算出する。
より詳しくは、減算器18では、実ヨーレートγactおよび実車両重心点横すべり角βactのそれぞれの値(今回値)と、規範動特性モデル16によって決定した規範ヨーレートγdおよび規範車両重心点横すべり角βdのそれぞれの値(今回値)との差γerr(=γact−γd),βerr(=βact−γd)を状態量偏差として求める。
補足すると、減算器18の処理により、本発明における状態量偏差算出手段が構成される。
次いで、制御装置10は、上記の如く求めた状態量偏差γerr,βerrをFB分配則20に入力し、このFB分配則20によって、規範動特性モデル16の操作用のフィードバック制御入力である前記仮想外力Mvir,Fvirと、実車1のアクチュエータ装置3の操作用のフィードバック制御入力であるアクチュエータ動作フィードバック目標値(アクチュエータ動作FB目標値)とを決定する。
なお、本実施形態では、アクチュエータ動作FB目標値には、駆動・制動装置3Aのブレーキ装置の動作に関するフィードバック制御入力(より詳しくは、該ブレーキ装置の動作によって各車輪W1〜W4に作用させる駆動・制動力を操作するフィードバック制御入力)が含まれる。あるいは、アクチュエータ動作FB目標値には、駆動・制動装置3Aの動作に関するフィードバック制御入力に加えて、ステアリング装置3Bの動作に関するフィードバック制御入力(より詳しくは、ステアリング装置3Bの動作によって前輪W1,W2の横力を操作するフィードバック制御入力)が含まれる。該アクチュエータ動作FB目標値は、換言すれば、実車1に作用する外力である路面反力を操作する(修正する)ためのフィードバック制御入力である。
FB分配則20は、基本的には、入力される状態量偏差γerr,βerrを0に近づけるように仮想外力Mvir,Fvirとアクチュエータ動作FB目標値とを決定する。但し、FB分配則20は、仮想外力Mvir,Fvirを決定するときに、状態量偏差γerr,βerrを0に近づけるだけでなく、実車1もしくは規範動特性モデル16上の車両の所定の制限対象量が所定の許容範囲から逸脱するのを抑制するように仮想外力Mvir,Fvirを決定する。また、FB分配則20は、状態量偏差γerr,βerrを0に近づけるための所要のヨー方向のモーメントを実車1の重心点のまわりに発生させるように(より一般的には、状態量偏差γerr,βerrを0に近づけるための所要の外力(路面反力)を実車1に作用させるように)、駆動・制動装置3Aのブレーキ装置の動作に関するフィードバック制御入力を、あるいは、該フィードバック制御入力とステアリング装置3Bの動作に関するフィードバック制御入力とをアクチュエータ動作FB目標値として決定する。
前記仮想外力Mvir,Fvirとアクチュエータ動作FB目標値とを決定するために、FB分配則20には、状態量偏差γerr,βerrだけでなく、規範動特性モデル16の出力である規範状態量γd,βdと、センサ・推定器12で検出または推定された実状態量γact,βactとのうちの少なくともいずれか一方が入力される。さらに、FB分配則20には、センサ・推定器12で検出または推定された実走行速度Vact、実前輪横すべり角βf_act、実後輪横すべり角βr_actなどの実状態量も入力される。そして、FB分配則20は、これらの入力を基に、仮想外力Mvir,Fvirとアクチュエータ動作FB目標値とを決定する。
補足すると、仮想外力Mvir,Fvirは、本発明における車両モデル操作用制御入力に相当し、アクチュエータ動作FB目標値は、本発明における実車アクチュエータ操作用制御入力に相当する。従って、FB分配則20は、状態量偏差応動制御手段としての機能を持つ。
一方、以上説明した規範操作量決定部14、規範動特性モデル16、減算器18およびFB分配則20の制御処理と並行して(もしくは時分割処理により)、制御装置10は、前記運転操作入力をFF則22に入力し、該FF則22によって、アクチュエータ装置3の動作のフィードフォワード目標値(基本目標値)であるアクチュエータ動作FF目標値を決定する。
本実施形態では、アクチュエータ動作FF目標値には、駆動・制動装置3Aのブレーキ装置の動作による実車1の各車輪W1〜W4の駆動・制動力に関するフィードフォワード目標値と、駆動・制動装置3Aの駆動系の動作による実車1の駆動輪W1,W2の駆動・制動力に関するフィードフォワード目標値と、駆動・制動装置3Aの変速装置の減速比(変速比)に関するフィードフォワード目標値と、ステアリング装置3Bによる実車1の操舵輪W1,W2の舵角に関するフィードフォワード目標値とが含まれる。
FF則22には、これらのアクチュエータ動作FF目標値を決定するために、前記運転操作入力が入力されると共に、センサ・推定器12で検出または推定された実状態量(実走行速度Vactなど)が入力される。そして、FF則22は、これらの入力を基に、アクチュエータ動作FF目標値を決定する。該アクチュエータ動作FF目標値は、前記状態量偏差γerr,βerrに依存せずに決定される、アクチュエータ装置3の動作目標値である。
補足すると、サスペンション装置3Cがアクティブサスペンション装置である場合には、アクチュエータ動作FF目標値には、一般に、該サスペンション装置3Cの動作に関するフィードフォワード目標値も含まれる。
次いで、制御装置10は、FF則22で決定したアクチュエータ動作FF目標値(今回値)と前記FB分配則20で決定したアクチュエータ動作FB目標値(今回値)とをアクチュエータ動作目標値合成部24に入力する。そして、制御装置10は、該アクチュエータ動作目標値合成部24によって、アクチュエータ動作FF目標値とアクチュエータ動作FB目標値とを合成し、アクチュエータ装置3の動作を規定する目標値であるアクチュエータ動作目標値を決定する。
本実施形態では、アクチュエータ動作目標値には、実車1の各車輪W1〜W4の駆動・制動力の目標値(駆動・制動装置3Aの駆動系およびブレーキ装置の動作によるトータルの駆動・制動力の目標値)と、実車1の各車輪W1〜W4のスリップ比の目標値と、ステアリング装置3Bによる実車1の操舵輪W1,W2の舵角の目標値と、駆動・制動装置3Aの駆動系の動作による実車1の各駆動輪W1,W2の駆動・制動力の目標値と、駆動・制動装置3Aの変速装置の減速比の目標値とが含まれる。
アクチュエータ動作目標値合成部24には、これらのアクチュエータ動作目標値を決定するために、前記アクチュエータ動作FF目標値およびアクチュエータ動作FB目標値だけでなく、センサ・推定器12で検出または推定された実状態量(前輪W1,W2の実横すべり角βf_act、推定摩擦係数μestmなど)も入力される。そして、アクチュエータ動作目標値合成部24は、これらの入力を基に、アクチュエータ動作目標値を決定する。
補足すると、アクチュエータ動作目標値は、上記した種類の目標値に限られるものではない。それらの目標値に代えて、例えば該目標値に対応する各アクチュエータ装置のアクチュエータの操作量の目標値をアクチュエータ動作目標値として決定するようにしてもよい。アクチュエータ動作目標値は、基本的にはアクチュエータ装置の動作を規定できるものであればよい。例えばブレーキ装置の動作に関するアクチュエータ動作目標値として、ブレーキ圧の目標値を決定したり、それに対応するブレーキ装置のアクチュエータの操作量の目標値を決定するようにしてもよい。
次いで、制御装置10は、アクチュエータ動作目標値合成部24により決定したアクチュエータ動作目標値をアクチュエータ駆動制御装置26に入力し、該アクチュエータ駆動制御装置26により実車1の各アクチュエータ装置3のアクチュエータ操作量を決定する。そして、その決定したアクチュエータ操作量により実車1の各アクチュエータ装置3のアクチュエータを制御する。
この場合、アクチュエータ駆動制御装置26は、入力されたアクチュエータ動作目標値を満足するように、あるいは、該アクチュエータ動作目標値通りにアクチュエータ操作量を決定する。そして、この決定のために、アクチュエータ駆動制御装置26には、アクチュエータ動作目標値の他、センサ・推定器12で検出または推定された実車1の実状態量も入力される。なお、アクチュエータ駆動制御装置26の制御機能のうち、駆動・制動装置3Aのブレーキ装置に関する制御機能には、いわゆるアンチロックブレーキシステムが組み込まれていることが望ましい。
以上が制御装置10の制御処理周期毎の制御処理の概要である。
なお、制御装置10の各制御処理機能部の処理は、それらの順番を適宜変更してもよい。例えばセンサ・推定器12の処理を各制御処理周期の最後に実行し、それによる検出値または推定値を次回の制御処理周期の処理で使用するようにしてもよい。


次に、本実施形態における制御装置10の制御処理機能部のより詳細な処理を説明する。
[規範動特性モデルについて]
まず、本実施形態における前記規範動特性モデル16を図3を参照して説明する。図3は本実施形態における規範動特性モデル16上の車両の構造を示す図である。この規範動特性モデル16は、車両の動特性を、1つの前輪Wfと1つの後輪Wrとを前後に備えた車両の水平面上での動特性(動力学特性)によって表現するモデル(所謂2輪モデル)である。以降、規範動特性モデル16上の車両(規範動特性モデル16上で実車1に対応する車両)をモデル車両という。該モデル車両の前輪Wfは、実車1の2つの前輪W1,W2を一体化した車輪に相当し、モデル車両の操舵輪である。後輪Wrは、実車1の後輪W3,W4を一体化した車輪に相当し、本実施形態では非操舵輪である。
このモデル車両の重心点Gdの水平面上での速度ベクトルVd(モデル車両の走行速度Vdのベクトル)がモデル車両の前後方向に対してなす角度βd(すなわち、モデル車両の車両重心点横すべり角βd)と、モデル車両の鉛直軸まわりの角速度γd(すなわち、モデル車両のヨーレートγd)とがそれぞれ、前記規範車両重心点横すべり角、規範ヨーレートとして規範動特性モデル16により逐次決定する規範状態量である。また、モデル車両の前輪Wfの回転面と水平面との交線がモデル車両の前後方向に対してなす角度δf_dが前記モデル前輪舵角として規範動特性モデル16に入力される規範モデル操作量である。また、モデル車両の重心点Gdに付加的に作用させる横方向(モデル車両の左右方向)の並進力Fvirと、該モデル車両の重心点Gdのまわりに付加的に作用させるヨー方向の(鉛直軸まわりの)モーメントMvirとが、前記仮想外力として規範動特性モデル16に入力されるフィードバック制御入力である。
なお、図3中、Vf_dはモデル車両の前輪Wfの水平面上での進行速度ベクトル、Vr_dはモデル車両の後輪Wrの水平面上での進行速度ベクトル、βf_dは前輪Wfの横すべり角(前輪Wfの進行速度ベクトルVf_dが前輪Wfの前後方向(前輪Wfの回転面と水平面との交線の方向)に対してなす角度。以下、前輪横すべり角βf_dという)、βr_dは後輪Wrの横すべり角(後輪Wrの進行速度ベクトルVr_dが後輪Wrの前後方向(後輪Wrの回転面と水平面との交線の方向)に対してなす角度。以下、後輪横すべり角βr_dという)、βf0は、モデル車両の前輪Wfの進行速度ベクトルVf_dがモデル車両の前後方向に対してなす角度(以下、車両前輪位置横すべり角βf0という)である。
補足すると、本明細書の実施形態では、車両もしくは車輪の横すべり角、車輪の舵角、車両のヨーレート、ヨー方向のモーメントに関しては、車両の上方から見て、反時計まわり方向を正方向とする。また、仮想外力Mvir,Fvirのうちの並進力Fvirは、車両の左向きを正の向きとする。また、車輪の駆動・制動力は、車輪の回転面と路面もしくは水平面との交線方向で車両を前方向へ加速させる力(路面反力)の向きを正の向きとする。言い換えれば、車両の進行方向に対して駆動力となる向きの駆動・制動力を正の値、車両の進行方向に対して制動力となる向きの駆動・制動力を負の値とする。
このモデル車両の動特性(連続系での動特性)は、具体的には、次式01により表される。なお、この式01の右辺の「K」を単位行列とし、且つ、右辺の括弧内の第3項(Fvir,Mvirを含む項)を除いた式は、例えば「自動車の運動と制御」と題する公知の文献(著者:安部正人、発行者:株式会社山海堂、平成16年7月23日第2版第2刷発行。以降、非特許文献1という)に記載されている公知の式(3.12),(3.13)と同等である。
Figure 2008001560

この式01の但し書きにおいて、mはモデル車両の総質量、Kfはモデル車両の前輪Wfを2つの左右の前輪の連結体とみなしたときの1輪あたりのコーナリングパワー、Krはモデル車両の後輪Wrを2つの左右の後輪の連結体とみなしたときの1輪あたりのコーナリングパワー、Lfはモデル車両の前輪Wfの中心と重心点Gdとの前後方向の距離(前輪Wfの舵角が0であるときの該前輪Wfの回転軸と重心点Gdとの前後方向の距離。図3参照)、Lrはモデル車両の後輪Wrの中心と重心点Gdとの前後方向の距離(後輪Wrの回転軸と重心点Gdとの前後方向の距離。図3参照)、Iはモデル車両の重心点Gdにおけるヨー軸まわりのイナーシャ(慣性モーメント)である。これらのパラメータm,I,Lf,Lr,Kf,Krの値(あるいは、式01の右辺のパラメータa11,a12,a21,a22,b1,b2,b11,b22の値)は、あらかじめ設定された値である。この場合、例えばm,I,Lf,Lrは、実車1におけるそれらの値と同一か、もしくはほぼ同一に設定される。また、Kf,Krは、それぞれ実車1の前輪W1,W2、後輪W3,W4のタイヤの特性(あるいは該タイヤに要求される特性)を考慮して設定される。例えばKf,Krは、それぞれ実車1の前輪W1,W2、後輪W3,W4のタイヤのコーナリングパワーと同一か、もしくはほぼ同一になるように設定される。
より一般的には、m,I,Lf,Lr,Kf,Krの値(あるいは、a11,a12,a21,a22,b1,b2,b11,b22の値)は、定常状態(ステアリング角θhなどの前記運転操作入力が一定で、且つ、路面状態などの環境状態が一定もしくは一様であって、過渡的な挙動が消えるまで十分に時間が経過した状態)におけるモデル車両の運動特性(モデル車両の定常特性)が、実車1の定常状態での運動特性(実車1の定常特性)に近い特性になるように設定されている。この場合、本実施形態におけるモデル車両の定常特性は、該モデル車両の運動の状態量βd,γdの時間的変化(式01の左辺)を0とし、且つ、仮想外力Fvir,Mvirを0としたときの、ステアリング角θhとモデル車両の車両重心点横すべり角βdおよびヨーレートγdとの間の関係(ただし、Vd=Vactとする)により表される。従って、この関係が、定常状態における実車1のステアリング角θhと実車両重心点横すべり角βactおよび実ヨーレートγactとの間の関係(アクチュエータ動作FB目標値を0とした状態での関係)に概ね一致するようにモデル車両のm,I,Lf,Lr,Kf,Krの値(あるいはa11,a12,a21,a22,b1,b2,b11,b22の値)が設定されている。
また、式01における行列Kは、モデル車両の動特性(より詳しくはモデル車両の状態量βd,γdの過渡応答特性)を調整するために、式01の右辺の括弧内の各項の第1行、第2行の値をそれぞれk1倍、k2倍(ただし、k1≠0、k2≠0)する特性調整用行列(対角行列)である。以降、特性調整用行列Kの各対角成分k1,k2をモデル特性調整用パラメータという。
本実施形態では、モデル車両の状態量βd,γdの過渡応答特性を調整するために、規範動特性モデル16の処理で、特性調整用行列Kのモデル特性調整用パラメータk1,k2のうちの、k2の値が可変的に設定される。そして、k1の値は、「1」に固定される。従って、本実施形態では、式01の右辺の括弧内の各項の第2行の値をk2倍するモデル特性調整用パラメータk2の値を可変的に設定することによって、モデル車両の状態量βd,γdの過渡応答特性を調整する。なお、モデル特性調整用パラメータk2の値の設定の仕方は後述する。
補足すると、特性調整用行列Kは、式01の右辺の括弧内の同じ行の全ての項を等倍する行列であるので、特性調整用行列Kの各対角成分k1,k2の値が0でない限り、モデル車両の定常特性は、k1,k2の値に依存することなく一定に維持される。従って、特性調整用行列K(モデル特性調整用パラメータk1,k2)は、モデル車両の定常特性を一定に維持しつつ、過渡応答特性を調整するものである。
本実施形態における規範動特性モデル16の処理では、前記式01のδf_d、Fvir、Mvirを入力として、該式01の演算処理(詳しくは、式01を離散時間系で表現してなる式の演算処理)を制御装置10の制御処理周期で逐次実行することにより、βd,γdが時系列的に逐次算出される。この場合、各制御処理周期において、モデル車両の走行速度Vdの値としては、前記センサ・推定器12により検出もしくは推定された実走行速度Vactの最新値(今回値)が用いられる。つまり、モデル車両の走行速度Vdは、常に実走行速度Vactに一致させられる。そして、このように実走行速度Vactに一致させられるモデル車両の走行速度Vdに応じて(換言すれば、実走行速度Vactに応じて)、前記モデル特性調整用パラメータk1,k2のうちのk2の値が可変的に設定される。また、Fvir,Mvirの値としては、FB分配則20で後述する如く決定された仮想外力の最新値(前回値)が用いられる。また、δf_dの値としては、規範操作量決定部14で後述する如く決定されたモデル前輪舵角の最新値(今回値)が用いられる。なお、新たなβd,γd(今回値)を算出するために、βd,γdの前回値も用いられる。
補足すると、モデル車両のβf0、βd、βf_d、βr_d、γd、δf_dの間の関係は、次式02a,02b,02cにより表される。

βf_d=βd+Lf・γd/Vd−δf_d ……式02a
βr_d=βd−Lr・γd/Vd ……式02b
βf0=βf_d+δf_d=βd+Lf・γd/Vd ……式02c

また、図3に示す如く、モデル車両の前輪Wfのコーナリングフォース(≒前輪Wfの横力)をFfy_d、モデル車両の後輪Wrのコーナリングフォース(=後輪Wrの横力)をFry_dとおくと、Ffy_dとβf_dとの関係、およびFry_dとβr_dとの関係は、次式03a,03bにより表される。

Ffy_d=−2・Kf・βf_d ……式03a
Fry_d=−2・Kr・βr_d ……式03b

以下に、本実施形態におけるモデル特性調整用パラメータk2の値の設定の仕方を説明する。
実車1の動特性(アクチュエータ動作FB目標値を0に維持した状態での動特性)においては、一般に、運転操作入力のうちのステアリング角θhをステップ状に変化させたとき(ひいては、実前輪舵角δf_actをステップ状に変化させたとき)の実状態量βact,γactの応答特性(過渡応答特性)は、走行速度Vactが、ある値Vd_critical以下であるときには、非振動的な応答特性(過制動または臨界制動の応答特性)となる。すなわち、ステアリング角θhのステップ状の変化に対して(実前輪舵角δf_actのステップ状の変化に対して)、実状態量βact,γactのそれぞれは、最終的な定常値を中心とする振動成分を持たずに該定常値に収束していく。なお、Vact=Vd_criticalであるときに、実状態量βact,γactの応答特性は、臨界制動の特性となる。以降、Vd_criticalを臨界制動速度という。
また、実走行速度Vactが、臨界制動速度Vd_criticalよりも高くなると、ステアリング角θhをステップ状に変化させたときの実状態量βact,γactの応答特性が振動成分を含む応答特性(振動的な特性)となる。すなわち、実状態量γact,βactは、ステアリング角θhのステップ状の変化に対して、図4(a),(b)にそれぞれ破線a,bで例示する如く、最終的な定常値を中心とする振動を生じながら該定常値に収束していく。そして、その振動成分の減衰速度は、Vactが上昇するに伴い遅くなる(振動成分の振幅の減衰の時定数が長くなる)。従って、実走行速度Vactが臨界制動速度Vd_criticalを超えると、Vactが上昇するに伴い、実状態量βact,γactの減衰性が低下する。
一方、本実施形態では、前記した如く、前記状態量偏差βerr,γerrを0に近づけるように、実車1の運動がアクチュエータ装置3を介して制御される。このため、モデル車両の状態量βd,γdが振動すると、実車1の状態量βact,γactも振動しやすい。従って、ステアリング角θを変化させたときに、実車1の状態量βact,γactの振動が生じるような状況ができるだけ生じないようにして、実車1の挙動特性を良好にするためには、モデル車両の状態量βd,γdの応答特性が非振動的になるか、または、状態量βd,γdの振動成分の減衰速度ができるだけ速くなるようにすることが望ましい。より一般的には、ステアリング角θhのステップ状の変化に対して、モデル車両の状態量βd,γdの応答特性における減衰性が、少なくとも実車1の状態量βact,γactの応答特性における減衰性よりも高くなるようにすることが望ましい。
そこで、本実施形態では、前記モデル特性調整用パラメータk2の値を走行速度Vact(=Vd)に応じて可変的に設定することによって、任意の走行速度Vactに対して、ステアリング角θhをステップ状に変化させたときのモデル車両の状態量βd,γdの応答特性(詳しくは、式01の仮想外力Fvir,Mvirを定常的に0としたときの応答特性)が非振動的となる(臨界制動または過制動の特性になる)ようにした。そして、これによって、ステアリング角θhの変化に対するモデル車両の状態量βd,γdの減衰性を実車1の状態量βact,γactの減衰性よりも高めるようにする。
具体的には、本実施形態では、Vd≦Vd_critical(Vact≦Vd_critical)となる任意の走行速度Vd(=Vact)に対して、モデル特性調整用パラメータk1の値は「1」に設定される。また、Vd>Vd_critical(Vact>Vd_critical)となる任意の走行速度Vd(=Vact)に対して、モデル車両(特性調整用行列Kを含めた式01により表される系)の状態量βd,γdの応答特性が非振動的な特性、例えば臨界制動の特性となるように、モデル特性調整用パラメータk2の値が設定される。すなわち、Vd>Vd_criticalとなるVd(=Vact)の任意の値に対して、特性調整用行列K(ただし、本実施形態ではk1=1)を含めた式01により表される系(モデル車両)の特性方程式det(λ・I−K・A)=0(但し、λ:スカラー変数、det( ):行列式、I:単位行列)の解、すなわち、モデル車両の固有値が重根となるようにVd(=Vact)に応じてk2の値を設定する。なお、「A」は、式01の右辺の括弧内の第1項の行列(a11,a12,a21,a22を成分とする2行2列の行列である。
このように設定されるk2の値は、Vd>Vd_criticalとなるVd(=Vact)の任意の値に対して、次式101を満たすk2の値である。

(a11+k2・a22)2−4・k2・(a11・a22+a12・a21)=0 ……式101

補足すると、臨界制動速度Vd_criticalは、式01の右辺の括弧内の第1項の行列Aの固有値が重根となるようなVdの値に近い値となる。すなわち、臨界制動速度Vd_criticalは、式01の特性調整用行列Kを単位行列とし、且つ、仮想外力Fvir,Mvirを含む項を削除した式(これは実車1の動特性を線形近似した式を意味する)により表される系の特性方程式det(λ・I−A)=0(但し、λ:スカラー変数、det( ):行列式、I:単位行列)の解である当該系の固有値が重根となるようなVdの値に近い値となる。従って、Vd_criticalは、次式102を満たすVdの値(より詳しくは、次式102を満たすVdの値のうちの正の値)に設定される。

(a11+a22)2−4・(a11・a22+a12・a21)=0 ……式102

図5は、上記のように走行速度Vact(=Vd)に応じて設定されるk2の値の変化を示すグラフである。図示の如く、k2の値は、Vact>Vd_criticalとなる状況で、「1」よりも大きな値に設定される。このとき、Vact(=Vd)の上昇に伴い、k2の値は、単調増加する。
以上のように、モデル特性調整用パラメータkの値を走行速度Vact(=Vd)に応じて可変的に設定することにより、走行速度Vactによらずに、ステアリング角θhのステップ状の変化に応じたモデル車両の状態量γd,βdの応答特性を非振動的な特性に設定できる。例えば、臨界制動速度Vd_criticalよりも高い走行速度Vactにおけるモデル車両の状態量γd,βdの応答特性は、それぞれ前記図4(a),(b)に実線c,dで例示する如く、臨界制動の特性(非振動的な特性)となる。なお、図4(a),(b)では、車輪と路面との間の摩擦係数μが実車1とモデル車両とで一致している場合に、実車1とモデル車両の定常特性が一致するように、モデル車両の運動特性が設定されている。また、臨界制動速度Vd_critical以下の走行速度Vactにおけるモデル車両の状態量γd,βdの応答特性は、臨界制動または過制動の特性となる。
従って、Vd_critical以上の速度領域において、ステアリング角θhのステップ状の変化に応じたモデル車両の状態量γd,βdのそれぞれの減衰性を実車1の状態量γact,βactのそれぞれの減衰性よりも高めることができる。
また、前記したように、モデル車両の定常特性は、k2の値に依存しないので、実車1の定常特性に近い特性に維持することができる。従って、モデル車両の定常特性を実車1の定常特性に近い特性に維持しつつ、ステアリング角θhのステップ状の変化に応じたモデル車両の状態量γd,βdの応答特性が振動的な特性になるのを防止できることとなる。
以上説明した如く、本実施形態では、制御装置10の各制御処理周期における規範動特性モデル16の処理において、モデル特性調整用パラメータk2の値が、走行速度Vact(=Vd)に応じて可変的に設定される。このk2の値の設定処理が、本発明における車両モデル特性設定手段に相当する。なお、規範動特性モデル16の処理において、実際にk2の値を設定するときには、k2の値と実車1の走行速度Vactとの関係(図5に示した関係)を表すマップあるいは演算式をあらかじめ定めておき、各制御処理周期におけるVactの値(今回値)から、該マップあるいは演算式に基づいて、k2の値を決定するようにすればよい。
補足すると、Vact>Vd_criticalとなる状況でのk2の値は、必ずしも、モデル車両の状態量γd,βdの応答特性が臨界制動の特性になるように設定しなくてもよく、該応答特性が過制動の特性になるようにk2の値を設定してもよい。すなわち、Vact>Vd_criticalとなる状況でのk2の値は、前記特性方程式det(λ・I−K・A)=0の解(モデル車両の固有値)が2つの異なる値の実数となるように設定してもよい。この場合、k2の値は、モデル車両の状態量γd,βdの応答特性が臨界制動の特性となるようなk2の値よりも大きい値に設定されることとなる。ただし、Vact>Vd_criticalとなる実車1の運動状態において、モデル車両の状態量γd,βdの応答特性(減衰性)が実状態量γact,βactの応答特性から大きく乖離するのを回避する上では、k2の値は、モデル車両の状態量γd,βdの応答特性が臨界制動の特性となるようなk2の値に近い方が望ましい。
また、Vact>Vd_criticalとなる実車1の運動状態でのk2の値は、モデル車両の状態量γd,βdの減衰性が、実状態量γact,βactの減衰性よりも高められる範囲内で、モデル車両の状態量γd,βdの応答特性が臨界制動の特性となるk2の値よりも若干、「1」に近い値に設定してもよい。このようにすることにより、モデル車両の状態量γd,βdの応答特性(減衰性)が実状態量γact,βactの応答特性から大きく乖離するのを防止できる。ただし、この場合におけるモデル車両の状態量γd,βdの応答特性では、k2=1とした場合よりも、状態量γd,βdの減衰性は高くなるが、臨界制動の特性よりも状態量γd,βdの減衰性が低下する。
また、式01により表されるモデル車両においては、走行速度Vact(=Vd)が、臨界制動速度Vd_criticalよりも十分に低い極低速である場合には、ステアリング角θhの変化(前輪舵角δdの変化)に対するモデル車両の状態量γd,βdの応答性(速応性)が、実車1に比して高くなる傾向がある。そこで、走行速度Vactが極低速(臨界制動速度Vd_criticalよりも小さい所定値以下の走行速度)となる状況では、k2の値を「1」よりも小さい値に設定してもよい。ただし、この場合、極低速におけるk2の値は、モデル車両の状態量γd,βdの応答特性が臨界制動の特性となるk2の値以上の値に設定して、モデル車両の状態量γd,βdの応答特性が振動的な特性にならないようにする。このように極低速におけるk2の値を設定することで、極低速において、モデル車両の状態量γd,βdの応答特性が振動的になるのを防止しつつ、ステアリング角θhの変化に対するモデル車両の状態量γd,βdの応答性(ステアリング角θhの変化に対するβd,γdの立ち上がりの早さ)を実状態量γact,βactの応答性に近づけることができる。
ところで、式01の括弧内の各項の第2行をk2倍するということは、モデル車両のイナーシャIを(1/k2)倍することと等価である。従って、特性調整用行列Kを使用する代わりに、I’=I/k2で定義されるイナーシャI’を用いて、次式103により、モデル車両の動特性を表してもよい。
Figure 2008001560

この場合、k2の値は、前述の通り、走行速度Vact(=Vd)に応じて設定すればよい。このとき、イナーシャI’は、Vact>Vd_criticalとなる状況において、Vactの上昇に伴い、単調に減少することとなる。
なお、本実施形態における実車1の動特性は、本発明を適用しない場合の実車1のオープン特性(前記アクチュエータFB動作目標値を定常的に0に維持した場合の実車1の動特性)と、仮想外力Mvir,Fvirを定常的に0に維持した場合の規範動特性モデル16の動特性との中間的な特性を示す。このため、規範動特性モデル16は、一般的には、実車1のオープン特性よりも、より運転者が好ましいと考える動特性を示すモデルに設定しておくことが望ましい。具体的には、規範動特性モデル16は、実車1よりもリニアリティが高いモデルに設定しておくことが望ましい。例えば、モデル車両の車輪の横すべり角もしくはスリップ比と、該車輪に路面から作用する路面反力(横力もしくは駆動・制動力)との関係がリニアな関係もしくはそれに近い関係になるように規範動特性モデル16が設定されることが望ましい。前記式01により動特性を表した規範動特性モデル16は、これらの要求を満足するモデルの一例である。

[規範操作量決定部について]
次に、前記規範操作量決定部14の処理の詳細を図6および図7を参照して説明する。図6は前記規範操作量決定部14の処理機能の詳細を示す機能ブロック図、図7は規範操作量決定部14に備える遠心力過大化防止リミッタ14fの処理を説明するためのグラフである。
図6を参照して、規範操作量決定部14は、まず、処理部14aにおいて、入力される運転操作入力のうちのステアリング角θh(今回値)を、オーバーオールステアリング比isにより除算することにより無制限時前輪舵角δf_unltdを決定する。この無制限時前輪舵角δf_unltdは、ステアリング角θhに応じたモデル前輪舵角δf_dの基本要求値としての意味を持つ。
ここで、オーバーオールステアリング比isは、ステアリング角θhとモデル車両の前輪Wfの舵角との比率であり、例えば実車1のステアリング角θhとこれに応じた実車1の前輪W1,W2の舵角のフィードフォワード値との関係に合わせて設定される。
なお、オーバーオールステアリング比isを一定値(固定値)とせずに、センサ・推定器12で検出もしくは推定された実車1の走行速度Vactに応じて可変的に設定してもよい。この場合には、実車1の走行速度Vactが高くなるに伴い、オーバーオールステアリング比isが大きくなるようにisを設定することが望ましい。
次いで、規範動特性モデル16上のモデル車両の車両前輪位置横すべり角βf0がβf0算出部14bで求められる。このβf0算出部14bには、規範動特性モデル16で決定された規範ヨーレートγdおよび規範車両重心点横すべり角βdの前回値が入力され、これらの値から、前記式02cの演算(式02cの2番目の等号の右辺の演算)によりβf0の前回値が求められる。なお、この場合、式02cの演算で必要なVdの値としては、実走行速度Vactの前回値が使用される。従って、βf0算出部14bで算出されるβf0は、前回の制御処理周期におけるモデル車両の車両前輪位置横すべり角βf0の値である。。
なお、γd,βdの前回値と、規範操作量決定部14で決定したモデル前輪舵角δf_dの前回値と、実走行速度Vactの前回値とから、前記式02aの演算によりモデル車両の前輪横すべり角βf_dの前回値を求め、この求めたβf_dに規範操作量決定部14で決定したモデル前輪舵角δf_dの前回値を加える(式02cの1番目の等号の右辺の演算を行なう)ことによって、βf0を求めるようにしてもよい。また、各制御処理周期において、βf0の算出を規範動特性モデル16の処理で実行するようにして、その算出されたβf0の前回値を規範操作量決定部14に入力するようにしてもよい。この場合には、規範操作量決定部14におけるβf0算出部14bの演算処理は不要である。
次いで、上記の如く求めた車両前輪位置横すべり角βf0から無制限時前輪舵角δf_unltdを減算器14cで減じることによって、無制限時前輪横すべり角が求められる。この無制限時前輪横すべり角は、モデル車両のモデル前輪舵角δf_dを前回値から、無制限時前輪舵角δf_unltd(今回値)に瞬時に制御したとした場合に発生するモデル車両の前輪横すべり角βf_dの瞬時予測値を意味する。
次いで、規範操作量決定部14は、この無制限時前輪横すべり角を前輪横すべり角リミッタ14dに通すことにより、制限済み前輪横すべり角を決定する。ここで、図中に示す前輪横すべり角リミッタ14dのグラフは、無制限時前輪横すべり角と制限済み前輪横すべり角との関係を例示するグラフであり、そのグラフに関する横軸方向の値は無制限時前輪横すべり角の値、縦軸方向の値は制限済み前輪横すべり角の値である。
この前輪横すべり角リミッタ14dは、モデル車両の前輪横すべり角βf_dの大きさが過大になるのを抑制する(ひいては、実車1に対して要求される前輪W1,W2の横力が過大にならないようにする)ためのリミッタである。
本実施形態では、前輪横すべり角リミッタ14dは、規範操作量決定部14にセンサ・推定器12から入力される推定摩擦係数μestm(今回値)と実走行速度Vact(今回値)とに応じて、前輪横すべり角βf_dの許容範囲(詳しくは該許容範囲の上限値βf_max(>0)および下限値βf_min(<0))を設定する。この場合、基本的には、推定摩擦係数μestmが小さいほど、あるいは、実走行速度Vactが高いほど、許容範囲[βf_min,βf_max]を狭くする(βf_max,βf_minを0に近づける)ように該許容範囲が設定される。このとき、該許容範囲[βf_min,βf_max]は、例えば実車1の前輪W1,W2の横すべり角と横力もしくはコーナリングフォースとの間の関係がほぼリニアな関係(比例関係)に維持されるような横すべり角の値の範囲内に設定される。
なお、該許容範囲[βf_min,βf_max]は、μestmとVactとのうちのいずれか一方に応じて設定してもよく、あるいは、μestmとVactとによらずにあらかじめ固定的な許容範囲に設定してもよい。
そして、前輪横すべり角リミッタ14dは、入力された無制限時前輪横すべり角が、上記の如く設定した許容範囲[βf_min,βf_max]内の値であるとき(βf_min≦無制限時前輪横すべり角≦βf_maxであるとき)には、無制限時前輪横すべり角の値をそのまま制限済み前輪横すべり角として出力する。また、該前輪横すべり角リミッタ14dは、入力された無制限時前輪横すべり角の値が許容範囲を逸脱している場合には、許容範囲[βf_min,βf_max]の下限値βf_minまたは上限値βf_minを制限済み前輪横すべり角として出力する。具体的には、無制限時前輪横すべり角>βf_maxである場合には、βf_maxが制限済み前輪横すべり角として出力され、無制限時前輪横すべり角<βf_minである場合には、βf_minが制限済み前輪横すべり角として出力される。これにより、制限済み前輪横すべり角は、許容範囲[βf_min,βf_max]内で、無制限時前輪横すべり角に一致するか、もしくは該無制限時前輪横すべり角に最も近い値となるように決定される。
次いで、前記βf0算出部14bで求めた車両前輪位置横すべり角βf0から上記の如く求めた制限済み前輪横すべり角を減算器14eで減算することにより、第1制限済み前輪舵角δf_ltd1が求められる。このようにして求められた第1制限済み前輪舵角δf_ltd1は、モデル車両の前輪横すべり角βf_dが許容範囲[βf_min,βf_max]から逸脱しないように無制限時前輪舵角δf_unltdに制限をかけてなるモデル前輪舵角δf_dとしての意味を持つ。
次いで、規範操作量決定部14は、この第1制限済み前輪舵角δf_ltd1を遠心力過大化防止リミッタ14fに通すことにより、第2制限済み前輪舵角δf_ltd2を決定する。このδf_ltd2が、規範動特性モデル16に入力するモデル前輪舵角δf_dの値として使用されるものである。ここで、図中に示す遠心力過大化防止リミッタ14fのグラフは、第1制限済み前輪舵角δf_ltd1と第2制限済み前輪舵角δf_ltd2との関係を例示するグラフであり、そのグラフに関する横軸方向の値はδf_ltd1の値、縦軸方向の値はδf_ltd2の値である。
この遠心力過大化防止リミッタ14fは、モデル車両に発生する遠心力が過大にならないようにする(ひいては実車1に対して要求される遠心力が過大にならないようにする)ためのリミッタである。
本実施形態では、遠心力過大化防止リミッタ14fは、規範操作量決定部14に入力される推定摩擦係数μestm(今回値)と実走行速度Vact(今回値)とに応じて、モデル前輪舵角δf_dの許容範囲(詳しくは該許容範囲の上限値δf_max(>0)および下限値δf_min(<0))を設定する。この許容範囲[δf_min,δf_max]は、仮想外力Mvir,Fvirが定常的に0に保持されているとした場合に、モデル車両が路面との摩擦限界を超えずに定常円旋回を行なうことが可能となるモデル前輪舵角δf_dの許容範囲である。
具体的には、まず、規範操作量決定部14に入力されるVact,μestmの値(今回値)を基に、次式05を満足するヨーレートである定常円旋回時最大ヨーレートγmax(>0)が求められる。

m・γmax・Vact=C1・μestm・m・g ……式05

ここで、式05におけるmは前記した通り、モデル車両の総質量である。また、gは重力加速度、C1は1以下の正の係数である。この式05の左辺は、モデル車両のヨーレートγdおよび走行速度Vdをそれぞれγmax、Vactに保持して、該モデル車両の定常円旋回を行なった場合に該モデル車両に発生する遠心力(より詳しくは該遠心力の収束予想値)を意味する。また、式05の右辺の演算結果の値は、μestmに応じて定まる路面反力(詳しくはモデル車両に車輪Wf,Wrを介して路面から作用し得るトータルの摩擦力(路面反力の並進力水平成分の総和)の大きさの限界値に係数C1を乗じた値(≦限界値)である。従って、定常円旋回時最大ヨーレートγmaxは、モデル車両に作用させる仮想外力Mvir,Fvirを0に保持すると共にモデル車両のヨーレートγdおよび走行速度Vdをそれぞれγmax、Vactに保持して、該モデル車両の定常円旋回を行なった場合に該モデル車両に発生する遠心力が、推定摩擦係数μestmに対応してモデル車両に作用し得るトータルの摩擦力(路面反力の並進力水平成分の総和)の限界値を超えないように決定される。
なお、式05の係数C1の値は、μestm,Vactのうちの少なくともいずれか一方の値に応じて可変的に設定するようにしてもよい。この場合、μestmが小さいほど、あるいはVactが高いほど、C1の値を小さくすることが好ましい。
次いで、モデル車両の定常円旋回時の、γmaxに対応するモデル前輪舵角δf_dの値が定常円旋回時限界舵角δf_max_c(>0)として求められる。ここで、前記式01により表される規範動特性モデル16では、定常円旋回時のモデル車両のヨーレートγdとモデル前輪舵角δf_dとの間には、次式06の関係が成立する。
Figure 2008001560

なお、Vdが十分に小さいときには、式06は近似的に次式07に書き換えることができる。

γd=(Vd/L)・δf_d ……式07

そこで、本実施形態では、式06あるいは式07におけるγd,Vdのそれぞれの値をγmax、Vactとして、δf_dについて解くことにより、γmaxに対応する定常円旋回時限界舵角δf_max_cを求める。
モデル車両に発生する遠心力が過大にならないようにするためのモデル前輪舵角δf_dの許容範囲[δf_min,δf_max]は、基本的には、許容範囲[−δf_min_c,δf_max_c]に設定すればよい。ただし、その場合には、実車1のカウンタステア状態(実車1のヨーレートの極性と逆極性の向きに前輪W1,W2を操舵する状態)において、モデル前輪舵角δf_dが不要な制限を受ける場合がある。
そこで、本実施形態では、モデル車両のヨーレートγdとγmaxとに応じて次式08a,08bによりδf_max_c、−δf_max_cを修正することで、モデル前輪舵角δf_dの許容範囲の上限値δf_maxおよび下限値δf_minを設定する。

δf_max=δf_max_c+fe(γd,γmax) ……式08a
δf_min=−δf_max_c−fe(−γd,−γmax) ……式08b

式08a,08bにおけるfe(γd,γmax)、fe(−γd,−γmax)は、γd,γmaxの関数であり、その関数値が例えば図7(a),(b)のグラフに示すようにγd,γmaxの値に応じて変化する関数である。この例では、関数fe(γd,γmax)の値は、図7(a)のグラフに示す如く、γdが0よりも若干大きい所定の値γ1以下の値である場合(γd<0の場合を含む)には、正の一定値fexになる。そして、fe(γd,γmax)の値は、γd>γ1である場合には、γdが大きくなるに伴い、単調に減少して、γdがγmax以下の所定値であるγ2(>γ1)に達するまでに0になる。さらに、fe(γd,γmax)の値は、γd>γ2である場合(γd≧γmaxの場合を含む)には、0に維持される。
また、関数fe(−γd,−γmax)は、関数fe(γd,γmax)の変数γd,γmaxの極性を反転させた関数であるので、該関数fe(−γd,−γmax)の値は、図7(b)のグラフに示す如くγdに対して変化する。すなわち、γdが0よりも若干小さい所定の負の値−γ1以上の値である場合(γd>0の場合を含む)には、正の一定値fexになる。そして、fe(−γd,−γmax)の値は、γd<−γ1である場合には、γdが小さくなるに伴い、単調に減少して、γdが−γmax以上の所定値である−γ2に達するまでに0になる。さらに、fe(−γd,−γmax)の値は、γd<−γ2である場合(γd≦−γmaxの場合を含む)には、0に維持される。
なお、関数fe(γd,γmax)、fe(−γd,−γmax)の値を決定するために必要なγdの値としては、規範動特性モデル16で決定した規範ヨーレートγdの前回値を用いればよい。
また、関数fe(γd,γmax)のグラフの折れ点におけるγdの値γ1,γ2、あるいは、上記正の一定値fexは、推定摩擦係数μestmや実走行速度Vactに応じて可変的に変更するようにしてもよい。
上記のようにδf_max_cを関数feの値により補正してモデル前輪舵角δf_dの許容範囲[δf_min,δf_max]を設定することで、γdと逆向きの方向のモデル前輪舵角δf_dの限界値δf_maxまたはδf_minの大きさ(絶対値)は、モデル車両に発生させる遠心力の限界に対応する定常円旋回時限界舵角δf_max_cよりも大きめに設定される。このため、実車1のカウンタステア状態において、モデル前輪舵角δf_dが不要な制限を受けるのを防止することができる。なお、該許容範囲[−δf_min,δf_max]は、実走行速度Vactが高いほど、あるいは、推定摩擦係数μestmが小さいほど、狭くなる。
上記のようにモデル前輪舵角δf_dの許容範囲を設定した後、遠心力過大化防止リミッタ14fは、入力された第1制限済み前輪舵角δf_ltd1が許容範囲[δf_min,δf_max]内の値であるとき(δf_min≦δf_ltd1≦δf_maxであるとき)には、δf_ltd1の値をそのまま第2制限済み前輪舵角δf_ltd2(=規範動特性モデル16に入力するモデル前輪舵角δf_d)として出力する。また、該遠心力過大化防止リミッタ14fは、入力されたδf_ltd1の値が許容範囲[δf_min,δf_max]を逸脱している場合には、その入力値を強制的に制限してなる値を第2制限済み前輪舵角δf_ltd2として出力する。具体的には、δf_ltd1>δf_maxである場合には、δf_maxが第2制限済み前輪舵角δf_ltd_2として出力され、δf_ltd1<δf_minである場合には、δf_minが第2制限済み前輪舵角δf_ltd2として出力される。これにより、δf_ltd2は、許容範囲[δf_min,δf_max]内で、第1制限済み前輪舵角δf_ltd1に一致するか、もしくは、第1制限済み前輪舵角δf_ltd1に最も近い値になるように決定される。
なお、前記式01で表される規範動特性モデル16では、モデル車両の定常円旋回時には、βdとγdとの間に次式09の関係が成立する。
Figure 2008001560

また、Vdが十分に小さいときには、式09は近似的に次式10に書き換えることができる。

βd=(Lr/Vd)・γd ……式10

従って、モデル車両の定常円旋回時におけるγdあるいはγmaxの値は、式09または式10によりβdの値に変換できる(但し、Vd=Vactとする)。このため、上記の如くヨーレートγd,γmaxの値に応じてモデル前輪舵角δf_dの許容範囲を設定する代わりに、ヨーレートγd,γmaxに対応する車両重心点横すべり角βdの値に応じてモデル前輪舵角δf_dの許容範囲を設定するようにしてもよい。
以上が規範操作量決定部14の処理の詳細である。
以上説明した規範操作量決定部14の処理によって、規範動特性モデル16上のモデル車両の前輪横すべり角βf_dの瞬時値が過大にならず、且つ、モデル車両に発生する遠心力が過大にならないようにしつつ、運転操作入力のうちのステアリング角θhに応じて、第2制限済み前輪舵角δf_ltd2が規範動特性モデル16に入力するモデル前輪舵角δf_dとして制御処理周期毎に決定される。
補足すると、遠心力過大化防止リミッタ14fにおいて、規範動特性モデル16に入力するモデル前輪舵角δf_dを上記の如く制限して、モデル車両に発生する遠心力が過大にならないようにするということは、モデル車両の車両重心点横すべり角βd(もしくは後輪横すべり角βr_d)が過大にならないようにモデル前輪舵角δf_dを制限することと同等である。また、一般に、車両の遠心力や車両重心点横すべり角(もしくは後輪横すべり角)はステアリング操作に対して遅れて発生するので、遠心力過大化防止リミッタ14fによるモデル前輪舵角δf_dの制限処理は、車両の遠心力や車両重心点横すべり角(もしくは後輪横すべり角)の収束予想値を基に、モデル前輪舵角δf_dを制限する処理であると言える。これに対して、前輪横すべり角リミッタ14dの制限処理は、モデル車両の前輪横すべり角βf_dの瞬時値が過大にならないようにモデル前輪舵角δf_dを制限するための処理であると言える。
なお、本実施形態では、遠心力過大化防止リミッタ14fで許容範囲[δf_min,δf_max]を設定するために使用する関数feを前記図7(a),(b)に示した如く設定したが、これに限定されるものではない。
例えば、関数fe(γd,γmax)を、図8に実線のグラフで示すように設定してもよい。この例では、fe(γd,γmax)は、その値がγdの値の増加(負側の値から正側の値への増加)に伴い、単調に減少すると共に、γd=γmaxであるときに0になる。なお、このとき、関数fe(−γd,−γmax)は図8に破線のグラフで示すものとなる。この場合、前記式08aにより決定されるモデル前輪舵角δf_dの許容範囲の上限値δf_maxは、γdがγmaxを超えると、γdの増加に伴い、定常円旋回時限界舵角δf_max_cよりも0に近づくこととなる。同様に、前記式08bにより決定されるモデル前輪舵角δf_dの許容範囲の下限値δf_minは、γdが−γmaxを負側に超えると、γdの減少(大きさの増加)に伴い、−δf_maxよりも0に近づくこととなる。
また、前記式08a,08bの代わりに、次式11a,11bにより、δf_dの許容範囲の上限値δf_maxおよび下限値δf_minを設定するようにすると共に、関数fe(γd,γmax),fe(−γd,−γmax)をそれぞれ、例えば図9の実線、破線のグラフで示すように設定してもよい。

δf_max=δf_max_c・fe(γd,γmax) ……式11a
δf_min=−δf_max_c・fe(−γd,−γmax) ……式11b

この例では、fe(γd,γmax),fe(−γd,−γmax)は、その値が常に1以上であり、また、図7(a),(b)のものと同様の形態でγdに応じて変化する。そして、これらのfe(γd,γmax),fe(−γd,−γmax)の値をそれぞれδf_max_c,−δf_min_cに乗じることにより、上限値δf_maxと下限値δf_minとが設定されることとなる。
また、δf_max_cを関数feの値により補正してモデル前輪舵角δf_dの許容範囲[δf_min,δf_max]を設定する代わりに、例えば以下のような処理により第2制限済み前輪舵角δf_ltd2を決定するようにしてもよい。図10はその処理機能を説明するための機能ブロック図である。
すなわち、前記減算器14e(図6参照)で算出された第1制限済み前輪舵角δf_ltd1を補正するための前輪舵角補正分Δδfを処理部14gにおいてモデル車両のヨーレートγd(前回値)に応じて決定する。このとき、Δδfは処理部14g中のグラフで示すように、基本的には、γdが正側で増加するに伴い、Δδfの値が正側で単調増加し、また、γdが負側で減少するに伴い、Δδfの値が負側で単調減少するように決定される。なお、処理部14g中のグラフでは、Δδfの値には上限値(>0)および下限値(<0)が設けられている。この場合、上限値および下限値は、例えばその絶対値が前記図7(a),(b)に示した一定値fexと同じ値になるように設定される。
次いで、上記の如く決定した前輪舵角補正分Δδfを、前記減算器14e(図6参照)で算出された第1制限済み前輪舵角δf_ltd1に加算器14hで加えることにより入力補正付き第1制限済み前輪舵角を決定する。この場合、δf_ltd1の向きとγdの向きとが互いに逆向きである場合には、入力補正付き第1制限済み前輪舵角の大きさは、δf_ltd1の大きさよりも小さくなる。ただし、δf_ltd1の向きとγdの向きとが同じである場合には、入力補正付き第1制限済み前輪舵角の大きさは、δf_ltd1の大きさよりも大きくなる。
次いで、この入力補正付き第1制限済み前輪舵角を遠心力過大化防止リミッタ14fに通すことで、入力補正付き第1制限済み前輪舵角をモデル前輪舵角δf_dの許容範囲[δf_min,δf_max]内の値に制限してなる入力補正付き第2制限済み前輪舵角を決定する。すなわち、入力補正付き第1制限済み前輪舵角が許容範囲内の値である場合には、該入力補正付き第1制限済み前輪舵角がそのまま入力補正付き第2制限済み前輪舵角として決定される。また、入力補正付き第1制限済み前輪舵角が許容範囲から逸脱している場合には、δf_maxおよびδf_minのうち、入力補正付き第1制限済み前輪舵角に近い方の値が入力補正付き第2制限済み前輪舵角として決定される。
この場合、遠心力過大化防止リミッタ14fにおけるモデル前輪舵角δf_dの許容範囲の上限値δf_max(>0)は、δf_ltd1の向きとγdの向きとが同じである場合のδf_ltd1の補正分を見込んで、前記定常円旋回時舵角限界値δf_max_cよりも大きめの値(例えばδf_max_c+fex)に設定される。同様に、モデル前輪舵角δf_dの許容範囲の下限値δf_min(<0)は、その絶対値がδf_max_cよりも大きめの値(例えば−δf_max_c−fex)になるように設定される。
次いで、上記の如く決定した入力補正付き第2制限済み前輪舵角から、前記前輪舵角補正分Δδfを減算器14iで減じることにより、第2制限済み前輪舵角δf_ltd2を決定する。
上記のように第2制限済み前輪舵角δf_ltd2を決定するようにしても、モデル車両に発生する遠心力が過大にならないようにし、且つ、実車1のカウンタステアリング状態での不要な制限がかかるのを防止しつつ、規範動特性モデル16に入力するモデル前輪舵角δf_d(=δf_ltd2)を決定できる。
なお、本実施形態では、規範動特性モデル16に入力するモデル前輪舵角δf_dを決定するために、前記前輪横すべり角リミッタ14dおよび遠心力過大化防止リミッタ14fの処理を行なうようにしたが、いずれか一方もしくは両者の処理を省略してもよい。すなわち、処理部14aで決定される無制限時前輪舵角δf_unltd、あるいは、このδf_unltdを遠心力過大化防止リミッタ14fに入力して得られる値、あるいは、前記減算器14eで決定される第1制限済み前輪舵角δf_ltd1を規範動特性モデル16に入力するモデル前輪舵角δf_dとして決定するようにしてもよい。
以上説明した如く規範操作量決定部14で決定されたモデル前輪舵角δf_dの今回値(=δf_ltd2の今回値)が規範動特性モデル16に入力され、その入力値と後述する如くFB分配則20で決定された仮想外力Fvir,Mvir(前回値)とから、該規範動特性モデル16によって(前記式01あるいは式103に従って)、規範ヨーレートγdおよび規範車両重心点横すべり角βdの今回値が新たに決定されることとなる。なお、この処理は、実際には、式01を離散時間系で表した式によって行なわれるので、γd,βdの今回値を決定するために、γd,βdの前回値も使用されることとなる。また、式01における特性調整用行列Kのモデル特性調整用パラメータk2の値、あるいは、式103におけるイナーシャI’の値は、前述した如く、走行速度Vd(=Vact)に応じて設定される。
この場合、規範動特性モデル16に入力されるモデル前輪舵角δf_dは、前記の如く規範操作量決定部14で制限されているので、モデル車両のスピンや極端な横すべりの発生が防止される。

[FB分配則について]
次に、FB分配則20の処理の詳細を図11〜図18を参照して説明する。
図11はFB分配則20の処理機能を示す機能ブロック図である。図示の如くFB分配則20は、その処理機能を大別すると、仮想外力Mvir,Fvirを決定する処理を行なう仮想外力決定部20aとアクチュエータ動作FB目標値を決定する処理を行なうアクチュエータ動作FB目標値決定部20bとから構成される。
まず、仮想外力決定部20aを図11を参照して説明すると、この仮想外力決定部20aの処理機能は、仮想外力仮値決定部201とγβ制限器202とに大別される。
仮想外力決定部20aの処理では、まず、前記減算器18から入力される状態量偏差γerr(=γact−γd),βerr(=βact−βd)に応じて、仮想外力仮値決定部201によって仮想外力の仮値Mvirtmp,Fvirtmpが決定される。仮値Mvirtmp,FvirtmpのうちのMvirtmpは、状態量偏差γerr,βerrを0に近づけるために規範動特性モデル16のモデル車両の重心点Gdのまわりに付加的に発生させるべきモーメント(ヨー方向のモーメント)、Fvirtmpは、状態量偏差γerr,βerrを0に近づけるために規範動特性モデル16のモデル車両の重心点Gdに付加的に作用させるべき並進力(モデル車両の横方向の並進力)を意味する。
具体的には、次式15で示す如く、入力された状態量偏差γerr,βerrからなるベクトル(γerr,βerr)T(添え字Tは転置を意味する)に所定のゲインマトリクスKfvirを乗じることにより、仮想外力の仮値Mvirtmp,Fvirtmp(以下、仮想外力仮値Mvirtmp,Fvirtmpという)が決定される。
Figure 2008001560

この式15により、状態量偏差γerr,βerrを0に近づけるために規範動特性モデル16にフィードバックする制御入力の仮値として、仮想外力仮値Mvirtmp,Fvirtmpが決定される。
なお、以下に詳説するγβ制限器202によって、モデル車両の車両重心点横すべり角βdもしくは実車1の実車両重心点横すべり角βactが所定の許容範囲を超えそうになった時、および越えてしまった時にだけ、βdもしくはβactを許容範囲に戻す作用を強く発生するようにしたいならば、βerrを時定数の小さい1次遅れ特性に近い特性で0に収束させることが望ましい。そのためには、例えばゲインマトリクスKfvirの成分のうちのKfvir12を0に設定し、Kfvir11をその絶対値が大きくなるように設定すればよい。
次いで、規範動特性モデル16上のモデル車両のヨーレートγdおよび車両重心点横すべり角βdがそれぞれ所定の許容範囲から逸脱するのを抑制するように仮想外力の仮値Mvirtmp,Fvirtmpを修正する処理がγβ制限器202により実行される。
具体的には、γβ制限器202は、まず、予測演算部203の処理を実行する。この予測演算部203は、所定時間後(1つ以上の所定数の制御処理周期の時間後)のモデル車両のヨーレートγdと車両重心点横すべり角βdとを予測し、それらの予測値をそれぞれ予測ヨーレートγda、予測車両重心点横すべり角βdaとして出力する。
このとき予測演算部203には、規範動特性モデル16で決定された規範ヨーレートγd(今回値)および規範車両重心点横すべり角βd(今回値)と、センサ・推定器12で検出または推定された実走行速度Vact(今回値)と、規範操作量決定部14で決定された第2制限済み前輪舵角δf_ltd2(今回値)と、仮想外力仮値決定部201で上記の如く決定された仮想外力仮値Mvirtmp,Fvirtmp(今回値)とが入力される。そして、該予測演算部203は、モデル前輪舵角δf_dが、入力されたδf_ltd2に保持され、且つ、モデル車両に作用する仮想外力Mvir,Fvirが、入力されたMvirtmp,Fvirtmpに保持され、且つ、モデル車両の走行速度Vdが、入力されたVactに保持されると仮定して、前記式01または式103に基づいて、予測ヨーレートγdaおよび予測車両重心点横すべり角βdaを算出する。
次いで、γβ制限器202は、上記の如く予測演算部203で算出したγda,βdaをそれぞれγ不感帯処理部204、β不感帯処理部205に通すことにより、γda,βdaのそれぞれの、所定の許容範囲からの逸脱量γover,βoverを求める。図中に示すγ不感帯処理部204のグラフは、γdaとγoverとの関係を例示するグラフであり、該グラフに関する横軸方向の値はγdaの値、縦軸方向の値はγoverの値である。同様に、図中に示すβ不感帯処理部205のグラフは、βdaとβoverとの関係を例示するグラフであり、該グラフに関する横軸方向の値はβdaの値、縦軸方向の値はβoverの値である。
ここで、γ不感帯処理部204における許容範囲は、その下限値、上限値をそれぞれγdamin(<0),γdamax(>0)とする許容範囲(ヨーレートγdの許容範囲)であり、β不感帯処理部205における許容範囲は、その下限値、上限値をそれぞれβdamin(<0),βdamax(>0)とする許容範囲(車両重心点横すべり角βdの許容範囲)である。
本実施形態では、ヨーレートγdに関する許容範囲[γdamin,γdamax]は、例えばモデル車両の走行速度VdをVact(今回値)に保持すると共に、モデル車両のヨーレートγdをγdaminまたはγdamaxに保持して定常円旋回を行なった場合にモデル車両に発生する遠心力が推定摩擦係数μestm(今回値)に応じた摩擦力の限界値を超えないように設定される。すなわち、次式16a,16bを満足するように、Vact(今回値)とμestm(今回値)とに応じて、γdamin,γdamaxが設定される。

m・Vact・γdamax<μestm・m・g ……式16a
m・Vact・γdamin>−μestm・m・g ……式16b

γdamax,γdaminは、例えばそれぞれの絶対値が前記式05により決定される定常円旋回時最大ヨーレートγmaxと同じ値になるように設定すればよい(γdamax=γmax、γdamin=−γmaxとする)。ただし、γdamax,γdaminを、その絶対値がγmaxと異なる値(例えばγmaxよりも小さい値)になるように設定してもよい。
また、車両重心点横すべり角βdに関する許容範囲[βdamin,βdamax]は、例えば、実車1の車両重心点横すべり角と実車1の重心点に作用する横方向の並進力との間の関係がほぼリニアな関係(比例関係)に維持されるような車両重心点横すべり角の範囲内に設定される。この場合、Vact(今回値)とμestm(今回値)とのうちの少なくともいずれか一方に応じてβdamin,βdamaxを設定することが望ましい。
そして、γ不感帯処理部204の処理では、具体的には、入力されたγdaが所定の許容範囲[γdamin,γdamax]内の値であるとき(γdamin≦γda≦γdamaxであるとき)には、γover=0とし、γda<γdaminであるときには、γover=γda−γdaminとし、γda>γdamaxであるときには、γover=γda−γdamaxとする。これにより、予測ヨーレートγdaの許容範囲[γdamin,γdamax]からの逸脱量γoverが求められる。
同様に、β不感帯処理部205の処理は、入力されたβdaの値が所定の許容範囲[βdamin,βdamax]内の値であるとき(βdamin≦βda≦βdamaxであるとき)には、βover=0とし、βda<βdaminであるときには、βover=βda−βdaminとし、βda>βdamaxであるときには、βover=βda−βdamaxとする。これにより、予測車両重心点横すべり角βdaの許容範囲[βdamin,βdamax]からの逸脱量βoverが求められる。
次いで、γβ制限器202は、これらの逸脱量γover,βoverを0に近づけるように、仮想外力仮値Mvirtmp,Fvirtmpの補正量である仮値操作量Mvir_over,Fvir_overを処理部206にて算出する。
具体的には、次式17で示す如く、γover,βoverからなるベクトル(γover,βover)Tに所定のゲインマトリクスKfovを乗じることにより、Mvir_over,Fvir_overが決定される。
Figure 2008001560

次いで、γβ制限器202は、この仮値操作量Mvir_over,Fvir_overをそれぞれ仮想外力仮値Mvirtmp,Fvirtmpから減算器207で減じることにより、仮想外力Mvir,Fvirの今回値を決定する。すなわち、次式18a,18bにより仮想外力Mvir,Fvirが決定される。

Mvir=Mvirtmp−Mvir_over ……式18a
Fvir=Fvirtmp−Fvir_over ……式18b

以上の如く仮想外力決定部20aの処理が実行されることにより、予測ヨーレートγdaおよび予測車両重心点横すべり角βdaがそれぞれ許容範囲[γdamin,γdamax]、[βdamin,βdamax]から逸脱するのを抑制しつつ、状態量偏差γerr,βerrを0に近づけるように仮想外力Mvir,Fvirが決定されることとなる。
なお、以上説明した仮想外力決定部20aのγβ制限器202は、仮値操作量Mvir_over,Fvir_overにより仮想外力仮値Mvirtmp,Fvirtmpを補正することにより仮想外力Mvir,Fvirを決定する(より一般的に言えば、Mvir_overとMvirtmpとの線形結合、並びに、Fvir_overとFvirtmpとの線形結合によってそれぞれMvir,Fvirを決定する)ようにしたが、次のようにして、仮想外力Mvir,Fvirを決定するようにしてもよい。図12はその処理を説明するための機能ブロック図である。
同図を参照して、この例では、仮想外力仮値決定部201、予測演算部203、γ不感帯処理部204、β不感帯処理部205、処理部206の処理は、図11のものと同じである。一方、本例では、処理部206で求められた仮値操作量Fvir_over,Mvir_overはそれぞれ処理部208,209に入力され、該処理部208,209において、仮想外力仮値Mvirtmp,Fvirtmpをそれぞれ補正するための補正係数Katt1(≧0),Katt2(≧0)が決定される。これらの補正係数Katt1,Katt2は、それぞれ仮想外力仮値Mvirtmp,Fvirtmpに乗じる補正係数である。なお、図中に示す処理部208に係わるグラフは、Mvir_overとKatt1との関係を例示するグラフであり、該グラフに関する横軸方向の値はMvir_overの値、縦軸方向の値はKatt1の値である。同様に、図中に示す処理部209に係わるグラフは、Fvir_overとKatt2との関係を例示するグラフであり、該グラフに関する横軸方向の値はFvir_overの値、縦軸方向の値はKatt2の値である。
処理部208の処理では、図中のグラフで示す如く、Mvir_overが0であるときには、Katt1=1とされ、Mvir_overの絶対値が0から増加するに伴い、Katt1の値が1から0まで単調に減少するようにKatt1の値が設定される。そして、Katt1の値は、Mvir_overの絶対値が所定値(Katt1が0に達する値)を超えると0に維持される。
同様に、処理部209の処理では、図中のグラフで示す如く、Fvir_overが0であるときには、Katt2=1とされ、Fvir_overの絶対値が0から増加するに伴い、Katt2の値が1から0まで単調に減少するようにKatt2の値が設定される。そして、Katt2の値は、Fvir_overの絶対値が所定値(Katt2が0に達する値)を超えると0に維持される。
次いで、上記の如く決定された補正係数Katt1,Katt2は、それぞれ乗算器210,211にて、仮想外力仮値Mvirtmp、Fvirtmpに乗算され、これにより、仮想外力Mvir,Fvirの今回値が決定される。
このように、図12の例では、逸脱量Mvir_overの絶対値が大きくなるに伴い、仮想外力Mvirの大きさを仮想外力仮値Mvirtmpに対して絞る(0に近づける)ように仮想外力Mvirが決定される。同様に、逸脱量Fvir_overの絶対値が大きくなるに伴い、仮想外力Fvirの大きさを仮想外力仮値Fvirtmpに対して絞る(0に近づける)ように仮想外力Fvirが決定される。このように仮想外力Mvir,Fvirを決定するということは、γda,βdaの許容範囲からの逸脱が、仮想外力Mvir,Fvirに起因するものであるとみなして、γda,βdaの許容範囲[γdamin,γdamax],[βdamin,βdamax]からの逸脱を抑制しつつ、状態量偏差γerr,βerrを0に近づけるように仮想外力Mvir,Fvirを決定することを意味する。この場合は、規範操作量決定部14において、前記した如く、規範動特性モデル16に入力するモデル前輪舵角δf_dを制限しておくことが望ましい。
また、以上説明したγβ制限器202では、予測演算部203で前記した如く式01あるいは式103を用いて求めた予測ヨーレートγdaおよび予測車両重心点横すべり角βdaをそれぞれγ不感帯処理部204、β不感帯処理部205に入力して逸脱量γover,βoverを求めたが、このとき、γda,βdaの代わりに、規範ヨーレートγd、規範車両重心点横すべり角βdの今回値、あるいは、実ヨーレートγact、実車両重心点横すべり角βactの今回値、あるいは、これらの値に、フィルタリング処理を施した値を用いてもよい。
例えば、各制御処理周期でγdaの代わりにγdの今回値をγ不感帯処理部204に入力すると共に、規範動特性モデル16で逐次算出されるβdに、伝達関数が(1+T1・s)/(1+T2・s)という形で表されるフィルタリング処理(T1,T2はある時定数、sはラプラス演算子)を施してなる値をβdaの代わりにβ不感帯処理部205に入力するようにしてもよい。この場合、例えばT1>T2となるように時定数T1,T2を設定すると、該フィルタリング処理は、いわゆる位相進み補償要素として機能する。このとき、ある程度高い周波数域におけるβdの周波数成分の位相を進め、該周波数成分に対するゲインを高めることによって、各制御処理周期で決定されるβdの値自体が許容範囲[βdamin,βdamax]を逸脱する前から、βoverに応じて仮想外力Mvir,Fvirを制限することができる。
また、予測演算部203では、次式19a,19bで示すように、適当な係数cijを用いてγd、βdの今回値を線形結合してなる値をγda,βdaとして求めるようにしてもよい。

γda=c11・γd+c12・βd ……式19a
βda=c21・γd+c22・βd ……式19b

あるいは、次式20a,20bで示すように、適当な係数cijを用いてγd、βd、Mvirtmp,Fvirtmp、およびδf_ltd2の今回値を線形結合してなる値をγda,βdaとして求めるようにしてもよい。

γda=c11・γd+c12・βd
+c13・Mvirtmp+c14・Fvirtmp+c15・δf_ltd2 ……20a
βda=c21・γd+c22・βd
+c23・Mvirtmp+c24・Fvirtmp+c25・δf_ltd2 ……20b

なお、これらの式20a,20bは、前記した予測演算部203の処理をより一般化して表現したものである。
あるいは、次式21a,21bで示すように、適当な係数cijを用いてγact、βactの今回値を線形結合してなる値をγda,βdaとして求めるようにしてもよい。

γda=c11・γact+c12・βact ……式21a
βda=c21・γact+c22・βact ……式21b

あるいは、次式22a,22bで示すように、適当な係数cijを用いて、γd、βd、βdの時間微分値dβd/dt、γact、βact、βactの時間微分値dβact/dt、Mvirtmp,Fvirtmp、およびδf_ltd2の今回値を線形結合してなる値をγda,βdaとして求めるようにしてもよい。

γda=c11・γd+c12・βd+c13・dβd/dt
+c14・γact+c15・βact+c16・dβact/dt
+c17・Mvirtmp+c18・Fvirtmp+c19・δf_ltd2 ……22a
γda=c21・γd+c22・βd+c23・dβd/dt
+c24・γact+c25・βact+c26・dβact/dt
+c27・Mvirtmp+c28・Fvirtmp+c29・δf_ltd2 ……22b

あるいは、式20aの右辺の演算結果の値と式21aの右辺の演算結果の値との加重平均値、並びに、式20bの右辺の演算結果の値と式21bの右辺の演算結果の値との加重平均値をそれぞれγda、βdaとして求めるようにしてもよい。なお、これは、式22a、式22bによりγda、βdaを求める場合の一例となる。また、式20a、式20b、あるいは、式22a、式22bにおけるMvirtmp,Fvirtmpの項を省略してもよい。
あるいは、所定時間後までの各制御処理周期におけるγd、βdの予測値を前記式01あるいは式103に基づいて求め、その求めたγd,βdのうちのピーク値をγda,βdaとして決定するようにしてもよい。
さらに、式20a,式20b、あるいは、式21a,式21b、あるいは、式22a,式22bのいずれを用いてγda,βdaを求める場合であっても、それらの式の係数cijに、周波数特性をもたせる(換言すればcijを掛ける変数の値にローパスフィルタなどのフィルタリング処理を施す)ようにしてもよい。あるいは、係数cijを掛ける変数の値に、該変数の時間的変化率の制限を掛けるようにしてもよい。
補足すると、前記式21a,式21b、あるいは、式22a,式22bによりγda,βdaを決定するようにした場合、そのγda,βdaが、ある所定時間後の実車1の実ヨーレートγact、実車両重心点横すべり角βactの予測値としての意味を持つように各係数cijを設定することが望ましい。
また、規範動特性モデル16が前記式01あるいは式103で表されるように線形なモデルである場合、式20a,式20b、あるいは、式21a,式21b、あるいは、式22a,式22bのいずれを用いても、実車1あるいはモデル車両のある所定時間後のヨーレートおよび車両重心点横すべり角の予測値としてのγda、βdaを適切に求めることができる。
なお、γda,βdaの代わりにγact,βactの今回値、もしくは、γact,βactにフィルタリング処理を施してなる値を用いた場合、あるいは、前記式21a,式21b、あるいは、式22a,式22bによりγda,βdaを決定するようにした場合には、実車1の実ヨーレートγactおよび実車両重心点横すべり角βactの今回値もしくはフィルタリング値もしくは予測値が、それぞれ許容範囲[γdamin,γdamax],[βdamin,βdamax]から逸脱するのを抑制しつつ、状態量偏差γerr,βerrを0に近づけるように仮想外力Mvir,Fvirを決定することとなる。
補足すると、仮想外力決定部20aの処理では、より一般的には、次式200により仮想外力Mvir,Fvirを決定するようにしてもよい。
Figure 2008001560

また、前記γβ制限器202のγ不感帯処理部204およびβ不感帯処理部205においては、それぞれ各別にγda,βdaの許容範囲[γdamin,γdamax],[βdamin,βdamax]を設定して、逸脱量γover,βoverを決定するようにしたが、γdaとβdaとの間の相関性を考慮し、γda,βdaの組に対して許容範囲(許容領域)を設定して、逸脱量γover,βoverを決定するようにしてもよい。
例えば図13に示す如く、γdaを横軸、βdaを縦軸とする座標平面上での直線1〜4により囲まれた領域A(平行四辺形状の領域)をγda,βdaの組の許容領域Aとして設定する。この場合、直線1,3は、それぞれγdaの下限値、上限値を規定する直線であり、その下限値、上限値は、例えば前記γ不感帯処理部204における許容範囲[γdamin,γdamax]の下限値γdamin、上限値γdamaxと同様に設定される。また、直線2,4は、それぞれβdaの下限値、上限値を規定する直線であり、この例では、該下限値および上限値がそれぞれγdaに応じてリニアに変化するように設定される。そして、逸脱量γover、βoverを例えば次のように決定する。すなわち、γda,βdaの組が、図13に点P1で示す如く、許容領域A内に存するときには、γover=βover=0とする。一方、γda,βdaの組が、例えば図13に点P2で示す如く、許容領域Aから逸脱している場合には、点P2を通って所定の傾きを有する直線5上の点のうち、点P2に最も近い許容領域Aの境界の点P3(直線5上で許容領域A内に存する点のうち、P2に最も近い点P3)を決定する。そして、点P2におけるγdaの値と点P3におけるγdaの値との差が逸脱量γoverとして決定されると共に、点P2におけるβdaの値と点P3におけるβdaの値との差が逸脱量βoverとして決定される。なお、γda,βdaの組に対応する点が、例えば図13に示す点P4であるような場合、すなわち、γda,βdaの組に対応する点P4を通る所定の傾き(直線5と同じ傾き)を有する直線6が、許容領域Aと交わらないような場合(直線6上に許容範囲A内の点が存在しない場合)には、点P4におけるγdaの値と、許容領域A内の点のうち、該直線6に最も近い点P5におけるγdaの値との差を逸脱量γoverとして決定し、点P4におけるβdaの値と点P5におけるβdaの値との差を逸脱量βoverとして決定すればよい。
補足すると、γda,βdaの組の許容領域は、平行四辺形状の領域である必要はなく、例えば、図13に破線で示す如く、境界部を滑らかに形成した(鋭角な角部を持たないように形成した)領域A’であってもよい。
また、前記γβ制限器202では、γda,βdaの両者について、[γdamin,γdamax],[βdamin,βdamax]からの逸脱量γover,βoverを求め、それに応じて仮値Mvirtmp,Fvirtmpを補正するようにしたが、γover,βoverのいずれか一方だけに応じて仮値Mvirtmp,Fvirtmpを補正するようにしてもよい。この場合には、前記処理部206の処理において、γover,βoverのいずれか一方の値を0に固定して、仮値操作量Mvir_over,Fvir_overを求めるようにすればよい。

次に、アクチュエータ動作FB目標値決定部20bの処理を図14〜図16を参照して説明する。なお、以降の説明では、各車輪W1〜W4を第n輪Wn(n=1,2,3,4)ということがある。
図14は、該アクチュエータ動作FB目標値決定部20bの処理を示す機能ブロック図である。同図を参照して、アクチュエータ動作FB目標値決定部20bは、まず、処理部220において、入力された状態量偏差γerr,βerrに応じて、該状態量偏差γerr,βerrを0に近づけるために実車1の重心点Gのまわりに発生させるべきヨー方向のモーメントの基本要求値であるフィードバックヨーモーメント基本要求値Mfbdmdを実車1のアクチュエータ装置3に対するフィードバック制御入力の基本要求値として決定する。
具体的には、次式23の如く、βerr,γerrからなるベクトル(βerr,γerr)Tに所定のゲインマトリクスKfbdmdを乗じる(βerr,γerrを線形結合する)ことにより、Mfbdmdが決定される。
Figure 2008001560

なお、βerr,γerrと、βerrの1階微分値dβerr/dtとに応じてMfbdmdを決定するようにしてもよい。例えば、βerr,γerr,dβerr/dtからなるベクトルに適当なゲインマトリクスを乗じる(βerr,γerr,dβerr/dtを適当な係数によって線形結合する)ことでMfbdmdを決定するようにしてもよい。
また、ゲインマトリクスKfbdmdの要素Kfbdmd1およびKfbdmd2のうちの少なくともいずれか一方に、伝達関数が(1+Tc1・s)/(1+Tc2・s)で表される位相補償要素を乗じるようにしてもよい。例えば、βerrに乗じるKfbdmd1に上記位相補償要素を乗じるようにして、且つ、Tc1>Tc2となるように時定数Tc1,Tc2の値を設定する。このようにした場合には、Kfbdmd1をβerrに乗じてなる項は、βerrとその微分値とを線形結合したものをハイカットフィルタに通したものと等価になる。
次いで、アクチュエータ動作FB目標値決定部20bは、このMfbdmdを不感帯処理部221に通すことによって、不感帯超過フィードバックヨーモーメント要求値Mfbdmd_aを決定する。なお、図中の不感帯処理部221のグラフは、MfbdmdとMfbdmd_aとの関係を例示するグラフであり、該グラフに関する横軸方向の値はMfbdmdの値、縦軸方向の値はMfbdmd_aの値である。
本実施形態では、実車1のアクチュエータ装置3のフィードバック制御においては、状態量偏差γerr,βerrを0に近づけるために、主に、アクチュエータ装置3のうちの駆動・制動装置3Aのブレーキ装置を操作する。この場合、上記の如く決定されるMfbdmdに応じてブレーキ装置を操作すると、該ブレーキ装置が頻繁に操作される恐れがある。本実施形態では、これを防止するために、Mfbdmdを不感帯処理部221に通して得られる不感帯超過フィードバックヨーモーメント要求値Mfbdmd_aに応じてブレーキ装置を操作することとした。
該不感帯処理部221の処理は、具体的には次のように実行される。すなわち、該不感帯処理部221は、Mfbdmdの値が0近傍に定めた所定の不感帯に存するときには、Mfbdmd_a=0とし、Mfbdmdが該不感帯の上限値(>0)よりも大きいときには、Mfbdmd_a=Mfbdmd−上限値とし、Mfbdmdが該不感帯の下限値(<0)よりも小さいときには、Mfbdmd_a=Mfbdmd−下限値とする。換言すれば、Mfbdmdの不感帯からの超過分をMfbdmd_aとして決定する。このようにして決定されるMfbdmd_aに応じて駆動・制動装置3Aのブレーキ装置を操作するようにすることで、状態量偏差γerr,βerrに応じたブレーキ装置の頻繁な操作を抑制することができる。
次いで、この不感帯超過フィードバックヨーモーメント要求値Mfbdmd_aに応じて、前記アクチュエータ動作FB目標値(アクチュエータ装置3に対するフィードバック制御入力)を決定する処理がアクチュエータ動作FB目標値分配処理部222により実行される。
該アクチュエータ動作FB目標値分配処理部222は、その処理を概略的に説明すると、実車1の重心点のまわりにMfbdmd_aを発生させるように(ひいてはγerr,βerrを0に近づけるように)、駆動・制動装置3Aのブレーキ装置の動作による各車輪W1〜W4の駆動・制動力のフィードバック目標値(γerr,βerrを0に近づけるためのブレーキ装置のフィードバック制御入力)であるFB目標第n輪ブレーキ駆動・制動力Fxfbdmd_n(n=1,2,3,4)を決定する。あるいは、Fxfbdmd_n(n=1,2,3,4)に加えて、ステアリング装置3Bの動作による前輪W1,W2の横力のフィードバック目標値であるアクティブ操舵用FB目標横力Fyfbdmd_fを決定する。
この場合、本実施形態では、不感帯超過フィードバックヨーモーメント要求値Mfbdmd_aが正方向のモーメント(実車1の上方から見て反時計まわり方向のモーメント)である場合には、基本的には、実車1の左側の車輪W1,W3の駆動・制動力を制動方向に増加させ、それによって、実車1の重心点GのまわりにMfbdmd_aを発生させるようにFB目標第n輪ブレーキ駆動・制動力Fxfbdmd_n(n=1,2,3,4)が決定される。また、Mfbdmd_aが負方向のモーメント(実車1の上方から見て時計まわり方向のモーメント)である場合には、基本的には、実車1の右側の車輪W1,W3の駆動・制動力を制動方向に増加させ、それによって、実車1の重心点GのまわりにMfbdmd_aを発生させるようにFB目標第n輪ブレーキ駆動・制動力Fxfbdmd_n(n=1,2,3,4)が決定される。
以降の説明では、図15に示す如く、実車1の前輪W1,W2の間隔(すなわち前輪W1,W2のトレッド)をdf、後輪W3,W4の間隔(すなわち後輪W3,W4のトレッド)をdr、前輪W1,W2の実舵角(実前輪舵角)をδf_actとする。また、実車1を上方から見たときに、第n輪Wnの前後方向と直交する方向(水平面上で直交する方向)での該第n輪Wnと実車1の重心点Gとの距離をLn(n=1,2,3,4)とする。また、本実施形態では、後輪W3,W4は非操舵輪であるので図示は省略するが、後輪W3,W4の実舵角(実後輪舵角)をδr_actとする。本実施形態では、δr_act=0であり、L3=L4=dr/2である。
なお、図15中のLfは、実車1の重心点Gと前輪W1,W2の車軸との前後方向距離、Lrは実車1の重心点Gと後輪W1,W2の車軸との前後方向距離である。これらのLf,Lrの値は、前記図3で示したモデル車両に関するLf,Lrの値と同じである。
アクチュエータ動作FB目標値分配処理部222の処理を以下に具体的に説明する。まず、実車1の直進走行状態(δf_act=0であるときの走行状態)を想定し、この直進走行状態で、実車1の重心点Gまわりに、Mfbdmd_aに等しいヨー方向のモーメントを発生させるために必要な第n輪Wn(n=1,2,3,4)の駆動・制動力である第n輪駆動・制動力フル要求値Fxfullfbdmd_nをそれぞれ処理部222a_n(n=1,2,3,4)により決定する。
具体的には、Fxfullfbdmd_n(n=1,2,3,4)は、各処理部222a_nにおいて、次式24a〜24dの乗算演算により決定される。

Fxfullfbdmd_1=−(2/df)・Mfbdmd_a ……式24a
Fxfullfbdmd_2=(2/df)・Mfbdmd_a ……式24b
Fxfullfbdmd_3=−(2/dr)・Mfbdmd_a ……式24c
Fxfullfbdmd_4=(2/dr)・Mfbdmd_a ……式24d

次いで、アクチュエータ動作FB目標値分配処理部222は、実前輪舵角δf_actに応じて、第1輪分配比率補正値K1_strおよび第2輪分配比率補正値K2_strをそれぞれ処理部222b_1,222b_2において決定すると共に、実後輪舵角δr_actに応じて、第3輪分配比率補正値K3_strおよび第4輪分配比率補正値K4_strをそれぞれ処理部222b_3,222b_4において決定する。これらの第n輪分配比率補正値Kn_str(n=1,2,3,4)は、それぞれFxfullfbdmd_nに乗じる補正係数である。
ここで、実前輪舵角δf_actが0から変化すると、実車1の重心点GのまわりにMfbdmd_aに等しいヨー方向のモーメントを発生する第1輪W1および第2輪W2の駆動・制動力は、それぞれ前記式24a,24bにより決定されるFxfullfbdmd_1、Fxfullfbdmd_2から変化する。同様に、後輪W3,W4が操舵輪である場合には、実後輪舵角δr_actが0から変化すると、実車1の重心点GのまわりにMfbdmd_aに等しいヨー方向のモーメントを発生する第3輪W3および第4輪W4の駆動・制動力は、それぞれ前記式24c,24dにより決定されるFxfullfbdmd_3、Fxfullfbdmd_4から変化する。第n輪分配比率補正値Kn_strは、基本的には、このような舵角の影響を考慮してFxfullfbdmd_n(n=1,2,3,4)を補正し、Mfbdmd_aに等しいか、もしくはこれに近いヨー方向のモーメントを実車1の重心点Gのまわりに発生する第n輪Wnの駆動・制動力を決定するための補正係数である。
ただし、本実施形態では、後輪W3,W4は非操舵輪であるので、常にδr_act=0である。このため、K3_strおよびK4_strは実際には、常に「1」に設定される。従って、処理部222b_3,222b_4は省略してもよい。
一方、前輪W1,W2に関するK1_str,K2_strは、それぞれ処理部222b_1,222b_2において次のように決定される。すなわち、まず、図15に示したL1,L2の値が、あらかじめ設定されたdf,Lfの値と、δf_actの値とから、次式25a,25bの幾何学演算により算出される。なお、この演算におけるδf_actの値としては、センサ・推定器12で検出または推定された値(今回値)を用いればよいが、実車1の前輪W1,W2の舵角の目標値(各制御処理周期で最終的に決定される目標値)の前回値を使用してもよい。また、ステアリング装置3Bが、機械式ステアリング装置である場合には、該機械式ステアリング装置のオーバーオールステアリング比と前記運転操作入力のうちのステアリング角θhとから決定してもよい。あるいは、前記規範操作量決定部14の処理部14aで決定した無制限時前輪舵角δf_unltdの今回値を使用してもよい。

L1=(df/2)・cosδf_act−Lf・sinδf_act ……式25a
L2=(df/2)・cosδf_act+Lf・sinδf_act ……式25b

ここで、前輪W1,W2のそれぞれの駆動・制動力にL1,L2をそれぞれ乗じたものが、実車1の重心点Gのまわりに発生するヨー方向のモーメントであるから、基本的には、K1_str=(df/2)/L1、K2_str=(df/2)/L2として、これらをそれぞれFxfullfbdmd_1、Fxfullfbdmd_2に乗じることで、重心点GのまわりにMfbdmd_aに等しいヨー方向のモーメントを発生させる前輪W1,W2の駆動・制動力を決定できる。
ただし、このようにすると、L1またはL2が小さいときに、K1_strまたはK2_strが過大になって、状態量偏差γerr,βerrに応じた実車1の全体のフィードバックループゲインが過大になり、制御系の発振などが生じやすい。
そこで、本実施形態では、次式26a,26bにより、K1_str,K2_strを決定する。

K1_str=(df/2)/max(L1,Lmin) ……式26a
K2_str=(df/2)/max(L2,Lmin) ……式26b

ここで、式26a、式26bにおいて、max(a,b)(a,bは一般変数)は、変数a,bのうちの大きい方の値を出力する関数、Lminは、df/2よりも小さい正の定数である。これにより、K1_str,K2_strが過大になるのを防止した。換言すれば、本実施形態では、(df/2)/Lmin(>1)をK1_str,K2_strの上限値とし、この上限値以下で、実前輪舵δf_actに応じてK1_str,K2_strが設定される。
なお、本実施形態では、後輪W3,W4は非操舵輪であるので、前記した通りK3_str=K4_str=1である。ただし、後輪W3,W4が操舵輪である場合には、実前輪舵角δf_actに応じて上記の如くK1_str,K2_strを設定した場合と同様に、実後輪舵角δr_actに応じてK3_str,K4_strを設定することが望ましい。
次いで、アクチュエータ動作FB目標値分配処理部222は、処理部222c_n(n=1,2,3,4)において、第n輪分配ゲインKnを実前輪横すべり角βf_act(今回値)もしくは実後輪横すべり角βr_act(今回値)に応じて決定する。このKnは、これを第n輪駆動・制動力フル要求値Fxfullfbdmd_nに乗じることで、Fxfullfbdmd_nを補正する補正係数(1よりも小さい正の値)である。
この場合、第n輪分配ゲインKnは、各処理部222c_nにおいて次のように決定される。
実車1の左側で前後に配置される第1輪W1および第3輪W3に関する第1輪分配ゲインK1と第3輪分配ゲインK3とは、それぞれ図16(a),(b)の実線のグラフで示す如くβf_act,βr_actに応じて実質的に連続的に変化するように決定され、実車1の右側で前後に配置される第2輪W2および第4輪W4に関する第2輪分配ゲインK2と第4輪分配ゲインK4とは、それぞれ図16(a),(b)の破線のグラフで示す如くβf_act,βr_actに応じて実質的に連続的に変化するように決定される。なお、Knは、いずれも1よりも小さい正の値である。また、「実質的に連続」というのは、アナログ量を離散系で表したときに必然的に生じる値の飛び(量子化)は、アナログ量の連続性を損なうものではないということを意味する。
この場合、さらに詳細には、第1輪分配ゲインK1および第3輪分配ゲインK3に関し、K1は、図16(a)の実線のグラフで示す如く、βf_actが負の値から正の値に増加するに伴い、所定の下限値から所定の上限値まで単調に増加していくようにβf_actの値に応じて決定される。従って、K1は、βf_actが正の値であるときに、負の値であるときよりも値が大きくなるように決定される。
一方、K3は、図16(b)の実線のグラフで示す如く、βr_actが負の値から正の値に増加するに伴い、所定の上限値から所定の下限値まで単調に減少していくようにβr_actの値に応じて決定される。従って、K3は、βr_actが負の値であるときに、正の値であるときよりも値が大きくなるように決定される。
なお、図16(a),(b)の実線のグラフは、βf_act,βr_actが互いに一致もしくはほぼ一致するとき、それらのβf_act,βr_actに対応するK1,K3の値の和がほぼ1になるように設定されている。
また、第2輪分配ゲインK2および第4輪分配ゲインK4に関し、K2は、図16(a)の破線のグラフで示す如く、βf_actが負の値から正の値に増加するに伴い、所定の上限値から所定の下限値まで単調に減少していくようにβf_actの値に応じて決定される。この場合、K2とβf_actとの関係を表す破線のグラフが、K1とβf_actとの関係を表す実線のグラフを、縦軸(βf_act=0の線)を中心にして左右を反転させてなるグラフと同じである。従って、βf_actの各値におけるK2の値は、βf_actの正負を反転させた値におけるK1の値に等しくなるように決定される。
また、K4は、図16(b)の破線のグラフで示す如く、βr_actが負の値から正の値に増加するに伴い、所定の下限値から所定の上限値まで単調に増加していくようにβr_actの値に応じて決定される。この場合、K4とβr_actとの関係を表す破線のグラフが、K3とβr_actとの関係を表す実線のグラフを、縦軸(βr_act=0の線)を中心にして左右を反転させてなるグラフと同じである。従って、βr_actの各値におけるK4の値は、βr_actの正負を反転させた値におけるK3の値に等しくなるように決定される。
以上のように第n輪分配ゲインKn(n=1,2,3,4)を決定することで、実車1の定常走行時など、βf_actとβr_actとがほぼ同じ値となる状況では、前輪W1に対応する第1輪分配ゲインK1と該前輪W1の真後ろの後輪W3に対応する第3輪分配ゲインK2との比率が、K1とK3との和をほぼ一定に保ちつつ、βf_actおよびβr_actの変化に対して単調に変化することとなる。同様に、前輪W2に対応する第2輪分配ゲインK2と該前輪W2の真後ろの後輪W4に対応する第4輪分配ゲインK4との比率が、K2とK4との和をほぼ一定に保ちつつ、βf_actおよびβr_actの変化に対して単調に変化することとなる。
第n輪分配ゲインKn(n=1,2,3,4)をβf_act,βr_actに応じて上記の如く決定する理由については後述する。
上記の如くKn_str、Kn(n=1,2,3,4)を決定した後、アクチュエータ動作FB目標値分配処理部222は、各第n輪駆動・制動力フル要求値Fxfullfbdmd_n(n=1,2,3,4)に、処理部222b_n、222c_nにてそれぞれ、Kn_str、Knを乗じることで、第n輪分配駆動・制動力基本値Fxfb_nを決定する。すなわち、第n輪分配駆動・制動力基本値Fxfb_n(n=1,2,3,4)を次式27a〜27dにより決定する。

Fxfb_1=Fxfullfbdmd_1・K1_str・K1 ……式27a
Fxfb_2=Fxfullfbdmd_2・K2_str・K2 ……式27b
Fxfb_3=Fxfullfbdmd_3・K3_str・K3 ……式27c
Fxfb_4=Fxfullfbdmd_4・K4_str・K4 ……式27d

なお、このようにFxfb_n(n=1,2,3,4)を決定したとき、Mfbdmd_a>0であるときには、左側の車輪W1,W3に係わるFxfb_1,Fxfb_3が制動方向の駆動・制動力(負の駆動・制動力)となり、右側の車輪W2,W4に係わるFxfb_2,Fxfb_4が駆動方向の駆動・制動力(正の駆動・制動力)となる。また、Mfbdmd_a<0であるときには、左側の車輪W1,W3に係わるFxfb_1,Fxfb_3が駆動方向の駆動・制動力(正の駆動・制動力)となり、右側の車輪W2,W4に係わるFxfb_2,Fxfb_4が制動方向の駆動・制動力(負の駆動・制動力)となる。
次いで、アクチュエータ動作FB目標値分配処理部222は、上記の如く決定した第n輪分配駆動・制動力基本値Fxfb_n(n=1,2,3,4)を、それぞれ第n輪Wnに対応するリミッタ222d_nに通すことにより、駆動・制動装置3Aのブレーキ装置の動作による第n輪Wnの駆動・制動力のフィードバック目標値であるFB目標第n輪ブレーキ駆動・制動力Fxfbdmd_nをそれぞれ決定する。
ここで、図14中の各リミッタ222d_n(n=1,2,3,4)のグラフは、Fxfb_nとFxfbdmd_nとの関係を表すグラフであり、該グラフに関する横軸方向の値がFxfb_nの値、縦軸方向の値がFxfbdmd_nの値である。
このリミッタ222d_nは、それに入力されるFxfb_nの値が0または負の値であるときにのみ、Fxfb_nをそのままFxfbdmd_nとして出力し、Fxfb_nが正の値であるときには、そのFxfb_nの値によらずに出力するFxfbdmd_nの値を0とする。換言すれば、0を上限値としてFxfb_nに制限を掛けることによりFxfbdmd_nを決定する。
上記のようにFB目標第n輪ブレーキ駆動・制動力Fxfbdmd_nをそれぞれ決定することにより、前記したように、Mfbdmd_a>0である場合には、実車1の左側の車輪W1,W3の駆動・制動力を制動方向に増加させ(Fxfbdmd_1<0、Fxfbdmd_3<0とする)、それによって、実車1の重心点GのまわりにMfbdmd_aを発生させるようにFB目標第n輪ブレーキ駆動・制動力Fxfbdmd_n(n=1,2,3,4)が決定される。なお、この場合には、右側の車輪W2,W4に関しては、本実施形態ではFxfbdmd_2=Fxfbdmd_4=0とされる。
また、Mfbdmd_a<0である場合には、実車1の右側の車輪W2,W4の駆動・制動力を制動方向に増加させ(Fxfbdmd_2<0、Fxfbdmd_4<0とする)、それによって、実車1の重心点GのまわりにMfbdmd_aを発生させるようにFB目標第n輪ブレーキ駆動・制動力Fxfbdmd_n(n=1,2,3,4)が決定される。なお、この場合には、左側の車輪W1,W3に関しては、本実施形態では、Fxfbdmd_1=Fxfbdmd_3=0とされる。
そして、いずれの場合でも、前記第n輪分配ゲインKn(n=1,2,3,4)は、βf_act,βr_actに応じて実質的に連続的に変化するように決定されるので、Fxfbdmd_nが不連続的に変化するような事態が防止される。
ここで、第n輪分配ゲインKn(n=1,2,3,4)をβf_act,βr_actに応じて前記したような傾向で決定した理由を以下に説明する。
まず、Mfbdmd_a>0である場合には、前記したように実車1の左側の車輪である第1輪W1および第3輪W3の駆動・制動力を制動方向に増加させるようにFB目標第n輪ブレーキ駆動・制動力Fxfbdmd_nが決定されることとなる。
そして、この場合に、βf_act<0,βr_act<0となる状況を想定する。このような状況で、仮にK1の値を大きめに設定する(ひいてはFxfbdmd_1が制動方向に大きくなるようにする)と共に、K3の値を小さめに設定する(ひいてはFxfbdmd_3が制動方向に大きくなるのを抑制する)と、第1輪W1の横力(これはMfbdmd_aと同方向のモーメントを実車1の重心点まわりに発生させるように機能する)が小さくなり、また、第3輪W3の横力(これはMfbdmd_aと逆方向のモーメントを実車1の重心点まわりに発生させるように機能する)が大きめになる。このため、実車1の重心点Gのまわりに、Mfbdmd_aにより要求される正方向のモーメント(ヨー軸まわりのモーメント)を十分に発生することが困難となる恐れがある。そこで、βf_act<0,βr_act<0となる状況では、第1輪分配ゲインK1を小さめの値に決定すると共に、第3輪分配ゲインK3を大きめの値に決定するようにした。
さらに、Mfbdmd_a>0である場合に、βf_act>0,βr_act>0となる状況を想定する。このような状況で、仮にK1の値を小さめに設定する(ひいてはFxfbdmd_1が制動方向に大きくなるのを抑制する)と共に、K3の値を大きめに設定する(ひいてはFxfbdmd_3が制動方向に大きくなるようにする)と、第1輪W1の横力(これはMfbdmd_aと逆方向のモーメントを実車1の重心点まわりに発生させるように機能する)が大きめになり、また、第3輪W3の横力(これはMfbdmd_aと同方向のモーメントを実車1の重心点まわりに発生させるように機能する)が小さくなる。このため、実車1の重心点Gのまわりに、Mfbdmd_aにより要求される負方向のモーメント(ヨー軸まわりのモーメント)を十分に発生することが困難となる恐れがある。そこで、βf_act>0,βr_act>0となる状況では、第1輪分配ゲインK1を大きめの値に決定すると共に、第3輪分配ゲインK3を小さめの値に決定するようにした。
また、Mfbdmd_a<0である場合には、前記したように実車1の右側の車輪である第2輪W2および第4輪W4の駆動・制動力を制動方向に増加させるようにFB目標第n輪ブレーキ駆動・制動力Fxfbdmd_nが決定されることとなる。
そして、この場合に、βf_act<0,βr_act<0となる状況を想定する。このような状況で、仮にK2の値を小さめに設定する(ひいてはFxfbdmd_2が制動方向に大きくなるのを抑制する)と共に、K4の値を大きめに設定する(ひいてはFxfbdmd_4が制動方向に大きくなるようにする)と、第2輪W2の横力(これはMfbdmd_aと逆向きのモーメントを実車1の重心点まわりに発生させるように機能する)が大きめになり、また、第4輪W4の横力(これはMfbdmd_aと同じ向きのモーメントを実車1の重心点まわりに発生させるように機能する)が小さくなる。このため、実車1の重心点Gのまわりに、Mfbdmd_aにより要求される負方向のモーメント(ヨー軸まわりのモーメント)を十分に発生することが困難となる恐れがある。そこで、βf_act<0,βr_act<0となる状況では、第2輪分配ゲインK2を大きめの値に決定すると共に、第4輪分配ゲインK4を小さめの値に決定するようにした。
さらに、Mfbdmd_a<0である場合に、βf_act>0,βr_act>0となる状況を想定する。このような状況で、仮にK2の値を大きめに設定する(ひいてはFxfbdmd_2が制動方向に大きくなるようにする)と共に、K4の値を小さめに設定する(ひいてはFxfbdmd_4が制動方向に大きくなるの抑制する)と、第2輪W2の横力(これはMfbdmd_aと同じ向きのモーメントを実車1の重心点まわりに発生させるように機能する)が小さくなり、また、第4輪W4の横力(これはMfbdmd_aと逆向きのモーメントを実車1の重心点まわりに発生させるように機能する)が大きめになる。このため、実車1の重心点Gのまわりに、Mfbdmd_aにより要求される負方向のモーメント(ヨー軸まわりのモーメント)を十分に発生することが困難となる恐れがある。そこで、βf_act>0,βr_act>0となる状況では、第2輪分配ゲインK2を小さめの値に決定すると共に、第4輪分配ゲインK4を大きめの値に決定するようにした。
以上のように、第n輪分配ゲインKn(n=1,2,3,4)を前記したように決定することで、Mfbdmd_aのヨー方向モーメントを実車1の重心点Gのまわりに発生させる上で有効となる横力が小さくなり過ぎないようにしつつ、Mfbdmd_aのヨー方向モーメントを実車1の重心点Gのまわりに発生させる上で妨げとなる横力が過大にならないようにすることができる。
また、前記のように第n分配ゲインKn(n=1,2,3,4)を決定することで、実車1の定常円旋回時や定常直進時のように、βf_actとβr_actとが一致またはほぼ一致する状況では、K1の値とK3の値との和、およびK2の値とK4の値との和は、それぞれほぼ1になる。このことは、FB目標第n輪ブレーキ駆動・制動力Fxfbdmd_nに従って忠実に駆動・制動装置3Aのブレーキ装置が動作すれば、Mfbdmd_aから実車1の重心点Gのまわりに実際に発生するモーメント(ヨー方向のモーメント)までの伝達関数のゲインがほぼ1になる(実際に発生するヨー方向のモーメントがMfbdmd_aにほぼ等しくなる)ことを意味する。
補足すると、実車1の過渡的な運動状況などにおいて、βf_actとβr_actとの差が大きくなることがある。そして、この場合には、K1の値とK3の値との和、およびK2の値とK4の値との和は、それぞれ1から大きくずれることとなる。これを解消するために、K1,K3の値を前記した如く決定した後、それらの値の比を一定に保ちながらK1,K3の値を修正して、その修正後のK1,K3の値の和がほぼ1になるようにすることが好ましい。同様に、K2,K4の値を前記した如く決定した後、それらの値の比を一定に維持しつつ、K2,K4の値を修正して、その修正後のK2,K4の値の和がほぼ1になるようにすることが好ましい。具体的には、第n分配ゲインKn(n=1,2,3,4)を前記図16(a),(b)のグラフに従って決定した後、K1’=K1/(K1+K3)、K3’=K3/(K1+K3),K2’=K2/(K2+K4)、K4’=K4/(K2+K4)によって、K1’,K2’,K3’,K4’を求め、それぞれを改めて、K1,K2,K3,K4の値として決定するようにすればよい。
また、本実施形態のアクチュエータ動作FB目標値分配処理部222は、前記したようにFB目標第n輪ブレーキ駆動・制動力Fxfbdmd_nを決定することに加えて、前記フィードバックヨーモーメント要求値Mfbdmdを処理部222eに入力し、該処理部222eにより、ステアリング装置3Bの動作による前輪W1,W2の横力のフィードバック目標値であるアクイティブ操舵用FB目標横力Fyfbdmd_fを決定する。ここで、図中の処理部222eのグラフは、MfbdmdとFyfbdmd_fとの関係を表すグラフであり、該グラフに関する横軸方向の値がMfbdmdの値、縦軸方向の値がFyfbdmd_fの値である。このグラフに見られるように、処理部222eでは、基本的には、Mfbdmdの増加に伴い、Fyfbdmd_fが単調に増加していくようにFyfbdmd_fが決定される。この場合、Fyfbdmd_fは、処理部222eに入力されるMfbdmdの値から、例えばマップを用いて決定される。
なお、Fyfbdmd_fは、Mfbdmdに所定のゲインを乗じることにより決定するようにしてもよい。また、Fyfbdmd_fは、所定の上限値(>0)と下限値(<0)との間の範囲内でMfbdmdに応じて決定するようにしてもよい。
補足すると、処理部222eの処理は、ステアリング装置3Bがアクティブステアリング装置であるか機械式ステアリング装置であるかによらずに省略してもよい。処理部222eの処理によって、アクイティブ操舵用FB目標横力Fyfbdmd_fを決定し、これに応じてステアリング装置3Bの動作を操作する場合には、FB目標第n輪ブレーキ駆動・制動力Fxfbdmd_n(n=1,2,3,4)によって実車1の重心点Gのまわりに発生させようとするヨー方向のモーメントと、アクイティブ操舵用FB目標横力Fyfbdmd_fによって実車1の重心点Gのまわりに発生するヨー方向のモーメントとの和が前記フィードバックヨーモーメント基本要求値Mfbdmdにほぼ等しくなるように、Fxfbdmd_n(n=1,2,3,4)およびFyfbdmd_fを決定することがより好ましい。例えば、MfbdmdとMfbdmd_aとの差に応じてアクイティブ操舵用FB目標横力Fyfbdmd_fを決定するようにしてもよい。この場合には、Mfbdmd_a=0であるときに、Fyfbdmd_fによって、実車1の重心点GのまわりにMfbdmdにほぼ等しいヨー方向のモーメントを発生させるようにFyfbdmd_fを決定することが望ましい。
以上が本実施形態におけるアクチュエータ動作FB目標値決定部20bの処理の詳細である。この処理によって、前記した如く、Mfbdmdを0に近づけるように(ひいては状態量偏差γerr,βerrを0に近づけるように)、FB目標第n輪ブレーキ駆動・制動力Fxfbdmd_n(n=1,2,3,4)が、あるいは、Fxfbdmd_n(n=1,2,3,4)とアクイティブ操舵用FB目標横力Fyfbdmd_fとがアクチュエータ動作FB目標値として決定される。
なお、前記リミッタ222dn(n=1,2,3,4)は、それに入力されるFxfb_nを0よりも若干大きい所定の正の上限値以下に制限してなる値をFxfbdmd_nとして出力するようにしてもよい。例えば、Fxfb_nが該上限値以下の値であるときには、Fxfb_nをそのままFxfbdmd_nとして出力し、Fxfb_nが上限値よりも大きい正の値であるときには、該上限値をFxfbdmd_nとして出力する。このようにした場合には、正の値のFxfbdmd_nは、ブレーキ装置による第n輪Wnの制動方向の駆動・制動力の大きさを減少させるように機能するフィードバック制御入力となる。
また、各車輪Wn(n=1,2,3,4)に対して、処理部222a_nからリミッタ222d_nまでの処理(Mfbdmd_aと、δf_actもしくはδr_actと、βf_actもしくはβr_actとを基にFxfbdmd_nを決定する処理)、あるいは、処理部222b_nからリミッタ222d_nまでの処理(Fxfullfbdmd_nと、δf_actもしくはδr_actと、βf_actもしくはβr_actとを基にFxfbdmd_nを決定する処理)、あるいは、処理部222c_nからリミッタ222d_nまでの処理(処理部222b_nの出力と、βf_actもしくはβr_actとを基にFxfbdmd_nを決定する処理)、あるいは、処理部222a_nからリミッタ222d_nまでの処理のうちの2以上の部分を合わせた処理(例えば処理部222b_nから処理部222c_nまでの処理)を、それらの処理に必要な入力値からマップや関数式を使用して出力を決定するように変更してもよい。
例えば、処理部222c_nからリミッタ222d_nまでの処理をマップを使用して行なう場合には、第1輪用のマップを、例えば図17(a)〜(e)に示す如く設定しておき、第3輪用のマップを、例えば図18(a)〜(e)に示す如く設定しておけばよい。この場合、図17(a)〜(e)のそれぞれのグラフは、βf_actの代表的な複数種類の値のそれぞれに対応して、処理部222b_1の出力(=Fxfullfbdmd_1・K1_str)とFxfbdmd_1との関係を、それぞれの値をグラフの横軸方向の値、縦軸方向の値として表している。また、図18(a)〜(e)のそれぞれのグラフは、βr_actの代表的な複数種類の値のそれぞれに対応して、処理部222b_3の出力(=Fxfullfbdmd_3・K3_str)とFxfbdmd_3との関係を、それぞれの値をグラフの横軸方向の値、縦軸方向の値として表している。また、図17において、βf_actの値に関し、「βf--」は、絶対値が比較的大きい負の値を意味し、「βf-」は、絶対値が比較的小さい負の値を意味し、「βf+」は、絶対値が比較的小さい正の値を意味し、「βf++」は、絶対値が比較的大きい正の値を意味する。同様に、図18において、βr_actの値に関し、「βr--」は、絶対値が比較的大きい負の値を意味し、「βr-」は、絶対値が比較的小さい負の値を意味し、「βr+」は、絶対値が比較的小さい正の値を意味し、「βr++」は、絶対値が比較的大きい正の値を意味する。
なお、第2輪用のマップは、図示を省略するが、処理部222b_2の出力(=Fxfullfbdmd_2・K2_str)とFxfbdmd_2との関係が、βf_actの各値において、その値の符号を反転させた値に対応する第1輪用のマップと同じになる(例えばβf_act=βf-であるときの処理部222b_2の出力(=Fxfullfbdmd_2・K2_str)とFxfbdmd_2との関係が、βf_act=βf+であるときの処理部222b_1の出力とFxfbdmd_1との関係(図17(c)のグラフで示す関係)と同じになる)ように設定しておけばよい。同様に、第4輪用のマップは、図示を省略するが、処理部222b_4の出力(=Fxfullfbdmd_4・K4_str)とFxfbdmd_4との関係が、βr_actの各値において、その値の符号を反転させた値に対応する第3輪用のマップと同じになる(例えばβr_act=βr-であるときの処理部222b_4の出力(=Fxfullfbdmd_4・K4_str)とFxfbdmd_4との関係が、βr_act=βr+であるときの処理部222b_3の出力とFxfbdmd_3との関係(図18(c)のグラフで示す関係)と同じになる)ように設定しておけばよい。
なお、この例では、処理部222b_n(n=1,2,3,4)の出力が0以下の値であるときは、前記図14に示したものと同様にFxfbdmd_nが決定される。一方、処理部222b_n(n=1,2,3,4)の出力が正の値であるときは、前記の如くリミッタ222d_nにおける上限値を正の値に設定した場合と同様に、Fxfbdmd_nが比較的小さい値の範囲内で正の値になる。
補足すると、第3輪W3と第4論W4とに関する前記処理部222b_3,222b_4では、いずれも、その入力値と出力値が等しくなるので、第3輪W3と第4論W4とに関して、処理部223c_3からリミッタ222d_3までの処理、および処理部222c_4からリミッタ222d_4までの処理を上記の如くマップを使用して行なうということは、処理部222b_3からリミッタ222d_3までの処理と、処理部222b_4からリミッタ222d_4までの処理をマップを使用して行なうことと同じである。
また、前記第n輪分配ゲインKn(n=1,2,3,4)を決定するときに、βf_act,βr_actの代わりに、実車両重心点横すべり角βactに応じて決定するようにしてもよい。この場合、βactと第n輪分配ゲインKnとの関係は、前記したβf_actまたはβr_actと第n輪分配ゲインKnとの関係と同様の傾向の関係になるように設定しておけばよい。例えば、図16(a),(b)のグラフにおける横軸方向の値βf_act,βr_actを、それぞれβactに置き換えたグラフに従って第n輪分配ゲインKnを決定するようにすればよい。
あるいは、前記第n輪分配ゲインKn(n=1,2,3,4)を、実車両重心点横すべり角βactと実ヨーレートγactと実走行速度Vactとに応じて、あるいは、βactとγactとVactと実前輪舵角δf_actとに応じて、マップもしくは関数式により決定するようにしてもよい。例えば、前記モデル車両に係わる前記式02aのβf_d、βd、γd、Vd、δf_dをそれぞれβf_act、βact、γact、Vact、δf_actに置き換えた式を基に、前記したβf_actと第1輪分配ゲインK1および第2輪分配ゲインK2との関係(前記図16(a)のグラフで示す関係)を、βact、γact、Vact、δf_actと、K1およびK2との関係に変換しておき、その変換してなる関係に基づいて、βact,γact,Vact,δf_actに応じてK1およびK2を決定する。同様に、前記モデル車両に係わる前記式02bのβr_d、βd、γd、Vdをそれぞれβr_act、βact、γact、Vactに置き換えた式を基に、前記したβr_actと第3輪分配ゲインK3および第4輪分配ゲインK4との関係(前記図16(b)のグラフで示す関係)を、βact、γact、Vactと、K3およびK4との関係に変換しておき、その変換してなる関係に基づいて、βact,γact,Vactに応じてK3およびK4を決定する。
さらに、上記した如くβf_act、βr_actに応じて、あるいは、βactに応じて第n輪分配ゲインKnを決定する場合に関して、βf_act、βr_act、βactの代わりに規範動特性モデル16のモデル車両のβf_d、βr_d、βdの値を代用してもよい。本実施形態では、前記状態量偏差γerr,βerrを0に近づけるように、実車1とモデル車両との両者の運動を操作するので、それらの運動の状態量が大きく乖離することがない。従って、モデル車両のβf_d、βr_d、βdを、βf_act、βr_act、βactの代わりに代用してもよい。
あるいは、実車1のβf_act、βr_actのそれぞれとモデル車両のβf_d、βr_dのそれぞれとの重み付き平均値に応じて第n輪分配ゲインKnを決定したり、実車1のβactとモデル車両のβdとの重み付き平均値に応じて、第n輪分配ゲインKnを決定するようにしてもよい。この場合、重みに周波数特性(例えば位相補償要素として機能する周波数特性)を持たせるようにしてもよい。
あるいは、例えば第n輪分配ゲインKn(n=1,2,3,4)の第1の仮値をβf_actまたはβr_actまたはβactに応じて決定すると共に、第n輪分配ゲインKnの第2の仮値をβf_dまたはβr_dまたはβdに応じて決定し、それらの仮値の加重平均値もしくは重み付き平均値などの合成値を第n輪分配ゲインKnとして決定するようにしてもよい。例えば、第1輪W1に関するK1の第1仮値をβf_actに応じて、前記図16(a)に示したグラフに示した如く決定すると共に、K1の第2仮値をβf_dに応じて第1仮値と同様に決定する。この場合、βf_dに対する第2仮値の変化の傾向は、βf__actに対する第1仮値の変化の傾向と同じでよい。そして、これらの第1仮値と第2仮値との加重平均値を第1輪分配ゲインK1として決定する。その他の第n輪分配ゲインK2,K3,K4についても同様である。
さらに、第n輪分配ゲインKn(n=1,2,3,4)の値を、βf_act、βr_act、あるいはβactなどに応じて変化させるだけでなく、推定摩擦係数μestmにも応じて変化させるように決定することがより望ましい。例えば、本実施形態に関して前記したようにβf_act、βr_actに応じて第n輪分配ゲインKnを決定する場合において、μestmが小さくなるほど、βf_actが絶対値の大きい負の値であるときの第1輪分配ゲインK1をより小さくするようにK1を決定することが望ましい。また、μestmが小さくなるほど、βr_actが絶対値の大きい正の値であるときの第3輪分配ゲインK3をより小さくするようにK3を決定することが望ましい。同様に、μestmが小さくなるほど、βf_actが絶対値の大きい正の値であるときの第2輪分配ゲインK2をより小さくするようにK2を決定することが望ましい。また、μestmが小さくなるほど、βr_actが絶対値の大きい負の値であるときの第4輪分配ゲインK4をより小さくするようにK4を決定することが望ましい。これは、μestmが小さくなるほど、第n輪Wn(n=1,2,3,4)の制動方向の駆動・制動力を増加させたときの該第n輪Wnの横力の低下が著しくなるからである。
また、第n輪分配ゲインKn(n=1,2,3,4)の値(βf_act,βr_actに応じて(あるいはβact,βf_d,βr_d,βdのいずれかに応じて)設定した値)を、第n輪の実接地荷重(第n輪に作用する路面反力のうちの鉛直方向または路面に垂直な方向の並進力の検出値もしくは推定値)にも応じて調整するようにしてよい。この場合、第n輪分配ゲインKnの値を、第n輪Wnの実接地荷重が小さくなるほど、小さくするように決定することが望ましい。
あるいは、各第n輪Wnの実接地荷重をFzact_n(n=1,2,3,4)、それらの総和をΣFzact(=Fzact_1+Fzact_2+Fzact_3+Fzact_4)とおいたとき、前輪W1,W2に関する第n輪分配ゲインK1,K2の値を、各前輪W1,W2の実接地荷重の和(=Fzact_1+Fzact_2)に応じて調整したり、その和のΣFzactに対する割合(=(Fzact_1+Fzact_2)/ΣFzact)に応じて調整するようにしてもよい。同様に、後輪W3,W4に関する第n輪分配ゲインK3,K4を、各後輪W3,W4の実接地荷重の和(=Fzact_3+Fzact_4)に応じて調整したり、その和のΣFzactに対する割合(=(Fzact_3+Fzact_4)/ΣFzact)に応じて調整するようにしてもよい。もしくは、各第n輪分配ゲインKn(n=1,2,3,4)の値を、それぞれ第n輪Wnの実接地荷重のΣFzactに対する割合(=Fzact_n/ΣFzact)に応じて調整するようにしてもよい。
また、本実施形態では、駆動・制動装置3Aのブレーキ装置に対するフィードバック制御入力として(アクチュエータ動作FB目標値)、FB目標第n輪ブレーキ駆動・制動力Fxfbdmd_n(n=1,2,3,4)を決定するようにしたが、Fxfbdmd_nの代わりに、ブレーキ装置による各車輪Wn(n=1,2,3,4)の目標スリップ比を決定したり、あるいは、該目標スリップ比とFxfbdmd_nとの両者を決定するようにしてもよい。
また、Fxfbdmd_nなどのアクチュエータ動作FB目標値を決定するために、中間変数であるMfbdmdやMfbdmd_aを決定せずに、状態量偏差γerr,βerrからマップ等を用いて直接的にアクチュエータ動作FB目標値を決定するようにしてもよい。例えばγerr、γd(またはγact)、βd(またはβact)、Vact、μestmなどの変数を入力とする多次元のマップを使用して、アクチュエータ動作FB目標値を決定するようにしてもよい。
また、フィードバックヨーモーメント基本要求値Mfbdmdを、状態量偏差γerr,βerrを0に近づけるだけでなく、前記仮想外力決定部20aのγβ制限器202で求められる逸脱量γover,βoverを0に近づけるように(ひいては前記γda,βdaがそれぞれの許容範囲[γdamin,γdamax]、[βdamin,βdamax]から逸脱するのを抑制するように)、Mfbdmdを決定するようにしてもよい。例えば適当な係数Kfbdmd1〜Kfbdmd4を用いて、次式28により、Mfbdmdを決定してもよい。

Mfbdmd=Kfbdmd1・γerr+Kfbdmd2・βerr
−Kfbdmd3・γover−Kfbdmd4・βover ……式28

補足すると、本実施形態では、前記した如く、γβ制限器202によって、γover,βoverを0に近づけるように仮想外力仮値Mvirtmp,Fvirtmpを操作して仮想外力Mvir,Fvirを決定するようにしている。これだけでも、モデル車両のγd,βdがそれぞれ許容範囲[γdamin,γdamax]、[βdamin,βdamax]を逸脱しないように変化する。そして、これに伴い、実車1のγact,βactをそれぞれγd,βdに近づけるようにアクチュエータ動作FB目標値が変化するので、γerr,βerrだけを0に近づけるようにアクチュエータ動作FB目標値を決定した場合であっても、結果的に、γact,βactも許容範囲[γdamin,γdamax]、[βdamin,βdamax]から逸脱するのを抑制できる。ただし、上記のように、γerr,βerrに加えて、γover,βoverをも0に近づけるようにMfbdmdを決定する(ひいてはアクチュエータ動作FB目標値を決定する)ようにすることで、γact,βactがそれぞれ許容範囲[γdamin,γdamax]、[βdamin,βdamax]から逸脱するのをより一層効果的に抑制できる。

[FF則について]
次に、前記FF則22の処理を図19を参照してより詳細に説明する。図19は、FF則22の処理を示す機能ブロック図である。
前記したように、本実施形態では、FF則22が決定するフィードフォワード目標値(運転操作入力に応じたアクチュエータ装置3の基本目標値)には、駆動・制動装置3Aのブレーキ装置による実車1の各車輪W1〜W4の駆動・制動力のフィードフォワード目標値(以降、FF目標第n輪ブレーキ駆動・制動力(n=1,2,3,4)という)と、駆動・制動装置3Aの駆動系による実車1の駆動輪W1,W2の駆動・制動力のフィードフォワード目標値(以降、FF目標第n輪駆動系駆動・制動力(n=1,2)という)と、駆動・制動装置3Aの変速装置の減速比(変速比)のフィードフォワード目標値(以降、FF目標ミッション減速比という)と、ステアリング装置3Bによる実車1の操舵輪W1,W2の舵角のフィードフォワード目標値(以降、FF目標前輪舵角δf_ffという)とが含まれる。
図19に示す如く、FF目標前輪舵角δf_ffは、運転操作入力のうちのステアリング角θhに応じて(あるいはθhとVactとに応じて)処理部230により決定される。図19では、ステアリング装置3Bが前記アクチュエータ駆動型のステアリング装置である場合を想定している。この場合には、処理部230は、前記規範操作量決定部14の処理部14aの処理と同じ処理によってFF目標前輪舵角δf_ffを決定する。すなわち、ステアリング角θhを、所定のオーバーオールステアリング比is、あるいは、Vactに応じて設定したオーバーオールステアリング比isで除算することによりδf_ffを決定する。このようにして決定されるδf_ffの値は、前記規範操作量決定部14の処理部14aにより決定される無制限時前輪舵角δf_unltdの値と同じである。
なお、ステアリング装置3Bが前記アクチュエータ補助型のステアリング装置である場合、あるいは、機械式ステアリング装置である場合には、δf_ffを決定する必要はない。あるいは、δf_ffを常に0に設定しておけばよい。但し、ステアリング装置3Bがアクチュエータ補助型のステアリング装置であって、ステアリング角θhに応じて機械的に定まる前輪W1,W2の舵角をVactに応じて補正する機能をもつような場合には、その補正分をVactに応じて決定し、それをδf_ffとして決定するようにしてもよい。
補足すると、ステアリング装置3Bがアクチュエータ補助型のステアリング装置である場合には、前輪W1,W2の基本的な舵角(δf_actの基本値)は、ステアリング角θhに応じて機械的に定まるので、δf_ffはアクチュエータによる前輪W1,W2の舵角の補正量のフィードフォワード目標値としての意味を持つものとなる。
また、FF目標第n輪ブレーキ駆動・制動力(n=1,2,3,4)は、運転操作入力のうちのブレーキペダル操作量に応じて、それぞれ処理部231a_n(n=1,2,3,4)により決定される。図中の各処理部231a_nに示したグラフは、それぞれ、ブレーキペダル操作量とFF目標第n輪ブレーキ駆動・制動力(n=1,2,3,4)との関係を例示するグラフであり、該グラフにおける横軸方向の値がブレーキペダル操作量の値、縦軸方向の値がFF目標第n輪ブレーキ駆動・制動力である。図示のグラフに示されるように、FF目標第n輪ブレーキ駆動・制動力(<0)は、基本的には、ブレーキペダル操作量の増加に伴い、その大きさ(絶対値)が単調増加するように決定される。なお、図示の例では、FF目標第n輪ブレーキ駆動・制動力は、その大きさが過大にならないように、ブレーキペダル操作量が所定量を超えると飽和する(ブレーキペダル操作量の増加に対するFF目標第n輪ブレーキ駆動・制動力の絶対値の増加率が0に近づく、もしくは0になる)ようになっている。
FF目標第n輪駆動系駆動・制動力(n=1,2)とFFミッション目標減速比とは、運転操作入力のうちのアクセルペダル操作量とVactとシフトレバー位置とに応じて、駆動系アクチュエータ動作FF目標値決定部232により決定される。この駆動系アクチュエータ動作FF目標値決定部232の処理は、公知の通常の自動車において、アクセルペダル操作量とVactと変速装置のシフトレバー位置とに応じて、エンジンから駆動輪に伝達する駆動力と変速装置の減速比とを決定する手法と同じでよいので、本明細書での詳細な説明は省略する。
以上が本実施形態におけるFF則20の具体的な処理の内容である。

[アクチュエータ動作目標値合成部について]
次に、前記アクチュエータ動作目標値合成部24の処理を詳細に説明する。図20は、このアクチュエータ動作目標値合成部24の処理を示す機能ブロック図である。
同図を参照して、アクチュエータ動作目標値合成部24は、第1輪W1に関して、前記アクチュエータ動作FF目標値のうちのFF目標第1輪ブレーキ駆動・制動力と、FF目標第1輪駆動系駆動・制動力との和を加算器240で求め、その和をFF総合目標第1輪駆動・制動力FFtotal_1として最適目標第1駆動・制動力決定部241a_1に入力する。さらに、このFFtotal_1と、前記アクチュエータ動作FB目標値のうちのFB目標第1輪ブレーキ駆動・制動力Fxfbdmd_1との和を加算器242で求め、その和を無制限目標第1輪駆動・制動力Fxdmd_1として最適目標第1駆動・制動力決定部241a_1に入力する。
また、アクチュエータ動作目標値合成部24は、第2輪W2に関して、前記アクチュエータ動作FF目標値のうちのFF目標第2輪ブレーキ駆動・制動力と、FF目標第2輪駆動系駆動・制動力との和を加算器243で求め、その和をFF総合目標第2輪駆動・制動力FFtotal_2として最適目標第2駆動・制動力決定部241a_2に入力する。さらに、このFFtotal_2と、前記アクチュエータ動作FB目標値のうちのFB目標第2輪ブレーキ駆動・制動力Fxfbdmd_2との和を加算器244で求め、その和を無制限目標第2輪駆動・制動力Fxdmd_2として最適目標第2駆動・制動力決定部241a_2に入力する。
また、アクチュエータ動作目標値合成部24は、第3輪W3に関して、前記アクチュエータ動作FF目標値のうちのFF目標第3輪ブレーキ駆動・制動力をそのままFF総合目標第3輪駆動・制動力FFtotal_3として最適目標第3駆動・制動力決定部241a_3に入力する。さらに、このFFtotal_3と、前記アクチュエータ動作FB目標値のうちのFB目標第3輪ブレーキ駆動・制動力Fxfbdmd_3との和を加算器245で求め、その和を無制限目標第3輪駆動・制動力Fxdmd_3として最適目標第3駆動・制動力決定部241a_3に入力する。
また、アクチュエータ動作目標値合成部24は、第4輪W4に関して、前記アクチュエータ動作FF目標値のうちのFF目標第4輪ブレーキ駆動・制動力をそのままFF総合目標第4輪駆動・制動力FFtotal_4として最適目標第4駆動・制動力決定部241a_4に入力する。さらに、このFFtotal_4と、前記アクチュエータ動作FB目標値のうちのFB目標第4輪ブレーキ駆動・制動力Fxfbdmd_4との和を加算器246で求め、その和を無制限目標第4輪駆動・制動力Fxdmd_4として最適目標第4駆動・制動力決定部241a_4に入力する。
ここで、前記FF総合目標第n輪駆動・制動力FFtotal_n(n=1,2,3,4)は、それを一般化して言えば、駆動・制動装置3Aの駆動系の動作による第n輪Wnの駆動・制動力のフィードフォワード目標値(FF目標第n輪駆動系駆動・制動力)とブレーキ装置の動作による第n輪Wnの駆動・制動力のフィードフォワード目標値(FF目標第n輪ブレーキ駆動・制動力)との総和を意味する。この場合、本明細書の実施形態では、実車1の駆動輪を前輪W1,W2とし、後輪W3,W4は従動輪としているので、後輪W3,W4に関しては、FF目標第n輪ブレーキ駆動・制動力(n=3,4)がそのまま、FF総合目標第n輪駆動・制動力FFtotal_nとして決定される。
また、前記無制限目標第n輪駆動・制動力Fxdmd_n(n=1,2,3,4)は、前記FF総合目標第n輪駆動・制動力FFtotal_nと、前記FB第n輪ブレーキ駆動・制動力との和であるから、駆動・制動装置3Aのフィードフォワード制御動作(少なくとも運転操作入力に応じたフィードフォワード制御動作)とフィードバック制御動作(少なくとも状態量偏差γerr,βerrに応じたフィードバック制御動作)とにより要求される第n輪のトータルの駆動・制動力を意味する。
そして、アクチュエータ動作目標値合成部24は、最適目標第n駆動・制動力決定部241a_n(n=1,2,3,4)により、それぞれ第n輪Wnの駆動・制動力の最終的な目標値である目標第n輪駆動・制動力Fxcmd_nを決定すると共に、第n輪のスリップ比の最終的な目標値である目標第n輪スリップ比を決定する。
この場合、最適目標第n駆動・制動力決定部241a_n(n=1,2,3,4)には、FFtotal_nおよびFxdmd_nに加えて、第n輪Wnの実横すべり角(詳しくは、n=1,2であるときは、実前輪横すべり角βf_act、n=3,4であるときは実後輪横すべり角βr_act)の最新値(今回値)と推定摩擦係数μestmの最新値(今回値)とが入力される。なお、図示は省略するが、前輪W1,W2に係わる最適目標第n駆動・制動力決定部241a_n(n=1,2)には、実前輪舵角δf_actの最新値(今回値)も入力される。そして、最適目標第n駆動・制動力決定部241a_n(n=1,2,3,4)は、それぞれに与えられる入力を基に、目標第n輪駆動・制動力Fxcmd_nと目標第n輪スリップ比とを後述するように決定する。
また、アクチュエータ動作目標値合成部24は、前記アクチュエータ動作FB目標値のうちのアクティブ操舵用FB目標横力Fyfbdmd_fと、前記アクチュエータ動作FF目標値のうちのFF目標前輪舵角δf_ffとを最適目標アクティブ舵角決定部247に入力し、該最適目標アクティブ舵角決定部247により前輪W1,W2の最終的な舵角の目標値である目標前輪舵角δfcmdを決定する。なお、このδfcmdは、ステアリング装置3Bが前記アクチュエータ駆動型のステアリング装置である場合には、アクチュエータの動作による前輪W1,W2の舵角そのもの(実車1の前後方向を基準とした舵角)の最終的な目標値を意味するが、ステアリング装置3Bが前記アクチュエータ補助型のステアリング装置である場合には、アクチュエータの動作による前輪W1,W2の舵角の補正量の最終的な目標値を意味する。
なお、アクチュエータ動作目標値合成部24は、前記アクチュエータ動作FF目標値のうちのFF目標第n輪駆動系駆動・制動力(n=1,2)をそのまま、駆動・制動装置3Aの駆動系の動作による第n輪Wnの駆動・制動力の最終的な目標値である目標第n輪駆動系駆動・制動力として出力する。さらに、アクチュエータ動作目標値合成部24は、前記アクチュエータ動作FF目標値のうちのFF目標ミッション減速比をそのまま、駆動・制動装置3Aの変速装置の減速比(変速比)の最終的な目標値である目標ミッション減速比として出力する。
前記最適目標第n駆動・制動力決定部241a_n(n=1,2,3,4)の処理を以下に詳説する。図21は、各最適目標第n駆動・制動力決定部241a_nの処理を示すフローチャートである。
同図を参照して、まず、S100において、第n輪Wn(n=1,2,3,4)の横すべり角が実横すべり角(詳しくは、n=1,2であるときは実前輪横すべり角βf_act、n=3,4であるときは実後輪横すべり角βr_act)であって、路面摩擦係数(第n輪Wnと路面との間の摩擦係数)が推定摩擦係数μestmであることを前提条件として、無制限目標第n輪駆動・制動力Fxdmd_nに最も近い(一致する場合を含む)第n輪Wnの駆動・制動力の値である第n輪駆動・制動力候補Fxcand_nと、それに対応する第n輪Wnのスリップ比の値である第n輪スリップ比候補Scand_nとを求める。
ここで、一般に、各車輪の横すべり角と路面反力(駆動・制動力、横力、および接地荷重)とスリップ比と路面摩擦係数との間には、該車輪のタイヤの特性やサスペンション装置の特性に応じた一定の相関関係がある。例えば、各車輪の横すべり角と路面反力(駆動・制動力、横力、および接地荷重)とスリップ比と路面摩擦係数との間には、前記非特許文献1の式(2.57),(2.58),(2.72),(2.73)により表されるような相関関係がある。また、例えば接地荷重および路面摩擦係数を一定とした場合、各車輪の横すべり角と駆動・制動力と横力とスリップ比との間には、前記非特許文献1の図2.36に示されるような相関関係がある。従って、横すべり角および路面摩擦係数がそれぞれある値であるときの各車輪の路面反力とスリップ比とは、それぞれが独立的な値を採り得るわけではなく、それぞれの値は、上記の相関関係(以下、車輪特性関係という)に従って変化する。なお、スリップ比は、駆動・制動力が駆動方向の駆動・制動力(>0)であるときは負の値であり、駆動・制動力が制動方向の駆動・制動力(<0)であるときは正の値である。
そこで、本実施形態におけるS100の処理では、第n輪Wnの横すべり角と路面摩擦係数と駆動・制動力とスリップ比との関係を表す、あらかじめ作成されたマップに基づいて、第n輪Wnの実横すべり角βf_actまたはβr_act(最新値)と推定摩擦係数μestm(最新値)とから、無制限目標第n輪駆動・制動力Fxdmd_nに最も近いか、または一致する駆動・制動力(Fxdmd_nとの差の絶対値が最小となる駆動・制動力)と、この駆動・制動力に対応するスリップ比とを求める。そして、このようにして求めた駆動・制動力とスリップ比とをそれぞれ第n輪駆動・制動力候補Fxcand_n、第n輪スリップ比候補Scand_nとして決定する。
なお、この処理で使用するマップは、例えば前記車輪特性関係を種々の実験などを通じて、あるいは、車輪W1〜W4のタイヤ特性やサスペンション装置3Cの特性に基づいて、あらかじめ特定もしくは推定しておき、その特定もしくは推定した車輪特性関係に基づいて作成すればよい。また、そのマップには、第n輪Wnの接地荷重を変数パラメータとして加えてもよい。この場合には、第n輪Wnの実接地荷重Fzact_nを最適目標第n駆動・制動力決定部241a_nに入力するようにして、第n輪Wnの実横すべり角βf_actまたはβr_actと、推定摩擦係数μestmと、実接地荷重Fzact_nとからFxcand_n、Scand_nを決定するようにすればよい。ただし、実接地荷重Fzact_nの変動は一般に比較的小さいので、該実接地荷重Fzact_nを一定値とみなしてもよい。
補足すると、第n輪Wnの実横すべり角βf_actまたはβr_actと推定摩擦係数μestmとの組に対応して、あるいは、これらと実接地荷重Fzact_nとの組に対応して、第n輪Wnで発生可能(路面から作用可能な)な駆動・制動力(前記車輪特性関係に従って発生可能な駆動・制動力)の値の範囲内にFxdmd_nが存在する場合には、そのFxdmd_nをそのままFxcand_nとして決定すればよい。そして、Fxdmd_nが当該範囲を逸脱している場合には、当該範囲のうちの上限値(>0)および下限値(<0)のうち、Fxdmd_nに近い方をFxcand_nとして決定すればよい。
また、第n輪Wnの実横すべり角βf_actまたはβr_actと推定摩擦係数μestmとの組に対応して、あるいは、これらと実接地荷重Fzact_nとの組に対応して、第n輪Wnで発生可能なスリップ比と駆動・制動力との関係(前記車輪特性関係に従って発生可能なスリップ比と駆動・制動力との関係)は、一般に、該スリップ比の変化に対して、駆動・制動力がピーク値(極値)を持つような関係となる(スリップ比を横軸の値、駆動・制動力の大きさを縦軸の値としたときのグラフが上に凸のグラフとなる)。このため、そのピーク値よりも絶対値が小さい駆動・制動力の値に対応するスリップ比の値は2種類存在する場合がある。このようにFxcand_n対応するスリップ比の値が2種類存在する場合には、その2種類のスリップ比の値のうち、0により近い方のスリップ比の値を第n輪スリップ比候補Scand_nとして決定すればよい。換言すれば、第n輪Wnのスリップ比と駆動・制動力との関係(前記車輪特性関係に従う関係)において、駆動・制動力がピーク値となるスリップ比の値と0と間の範囲内で、第n輪スリップ比候補Scand_nを決定すればよい。
補足すると、駆動・制動力がピーク値となるスリップ比の値と0との間の範囲内では、スリップ比の絶対値が0から増加するに伴い、駆動・制動力の絶対値は単調に増加する。
次いで、S102に進んで、S100と同じ前提条件の基で、最大モーメント発生時第n輪駆動・制動力Fxmmax_nと、これに対応するスリップ比である最大モーメント発生時第n輪スリップ比Smmax_nとを決定する。ここで、最大モーメント発生時第n輪駆動・制動力Fxmmax_nは、第n輪Wnの横すべり角が実横すべり角βf_actまたはβr_actであって、路面摩擦係数が推定摩擦係数μestmであるときに、第n輪Wnで発生可能な路面反力(詳しくは前記車輪特性関係に従って第n輪Wnに路面から作用可能な駆動・制動力と横力との合力)のうち、該路面反力によって実車1の重心点Gのまわりに発生するヨー方向のモーメントが、前記フィードバックヨーモーメント基本値Mfbdmdの極性と同じ極性(向き)に向かって最大となるような路面反力の駆動・制動力成分の値を意味する。なお、この場合、Fxmmax_n,Smmax_nは、第n輪Wnの駆動・制動力とスリップ比との関係(前記車輪特性関係に従う関係)において、スリップ比の絶対値が0から増加するに伴い駆動・制動力の絶対値が単調に増加する領域内で決定される。従って、Smmax_nは、駆動・制動力がピーク値となるスリップ比の値と0との間で決定される。
S102では、前輪W1,W2に関しては(n=1または2であるとき)、例えば実前輪横すべり角βf_actと、推定摩擦係数μestmと、実前輪舵角δf_actとから、あらかじめ作成されたマップ(前輪横すべり角と路面摩擦係数と前輪舵角と最大モーメント発生時駆動・制動力と最大モーメント発生時スリップ比との関係(前記車輪特性関係に従う関係)を表すマップ)に基づいて、最大モーメント発生時第n輪駆動・制動力Fxmmax_nとこれに対応する最大モーメント発生時第n輪スリップ比Smmax_nとが決定される。あるいは、前輪横すべり角と路面摩擦係数とスリップ比と駆動・制動力と横力との関係を表すマップと、実前輪舵角δf_actとに基づき、βf_actとμestmとの組に対応して発生可能な第n輪Wn(n=1または2)の駆動・制動力と横力との組のなかから、それらの合力が実車1の重心点Gのまわりに発生するヨー方向のモーメントが最大となる駆動・制動力と横力との組を探索的に決定し、その組に対応する駆動・制動力とスリップ比とをそれぞれFxmmax_n,Smmax_nとして決定するようにしてもよい。
また、後輪W3,W4に関しては(n=3または4であるとき)、例えば、実後輪すべり角βr_actと推定摩擦係数μestmとから、あらかじめ作成されたマップ(後輪横すべり角と路面摩擦係数と最大モーメント発生時駆動・制動力と最大モーメント発生時スリップ比との関係(前記車輪特性関係に従う関係)を表すマップ)に基づいて、最大モーメント発生時第n輪駆動・制動力Fxmmax_nとこれに対応する最大モーメント発生時第n輪スリップ比Smmax_nとが決定される。あるいは、後輪横すべり角と路面摩擦係数とスリップ比と駆動・制動力と横力との関係を表すマップに基づき、βr_actとμestmとの組に対応して発生可能な第n輪Wn(n=3または4)の駆動・制動力と横力との組のなかから、それらの合力が実車1の重心点Gのまわりに発生するヨー方向のモーメントが最大となる駆動・制動力と横力との組を探索的に決定し、その組に対応する駆動・制動力とスリップ比とをそれぞれFxmmax_n,Smmax_nとして決定するようにしてもよい。
なお、S102の処理では、前記S100の処理に関して説明した場合と同様に、第n輪Wnの実接地荷重Fzact_nを変数パラメータとして含めてもよい。
次いで、S104〜S112の処理が後述するように実行され、目標第n輪駆動・制動力Fxcmd_nが決定される。この場合、目標第n輪駆動・制動力Fxcmd_nは、次の条件(1)〜(3)を満足するように決定される。ただし、条件(1)〜(3)は、条件(1)、(2)、(3)の順に、優先順位が高い条件とされ、条件(1)〜(3)の全てを満たす目標第n輪駆動・制動力Fcmd_nを決定できない場合には、優先順位の高い条件を優先的に満足するように目標第n輪駆動・制動力Fxcmd_nが決定される。

条件(1):FF総合目標第n輪駆動・制動力FFtotal_nと目標第n輪駆動・制動力Fxcmd_nとが制動方向の駆動・制動力であるときには、目標第n輪駆動・制動力Fxcmd_nの大きさ(絶対値)がFF総合目標第n輪駆動・制動力FFtotal_nの大きさ(絶対値)よりも小さくならないこと。換言すれば、0>Fxcmd_n>FFtotal_nとならないこと。
条件(2):目標第n輪駆動・制動力Fxcmd_nが最大モーメント発生時第n輪駆動・制動力Fxmmax_nと同極性になるときには、Fxcmd_nの大きさ(絶対値)がFxmmax_nの大きさ(絶対値)を超えないこと。換言すれば、Fxcmd_n>Fxmmax_n>0、または、Fxcmd_n<Fxmmax_n<0とならないこと。
条件(3):目標第n輪駆動・制動力Fxcmd_nは、可能な限り第n輪駆動・制動力候補Fxcand_nに一致すること(より正確には、Fxcmd_nとFxcand_nとの差の絶対値を最小にすること)

ここで、条件(1)は、目標第n輪駆動・制動力Fxcmd_nが、実車1の運転者がブレーキペダルの操作によって要求している実車1の第n輪Wnの制動方向の駆動・制動力(これはFFtotal_nに相当する)よりも小さくならないようにするための条件である。補足すると、本明細書の実施形態では、後輪W3,W4は従動輪であるので、後輪W3,W4に関するFF総合目標第n輪駆動・制動力FFtotal_n(n=3,4)および目標第n輪駆動・制動力Fxcmd_n(n=3,4)は、常に0以下の値である。従って、後輪W3,W4に関しては、条件(1)は、「目標第n輪駆動・制動力Fxcmd_nの大きさ(絶対値)がFF総合目標第n輪駆動・制動力FFtotal_nの大きさ(絶対値)よりも小さくならないこと。」という条件と同じである。
また、条件(2)は、目標第n輪駆動・制動力Fxcmd_nに対応して第n輪Wnで発生する横力が小さくなり過ぎないようにするための条件である。
また、条件(3)は、前記アクチュエータ動作FB目標値決定部20bとFF則22とで決定された、アクチュエータ装置3の動作の制御要求(目標)をできるだけ満足するための条件である。なお、Fxcand_nは、前記したように、前記車輪特性関係(第n輪Wnの横すべり角が実横すべり角βf_actまたはβr_actであって、路面摩擦係数が推定摩擦係数μestmであることを前提条件としたときの車輪特性関係)に従って第n輪Wnで発生可能な駆動・制動力の値の範囲内で前記無制限目標第n輪駆動・制動力Fxdmd_nに最も近い(一致する場合を含む)駆動・制動力の値である。従って、条件(3)は別の言い方をすれば、目標第n輪駆動・制動力Fxcmd_nは、前記車輪特性関係(第n輪Wnの横すべり角が実横すべり角βf_actまたはβr_actであって、路面摩擦係数が推定摩擦係数μestmであることを前提条件としたときの車輪特性関係)に従って第n輪Wnで発生可能な駆動・制動力の値の範囲内の値となり、且つ、可能な限り無制限目標第n輪駆動・制動力Fxdmd_n(制御要求に従う駆動・制動力)に一致するかもしくは近いこと(Fxdmd_nとの差の絶対値が最小になること)、という条件と同等である。
前記S104〜S112の処理は、具体的には、次のように実行される。まず、S104に進んで、S100で決定したFxcand_nとS102で決定したFxmmax_nとの大小関係が、0>Fxmmax_n>Fxcand_nまたは0<Fxmmax_n<Fxcand_nであるか否かを判断する。この判断結果がNOである場合には、S106に進んで、目標第n輪駆動・制動力Fxcmd_nにFxcand_nの値を代入する。すなわち、Fxcand_nとFxmmax_nとが互いに異なる極性である場合、あるいは、Fxcand_nとFxmmax_nとが同極性であって、且つFxcand_nの大きさ(絶対値)がFxmmax_nの大きさ(絶対値)以下である場合には、Fxcand_nの値がそのままFxcmd_nに代入される。なお、Fxcand_n=0であるとき(このとき、Fxdmd_nも0である)にも、Fxcand_nの値がFxcmd_nに代入される(Fxcmd_n=0とする)。
一方、S104の判断結果がYESである場合には、S108に進んで、目標第n輪駆動・制動力Fxcmd_nにFxmmax_nの値(S102で決定した値)を代入する。
ここまでの処理により、前記条件(2)、(3)を満足するように(ただし、条件(2)が優先されるように)、Fxcmd_nが決定される。
S106またはS108の処理の後、S110に進んで、前記FF総合目標第n輪駆動・制動力FFtotal_nと今現在の目標第n輪駆動・制動力Fxcmd_n(S106またはS108で決定された値)との大小関係が、0>Fxcmd_n>FFtotal_nであるか否かを判断する。この判断結果が、YESである場合には、S112に進んで、目標第n輪駆動・制動力Fxcmd_nに改めてFFtotal_nを代入する。すなわち、FF総合目標第n輪駆動・制動力FFtotal_nとS106またはS108で決定された第n輪駆動・制動力候補Fxcmd_nとが制動方向の駆動・制動力で、且つ、Fxcmd_nの大きさ(絶対値)が、FFtotal_nの大きさ(絶対値)よりも小さい場合には、FFtotal_nの値をFxcmd_nに代入する。なお、S110の判断結果がNOであるときには、その時のFxcmd_nの値がそのまま維持される。
以上のS104〜S112の処理によって、前記した通り、基本的には、前記条件(1)〜(3)を満足するように目標第n輪駆動・制動力Fxcmd_nが決定される。そして、条件(1)〜(3)の全てを満たす目標第n輪駆動・制動力Fxcmd_nを決定できない場合には、優先順位の高い条件を優先的に満足するように目標第n輪駆動・制動力Fxcmd_nが決定される。
S110の判断結果がNOであるとき、あるいは、S112の処理の後、S114にの処理が実行される。このS114では、上記の如くS106〜S112の処理で決定したFxcmd_nに対応するスリップ比を目標第n輪スリップ比Scmd_nとして決定する。この場合、前記S104〜S112の処理によって、Fxcmd_nは、Fxcand_n、Fxmmax_n、FFtotal_nのいずれかの値である。そして、Fxcmd_n=Fxcand_nであるときには、S100で求められた第n輪スリップ比候補Scand_nがScmd_nとして決定され、Fxcmd_n=Fxmmax_nであるときには、S102で決定された最大モーメント発生時第n輪スリップ比Smmax_nがScmd_nとして決定される。また、Fxcmd_n=FFtotal_nであるときには、例えば前記S100の処理で使用するマップに基づいて、FFtotal_nに対応するスリップ比を求め、その求めたスリップ比をScmd_nとして決定すればよい。この場合、FFtotal_nに対応するスリップ比の値が2種類存在する場合には、0に近い方のスリップ比の値(第n輪Wnの駆動・制動力がピーク値となるスリップ比の値と0との間の範囲内の値)をScmd_nとして決定すればよい。また、FFtotal_nが該マップにおいて、第n輪Wnで発生可能な駆動・制動力の値の範囲を逸脱している場合には、FFtotal_nに最も近い駆動・制動力の値に対応するスリップ比をScmd_nとして決定すればよい。
以上が最適目標第n駆動・制動力決定部241a_n(n=1,2,3,4)の処理の詳細である。
なお、本実施形態では、目標第n輪駆動・制動力Fxcmd_nを決定してから、これに対応する目標第n輪スリップ比Scmd_nを決定したが、これと逆に、目標第n輪スリップ比Scmd_nを決定してから、これに対応する目標第n輪駆動・制動力Fxcmd_nを決定するようにしてもよい。この場合には、前記条件(1)〜(3)に対応する目標第n輪スリップ比Scmd_nに関する条件に基づいて、前記S104〜S112と同様の処理によって、目標第n輪スリップ比Scmd_nを決定し、その後に、このScmd_nに対応するFxcmd_nを決定するようにすればよい。なお、この場合、Scmd_nは、第n輪Wnの前記車輪特性関係に従うスリップ比と駆動・制動力との関係において、駆動・制動力がピーク値となるスリップ比の値と0との間の範囲内で決定される。
次に、前記最適目標アクティブ舵角決定部247の処理を説明する。図22は、この最適目標アクティブ舵角決定部247の処理を示す機能ブロック図である。
同図を参照して、最適目標アクティブ舵角決定部247は、まず、前記アクチュエータ動作FB目標値決定部20bで決定されたアクティブ操舵用FB目標横力Fyfbdmd_fを実車1に前輪W1,W2に発生させる(詳しくは前輪W1の横力と前輪W2の横力との合力をFyfbdmd_fだけ変化させる)ために要求される前輪W1,W2の舵角の変化量であるFBアクティブ舵角δf_fbを、Fyfbdmd_fを基に処理部247aで決定する。この場合、処理部247aでは、例えば第1輪W1の実接地荷重Fzact_1に応じて所定の関数式あるいはマップにより第1輪W1のコーナリングパワーKf_1を求めると共に、第2輪W2の実接地荷重Fzact_2に応じて所定の関数式あるいはマップにより第2輪W2のコーナリングパワーKf_2を求める。上記関数式あるいはマップは、実車1の前輪W1,W2のタイヤ特性に基づいてあらかじめ設定される。そして、このコーナリングパワーKf_1,Kf_2を用いて、次式30により、FBアクティブ舵角δf_fbを決定する。

δf_fb=(1/(Kf_1+Kf_2))・Fyfbdmd_f ……式30

このようにして求められるFBアクティブ舵角δf_fbは、前輪W1,W2の横力の合力を、Fyfbdmd_fだけ変化させるのに要求される前輪横すべり角の修正量に相当する。
なお、通常、実接地荷重Fzact_1,Fzact_2の変化は小さいので、式30でFyfbdmd_fに乗じる係数(1/(Kf_1+Kf_2))を一定値としてもよい。また、コーナリングパワーKf_1,Kf_2を実接地荷重Fzact_1,Fzact_2と推定摩擦係数μestmとに応じて決定するようにしてもよい。
次いで、最適目標アクティブ舵角決定部247は、上記の如く決定したδf_fbを加算器247bでFF目標前輪舵角δf_ffに加えることにより、目標前輪舵角δfcmdを決定する。
なお、前記状態量偏差γerr,βerrに応じたアクティブ操舵用FB目標横力Fyfbdmd_fの決定を行なわず、あるいは、常にFyfbdmd_f=0とする場合には、δf_ffをそのまま目標前輪舵角δf_cmdとして決定すればよい。
以上が、前記アクチュエータ動作目標値合成部24の処理の詳細である。

[アクチュエータ駆動制御装置について]
前記アクチュエータ駆動制御装置26は、前記アクチュエータ動作目標値合成部24で決定された目標値を満足するように実車1のアクチュエータ装置3を動作させる。例えば、駆動・制動装置3Aの駆動系の動作による第1輪W1の駆動・制動力(駆動方向の駆動・制動力)が前記目標第1輪駆動系駆動・制動力になるように該駆動系のアクチュエータ操作量を決定し、それに応じて該駆動系を動作させる。さらに、第1輪W1の実路面反力のうちの駆動・制動力(駆動系の動作による第1輪W1の駆動・制動力とブレーキ装置の動作による第1輪W1の駆動・制動力(制動方向の駆動・制動力)との和)が、前記目標第1輪駆動・制動力Fxcmd_1になるように、ブレーキ装置のアクチュエータ操作量を決定し、それに応じて該ブレーキ装置を動作させる。そして、この場合、第1輪W1の実スリップ比と前記目標第1輪スリップ比Scmd_1との差が0に近づくように駆動系またはブレーキ装置の動作が調整される。他の車輪W2〜W4についても同様である。
また、ステアリング装置3Bがアクチュエータ駆動型のステアリング装置である場合には、実前輪舵角δf_actが前記目標前輪舵角δfcmdに一致するようにステアリング装置3Bのアクチュエータ操作量が決定され、それに応じてステアリング装置3Bの動作が制御される。なお、ステアリング装置3Bがアクチュエータ補助型のステアリング装置である場合には、実前輪舵角δf_actが、前記目標前輪舵角δf_cmdとステアリング角θhに応じた機械的な舵角分との和に一致するようにステアリング装置3Bの動作が制御される。
また、駆動・制動装置3Aの駆動系の変速装置の減速比は、前記目標ミッション減速比に従って制御される。
なお、各車輪W1〜W4の駆動・制動力や横力などの制御量は、駆動・制動装置3A、ステアリング装置3B、サスペンション装置3Cの動作が互いに干渉しやすい。このような場合には、該制御量を目標値に制御するために、駆動・制動装置3A、ステアリング装置3B、サスペンション装置3Cの動作を非干渉化処理によって統合的に制御することが望ましい。


[第2実施形態]
次に本発明の第2実施形態を以下に説明する。なお、本実施形態は、前記第1実施形態と、モデル車両の過渡応答特性を調整するための特性調整用行列Kのみが相違するものである。従って、その相違点を中心に説明し、第1実施形態と同一構成および同一の処理については、説明を省略する。
前記第1実施形態では、ステアリング角θhのステップ状の変化に応じたモデル車両の状態量γd,βdの減衰性を高めるために、前記式01の特性調整用行列Kの対角成分であるモデル特性調整用パラメータk1,k2のうちの、k2を走行速度Vact(=Vd)に応じて可変的に設定し、k1を「1」に固定する例を示した。
これに対して、本実施形態では、モデル特性調整用パラメータk1,k2のうちの、k2の値は「1」に固定される。そして、ステアリング角θhのステップ状の変化に応じたモデル車両の状態量βd,γdの減衰性を高めるために、規範動特性モデル16の処理において、k1の値が走行速度Vactに応じて可変的に設定される。
具体的には、モデル特性調整用パラメータk1の値は、例えば前記第1実施形態におけるk2の値の設定の仕方と同様に、走行速度Vactに応じて可変的に設定される。すなわち、Vact≦Vd_criticalとなる状況では、k1=1とされる。そして、Vact>Vd_criticalとなる状況では、ステアリング角θhのステップ状の変化に応じたモデル車両の状態量βd,γdの応答特性が臨界制動の特性となるように、k1の値がVactに応じて設定される。この場合、Vact>Vd_criticalであるときのk1の値は、次式105を満たすkの値である。

(k1・a11+a22)2−4・k1・(a11・a22+a12・a21)=0 ……式105

このように設定されるk1の値は、Vact>Vd_criticalとなる状況で、「1」よりも大きな値に設定される。このとき、Vactの上昇に伴い、k1の値は、単調増加する。
このように、モデル特性調整用パラメータk1の値を走行速度Vactに応じて可変的に設定することにより、第1実施形態と同様に、モデル車両の定常特性を実車1の定常特性に近い特性に維持しつつ、ステアリング角θhのステップ状の変化に応じたモデル車両の状態量βd,γdの過渡的な応答特性を非振動的な特性にすることができる。
以上説明した以外の構成および処理は、第1実施形態と同じである。
補足すると、Vact>Vd_criticalとなる場合のk1の値は、式01により表されるモデル車両の状態量βd,γdの応答特性が臨界制動の特性となるk1の値よりも若干大きな値に設定してもよい。すなわち、モデル車両の状態量βd,γdの応答特性が過制動の特性になるようにk1の値を設定してもよい。また、走行速度Vactが極低速(臨界制動速度Vd_criticalよりも小さい所定値以下の走行速度)である場合に、モデル車両の応答性が振動的な特性にならない範囲で、k1の値を「1」よりも小さくしてもよい。


[第3実施形態]
次に、本発明の第3実施形態を説明する。なお、本実施形態は、前記第1実施形態または第2実施形態と、モデル車両の過渡応答特性を調整するための特性調整用行列Kのみが相違するものである。従って、その相違点を中心に説明し、第1実施形態または第2実施形態と同一構成および同一の処理については、説明を省略する。
前記第1実施形態および第2実施形態においては、ステアリング角θhのステップ状の変化に応じたモデル車両の状態量βd,γdの減衰性を高めるために、前記式01の特性調整用行列Kのモデル特性調整用パラメータk1,k2のうちの一方だけを可変的に設定するようにした。この場合、走行速度Vact(=Vd)が臨界制動速度Vd_criticalに比して高い場合に、モデル車両の特性方程式det(λ・I−K・A)=0の解(固有値)の絶対値が大きくなり過ぎる傾向がある。ひいては、ステアリング角θhの変化に対するモデル車両の状態量γd,βdの応答性(速応性)が実車1に比して高くなりすぎる傾向がある。例えば、前記第1実施形態におけるモデル車両の特性方程式の解(固有値)の絶対値は、図23の破線のグラフで例示する如く、走行速度Vactに応じて変化する。図示の如く、走行速度Vactが所定速度Vx(>Vd_critical)よりも高い高速域において、モデル車両の特性方程式の解(固有値)の絶対値は、走行速度Vactの上昇に伴い、大きくなっていく。
このため、特に、前記状態量偏差βerr,γerrに対する仮想外力Fvir,Mvir(モデル操作用制御入力)のゲインを小さめに設定したような場合には、実車1の高速走行時の過渡期において状態量偏差βerr,γerrが比較的大きくなることがある。そして、このような場合には、状態量偏差βerr,γerrに応じたアクチュエータ装置3(駆動・制動装置3A、ステアリング装置3B)のフィードバック制御によるアクチュエータの操作量が過大になる恐れがある。
そこで、第3実施形態においては、式01の特性調整用行列Kのモデル調整用パラメータk1,k2の両者を可変的に設定する。これにより、モデル車両の状態量βd,γdの減衰性を高めつつ、モデル車両の特性方程式det(λ・I−K・A)=0の解、すなわち、モデル車両の固有値の絶対値が過大になるのを防止する。
具体的には、本実施形態では、モデル特性調整用パラメータk1,k2の両者の値が走行速度Vactに応じて可変的に設定される。この場合、k1,k2の値は、式01により表されるモデル車両の状態量γd,βdの応答特性が振動的にならず(該応答特性が臨界制動または過制動の特性になり)、且つ、該モデル車両の特性方程式の解の絶対値が所定値以下に収まるように設定される。このような条件を満足し得るk1,k2の値の組は、例えばあらかじめ走行速度Vactに応じてマップ化される。そして、各制御処理周期における規範動特性モデル16の処理において、走行速度Vactの値(今回値)から、そのマップに基づいて、k1,k2の値が設定される。
図24(a),(b)は、それぞれ本実施形態におけるk1,k2の値の実走行速度Vactに応じた設定例を示すグラフである。
この例では、Vact≦Vd_criticalとなる状況におけるk1,k2の値は、いずれも「1」に設定される。そして、Vact>Vd_criticalとなる状況では、k2の値は、図24(b)に示す如く、前記第1実施形態と概ね同じようにVactの上昇に伴い、単調増加するように設定される。一方、k1の値は、図24(a)に示す如く前記所定速度VxにVactが上昇するまでは、「1」に維持される。そして、Vact>Vxになると、k1の値は、Vactの上昇に伴い、単調減少するように設定される。この場合、図24の例では、Vact>Vxになる状況では、モデル車両の特性方程式det(λ・I−K・A)=0の解(固有値)の絶対値が、Vact=Vxであるときの当該特性方程式の解の絶対値に等しくなり、且つ、モデル車両の状態量γd,βdの応答特性が臨界制動の特性になるようにk1の値が設定される。
このようにk1,k2の値を設定することにより、モデル車両の特性方程式の解(固有値)の絶対値は、Vact>Vxとなる任意の走行速度Vactにおいて、Vact=Vxであるときの当該特性方程式の解の絶対値以下の値になる。本実施形態では、図23の実線のグラフで示す如く、モデル車両の特性方程式の解(固有値)の絶対値は、Vact>Vxとなる任意の走行速度Vactにおいて、Vact=Vxであるときの当該特性方程式の解の絶対値に等しい値に維持される。
補足すると、本実施形態の如く、特性調整用行列Kの全ての対角成分k1,k2の値を可変的に設定するようにした場合には、モデル車両の特性方程式の解の値を任意に設定することが可能である。
本実施形態では、モデル特性調整用パラメータk1,k2の両者の値を走行速度Vactに応じて可変的に設定することにより、該モデル車両の状態量βd,γdの応答特性が振動的な特性になるのを防止すると共に、モデル車両の特性方程式の解の絶対値、ひいては、ステアリング角θhの変化に対するモデル車両の状態量βd,γdの応答性(速応性)が過大になるのを防止できる。なお、特性調整用行列Kは、モデル車両の定常特性に影響を及ぼさない。このため、モデル特性調整用パラメータk1,k2の値の変化によらずに、モデル車両の定常特性を実車1の定常特性に近い特性に維持できることは第1実施形態または第2実施形態と同じである。

なお、以上説明した実施形態では、2次系の動特性モデルを使用する場合を例に採って説明したが、本発明は、3次以上の動特性モデルを使用する場合にも適用できる。
例えば、規範動特性モデルとして、車輪の横すべり角の変化に対して横力の変化の応答遅れを考慮したモデルを使用してもよい。
この場合、規範動特性モデルの動特性は、例えば、次式110により表される。
Figure 2008001560

なお、式110の但し書きにおけるkyf、kyrは、それぞれ前輪の横剛性、後輪の横剛性である。また、m、Lf、Lr、Iの意味は、前記式01のものと同じである。また、Ffy_d,Fry_dはそれぞれ前輪の1輪あたりの横力、後輪の1輪あたりの横力である。また、Fvir1,Fvir2は、実車1と式110のモデル車両と間の状態量偏差(ヨーレートの偏差、および車両重心点横すべり角の偏差)を0に近づけるためにモデル操作量制御入力としてモデル車両に付加的に作用させる仮想外力(仮想的な並進力)である。Fvir1,Fvir2は、それぞれ前輪位置、後輪位置でモデル車両に作用させる仮想的な横方向の並進力を意味する。
そして、式110のK4aは、前記式01の特性調整用行列Kと同様に、規範動特性モデルの動特性を調整するための対角行列である。式110の特性調整用行列K4aの対角成分k1,k2,k3,k4のうちの1つ以上の対角成分の値を0以外の値で可変的に設定することで、式110のモデルの定常特性を一定に維持しつつ、ステアリング角θhのステップ状の変化(前輪舵角δf_dのステップ状の変化)に対する状態量βd,γdの減衰性を実車1よりも高めることが可能である。
また、規範動特性モデルとして、車両のロール軸まわりの運動と、ヨー軸まわりの運動との間の干渉を有するようなモデルを使用してもよい。このようなモデルは、例えば前記非特許文献1の式(6.29)’、(6.30)’、(6.31)’に、モデル操作用の仮想外力(モデル操作用制御入力)と、特徴調整用のパラメータとを付加した次式111の形式で表される。

d/dt(βd,γd,φd,φd')T=K4b・(A4b・(βd,γd,φd,φd')T
+B・δf_d+Bvir・(Fyvir,Mzvir,Mxvir)T
……式111

なお、式111におけるφdは車体1Bのロール角(ロール軸まわりの傾斜角)、φd’は、φdの微分値(ロール角の角速度)、A4bは4行4列の正方行列、Bは4行1列の行列、Bvirは4行3列の行列である。また、Fyvir,Mzvir,Mxvirは、状態量偏差(例えば車両重心点横すべり角の偏差、ヨーレートの偏差、ロール角もしくはその角速度の偏差)を0に近づけるためのモデル操作用制御入力としての仮想外力である。この場合、Fyvirは横方向の仮想的な並進力、Mzvirはヨー軸まわりの仮想的なモーメント、Mxvirはロール軸まわりの仮想的なモーメントである。これらの仮想外力Fyvir,Mzvir,Mxvirは、該状態量偏差に応じて決定される。
そして、式111のK4bは、前記式01の特性調整用行列Kと同様に、規範動特性モデルの動特性を調整するための対角行列(4行4列の対角行列)である。式111の特性調整用行列K4bの4個の対角成分のうちの1つ以上の対角成分を式111のモデルの応答特性を調整するためのパラメータとし、その値を0以外の値で可変的に設定することで、式111のモデルの定常特性を一定に維持しつつ、ステアリング角θhのステップ状の変化(前輪舵角δf_dのステップ状の変化)に対する状態量βd,γdの減衰性を実車1よりも高めることが可能である。
また、前記第1〜第3実施形態では、制御対象の状態量として、車両の横すべりに関する状態量と、ヨー軸まわりの回転に関する状態量を使用した例を示したが、車両の他の運動に関する状態量を使用してもよい。例えば、ロール軸まわりの回転運動に関する状態量(例えばロール角と、その角速度)を使用してもよい。この場合、車両の走行速度が比較的高い場合に、ロール角やその角速度の減衰性を高めるようにしてもよい。
また、前記第1〜第3実施形態では、4輪の車両を例に採って説明したが、本発明は、自動二輪車などの車両にも適用することが可能である。
以上説明したように、本発明は、車両の運動状態によらずに、ステアリング角などの運転操作量の変化に対する車両の応答特性を減衰性の高い特性にすることができ、良好な挙動特性を示す自動車などの車両を提供できる点で有用である。
本発明の実施形態における車両の概略構成を示すブロック図。 本発明の第1実施形態における車両に備えた制御装置の全体的な制御処理機能の概略を示す機能ブロック図。 第1実施形態における規範動特性モデル(車両モデル)上の車両の構造を示す図。 図4(a)は実際の車両と車両モデルとのそれぞれにおけるヨーレートの応答特性を例示するグラフ、図4(b)は実際の車両と車両モデルとのそれぞれにおける車両重心点横すべり角の応答特性を例示するグラフ。 第1実施形態におけるモデル特性調整用パラメータk2の設定例を示すグラフ。 第1実施形態における規範操作量決定部の処理機能の詳細を示す機能ブロック図。 第1実施形態における規範操作量決定部に備える遠心力過大化防止リミッタの処理を説明するためのグラフ。 第1実施形態における遠心力過大化防止リミッタの処理の他の例を説明するためのグラフ。 第1実施形態における遠心力過大化防止リミッタの処理の他の例を説明するためのグラフ。 第1実施形態における規範操量決定部で第2制限済み前輪舵角δf_ltd2を決定するための処理の他の例を示す機能ブロック図。 第1実施形態におけるFB分配則の処理機能を示す機能ブロック図。 第1実施形態における仮想外力決定部の処理の他の例を示す機能ブロック図。 第1実施形態におけるγβ制限器の処理の他の例を説明するためのグラフ。 第1実施形態におけるアクチュエータ動作FB目標値決定部の処理を示す機能ブロック図。 第1実施形態におけるアクチュエータ動作FB目標値決定部の処理で使用する変数を説明するための図。 図16(a),(b)は、第1実施形態におけるアクチュエータ動作FB目標値決定部の処理で使用する分配ゲインの設定例を示すグラフ。 図17(a)〜(e)は、第1実施形態におけるアクチュエータ動作FB目標値決定部の処理の他の例で使用するマップを例示する図。 図18(a)〜(e)は、第1実施形態におけるアクチュエータ動作FB目標値決定部の処理の他の例で使用するマップを例示する図。 第1実施形態におけるFF則の処理を示す機能ブロック図。 第1実施形態におけるアクチュエータ動作目標合成部の処理を示す機能ブロック図。 第1実施形態におけるアクチュエータ動作目標合成部に備えた最適目標第n輪駆動・制動力決定部の処理を示すフローチャート。 第1実施形態におけるアクチュエータ動作目標合成部に備えた最適目標アクティブ舵角決定部の処理を示す機能ブロック図。 第3実施形態におけるモデル車両の固有値と車両の走行速度との関係をすグラフ。 第3実施形態におけるモデル特性調整用パラメータk1,k2の設定例を示すグラフ。
本発明の車両の制御装置は、かかる目的を達成するために、複数の車輪を有する車両の操縦者による該車両の運転操作状態を示す運転操作量を検出する運転操作量検出手段と、前記車両の所定の運動を操作可能に該車両に設けられたアクチュエータ装置と、実際の車両の所定の運動に関する複数種類の状態量の値の組である実状態量ベクトルを検出または推定する実状態量把握手段と、前記車両の動特性を表すモデルとしてあらかじめ定められた車両モデル上での車両の前記複数種類の状態量の値の組であるモデル状態量ベクトルを決定するモデル状態量決定手段と、前記検出または推定された実状態量ベクトルの各種類の状態量の値と前記決定されたモデル状態量ベクトルの各種類の状態量の値との偏差である状態量偏差を算出する状態量偏差算出手段とを備え、該状態量偏差を0に近づけるように少なくとも前記アクチュエータ装置の動作を制御する車両の制御装置において、
実際の車両の前記アクチュエータ装置を操作するための実車アクチュエータ操作用制御入力と前記車両モデル上での車両の運動を操作するための車両モデル操作用制御入力とを、少なくとも前記算出された状態量偏差に応じて該状態量偏差を0に近づけるように決定する状態量偏差応動制御手段と、
少なくとも前記決定された実車アクチュエータ操作用制御入力に応じて前記アクチュエータ装置の動作を制御するアクチュエータ装置制御手段とを備えると共に、
前記モデル状態量決定手段が、少なくとも前記検出された運転操作量と前記決定された車両モデル操作用制御入力とに応じて前記モデル状態量ベクトルを決定する手段であり、
前記車両モデル操作用制御入力を0に維持した状態での前記運転操作量のステップ状の変化に応じた前記モデル状態量ベクトルの各種類の状態量の値の減衰性が、前記実車アクチュエータ操作用制御入力を0に維持した状態での当該運転操作量のステップ状の変化に応じた前記実状態量ベクトルの各種類の状態量の値の減衰性よりも高い特性である高減衰特性になるように、前記車両モデルの少なくとも1つのパラメータの値を前記実際の車両の走行速度に応じて可変的に設定する車両モデル特性設定手段を備えたことを特徴とする(第1発明)。
かかる第1発明によれば、前記車両モデルの少なくとも1つのパラメータを実際の車両の走行速度に応じて可変的に設定することにより、車両の任意の運動状態において、前記モデル状態量ベクトルの各種類の状態量の値の減衰性を、実状態量ベクトルの各種類の状態量の値の減衰性よりも高い前記高減衰特性にすることができる。この場合、特に、実状態量ベクトルの各種類の状態量の値の応答特性が振動的な特性になるような車両の運動状態では、実状態量ベクトルの各種類の状態量の値の応答特性と、モデル状態量ベクトルの各種類の状態量の値の応答特性との乖離が生じるものの、前記車両モデル操作用制御入力が前記車両モデルに与えられる。このため、前記状態量偏差が過大になるのが抑制され、ひいては、前記実アクチュエータ操作用制御入力が過大になるのが抑制される。従って、実状態量ベクトルの各種類の状態量の値を適切に、モデル状態量ベクトルの各種類の状態量の値に近づける(追従させる)ことができる。そして、モデル状態量ベクトルの各種類の状態量の値の減衰性は、前記高減衰特性であるので、該状態量の値が速やかに定常値に収束する。その結果、前記運転操作量が変化したときの実状態量ベクトルの各種類の状態量の値の振動を抑制することができ、車両の挙動特性を良好に保つことができる。
また、前記第1〜第4発明においては、前記車両モデル特性設定手段は、前記車両モデル操作用制御入力を0に維持した状態で前記運転操作量をステップ状に変化させたときの該運転操作量の定常値と、前記モデル状態量ベクトルの各種類の状態量の値の定常値との関係が一定の関係に保たれるように、前記車両モデルのパラメータの値を可変的に設定することが好ましい(第5発明)。
この第5発明によれば、前記運転操作量をステップ状に変化させたときの該運転操作量の定常値と、前記モデル状態量ベクトルの各種類の状態量の値の定常値との関係、すなわち、車両モデルの定常特性が前記車両モデルのパラメータの値を可変的に設定しても(該パラメータの値の変更によらずに)、一定に保たれる。このため、該車両モデルの定常特性を実際の車両の定常特性(詳しくは、前記実車アクチュエータ操作用制御入力を0に維持した状態での運転操作量の定常値と、前記実状態量ベクトルの各種類の状態量の定常値との関係)とほぼ同等の特性にすることが可能となる。その結果、実際の車両の運動時の定常状態(運転操作量が一定で、且つ、路面などの環境状態が一定もしくは一様であって、過渡的な挙動が消えるまで十分に時間が経過した状態)における前記状態量偏差を常に微小に抑えることができる。ひいては、実際の車両の定常状態における前記実アクチュエータ操作用制御入力を最小限に留め、前記アクチュエータ装置が過剰に動作するのを防止できる。
βf_d=βd+Lf・γd/Vd−δf_d ……式02a
βr_d=βd−Lr・γd/Vd ……式02b
βf0=βf_d+δf_d=βd+Lf・γd/Vd ……式02c

また、図3に示す如く、モデル車両の前輪Wfのコーナリングフォース(≒前輪Wfの横力)をFfy_d、モデル車両の後輪Wrのコーナリングフォース(後輪Wrの横力)をFry_dとおくと、Ffy_dとβf_dとの関係、およびFry_dとβr_dとの関係は、次式03a,03bにより表される。
具体的には、本実施形態では、Vd≦Vd_critical(Vact≦Vd_critical)となる任意の走行速度Vd(=Vact)に対して、モデル特性調整用パラメータk1の値は「1」に設定される。また、Vd>Vd_critical(Vact>Vd_critical)となる任意の走行速度Vd(=Vact)に対して、モデル車両(特性調整用行列Kを含めた式01により表される系)の状態量βd,γdの応答特性が非振動的な特性、例えば臨界制動の特性となるように、モデル特性調整用パラメータk2の値が設定される。すなわち、Vd>Vd_criticalとなるVd(=Vact)の任意の値に対して、特性調整用行列K(ただし、本実施形態ではk1=1)を含めた式01により表される系(モデル車両)の特性方程式det(λ・I−K・A)=0(但し、λ:スカラー変数、det( ):行列式、I:単位行列)の解、すなわち、モデル車両の固有値が重根となるようにVd(=Vact)に応じてk2の値を設定する。なお、「A」は、式01の右辺の括弧内の第1項の行列(a11,a12,a21,a22を成分とする2行2列の行列である。
上記のようにモデル前輪舵角δf_dの許容範囲を設定した後、遠心力過大化防止リミッタ14fは、入力された第1制限済み前輪舵角δf_ltd1が許容範囲[δf_min,δf_max]内の値であるとき(δf_min≦δf_ltd1≦δf_maxであるとき)には、δf_ltd1の値をそのまま第2制限済み前輪舵角δf_ltd2(=規範動特性モデル16に入力するモデル前輪舵角δf_d)として出力する。また、該遠心力過大化防止リミッタ14fは、入力されたδf_ltd1の値が許容範囲[δf_min,δf_max]を逸脱している場合には、その入力値を強制的に制限してなる値を第2制限済み前輪舵角δf_ltd2として出力する。具体的には、δf_ltd1>δf_maxである場合には、δf_maxが第2制限済み前輪舵角δf_ltd2として出力され、δf_ltd1<δf_minである場合には、δf_minが第2制限済み前輪舵角δf_ltd2として出力される。これにより、δf_ltd2は、許容範囲[δf_min,δf_max]内で、第1制限済み前輪舵角δf_ltd1に一致するか、もしくは、第1制限済み前輪舵角δf_ltd1に最も近い値になるように決定される。
なお、図15中のLfは、実車1の重心点Gと前輪W1,W2の車軸との前後方向距離、Lrは実車1の重心点Gと後輪W3,W4の車軸との前後方向距離である。これらのLf,Lrの値は、前記図3で示したモデル車両に関するLf,Lrの値と同じである。
K1_str=(df/2)/max(L1,Lmin) ……式26a
K2_str=(df/2)/max(L2,Lmin) ……式26b

ここで、式26a、式26bにおいて、max(a,b)(a,bは一般変数)は、変数a,bのうちの大きい方の値を出力する関数、Lminは、df/2よりも小さい正の定数である。これにより、K1_str,K2_strが過大になるのを防止した。換言すれば、本実施形態では、(df/2)/Lmin(>1)をK1_str,K2_strの上限値とし、この上限値以下で、実前輪舵角δf_actに応じてK1_str,K2_strが設定される。
また、前記のように第n輪分配ゲインKn(n=1,2,3,4)を決定することで、実車1の定常円旋回時や定常直進時のように、βf_actとβr_actとが一致またはほぼ一致する状況では、K1の値とK3の値との和、およびK2の値とK4の値との和は、それぞれほぼ1になる。このことは、FB目標第n輪ブレーキ駆動・制動力Fxfbdmd_nに従って忠実に駆動・制動装置3Aのブレーキ装置が動作すれば、Mfbdmd_aから実車1の重心点Gのまわりに実際に発生するモーメント(ヨー方向のモーメント)までの伝達関数のゲインがほぼ1になる(実際に発生するヨー方向のモーメントがMfbdmd_aにほぼ等しくなる)ことを意味する。
なお、前記リミッタ222d_n(n=1,2,3,4)は、それに入力されるFxfb_nを0よりも若干大きい所定の正の上限値以下に制限してなる値をFxfbdmd_nとして出力するようにしてもよい。例えば、Fxfb_nが該上限値以下の値であるときには、Fxfb_nをそのままFxfbdmd_nとして出力し、Fxfb_nが上限値よりも大きい正の値であるときには、該上限値をFxfbdmd_nとして出力する。このようにした場合には、正の値のFxfbdmd_nは、ブレーキ装置による第n輪Wnの制動方向の駆動・制動力の大きさを減少させるように機能するフィードバック制御入力となる。
補足すると、第3輪W3と第4W4とに関する前記処理部222b_3,222b_4では、いずれも、その入力値と出力値が等しくなるので、第3輪W3と第4W4とに関して、処理部222c_3からリミッタ222d_3までの処理、および処理部222c_4からリミッタ222d_4までの処理を上記の如くマップを使用して行なうということは、処理部222b_3からリミッタ222d_3までの処理と、処理部222b_4からリミッタ222d_4までの処理をマップを使用して行なうことと同じである。
以上が本実施形態におけるFF則22の具体的な処理の内容である。
次いで、S102に進んで、S100と同じ前提条件の基で、最大モーメント発生時第n輪駆動・制動力Fxmmax_nと、これに対応するスリップ比である最大モーメント発生時第n輪スリップ比Smmax_nとを決定する。ここで、最大モーメント発生時第n輪駆動・制動力Fxmmax_nは、第n輪Wnの横すべり角が実横すべり角βf_actまたはβr_actであって、路面摩擦係数が推定摩擦係数μestmであるときに、第n輪Wnで発生可能な路面反力(詳しくは前記車輪特性関係に従って第n輪Wnに路面から作用可能な駆動・制動力と横力との合力)のうち、該路面反力によって実車1の重心点Gのまわりに発生するヨー方向のモーメントが、前記フィードバックヨーモーメント基本要求値Mfbdmdの極性と同じ極性(向き)に向かって最大となるような路面反力の駆動・制動力成分の値を意味する。なお、この場合、Fxmmax_n,Smmax_nは、第n輪Wnの駆動・制動力とスリップ比との関係(前記車輪特性関係に従う関係)において、スリップ比の絶対値が0から増加するに伴い駆動・制動力の絶対値が単調に増加する領域内で決定される。従って、Smmax_nは、駆動・制動力がピーク値となるスリップ比の値と0との間で決定される。
また、後輪W3,W4に関しては(n=3または4であるとき)、例えば、実後輪横すべり角βr_actと推定摩擦係数μestmとから、あらかじめ作成されたマップ(後輪横すべり角と路面摩擦係数と最大モーメント発生時駆動・制動力と最大モーメント発生時スリップ比との関係(前記車輪特性関係に従う関係)を表すマップ)に基づいて、最大モーメント発生時第n輪駆動・制動力Fxmmax_nとこれに対応する最大モーメント発生時第n輪スリップ比Smmax_nとが決定される。あるいは、後輪横すべり角と路面摩擦係数とスリップ比と駆動・制動力と横力との関係を表すマップに基づき、βr_actとμestmとの組に対応して発生可能な第n輪Wn(n=3または4)の駆動・制動力と横力との組のなかから、それらの合力が実車1の重心点Gのまわりに発生するヨー方向のモーメントが最大となる駆動・制動力と横力との組を探索的に決定し、その組に対応する駆動・制動力とスリップ比とをそれぞれFxmmax_n,Smmax_nとして決定するようにしてもよい。
次いで、S104〜S112の処理が後述するように実行され、目標第n輪駆動・制動力Fxcmd_nが決定される。この場合、目標第n輪駆動・制動力Fxcmd_nは、次の条件(1)〜(3)を満足するように決定される。ただし、条件(1)〜(3)は、条件(1)、(2)、(3)の順に、優先順位が高い条件とされ、条件(1)〜(3)の全てを満たす目標第n輪駆動・制動力Fxcmd_nを決定できない場合には、優先順位の高い条件を優先的に満足するように目標第n輪駆動・制動力Fxcmd_nが決定される。
そこで、第3実施形態においては、式01の特性調整用行列Kのモデル特性調整用パラメータk1,k2の両者を可変的に設定する。これにより、モデル車両の状態量βd,γdの減衰性を高めつつ、モデル車両の特性方程式det(λ・I−K・A)=0の解、すなわち、モデル車両の固有値の絶対値が過大になるのを防止する。
【図面の簡単な説明】
【図1】本発明の実施形態における車両の概略構成を示すブロック図。
【図2】本発明の第1実施形態における車両に備えた制御装置の全体的な制御処理機能の概略を示す機能ブロック図。
【図3】第1実施形態における規範動特性モデル(車両モデル)上の車両の構造を示す図。
【図4】図4(a)は実際の車両と車両モデルとのそれぞれにおけるヨーレートの応答特性を例示するグラフ、図4(b)は実際の車両と車両モデルとのそれぞれにおける車両重心点横すべり角の応答特性を例示するグラフ。
【図5】第1実施形態におけるモデル特性調整用パラメータk2の設定例を示すグラフ。
【図6】第1実施形態における規範操作量決定部の処理機能の詳細を示す機能ブロック図。
【図7】第1実施形態における規範操作量決定部に備える遠心力過大化防止リミッタの処理を説明するためのグラフ。
【図8】第1実施形態における遠心力過大化防止リミッタの処理の他の例を説明するためのグラフ。
【図9】第1実施形態における遠心力過大化防止リミッタの処理の他の例を説明するためのグラフ。
【図10】第1実施形態における規範操量決定部で第2制限済み前輪舵角δf_ltd2を決定するための処理の他の例を示す機能ブロック図。
【図11】第1実施形態におけるFB分配則の処理機能を示す機能ブロック図。
【図12】第1実施形態における仮想外力決定部の処理の他の例を示す機能ブロック図。
【図13】第1実施形態におけるγβ制限器の処理の他の例を説明するためのグラフ。
【図14】第1実施形態におけるアクチュエータ動作FB目標値決定部の処理を示す機能ブロック図。
【図15】第1実施形態におけるアクチュエータ動作FB目標値決定部の処理で使用する変数を説明するための図。
【図16】図16(a),(b)は、第1実施形態におけるアクチュエータ動作FB目標値決定部の処理で使用する分配ゲインの設定例を示すグラフ。
【図17】図17(a)〜(e)は、第1実施形態におけるアクチュエータ動作FB目標値決定部の処理の他の例で使用するマップを例示する図。
【図18】図18(a)〜(e)は、第1実施形態におけるアクチュエータ動作FB目標値決定部の処理の他の例で使用するマップを例示する図。
【図19】第1実施形態におけるFF則の処理を示す機能ブロック図。
【図20】第1実施形態におけるアクチュエータ動作目標値合成部の処理を示す機能ブロック図。
【図21】第1実施形態におけるアクチュエータ動作目標値合成部に備えた最適目標第n輪駆動・制動力決定部の処理を示すフローチャート。
【図22】第1実施形態におけるアクチュエータ動作目標値合成部に備えた最適目標アクティブ舵角決定部の処理を示す機能ブロック図。
【図23】第3実施形態におけるモデル車両の固有値と車両の走行速度との関係をすグラフ。
【図24】 図24(a),(b)は第3実施形態におけるモデル特性調整用パラメータk1,k2の設定例を示すグラフ。

Claims (5)

  1. 複数の車輪を有する車両の操縦者による該車両の運転操作状態を示す運転操作量を検出する運転操作量検出手段と、前記車両の所定の運動を操作可能に該車両に設けられたアクチュエータ装置と、実際の車両の所定の運動に関する複数種類の状態量の値の組である実状態量ベクトルを検出または推定する実状態量把握手段と、前記車両の動特性を表すモデルとしてあらかじめ定められた車両モデル上での車両の前記複数種類の状態量の値の組であるモデル状態量ベクトルを決定するモデル状態量決定手段と、前記検出または推定された実状態量ベクトルの各種類の状態量の値と前記決定されたモデル状態量ベクトルの各種類の状態量の値との偏差である状態量偏差を算出する状態量偏差算出手段とを備え、該状態量偏差を0に近づけるように少なくとも前記アクチュエータ装置の動作を制御する車両の制御装置において、
    実際の車両の前記アクチュエータ装置を操作するための実車アクチュエータ操作用制御入力と前記車両モデル上での車両の運動を操作するための車両モデル操作用制御入力とを、少なくとも前記算出された状態量偏差に応じて該状態量偏差を0に近づけるように決定する状態量偏差応動制御手段と、
    少なくとも前記決定された実車アクチュエータ操作用制御入力に応じて前記アクチュエータ装置の動作を制御するアクチュエータ装置制御手段とを備えると共に、
    前記モデル状態量決定手段が、少なくとも前記検出された運転操作量と前記決定された車両モデル操作用制御入力とに応じて前記モデル状態量ベクトルを決定する手段であり、
    前記車両モデル操作用制御入力を0に維持した状態での前記運転操作量のステップ状の変化に応じた前記モデル状態量ベクトルの各種類の状態量の値の減衰性が、前記実車アクチュエータ操作用制御入力を0に維持した状態での当該運転操作量のステップ状の変化に応じた前記実状態量ベクトルの各種類の状態量の値の減衰性よりも高い特性である高減衰特性になるように、前記車両モデルの少なくとも1つのパラメータの値を前記実際の車両の運動状態に応じて可変的に設定する車両モデル特性設定手段を備えたことを特徴とする車両の制御装置。
  2. 前記高減衰特性は、臨界制動または過制動の応答特性であることを特徴とする請求項1記載の車両の制御装置。
  3. 前記複数種類の状態量は、前記車両の横すべりおよびヨー軸まわりの回転に関する2種類以上の状態量を含み、前記車両モデル特性設定手段は、前記車両モデルのパラメータの値を前記実際の車両の走行速度に応じて可変的に設定することを特徴とする請求項1記載の車両の制御装置。
  4. 前記車両モデル特性設定手段は、前記車両モデルの固有値の絶対値が、少なくとも前記走行速度が所定速度よりも高いときに、所定値以下になるように前記車両モデルのパラメータの値を該走行速度に応じて可変的に設定することを特徴とする請求項3記載の車両の制御装置。
  5. 前記車両モデル特性設定手段は、前記車両モデル操作用制御入力を0に維持した状態で前記運転操作操作量をステップ状に変化させたときの該運転操作量の定常値と、前記モデル状態量ベクトルの各種類の状態量の定常値との関係が一定の関係に保たれるように、前記車両モデルのパラメータの値を可変的に設定することを特徴とする請求項1記載の車両の制御装置。
JP2008522350A 2006-06-30 2007-05-24 車両の制御装置 Expired - Fee Related JP4370605B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006181984 2006-06-30
JP2006181984 2006-06-30
PCT/JP2007/060593 WO2008001560A1 (fr) 2006-06-30 2007-05-24 Dispositif de commande de véhicule

Publications (2)

Publication Number Publication Date
JP4370605B2 JP4370605B2 (ja) 2009-11-25
JPWO2008001560A1 true JPWO2008001560A1 (ja) 2009-11-26

Family

ID=38845331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008522350A Expired - Fee Related JP4370605B2 (ja) 2006-06-30 2007-05-24 車両の制御装置

Country Status (8)

Country Link
US (1) US8135528B2 (ja)
EP (1) EP1977945B1 (ja)
JP (1) JP4370605B2 (ja)
KR (1) KR100997498B1 (ja)
CN (1) CN101454190B (ja)
CA (1) CA2642267C (ja)
DE (1) DE602007003438D1 (ja)
WO (1) WO2008001560A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8234045B2 (en) * 2008-09-24 2012-07-31 Robert Bosch Gmbh Failure mode effects mitigation in drive-by-wire systems
JP5206452B2 (ja) * 2009-02-02 2013-06-12 日産自動車株式会社 車両走行支援装置及び車両走行支援方法
JP4918149B2 (ja) * 2010-03-05 2012-04-18 本田技研工業株式会社 車両の運動制御装置
FR2959836B1 (fr) * 2010-05-07 2012-06-01 Messier Bugatti Procede de gestion d'un mouvement de lacet d'un aeronef roulant au sol.
JP5542014B2 (ja) * 2010-09-10 2014-07-09 富士重工業株式会社 車両挙動制御装置
JP5466126B2 (ja) * 2010-09-30 2014-04-09 本田技研工業株式会社 自動二輪車の姿勢制御装置及び自動二輪車
JP2012096742A (ja) * 2010-11-05 2012-05-24 Nippon Yusoki Co Ltd ステアバイワイヤ式のステアリング装置
CN102616223B (zh) * 2011-01-28 2015-03-25 比亚迪股份有限公司 车辆稳定控制方法及系统
DE102014200100B4 (de) * 2013-01-15 2018-04-05 Ford Global Technologies, Llc Lenkwinkelfehlerkorrektur
CN103303367B (zh) * 2013-06-21 2015-06-24 电子科技大学 一种四轮驱动电动车车身稳定控制方法
US10328913B2 (en) * 2016-11-18 2019-06-25 International Business Machines Corporation Facilitation of automatic adjustment of a braking system
DE102017111077A1 (de) * 2017-05-22 2018-11-22 Lsp Innovative Automotive Systems Gmbh Bremsvorrichtung, insbesondere für elektrisch angetriebene Kraftfahrzeuge
US10372134B2 (en) * 2017-06-30 2019-08-06 Intel Corporation Methods and apparatus to implement nonlinear control of vehicles moved using multiple motors
KR102556209B1 (ko) * 2018-11-05 2023-07-18 가부시키가이샤 시마즈세이사쿠쇼 산업 차량
US11724735B2 (en) * 2018-12-19 2023-08-15 Hl Mando Corporation Steering control apparatus, steering control method, and steering apparatus
JP7109406B2 (ja) * 2019-07-01 2022-07-29 本田技研工業株式会社 車両制御装置
KR20210018652A (ko) * 2019-08-08 2021-02-18 현대자동차주식회사 차량의 휠 슬립 제어 방법
JP7275981B2 (ja) * 2019-08-09 2023-05-18 株式会社ジェイテクト 制御装置、および転舵装置
US20220206498A1 (en) * 2020-12-30 2022-06-30 Jingsheng Yu Lateral control in path-tracking of autonomous vehicle
JP2022117642A (ja) * 2021-02-01 2022-08-12 本田技研工業株式会社 車両制御装置
US11724739B2 (en) * 2021-07-22 2023-08-15 GM Global Technology Operations LLC Vehicle actuation commands to affect transient handling

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229074B2 (ja) * 1993-06-04 2001-11-12 本田技研工業株式会社 車両用操舵装置
JP3198797B2 (ja) 1994-05-10 2001-08-13 日産自動車株式会社 車両運動制御装置
US6547343B1 (en) * 1997-09-08 2003-04-15 General Motors Corporation Brake system control
JP3463530B2 (ja) 1997-09-24 2003-11-05 日産自動車株式会社 車両運動制御装置
US6035251A (en) * 1997-11-10 2000-03-07 General Motors Corporation Brake system control method employing yaw rate and ship angle control
US5931887A (en) * 1998-09-24 1999-08-03 General Motors Corporation Brake control method based on a linear transfer function reference model
JP3704979B2 (ja) 1998-11-27 2005-10-12 日産自動車株式会社 車両運動制御装置
JP2002019485A (ja) 2000-07-07 2002-01-23 Hitachi Ltd 運転支援装置
JP4021185B2 (ja) 2001-12-07 2007-12-12 本田技研工業株式会社 ヨーモーメントフィードバック制御方法
JP4032985B2 (ja) * 2003-02-07 2008-01-16 日産自動車株式会社 車両運動制御装置
JP2005041386A (ja) 2003-07-24 2005-02-17 Aisin Seiki Co Ltd 車両の操舵制御装置
RU2389625C2 (ru) * 2004-08-06 2010-05-20 Хонда Мотор Ко., Лтд. Устройство управления для транспортного средства
US7191047B2 (en) * 2004-09-27 2007-03-13 Delphi Technologies, Inc. Motor vehicle control using a dynamic feedforward approach
US7537293B2 (en) * 2005-12-22 2009-05-26 Gm Global Technology Operations, Inc. Vehicle stability enhancement control adaptation to driving skill

Also Published As

Publication number Publication date
KR100997498B1 (ko) 2010-11-30
CA2642267A1 (en) 2008-01-03
EP1977945A4 (en) 2009-02-18
KR20080108976A (ko) 2008-12-16
EP1977945A1 (en) 2008-10-08
WO2008001560A1 (fr) 2008-01-03
DE602007003438D1 (de) 2010-01-07
CA2642267C (en) 2011-05-10
JP4370605B2 (ja) 2009-11-25
CN101454190B (zh) 2012-05-09
US20090024293A1 (en) 2009-01-22
EP1977945B1 (en) 2009-11-25
CN101454190A (zh) 2009-06-10
US8135528B2 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
JP4370605B2 (ja) 車両の制御装置
JP4143113B2 (ja) 車両の制御装置
JP4226059B2 (ja) 車両の制御装置
JP4226060B2 (ja) 車両の制御装置
JP4143112B2 (ja) 車両の制御装置
JP4143111B2 (ja) 車両の制御装置
JP4226058B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4370605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140911

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees