JPWO2007142235A1 - Abrasive cloth for precision processing - Google Patents

Abrasive cloth for precision processing Download PDF

Info

Publication number
JPWO2007142235A1
JPWO2007142235A1 JP2008520589A JP2008520589A JPWO2007142235A1 JP WO2007142235 A1 JPWO2007142235 A1 JP WO2007142235A1 JP 2008520589 A JP2008520589 A JP 2008520589A JP 2008520589 A JP2008520589 A JP 2008520589A JP WO2007142235 A1 JPWO2007142235 A1 JP WO2007142235A1
Authority
JP
Japan
Prior art keywords
nonwoven fabric
polishing
layer
single yarn
precision processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008520589A
Other languages
Japanese (ja)
Other versions
JP5032472B2 (en
Inventor
大介 弘中
大介 弘中
小川 達也
達也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2008520589A priority Critical patent/JP5032472B2/en
Publication of JPWO2007142235A1 publication Critical patent/JPWO2007142235A1/en
Application granted granted Critical
Publication of JP5032472B2 publication Critical patent/JP5032472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2429/00Carriers for sound or information
    • B32B2429/02Records or discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2432/00Cleaning articles, e.g. mops, wipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Nonwoven Fabrics (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

単糸分散不織布と支持体を積層した2層以上の多層構造シートからなる研磨布であり、単糸分散不織布を研磨側の表層の第一層とし、単糸分散不織布を構成する単糸の数平均繊維径は0.1〜1.7μmであり、第一層の表面が起毛されており、第一層表面の最大高さ粗さが70μm以下であり、吸水速度が100〜240mm、圧縮エネルギーが0.10〜0.30gf・cm/cm2であることを特徴とする精密加工用研磨布。Number of single yarns constituting a single yarn-dispersed non-woven fabric, which is a polishing cloth comprising a multilayer structure sheet of two or more layers in which a single yarn-dispersed non-woven fabric and a support are laminated. The average fiber diameter is 0.1 to 1.7 μm, the surface of the first layer is raised, the maximum height roughness of the surface of the first layer is 70 μm or less, the water absorption speed is 100 to 240 mm, and the compression energy Is a polishing cloth for precision processing, characterized in that is 0.10 to 0.30 gf · cm / cm 2.

Description

本発明は、磁気ディスクの精密加工用研磨布、特に、ハードディスクのテクスチャー加工に用いられる研磨布(以下、テクスチャー加工用研磨布という)に関するものである。   The present invention relates to a polishing cloth for precision processing of a magnetic disk, and more particularly to a polishing cloth used for texturing of a hard disk (hereinafter referred to as a texturing polishing cloth).

近年、コンピューター及びデジタルカメラ、携帯電話、映像音楽記録再生機器等の高性能化・小型化・記録の大容量化が進んでいる。これらを可能としている要因の一つが、情報の高密度記録化であり、ハードディスクはデータの書き込み及び読み出し等のアクセス速度が速く容量単価の安い磁気記録媒体の一つであるため、多くの電子機器類に搭載され、一般家庭にも広く普及してきている。   In recent years, computers, digital cameras, mobile phones, video and music recording / playback devices, etc. have been improved in performance, size and recording capacity. One of the factors that make these possible is the high-density recording of information, and since hard disks are one of magnetic recording media with a high access speed for data writing and reading and a low capacity unit price, many electronic devices It has been widely used by ordinary households.

ハードディスクの一般的な製法においては、磁性薄膜をコーティングする前にハードディスク基板に所望の微細な凹凸パターン、すなわちテクスチャーを加工形成する。このテクスチャーを加工形成することにより、磁気ヘッドと接触した際の傷の抑制、磁気ディスクへの磁気ヘッドの吸着防止、磁気異方性を高め情報記録密度の向上等の効果がある。   In a general manufacturing method of a hard disk, a desired fine uneven pattern, that is, a texture is processed and formed on the hard disk substrate before coating the magnetic thin film. By processing and forming this texture, there are effects such as suppression of scratches when coming into contact with the magnetic head, prevention of adsorption of the magnetic head to the magnetic disk, increase of magnetic anisotropy, and improvement of information recording density.

近年、加速度的に開発が進むハードディスクの情報記録密度の向上のためには、(1)磁気ヘッドの低浮上化、(2)CSS(コンタクト・スタート・アンド・ストップ)動作時のヘッドクラッシュと磁気ヘッドの吸着抑制、を目的としたテクスチャーの更なる微細化、すなわち、ディスク表面の凹凸の平均深さに代表される表面平均粗さ(Ra)の低減が必要であり、そのためには、研磨精度の向上が極めて重要である。   In order to improve the information recording density of hard disks, which have been developed at an accelerated rate in recent years, (1) low flying height of magnetic head, (2) head crash and magnetic field during CSS (contact start and stop) operation It is necessary to further refine the texture for the purpose of suppressing the adsorption of the head, that is, to reduce the surface average roughness (Ra) represented by the average depth of the irregularities on the disk surface. The improvement of is extremely important.

これら、ハードディスク基板のテクスチャー加工用研磨布としては、従来から、研磨布を構成する繊維の直径を細くすることにより研磨性能を向上させるという提案が数多くなされている。   Conventionally, as a polishing cloth for texture processing of a hard disk substrate, many proposals have been made to improve the polishing performance by reducing the diameter of the fibers constituting the polishing cloth.

例えば、従来のテクスチャー加工の方法としては、加工用研磨布として植毛布や織編物が用いられていた(特開平6−295432号公報)。この方法によれば、繊維を細くすると研磨布の表面に研磨砥粒が均一に付着し、研磨布をディスクに押し付けた際に研磨砥粒が均等にディスク表面に押し付けられ、ディスクの表面粗さを低減することが可能となると言われている。しかし、研磨布の繊維径は3〜15μmであるため、加工精度を向上させるには限界があり、最近のハードディスクの高容量化には十分対応できなくなった。   For example, as a conventional texture processing method, a flocked fabric or a woven or knitted fabric is used as a polishing cloth for processing (Japanese Patent Laid-Open No. Hei 6-295432). According to this method, when the fiber is thinned, the abrasive grains uniformly adhere to the surface of the polishing cloth, and when the polishing cloth is pressed against the disk, the abrasive grains are uniformly pressed against the disk surface, and the surface roughness of the disk It is said that this can be reduced. However, since the fiber diameter of the polishing cloth is 3 to 15 μm, there is a limit to improving the processing accuracy, and it has become impossible to cope with the recent increase in capacity of hard disks.

最近では、複合紡糸法により作製された海島糸から成る不織布において、不織布に高分子弾性体を含浸させた後、適当な溶媒で海成分を除去することによって極細繊維を形成させ、さらに片面、或いは、両面を起毛させることによりテクスチャー加工用研磨布を得るという提案が種々なされており(特開2002−79472号公報、特開2003−170348号公報、特開2004−130395号公報など)、テクスチャー加工用研磨布の主流となっている。この種の加工用研磨布は、海島糸を用いることによって単糸の繊維径が1.9μm以下の極細繊維となり、従来の織編物の繊維径(約5μm)よりはるかに細いため、テクスチャー加工の精度を向上させることが可能である。   Recently, in a nonwoven fabric made of sea-island yarn produced by a composite spinning method, after impregnating a polymer elastic body into the nonwoven fabric, an ultrafine fiber is formed by removing sea components with an appropriate solvent, and further, one side or Various proposals have been made to obtain a textured polishing cloth by raising both sides (JP 2002-79472 A, JP 2003-170348 A, JP 2004-130395 A, etc.). It has become the mainstream for polishing cloth. This type of processing abrasive cloth becomes ultrafine fiber with a fiber diameter of 1.9 μm or less by using Umijima yarn, which is much thinner than the fiber diameter of conventional woven or knitted fabric (about 5 μm). The accuracy can be improved.

しかし、高分子弾性体を含浸させた海島糸から成る不織布から、適当な溶媒で海成分を除去して島成分を残すことにより極細繊維を得るという上記の方法は、1本の海島糸の中に数十本から数百本の島成分からなる単糸があるため、島成分の単糸の繊維径の数十倍から数百倍の太さである繊維束(単糸が偏って存在し、束状を形成している状態)が少なからず存在することとなる。   However, the above-mentioned method of obtaining ultrafine fibers from a non-woven fabric made of sea-island yarn impregnated with a polymer elastic body by removing the sea component with an appropriate solvent and leaving the island component remains in one sea-island yarn. Since there are single yarns consisting of tens to hundreds of island components, there are fiber bundles that are several tens to several hundred times thicker than the fiber diameter of single yarns of island components (single yarns are biased , A state in which a bundle shape is formed) will be present.

このような繊維束が存在すると、テクスチャー加工用研磨布として用いたとき、研磨層の表面粗さを小さくすることが困難となる。即ち、ディスクに研磨面を均等な面圧で押し当てることが困難となり、ディスクの表面粗さを低減させるには限界がある。更に、繊維束の周辺では大きな凹部が発生し易く、そのため、繊維束周辺では研磨砥粒が凝集し易くなり、その凝集した研磨砥粒はディスク表面を局部的に研削し、深い傷を付けてしまうという問題があった。   When such a fiber bundle is present, it becomes difficult to reduce the surface roughness of the polishing layer when used as a textured polishing cloth. That is, it becomes difficult to press the polishing surface against the disc with uniform surface pressure, and there is a limit to reducing the surface roughness of the disc. Further, large concave portions are likely to be generated around the fiber bundle, so that the abrasive grains are likely to aggregate around the fiber bundle, and the aggregated abrasive grains locally grind the disk surface and cause deep scratches. There was a problem that.

一方、繊維束が存在しないテクスチャー加工用研磨布として、特開平9−262775号公報には、割繊糸やメルトブロー不織布を用いた極細糸の研磨布が提案されている。この提案によれば、研磨面を構成するメルトブロー不織布は、不織布を構成する繊維同士の融着によって形態が保たれており、樹脂で固定していないため樹脂の脱落という問題は生じない。しかも繊維は未延伸で、繊維自体が柔らかいため、研磨粒子を過度にディスク表面に押圧しないので、ディスク表面に大きな傷を付けることが少ない。   On the other hand, as a textured polishing cloth having no fiber bundle, Japanese Patent Application Laid-Open No. 9-262775 proposes an extra fine thread polishing cloth using split yarn or melt blown nonwoven fabric. According to this proposal, the melt-blown nonwoven fabric constituting the polished surface is maintained in the form by the fusion of the fibers constituting the nonwoven fabric, and is not fixed by the resin, so that the problem of dropping off the resin does not occur. Moreover, since the fibers are unstretched and the fibers themselves are soft, the abrasive particles are not excessively pressed against the disk surface, so that the disk surface is rarely damaged.

また、メルトブロー不織布層を構成する繊維が、主として繊維径10μm以下の繊維であり、微細な研磨粒子の保持性に優れているため、ディスク表面を均一に研磨し、微細なテクスチャーを形成することができる。また、単糸が高分子弾性体などの樹脂に固定されていないので繊維に自由度があるため、表面研磨の際にディスク表面に深い傷を付けることを防止することができる。   In addition, the fibers constituting the meltblown nonwoven fabric layer are mainly fibers having a fiber diameter of 10 μm or less, and are excellent in retaining fine abrasive particles, so that the disk surface can be uniformly polished to form a fine texture. it can. In addition, since the single yarn is not fixed to a resin such as a polymer elastic body, the fiber has a degree of freedom, so that it is possible to prevent the disk surface from being deeply scratched during surface polishing.

しかしながら、テクスチャー加工では、研磨布の背面をゴムロールで押さえてディスク表面に研磨面を押圧するため、繊維自体の柔らかさに加え、研磨布全体の柔らかさが重要となってくる。また、繊維径が細いメルトブロー不織布は、比表面積が大きいため、研磨砥粒と接触する面積は大きく、研磨性能の向上には効果的である。しかし、ポリプロピレンやポリエステルなどの疎水性熱可塑性樹脂からなるメルトブロー不織布の場合は、研磨砥粒を含んだスラリー液を滴下しても、スラリー液が均一に拡散せず、テクスチャー加工精度が不十分になるという問題があった。すわなち、特開平9−262775号公報に開示されている研磨布では、テクスチャーの加工精度を向上させるためには限界があった。   However, in texture processing, since the back surface of the polishing cloth is pressed with a rubber roll and the polishing surface is pressed against the disk surface, the softness of the entire polishing cloth is important in addition to the softness of the fibers themselves. Moreover, since the melt blown nonwoven fabric with a small fiber diameter has a large specific surface area, the area which contacts a polishing abrasive grain is large, and it is effective for improvement of polishing performance. However, in the case of a melt blown nonwoven fabric made of a hydrophobic thermoplastic resin such as polypropylene or polyester, even if a slurry liquid containing abrasive grains is dropped, the slurry liquid does not diffuse uniformly and the texture processing accuracy is insufficient. There was a problem of becoming. In other words, the polishing cloth disclosed in Japanese Patent Application Laid-Open No. 9-262775 has a limit to improve the texture processing accuracy.

以上のように、従来の技術では、最近求められているハードディスクの情報記録密度の向上に十分に対応できるテクスチャー加工用研磨布を得ることは困難であり、加工精度のさらなる向上が可能なテクスチャー加工用研磨布が切望されている。   As described above, with conventional technology, it is difficult to obtain a polishing cloth for texture processing that can sufficiently cope with the recent improvement in information recording density of hard disks, and texture processing that can further improve processing accuracy A polishing cloth for the use is desired.

本発明は、磁気ディスクの精密加工用研磨布、特に、ハードディスクのテクスチャー加工において研磨精度の優れるテクスチャー加工用研磨布を提供することを目的とするものである。   An object of the present invention is to provide a polishing cloth for precision processing of a magnetic disk, in particular, a polishing cloth for texture processing having excellent polishing accuracy in texture processing of a hard disk.

本発明者らは、ハードディスクの情報記録密度を向上させるために、ハードディスクを精密加工するために用いられる研磨布について鋭意検討を進めた結果、研磨布の研磨層の単糸を細くすることに加え、水平方向には単糸分散であり、鉛直方向には研磨層の最大高さ粗さが70μm以下であるという特定の三次元構造を有し、更に、特定の吸水性と圧縮特性を有する研磨布が、ハードディスク表面の表面平均粗さを画期的に低減させ得ることを見出し、本発明をなすに至った。
即ち、本発明は下記の通りである。
In order to improve the information recording density of the hard disk, the present inventors have made extensive studies on the polishing cloth used for precision machining of the hard disk. As a result, in addition to making the single yarn of the polishing layer of the polishing cloth thinner Polishing with a specific three-dimensional structure in which the horizontal direction is single yarn dispersion and the vertical direction has a maximum height roughness of 70 μm or less in the vertical direction, and further has specific water absorption and compression characteristics It has been found that the cloth can dramatically reduce the surface average roughness of the hard disk surface, and has led to the present invention.
That is, the present invention is as follows.

(1)単糸分散不織布と支持体を積層した2層以上の多層構造シートからなる研磨布であり、単糸分散不織布を研磨側の表層の第一層とし、単糸分散不織布を構成する単糸の数平均繊維径は0.1〜1.7μmであり、第一層の表面が起毛されており、第一層表面の最大高さ粗さが70μm以下であり、吸水速度が100〜240mm、圧縮エネルギーが0.10〜0.30gf・cm/cmであることを特徴とする精密加工用研磨布。(1) A polishing cloth comprising a multilayer structure sheet of two or more layers in which a single yarn-dispersed nonwoven fabric and a support are laminated, and the single yarn-dispersed nonwoven fabric is used as the first layer of the polishing-side surface layer. The number average fiber diameter of the yarn is 0.1 to 1.7 μm, the surface of the first layer is raised, the maximum height roughness of the surface of the first layer is 70 μm or less, and the water absorption speed is 100 to 240 mm. A polishing cloth for precision processing, wherein the compression energy is 0.10 to 0.30 gf · cm / cm 2 .

(2)単糸分散不織布がメルトブロー不織布であることを特徴とする上記1に記載の精密加工用研磨布。
(3)第一層の単糸分散不織布の厚みが100μm以上であることを特徴とする上記1または2に記載の精密加工用研磨布。
(2) The polishing cloth for precision processing as described in 1 above, wherein the single yarn dispersed nonwoven fabric is a melt blown nonwoven fabric.
(3) The polishing cloth for precision machining as described in 1 or 2 above, wherein the thickness of the single-layer dispersed nonwoven fabric of the first layer is 100 μm or more.

(4)第一層に使用する単糸分散不織布が、標準偏差0.050以下の吸光度を有することを特徴とする上記1〜3のいずれかに記載の精密加工用研磨布。
(5)第一層の単糸分散不織布がポリエステル繊維から成り、該ポリエステル繊維の結晶化度が35%以上であることを特徴とする上記1〜4のいずれかに記載の精密加工用研磨布。
(4) The fine-fabricated polishing cloth according to any one of (1) to (3) above, wherein the single yarn-dispersed nonwoven fabric used for the first layer has an absorbance with a standard deviation of 0.050 or less.
(5) The precision processing abrasive cloth according to any one of the above items 1 to 4, wherein the single-layer dispersed nonwoven fabric of the first layer is made of polyester fibers, and the crystallinity of the polyester fibers is 35% or more. .

(6)多層構造シート中に高分子弾性体が含浸されていることを特徴とする上記1〜5のいずれかに記載の精密加工用研磨布。
(7)高分子弾性体が、多層構造シートに対して30wt%以下で付与されていることを特徴とする上記1〜6のいずれかに記載の精密加工用研磨布。
(6) The precision processing polishing cloth as described in any one of 1 to 5 above, wherein the multilayer structure sheet is impregnated with a polymer elastic body.
(7) The polishing cloth for precision processing as described in any one of 1 to 6 above, wherein the polymer elastic body is applied to the multilayer structure sheet at 30 wt% or less.

(8)高分子弾性体がポリウレタンであることを特徴とする上記1〜7のいずれかに記載の精密加工用研磨布。
(9)1.0kgf/cm荷重時の長手方向の伸度が4%以下、幅方向の伸度が12%以下であることを特徴とする上記1〜8のいずれかに記載の精密加工用研磨布。
(8) The precision processing polishing cloth as described in any one of 1 to 7 above, wherein the polymer elastic body is polyurethane.
(9) The precision processing according to any one of 1 to 8 above, wherein the elongation in the longitudinal direction at a load of 1.0 kgf / cm is 4% or less and the elongation in the width direction is 12% or less. Abrasive cloth.

(10)支持体が不織布であることを特徴とする上記1〜9のいずれかに記載の精密加工用研磨布。
(11)支持体が、織物の両面に繊維径10μm以下の極細繊維層を積層させた積層体であることを特徴とする上記1〜10のいずれかに記載の精密加工用研磨布。
(10) The precision processing abrasive cloth according to any one of 1 to 9, wherein the support is a nonwoven fabric.
(11) The precision processing polishing cloth according to any one of (1) to (10), wherein the support is a laminate in which ultrafine fiber layers having a fiber diameter of 10 μm or less are laminated on both sides of a woven fabric.

以下、本発明について詳細に説明する。
本発明の精密加工用研磨布は、単糸分散している不織布と支持体を積層した多層構造シートに、後述する吸水速度になるよう親水加工を施した後、単糸分散不織布を起毛することにより得られる。
Hereinafter, the present invention will be described in detail.
The polishing cloth for precision processing according to the present invention comprises raising a single yarn-dispersed non-woven fabric after subjecting a multilayer structure sheet obtained by laminating a single yarn-dispersed non-woven fabric and a support to hydrophilic treatment so as to achieve a water absorption rate described later. Is obtained.

本発明において、単糸分散とは、全体的な観察において、単糸が偏って存在しておらず、束状(繊維束)を形成していないことを言い、好ましくは、単糸が4本以上固着していないで分散している状態をいう。単糸分散不織布は、繊維束を有していないため、研磨面の第一層の繊維分散性及び平滑性が極めて優れており、その結果、テクスチャー加工を行う際、研磨砥粒は凝集することがなく均一に分散し、更に、ディスクに研磨面を均等な面圧で押し当てることが容易であるため、テクスチャー加工などの精密加工用研磨布として好適である。   In the present invention, single yarn dispersion means that the single yarn does not exist unevenly and does not form a bundle (fiber bundle) in the overall observation, and preferably four single yarns. The state where it is not fixed and is dispersed. Since the single yarn-dispersed nonwoven fabric has no fiber bundle, the fiber dispersibility and smoothness of the first layer of the polished surface are extremely excellent. As a result, the abrasive grains agglomerate when texturing is performed. Since it is easy to press the polishing surface against the disk with a uniform surface pressure, it is suitable as a polishing cloth for precision processing such as texture processing.

また、支持体と積層する前に、単糸分散不織布を親水加工してもよい。なお、単糸分散不織布が親水性樹脂からなり、後述する吸水速度を有する場合には、親水加工を施す必要はない。   Moreover, before laminating | stacking with a support body, you may hydrophilically process a single yarn dispersion | distribution nonwoven fabric. In addition, when a single yarn dispersion | distribution nonwoven fabric consists of hydrophilic resin and has the water absorption speed mentioned later, it is not necessary to give a hydrophilic process.

本発明において、研磨側の表層の第一層に用いられる単糸分散不織布の単糸の数平均繊維径は0.1〜1.7μmであり、好ましくは0.4〜1.5μm、さらに好ましくは0.4〜1.3μmである。単糸の数平均繊維径が0.1μm未満であると、単糸強力が低下するためテクスチャー加工時に加わる力に耐えることができず単糸は破断してしまう。そのため、研磨砥粒は固定され難く、テクスチャー加工において研削力不足や不均一な研磨となる。一方、数平均繊維径が1.7μmを超えた場合は、表層の起毛繊維の緻密性が低下し、また、起毛繊維の粗密斑が大きくなるため、研磨砥粒は均一に分散され難くなり、その結果、高精度の研磨を行うことが困難となる。   In the present invention, the number average fiber diameter of the single yarn of the single yarn-dispersed nonwoven fabric used for the first layer of the surface layer on the polishing side is 0.1 to 1.7 μm, preferably 0.4 to 1.5 μm, more preferably. Is 0.4 to 1.3 μm. If the number average fiber diameter of the single yarn is less than 0.1 μm, the single yarn strength decreases, so that the force applied during texturing cannot be withstood and the single yarn breaks. Therefore, the abrasive grains are difficult to be fixed, resulting in insufficient grinding force or uneven polishing in texturing. On the other hand, when the number average fiber diameter exceeds 1.7 μm, the density of the raised fibers on the surface layer is reduced, and the coarse and dense spots of the raised fibers are increased, so that the abrasive grains are difficult to be uniformly dispersed, As a result, it becomes difficult to perform highly accurate polishing.

テクスチャー加工用研磨布に求められているのは、前記の如く、ディスク表面の凹凸の平均深さに代表される表面平均粗さ(Ra)の低減である。そのためには、テクスチャー加工時における研磨砥粒の凝集の抑制と、均一分散が重要である。
前記の、研磨側の表面の第一層が繊維束を含まない単糸分散不織布から成り、単糸分散不織布を構成する単糸の数平均繊維径が0.1〜1.7μmであるという構成要件は、精密加工用研磨布の水平方向へ砥粒を均一に分散させるために必要な要件である。
What is required of the polishing cloth for texturing is reduction of the average surface roughness (Ra) represented by the average depth of irregularities on the disk surface as described above. For that purpose, suppression of agglomeration of abrasive grains during texturing and uniform dispersion are important.
The first layer on the polishing side surface is composed of a single yarn-dispersed nonwoven fabric that does not contain fiber bundles, and the number average fiber diameter of the single yarn constituting the single yarn-dispersed nonwoven fabric is 0.1 to 1.7 μm. The requirement is a requirement necessary to uniformly disperse the abrasive grains in the horizontal direction of the precision processing polishing cloth.

しかしながら、上記の要件だけでは現在求められている加工精度に十分応えられる精密加工用研磨布とは言えない。なぜなら、研磨側の表面の第一層に用いられる単糸分散不織布は、鉛直方向に少なからず凹凸を有しており、その凹凸の大きさによっては、一定加圧で加工されるテクスチャー加工工程において、ディスク表面に該第一層の表面が均一に接触しない部分が発生するため、研磨砥粒の凝集や偏り(不均一分散)が起こり、高精度の研磨を行うことが困難となるからである。   However, the above requirements alone cannot be said to be a precision processing polishing cloth that can sufficiently meet the currently required processing accuracy. This is because the single yarn-dispersed nonwoven fabric used for the first layer on the surface on the polishing side has a lot of irregularities in the vertical direction, and depending on the size of the irregularities, in the texture processing step processed at a constant pressure This is because a portion where the surface of the first layer does not come into uniform contact with the surface of the disk occurs, causing agglomeration and unevenness (non-uniform dispersion) of the abrasive grains, which makes it difficult to perform high-precision polishing. .

従って、鉛直方向への凹凸を低減させ、さらに、精密加工用研磨布の水平方向へ砥粒を均一に分散させる要件と合わせて、三次元的な砥粒分散性を制御することが重要なのである。   Therefore, it is important to control the three-dimensional abrasive dispersibility together with the requirement to reduce unevenness in the vertical direction and further uniformly disperse the abrasive grains in the horizontal direction of the polishing cloth for precision processing. .

このような考えから、本発明の精密加工用研磨布の第一層表面の最大高さ粗さは70μm以下、好ましくは50μm以下、更に好ましくは40μm以下であることが重要である。70μmを超えた場合、一定加圧で加工されるテクスチャー加工工程において、ディスク表面に研磨布の第一層の表面が均一に接触しない部分が発生するため、砥粒の凝集や偏りが起こり、高精度の研磨を行うことが困難となる。なお、研磨布の第一層表面の最大高さ粗さは、後記の方法によって測定することができる。   From such an idea, it is important that the maximum height roughness of the surface of the first layer of the polishing cloth for precision processing of the present invention is 70 μm or less, preferably 50 μm or less, more preferably 40 μm or less. When the thickness exceeds 70 μm, in the texturing process that is processed at a constant pressure, a portion where the surface of the first layer of the polishing cloth does not come into uniform contact with the surface of the disk is generated. It becomes difficult to perform accurate polishing. In addition, the maximum height roughness of the surface of the first layer of the polishing pad can be measured by the method described later.

また、精密加工用研磨布の構成及び製造方法と、研磨層の最大高さ粗さについては、以下の(1)〜(3)のような関係がある。
(1)複合紡糸法により作製された海島糸から成る不織布において、不織布に高分子弾性体を含浸させた後、適当な溶媒で海成分を除去することで極細繊維を形成させるという製造方法は、少なからず繊維束が残存してしまい、その繊維束の影響によって研磨層の最大高さ粗さを70μm以下にすることは困難である。
Moreover, there exists a relationship like the following (1)-(3) about the structure and manufacturing method of the polishing cloth for precision processing, and the maximum height roughness of a polishing layer.
(1) In a nonwoven fabric made of sea-island yarn produced by a composite spinning method, after impregnating the nonwoven fabric with a polymer elastic body, the production method of forming ultrafine fibers by removing sea components with an appropriate solvent is as follows: Not a few fiber bundles remain, and it is difficult to make the maximum height roughness of the polishing layer 70 μm or less due to the influence of the fiber bundle.

(2)バフィングなどによって表面仕上げ加工を行った後の研磨側第一層である単糸分散不織布の厚みは、好ましくは100μm以上、より好ましくは120〜500μmである。それより厚みが小さい場合には、研磨側第一層に支持体の影響が現れ、最大高さ粗さが大きくなる。   (2) The thickness of the single yarn-dispersed nonwoven fabric that is the polishing-side first layer after the surface finishing process is performed by buffing or the like is preferably 100 μm or more, more preferably 120 to 500 μm. When the thickness is smaller than that, the influence of the support appears on the polishing-side first layer, and the maximum height roughness increases.

(3)単糸分散不織布に積層する支持体として不織布を用いる場合、不織布を構成する繊維の単糸直径は、好ましくは8.0μm未満、より好ましくは4.0μm未満、更に好ましくは3.3μm未満である。繊維の単糸直径が太くなるほど支持体である不織布の凹凸は大きくなり、それにより研磨側第一層の単糸分散不織布の最大高さ粗さも大きくなる。   (3) When a nonwoven fabric is used as a support laminated on a single yarn-dispersed nonwoven fabric, the single yarn diameter of the fibers constituting the nonwoven fabric is preferably less than 8.0 μm, more preferably less than 4.0 μm, and even more preferably 3.3 μm. Is less than. As the single yarn diameter of the fiber increases, the unevenness of the nonwoven fabric as the support increases, and the maximum height roughness of the single yarn-dispersed nonwoven fabric of the polishing-side first layer also increases.

本発明の精密加工用研磨布は、吸水速度が100〜240mmであり、好ましくは110〜200mm、さらに好ましくは120〜180mmである。吸水速度が100mm未満である場合には、加工中に研磨砥粒を含んだスラリー液が研磨布の表面に十分に吸液されないため、研磨砥粒を十分に把持することが困難であり、その結果、十分な研削量を得ることが困難となる。一方、吸水速度が240mmを超えると、スラリー液が、研磨布の水平方向に十分拡散する前に、垂直方向に吸液されてしまうため、研磨砥粒を均一に拡散させることが困難である。その結果、研磨砥粒分布に斑が生じ、その斑が原因となり、加工精度の高いテクスチャーを実施することが困難になる。   The precision processing abrasive cloth of the present invention has a water absorption rate of 100 to 240 mm, preferably 110 to 200 mm, and more preferably 120 to 180 mm. When the water absorption speed is less than 100 mm, the slurry liquid containing abrasive grains is not sufficiently absorbed by the surface of the polishing cloth during processing, and thus it is difficult to sufficiently hold the abrasive grains. As a result, it becomes difficult to obtain a sufficient grinding amount. On the other hand, if the water absorption speed exceeds 240 mm, the slurry liquid is absorbed in the vertical direction before sufficiently diffusing in the horizontal direction of the polishing cloth, so that it is difficult to uniformly diffuse the abrasive grains. As a result, spots are generated in the abrasive grain distribution, and the spots are the cause, making it difficult to implement a texture with high processing accuracy.

上記のような吸水性を具備させる方法は、特に限定されず、グラフト重合処理、プラズマ処理など物理的な表面処理法、表面をイオン交換性樹脂や酸化物で被覆して親水性を付与する表面コート処理法、濃硫酸処理により表面をスルフォン化するなどの化学的な表面処理法などが挙げられる。また、界面活性剤などの親水性成分の溶液を用いて、親水加工を施す方法も、吸水性を具備させる方法として挙げられる。   The method for providing water absorption as described above is not particularly limited, and is a physical surface treatment method such as graft polymerization treatment or plasma treatment, or a surface that is coated with an ion exchange resin or oxide to impart hydrophilicity. Examples thereof include a coating method and a chemical surface treatment method such as sulfonating the surface by concentrated sulfuric acid treatment. Moreover, the method of performing hydrophilic processing using the solution of hydrophilic components, such as surfactant, is also mentioned as a method of providing water absorption.

なお、界面活性剤としては、イオン系と非イオン系とがあるが、磁気ディスクの精密加工用研磨布として用いることを考慮すると、金属イオンを含まない非イオン系界面活性剤が好ましい。さらに、ポリエチレンテレフタレートとポリエチレングリコールとの共重合ポリエステルなど、親水性を有する樹脂を用いることも、吸水性を具備させるために好ましい。なお、吸水速度は後記の方法により測定することができる。   Although there are ionic and nonionic surfactants, a nonionic surfactant that does not contain metal ions is preferable in consideration of use as a polishing cloth for precision machining of magnetic disks. Furthermore, it is also preferable to use a hydrophilic resin such as a copolyester of polyethylene terephthalate and polyethylene glycol in order to provide water absorption. The water absorption rate can be measured by the method described later.

また、本発明の精密加工用研磨布は、圧縮エネルギーが0.10〜0.30gf・cm/cmであり、好ましくは0.10〜0.25gf・cm/cmである。圧縮エネルギーは被評価物の硬さを示す指標であり、圧縮エネルギーの値が大きいほど柔らかいことを示す。圧縮エネルギーが0.10gf・cm/cm未満の場合、すなわち、研磨布が硬すぎると、研削量は大きいがディスク基板の表面に傷が付きやすい。一方、圧縮エネルギーが0.30gf・cm/cmを超える場合、すなわち、研磨布が柔らかすぎると、基板表面に傷は付き難いが、研削量が小さく加工性が悪いという問題が生じる。The precision processing abrasive cloth of the present invention has a compression energy of 0.10 to 0.30 gf · cm / cm 2 , preferably 0.10 to 0.25 gf · cm / cm 2 . The compression energy is an index indicating the hardness of the object to be evaluated. The larger the value of the compression energy, the softer the value. When the compression energy is less than 0.10 gf · cm / cm 2 , that is, when the polishing cloth is too hard, the surface of the disk substrate is likely to be damaged although the amount of grinding is large. On the other hand, when the compression energy exceeds 0.30 gf · cm / cm 2 , that is, when the polishing cloth is too soft, the surface of the substrate is hardly scratched, but there is a problem that the grinding amount is small and the workability is poor.

研削量とテクスチャー加工精度の両方を満足させるためには、圧縮エネルギーが0.10〜0.30gf・cm/cmであることが必要である。なお、圧縮エネルギーは、後記の方法により測定することができる。In order to satisfy both the grinding amount and the texturing accuracy, the compression energy needs to be 0.10 to 0.30 gf · cm / cm 2 . The compression energy can be measured by the method described later.

加工精度を向上させるためには、単糸分散不織布の数平均繊維径が0.1〜1.7μmであることが必要である。しかし、このような数平均繊維径の単糸分散不織布のみから構成された研磨布では、上記の圧縮エネルギー範囲を満足することは困難である。なぜなら、繊維径が細いために空隙率が小さくなり、クッション性に劣るからである。   In order to improve the processing accuracy, it is necessary that the number average fiber diameter of the single yarn-dispersed nonwoven fabric is 0.1 to 1.7 μm. However, it is difficult to satisfy the above compression energy range with an abrasive cloth composed of only a single yarn-dispersed nonwoven fabric having such a number average fiber diameter. This is because, since the fiber diameter is thin, the porosity is small and the cushioning property is poor.

そこで本発明では、単糸分散不織布を支持体と積層して多層構造シートとすることにより、圧縮エネルギーを適切な範囲内とすることを可能とした。すなわち、支持体の素材、目付、厚み、空隙率を調整因子とすることで、圧縮エネルギーを調整することが可能である。また、後述するように、高分子弾性体を、圧縮エネルギーの調整因子として用いることも可能である。このように、支持体の素材や空隙率等を調整することにより、研磨層として、単糸分散不織布だけでは達成することが困難である適当なクッション性を具備させることで、高精度で安定的な研磨を行うことが可能となった。   Therefore, in the present invention, the compression energy can be within an appropriate range by laminating the single yarn-dispersed nonwoven fabric with the support to form a multilayer structure sheet. That is, the compression energy can be adjusted by using the support material, basis weight, thickness, and porosity as adjustment factors. Also, as will be described later, a polymer elastic body can be used as a compression energy adjusting factor. In this way, by adjusting the material of the support, the porosity, etc., as the polishing layer, by providing an appropriate cushioning property that is difficult to achieve with only a single yarn-dispersed nonwoven fabric, it is highly accurate and stable. It became possible to perform smooth polishing.

本発明の精密加工用研磨布の研磨側第一層は起毛されていることが必要である。起毛させることには、次の三つの効果がある。
(1)研磨砥粒と接触する表面積が大きくなり、その結果、研磨砥粒の把持能力が向上し、研削量が向上する。
The polishing-side first layer of the precision processing abrasive cloth of the present invention needs to be raised. Raising has the following three effects.
(1) The surface area in contact with the abrasive grains is increased, and as a result, the gripping ability of the abrasive grains is improved and the grinding amount is improved.

(2)研磨側第一層の繊維の配向性が向上し、テクスチャー加工時に円周方向に繊維が接触する。その結果、高精度の研磨を行うことが可能となる。
(3)研磨布の表面の接触抵抗が小さくなるため、ディスク基板表面に深い傷が付き難くなる。
(2) The orientation of the fibers in the first layer on the polishing side is improved, and the fibers contact in the circumferential direction during texturing. As a result, highly accurate polishing can be performed.
(3) Since the contact resistance on the surface of the polishing cloth is reduced, the disk substrate surface is hardly damaged.

一般に、起毛は、サンドペーパー等のバフィングペーパーを用いて、表面を高速で擦過して起毛させるバフィング法とよばれる方法で行われるが、バフィング前に界面活性剤を表面に塗布することが好ましい。界面活性剤を塗布することで、バフィングペーパーと研磨側第一層の摩擦力を低下させ、単糸の切断防止、繊維配向性の向上を図ることが可能となる。   Generally, raising is performed by a method called a buffing method in which buffing paper such as sandpaper is used to rub the surface at a high speed, and it is preferable to apply a surfactant to the surface before buffing. By applying the surfactant, it is possible to reduce the frictional force between the buffing paper and the polishing-side first layer, to prevent the single yarn from being cut, and to improve the fiber orientation.

研磨側第一層の起毛長は、50〜3000μmであることが好ましく、より好ましくは50〜2000μm、さらに好ましくは50〜1000μmである。起毛長が50μm以上であると、研磨砥粒の把持能力が十分であるため十分な研削量が得られ、表面のタッチ性も柔らかいためディスク基板の表面に傷がつくことが殆どない。また、起毛長が3000μm以下であると、繊維の自由度が大き過ぎず適度であるため、研磨側第一層の極細繊維は、加工時にディスク基板の半径方向と垂直に接触することが容易であり、円周方向に沿った溝を均一に付けることができる。また、研磨砥粒の把持能力が過度に大きくならないため、ディスク基板の表面粗さを小さくすることができる。   The raising length of the polishing-side first layer is preferably 50 to 3000 μm, more preferably 50 to 2000 μm, and still more preferably 50 to 1000 μm. When the raised length is 50 μm or more, the gripping ability of the abrasive grains is sufficient, so that a sufficient amount of grinding can be obtained, and the surface touch is soft, so that the surface of the disk substrate is hardly damaged. Further, if the raised length is 3000 μm or less, the degree of freedom of the fibers is appropriate without being too large, and therefore, the ultrafine fibers of the first layer on the polishing side can easily come into contact with the radial direction of the disk substrate at the time of processing. Yes, the grooves along the circumferential direction can be uniformly provided. Further, since the gripping ability of the abrasive grains is not excessively increased, the surface roughness of the disk substrate can be reduced.

本発明において、研磨側第一層の単糸分散不織布としては、繊維の粗密斑が極めて小さい不織布を用いることが好ましい。その指標として、第一層に使用する単糸分散不織布の吸光度の標準偏差は0.050以下であることが好ましい。吸光度の標準偏差が0.050以下であると、繊維分散性が良く、単糸分散不織布が均一で部分的な粗密斑が小さいため、研磨砥粒が均一に分散し易く、高精度の加工を行うことができる。なお、吸光度の標準偏差は後記の方法によって測定することができる。   In the present invention, as the single yarn-dispersed nonwoven fabric of the polishing-side first layer, it is preferable to use a nonwoven fabric with extremely small density of fibers. As the index, the standard deviation of the absorbance of the single yarn-dispersed nonwoven fabric used for the first layer is preferably 0.050 or less. When the standard deviation of the absorbance is 0.050 or less, the fiber dispersibility is good, the single yarn-dispersed non-woven fabric is uniform, and the partial coarse and dense spots are small. It can be carried out. The standard deviation of absorbance can be measured by the method described later.

本発明において、単糸分散不織布の製造方法としては、例えば、メルトブロー法、湿式スパンレース法などを挙げることができる。この中でもメルトブロー法は、他の製造方法に比べて単糸の数平均繊維径を細くすることが容易であるため、第一層に用いる単糸分散不織布の製造方法として好適である(以下、メルトブロー法により製造される不織布をメルトブロー不織布という)。   In the present invention, examples of the method for producing a single yarn-dispersed nonwoven fabric include a melt blow method and a wet spun lace method. Among these, the melt blow method is suitable as a method for producing a single yarn-dispersed nonwoven fabric used for the first layer because the number average fiber diameter of the single yarn can be easily reduced as compared with other production methods (hereinafter referred to as melt blow method). Nonwoven fabric manufactured by the law is called melt blown nonwoven fabric).

また、本発明に用いられる単糸分散不織布の一つとして好適であるメルトブロー不織布は、前記した吸光度の標準偏差が0.050以下となるよう、単糸の捕集条件に工夫を加え、高速ガス流と随伴流の流れを制御したメルトブロー法により製造される。ポリエステルメルトブロー不織布の製造方法としては、例えば、ノズル直径が0.2〜0.4mm、ノズルピッチが0.3〜1.0mmで配置された紡口を使用し、固有粘度が0.40〜0.75のポリエステル重合体を加熱溶融後、250〜350℃に加熱されたダイに送り込む。   Further, the melt blown nonwoven fabric suitable as one of the single yarn-dispersed nonwoven fabrics used in the present invention has been devised in terms of single yarn collection conditions so that the standard deviation of absorbance is 0.050 or less, and high-speed gas Manufactured by melt-blowing method with controlled flow and associated flow. As a method for producing a polyester melt blown nonwoven fabric, for example, a nozzle having a nozzle diameter of 0.2 to 0.4 mm and a nozzle pitch of 0.3 to 1.0 mm is used, and the intrinsic viscosity is 0.40 to 0. .75 polyester polymer is heated and melted and fed to a die heated to 250 to 350 ° C.

次いで、ノズル当りの吐出量を0.05〜0.50g/分でノズルから吐出させ、この紡口の開口端近傍から280〜380℃に加熱されたガスを0.18〜0.40MPaの圧力で噴射させ、さらに、単糸の飛散、凝集を防ぐために、例えば、特公昭62−12345号公報に記載されているような整流器を用いて、高速ガス流と随伴流の流れを制御し、所望の目付、厚み、嵩密度となるように捕集し、プレスするという方法が挙げられる。   Subsequently, the discharge amount per nozzle is discharged from the nozzle at 0.05 to 0.50 g / min, and the gas heated to 280 to 380 ° C. from the vicinity of the opening end of this spinning nozzle is pressure of 0.18 to 0.40 MPa. In order to prevent the single yarn from scattering and agglomerating, the flow of the high-speed gas flow and the accompanying flow is controlled by using a rectifier as described in, for example, Japanese Examined Patent Publication No. 62-12345. The method of collecting and pressing so that it may become the fabric weight, thickness, and bulk density of this may be mentioned.

本発明において、単糸分散不織布を構成する樹脂としては、繊維形成能がある熱可塑性樹脂を用いることが好ましい。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンテレフタレート系共重合体などのポリエステル類;ナイロン6、ナイロン66、ナイロン12、ポリアミド系共重合体などのポリアミド類;ポリエチレン、ポリプロピレン、ポリメチルペンテンなどのポリオレフィン類;ポリアクリロニトリル類;ポリスチレン、ポリ塩化ビニルなどのビニル系重合体類;ポリ乳酸、乳酸共重合体、ポリグリコール酸などの脂肪族ポリエステル系重合体類;脂肪族ポリエステルアミド系共重合体類などが挙げられる。   In the present invention, it is preferable to use a thermoplastic resin capable of forming fibers as the resin constituting the single yarn-dispersed nonwoven fabric. For example, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and polyethylene terephthalate copolymer; polyamides such as nylon 6, nylon 66, nylon 12, and polyamide copolymer; polyethylene, polypropylene, polymethyl Polyolefins such as pentene; polyacrylonitriles; vinyl polymers such as polystyrene and polyvinyl chloride; aliphatic polyester polymers such as polylactic acid, lactic acid copolymer and polyglycolic acid; And polymers.

不織布の処理方法としては、ニードルパンチ処理やウォータージェット処理等の三次元交絡、熱接着、接着剤などが挙げられるが、中でもウォータージェット処理による三次元交絡が、繊維の高密度化、および、研磨布表面の平滑化という観点から好ましい。   Non-woven fabric treatment methods include three-dimensional entanglement such as needle punching and water jet treatment, thermal bonding, adhesives, etc. Among them, three-dimensional entanglement due to water jet treatment increases the density of fibers and polishes them. It is preferable from the viewpoint of smoothing the cloth surface.

本発明において、単糸分散不織布を構成する繊維がポリエステルである場合、ポリエステル繊維の結晶化度は35%以上であることが好ましい。結晶化度が35%以上であると、単糸強力が高いため、テクスチャー加工時に加わる力に耐えることができ、単糸が破断しない。そのため研磨砥粒は固定され易く、テクスチャー加工において十分な研削力が得られ、均一な研磨ができる。更に、バフィングペーパーの砥粒や負荷などの条件によっても、バフィング加工中に単糸の切断がなく、研磨布の作製が容易である。   In this invention, when the fiber which comprises a single yarn dispersion | distribution nonwoven fabric is polyester, it is preferable that the crystallinity degree of a polyester fiber is 35% or more. If the degree of crystallinity is 35% or more, the single yarn has high strength, so that it can withstand the force applied during texturing, and the single yarn does not break. Therefore, the abrasive grains are easily fixed, a sufficient grinding force can be obtained in the texture processing, and uniform polishing can be performed. Furthermore, depending on conditions such as the abrasive grain and load of the buffing paper, the single yarn is not cut during the buffing process, and the polishing cloth can be easily produced.

また、紡糸条件が同一である場合、固有粘度が小さくなるにつれ、ポリエステル繊維の結晶化度は低下する傾向があるが、結晶化度が35%以上であると、第一層の単糸分散不織布の数平均繊維径を小さくするために、固有粘度の小さなポリエステルを選択した場合にも良好な結果が得られる。   In addition, when the spinning conditions are the same, the polyester fiber tends to decrease in crystallinity as the intrinsic viscosity decreases. However, if the crystallinity is 35% or more, the single-layer dispersed nonwoven fabric of the first layer Good results are also obtained when a polyester with a low intrinsic viscosity is selected to reduce the number average fiber diameter.

研磨布の圧縮エネルギーを制御するという点、及び、第一層の表面を平滑化するという点から、高分子弾性体を含浸させることが好ましい。また、樹脂による繊維の固定不足に起因した繊維の偏りなどが発生する場合、テクスチャー加工条件によっては、加工の均一性が悪化する可能性があるが、そのような場合、繊維の偏りを防ぐために高分子弾性体を含浸させることは効果的である。   It is preferable to impregnate the polymer elastic body from the viewpoint of controlling the compression energy of the polishing cloth and smoothing the surface of the first layer. In addition, when unevenness of fibers due to insufficient fixation of fibers by resin occurs, depending on the texture processing conditions, processing uniformity may deteriorate, but in such cases, in order to prevent unevenness of fibers It is effective to impregnate the polymer elastic body.

高分子弾性体としては、特に限定はないが、含浸加工が容易であること及び研磨布としてのクッション性が良好であることからポリウレタンが好ましい。ポリウレタンとしては、溶剤系ポリウレタン、水系ポリウレタン等を用いることができ、環境への負荷が小さいこと、製造コストが安価であることから水系ポリウレタンが好ましい。   The polymer elastic body is not particularly limited, but polyurethane is preferable because it can be easily impregnated and has good cushioning properties as an abrasive cloth. As the polyurethane, solvent-based polyurethane, water-based polyurethane, or the like can be used, and water-based polyurethane is preferable because it has a small environmental load and is low in production cost.

水系ポリウレタンはエマルジョンで用いることが好ましく、ポリウレタン成分としては、以下のものが例示される。ポリオール成分としては、ポリエチレンアジペートグリコール、ポリブチレンアジペートグリコールなどのポリエステルポリオール類;ポリエチレングリコール、ポリテトラメチレングリコールなどのポリエーテルポリオール類;ポリカーボネートポリオール類等が挙げられる。イソシアネート成分としては、4,4'−ジフェニルメタンジイソシアネート等の芳香族ジイソシアネート;4,4'−ジシクロヘキシルメタンジイソシアネート等の脂環族ジイソシアネート;ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート等が挙げられる。また、鎖伸長剤としては、エチレングリコール等のグリコール類;エチレンンジアミン、ヘキサメチレンジアミン、4,4'−ジシクロヘキシルメタンジアミン等のジアミン類などを挙げることができる。また、上記各種成分を適宜組み合わせたポリウレタンを用いることができる。   The water-based polyurethane is preferably used in an emulsion, and examples of the polyurethane component include the following. Examples of the polyol component include polyester polyols such as polyethylene adipate glycol and polybutylene adipate glycol; polyether polyols such as polyethylene glycol and polytetramethylene glycol; polycarbonate polyols and the like. Examples of the isocyanate component include aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate; alicyclic diisocyanates such as 4,4′-dicyclohexylmethane diisocyanate; and aliphatic diisocyanates such as hexamethylene diisocyanate. Examples of the chain extender include glycols such as ethylene glycol; diamines such as ethylene diamine, hexamethylene diamine, and 4,4′-dicyclohexylmethane diamine. Moreover, the polyurethane which combined the said various components suitably can be used.

高分子弾性体の含有量は、研磨布に対して30wt%以下が好ましく、より好ましくは0.5〜20wt%、さらに好ましくは1〜10wt%であり、高分子弾性体の含有量によって研磨布の表面状態、クッション性、硬度、研磨性能を調整することができる。高分子弾性体の含有量が30wt%以下であると、高分子弾性体を含有させたことによる効果が十分に得られ、十分な研削量と研削の精密な制御が可能となり、良好なテクスチャー加工性および生産性が得られる。   The content of the polymer elastic body is preferably 30 wt% or less, more preferably 0.5 to 20 wt%, still more preferably 1 to 10 wt% with respect to the polishing cloth, and the polishing cloth depends on the content of the polymer elastic body. The surface condition, cushioning property, hardness, and polishing performance of can be adjusted. When the content of the polymer elastic body is 30 wt% or less, the effect of including the polymer elastic body is sufficiently obtained, and a sufficient amount of grinding and precise control of the grinding become possible, and a good texture processing And productivity.

本発明において、精密加工用研磨布を構成する単糸分散不織布の厚みは100μm以上であることが好ましく、より好ましくは120〜500μmである。テクスチャー加工では、研磨布は研磨層とは反対側からゴムロールなどでディスクに押し当てられる。その際に、単糸分散不織布の厚みが100μm未満である場合、支持体の影響が研磨層側に現れ、高精度の加工が困難になるという懸念がある。特に、支持体として織物や太径の繊維から成る不織布を用いる場合には、単糸分散不織布の厚みが100μm以上であることが好ましい。   In this invention, it is preferable that the thickness of the single yarn dispersion | distribution nonwoven fabric which comprises the polishing cloth for precision processing is 100 micrometers or more, More preferably, it is 120-500 micrometers. In texturing, the polishing cloth is pressed against the disc with a rubber roll or the like from the side opposite to the polishing layer. In that case, when the thickness of the single yarn-dispersed nonwoven fabric is less than 100 μm, there is a concern that the influence of the support appears on the polishing layer side and high-precision processing becomes difficult. In particular, when a nonwoven fabric made of woven fabric or large-diameter fibers is used as the support, the thickness of the single yarn-dispersed nonwoven fabric is preferably 100 μm or more.

本発明の研磨布は、1.0kgf/cm荷重時の長手方向(MD方向)の伸度が4%以下であることが好ましく、より好ましくは3%以下であり、また、1.0kgf/cm荷重時の長手方向(CD方向)の伸度が12%以下であることが好ましく、より好ましくは9%以下である。MD方向の伸度及びCD方向の伸度が上記の範囲であると、均一に、且つ、研磨布をディスク基板の表面に安定して押圧させることができるので、微細で均一な凹凸パターンを加工することが可能である。   In the polishing cloth of the present invention, the elongation in the longitudinal direction (MD direction) at a load of 1.0 kgf / cm is preferably 4% or less, more preferably 3% or less, and 1.0 kgf / cm. The elongation in the longitudinal direction (CD direction) during loading is preferably 12% or less, and more preferably 9% or less. If the elongation in the MD direction and the elongation in the CD direction are within the above ranges, the polishing cloth can be pressed uniformly and stably on the surface of the disk substrate. Is possible.

本発明の研磨布において、研磨側第1層をバフィング処理することが好ましい。バフィング材としては、例えば、#100〜#1000のバフィングペーパーを用いることができ、処理速度、回数は適宜、好適な範囲を選択することができる。   In the polishing cloth of the present invention, it is preferable to buff the polishing-side first layer. As the buffing material, for example, buffing paper of # 100 to # 1000 can be used, and a suitable range can be appropriately selected for the processing speed and the number of times.

本発明において、高分子弾性体が含浸されている場合は、研磨側第1層の繊維の固定化が十分になされており、比較的目の粗い#150〜#300のバフィングペーパーを用いることができる。また、高分子弾性体が含浸されていない場合は、比較的目の細かい#400〜#600のバフィングペーパーを用いて、数回処理することにより、研磨側第1層の平滑性を高め、最大高さ粗さ性能を改善することができる。   In the present invention, when the polymer elastic body is impregnated, the fibers of the first layer on the polishing side are sufficiently fixed, and buffing paper of # 150 to # 300 having a relatively coarse mesh is used. it can. In addition, when the polymer elastic body is not impregnated, the smoothness of the first layer on the polishing side is increased by performing treatment several times using # 400 to # 600 buffing paper having a relatively fine mesh. Height roughness performance can be improved.

本発明において、支持体としては、例えば、短繊維不織布、長繊維不織布などの不織布、多孔質体、フィルムなどが挙げられる。なかでも、空隙率が高くクッション性に富むこと及び加工性に優れる点から不織布が望ましい。   In the present invention, examples of the support include nonwoven fabrics such as short fiber nonwoven fabrics and long fiber nonwoven fabrics, porous materials, and films. Among these, a nonwoven fabric is desirable because it has a high porosity and is excellent in cushioning properties and is excellent in workability.

支持体として用いる不織布の製造方法としては、例えば、カーディングした後、クロスレイヤー、エアーレイヤー等でシート化して、針布により交絡させるニードルパンチ法、柱状水流により交絡させる乾式スパンレース法、繊維を水分散させて抄造法でシート化した後、柱状水流で交絡させる湿式スパンレース法、通常のスパンボンド法等が挙げられる。なかでも、得られる不織布の目付斑及び厚み斑が小さく、物性の等方性に優れる点で、湿式スパンレース法を使用することが好ましい。   As a method for producing a nonwoven fabric used as a support, for example, after carding, it is formed into a sheet with a cross layer, an air layer, and the like, a needle punch method in which it is entangled with a cloth, a dry spunlace method in which it is entangled with a columnar water stream, Examples thereof include a wet spunlace method in which water is dispersed and formed into a sheet by a papermaking method and then entangled with a columnar water flow, a normal spunbond method, and the like. Especially, it is preferable to use a wet spunlace method from the point that the unevenness | corrugation unevenness and thickness unevenness of the nonwoven fabric obtained are small and it is excellent in the isotropy of a physical property.

研磨布の寸法安定性をさらに向上させるために、織物を内在させる方法も挙げられる。その場合には、支持体として、織物の両面に繊維径10μm以下の極細繊維層を積層させた積層体を用いることが好ましい。   In order to further improve the dimensional stability of the polishing cloth, a method of incorporating a woven fabric is also included. In that case, it is preferable to use a laminate in which ultrafine fiber layers having a fiber diameter of 10 μm or less are laminated on both sides of the woven fabric as the support.

織物は表面粗さが大きいため、研磨側第1層の単糸分散不織布を織物に直接積層させると、表面が織物の表面粗さの影響を大きく受ける。その結果、研磨側第1層の表面粗さが大きくなり、精密なテクスチャー加工が困難となる場合がある。また、織物を構成する繊維と研磨側第1層の単糸分散不織布の繊維径には大きな差異があるため、両者を直接交絡させて不織布とすることは困難となる場合がある。以上の理由から、織物の両面に極細繊維層を積層させた積層体を、支持体として用いることが好ましい。   Since the woven fabric has a large surface roughness, the surface is greatly affected by the surface roughness of the woven fabric when the single-layer dispersed nonwoven fabric of the first polishing side layer is directly laminated on the woven fabric. As a result, the surface roughness of the polishing-side first layer increases, and precise texture processing may be difficult. Moreover, since the fiber diameter of the fiber which comprises a textile fabric and the single yarn dispersion | distribution nonwoven fabric of a grinding | polishing side 1st layer has a big difference, it may become difficult to make both into a nonwoven fabric directly by entanglement. For the above reasons, it is preferable to use a laminate in which ultrafine fiber layers are laminated on both sides of a fabric as a support.

本発明の精密加工用研磨布は、水平方向には単糸分散であり、鉛直方向には研磨側の第一層表面の最大高さ粗さが70μm以下であるという三次元構造の単糸分散不織布を用い、特定の吸水速度と圧縮特性を有することにより、ハードディスク用テクスチャー加工において、高精度の研磨を行うことが可能である。   The polishing cloth for precision processing of the present invention is a single yarn dispersion having a three-dimensional structure in which the single yarn dispersion is in the horizontal direction and the maximum height roughness of the surface of the first layer on the polishing side is 70 μm or less in the vertical direction. By using a nonwoven fabric and having a specific water absorption speed and compression characteristics, it is possible to perform high-precision polishing in hard disk texture processing.

以下に実施例を挙げて、本発明をさらに説明するが、本発明は実施例のみに限定されるものではない。なお、測定方法、評価方法等は下記のとおりである。   EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to the examples. Measurement methods, evaluation methods, etc. are as follows.

(1)数平均繊維径(μm)
研磨側第一層の単糸分散不織布表面の任意な10箇所を、走査型電子顕微鏡(JSM−5510:日本電子株式会社製)により観察し、加速電圧20kVで倍率3500倍の画像を撮影した。1枚の画像につき任意の10本の単糸の直径を測定し、これを10枚の写真について行った。合計100本の単糸直径の測定値を求め、それらの算術平均値を数平均繊維径とした。
(1) Number average fiber diameter (μm)
Ten arbitrary positions on the surface of the single-sided nonwoven fabric of the polishing side first layer were observed with a scanning electron microscope (JSM-5510: manufactured by JEOL Ltd.), and an image with a magnification of 3500 times was taken at an acceleration voltage of 20 kV. The diameter of any 10 single yarns per image was measured and this was performed on 10 photos. The measured value of the diameter of 100 single yarns in total was calculated | required, and those arithmetic mean values were made into the number average fiber diameter.

(2)研磨側第1層の単糸分散不織布の厚み(mm)
研磨布試料を、ウルトラミクロトーム(ULTRACUT−N:REICHERT製)を使用して断面方向にカットし、これを走査型電子顕微鏡(JSM−5510:日本電子株式会社)で観察し、加速電圧20kVで倍率50倍の画像を撮影した。任意の10点の単糸分散不織布の厚みを測定し、それらの算術平均値を単糸分散不織布の厚みとした。
(2) Thickness (mm) of single yarn-dispersed nonwoven fabric of polishing side first layer
The abrasive cloth sample was cut in the cross-sectional direction using an ultramicrotome (ULTRACUT-N: manufactured by REICHERT), observed with a scanning electron microscope (JSM-5510: JEOL Ltd.), and magnification at an acceleration voltage of 20 kV. A 50x image was taken. The thicknesses of arbitrary 10 single yarn-dispersed nonwoven fabrics were measured, and their arithmetic average value was taken as the thickness of the single yarn-dispersed nonwoven fabric.

(3)メルトブロー不織布の目付及び厚み
目付(g/m)は、JIS L 1096−1999に準拠して測定し、厚み(mm)は、ダイヤルシックネスゲージ(ピーコック:(株)尾崎製作所製)を用い、サンプルを20点測定して、その平均値を用いた。
(3) The basis weight and thickness of the melt blown nonwoven fabric The basis weight (g / m 2 ) is measured according to JIS L 1096-1999, and the thickness (mm) is a dial thickness gauge (Peacock: manufactured by Ozaki Mfg. Co., Ltd.). The sample was measured at 20 points, and the average value was used.

(4)吸光度の標準偏差
25cm×18cmの試料を、温度20℃、湿度60%の雰囲気に12時間以上放置した後、地合計(フォーメーションテスターFMT−MIII:野村商事社製)にセットし、各画素の透過率を測定した。得られた透過率から、定義された吸光度換算式を用いて、吸光度とその標準偏差を算出した。
(4) Absorbance standard deviation A sample of 25 cm × 18 cm was left in an atmosphere at a temperature of 20 ° C. and a humidity of 60% for 12 hours or more, and then set on the ground total (formation tester FMT-MIII: manufactured by Nomura Corporation). The transmittance of the pixel was measured. From the obtained transmittance, the absorbance and its standard deviation were calculated using a defined absorbance conversion formula.

(5)最大高さ粗さ(μm)
4cm×10cmの研磨布試料を、温度20℃、湿度60%の雰囲気に12時間以上放置した後、単糸分散不織布の表面を3Dリアルサーフェスビュー顕微鏡(VE−9800:株式会社キーエンス社製)で観察し、倍率50倍の画像を撮影した。得られた画像の断面プロファイルを解析することにより、1回の測定につき2mm長さの研磨布試料の最大高さ粗さ(粗さ曲線の山頂部と谷底部の高さの差異)を測定し、この測定を10回行った。得られた10回の測定値の平均値で評価した。
(5) Maximum height roughness (μm)
After leaving a 4 cm × 10 cm polishing cloth sample in an atmosphere of temperature 20 ° C. and humidity 60% for 12 hours or more, the surface of the single yarn-dispersed nonwoven fabric was measured with a 3D real surface view microscope (VE-9800: manufactured by Keyence Corporation). Observed and imaged at 50x magnification. By analyzing the cross-sectional profile of the obtained image, the maximum height roughness (difference in height between the top and bottom of the roughness curve) of a 2 mm long abrasive cloth sample is measured per measurement. This measurement was performed 10 times. Evaluation was made using the average of the 10 measurements obtained.

(6)テクスチャー加工結果(Ra)(nm)
JIS B 0601−1994に準拠して行った。
原子間力顕微鏡(Nano Scope IV D3100:Digital Instruments社製)を使用して、ディスク基板サンプルの任意の直線状表面10箇所について算術平均粗さを測定し、10箇所の測定値を平均することにより、表面平均粗さ(Ra)を求めた。
(6) Texture processing result (Ra) (nm)
This was performed according to JIS B 0601-1994.
By using an atomic force microscope (Nano Scope IV D3100: manufactured by Digital Instruments), the arithmetic average roughness is measured for 10 arbitrary linear surfaces of the disk substrate sample, and the measured values at 10 positions are averaged. The surface average roughness (Ra) was determined.

(7)繊維束の有無
研磨布試料を、ウルトラミクロトーム(ULTRACUT−N:REICHERT製)を使用して断面方向にカットし、これを走査型電子顕微鏡(JSM−5510:日本電子株式会社製)で観察し、加速電圧20kVで倍率500倍の画像を撮影した。任意の10枚の画像を観察し、単糸が偏って存在しており、束状を形成している繊維束の有無を確認した。
(7) Presence / absence of fiber bundle An abrasive cloth sample was cut in a cross-sectional direction using an ultramicrotome (ULTRACUT-N: manufactured by REICHERT), and this was cut with a scanning electron microscope (JSM-5510: manufactured by JEOL Ltd.). Observation was performed and an image with an acceleration voltage of 20 kV and a magnification of 500 times was taken. Arbitrary 10 images were observed, and the presence or absence of a fiber bundle in which a single yarn was present in an uneven manner and a bundle shape was confirmed.

(8)結晶化度(%)
研磨側第一層の単糸分散不織布を研磨シートから剥離し、示差走査型熱量計(DSC−60:島津製作所株式会社製)で融解熱量を測定した(昇温速度は20℃/分、試料重量は約5mg)。測定した単位質量当たりの融解熱量をΔHとすると、結晶化度(Xc)は次式から算出することができる。ここで、ΔHは、結晶の単位質量当たりの融解熱量である。
Xc(%)=〔ΔH/ΔH〕×100
(8) Crystallinity (%)
The single yarn-dispersed nonwoven fabric of the polishing side first layer was peeled off from the polishing sheet, and the heat of fusion was measured with a differential scanning calorimeter (DSC-60: manufactured by Shimadzu Corporation) (temperature rising rate was 20 ° C./min, sample) Weight is about 5 mg). When the measured heat of fusion per unit mass is ΔH m , the crystallinity (Xc) can be calculated from the following equation. Here, ΔH 0 is the heat of fusion per unit mass of the crystal.
Xc (%) = [ΔH m / ΔH 0 ] × 100

(9)吸水速度(mm)
JIS L 1907−2003に準じて、鉛直に吊るした試験片の下端を水中に浸し、一定時間(10分間)放置した後、上昇した水の高さを測定した。
(9) Water absorption speed (mm)
According to JIS L 1907-2003, the lower end of the vertically suspended test piece was immersed in water and allowed to stand for a certain time (10 minutes), and then the height of the raised water was measured.

(10)圧縮エネルギー(gf・cm/cm
測定機器は、KES−G5(カトーテック株式会社製)を用いた。試験条件は、以下の通りである。
(10) Compressive energy (gf · cm / cm 2 )
As a measuring instrument, KES-G5 (manufactured by Kato Tech Co., Ltd.) was used. The test conditions are as follows.

・SENS(記録感度):2
・力計の種類:1kg
・SPEED RANGE:0.02mm/秒
・加圧面積:2cm
・STROKE SET:5.0
・取り込み間隔:0.5
・上限荷重:50gf/cm
・ SENS (recording sensitivity): 2
・ Type of force meter: 1kg
・ SPEED RANGE: 0.02 mm / sec ・ Pressurized area: 2 cm 2
・ STROKE SET: 5.0
・ Capture interval: 0.5
-Upper limit load: 50 gf / cm 2

上記の試験条件下で圧縮し、圧力と変形量との相関図から圧縮エネルギーを得た。圧縮エネルギーが大きい程、圧縮されやすい、即ち、柔らかいことを意味する。圧縮エネルギーが小さいほど硬いことを意味する。   Compression was performed under the above test conditions, and compression energy was obtained from a correlation diagram between pressure and deformation. It means that it is easy to compress, ie, it is soft, so that compression energy is large. It means that it is so hard that compression energy is small.

(11)伸度(%)
JIS L 1096−2003に準じて、定速伸長型引張試験機(テンシロンRTC−1210A:(株)オリエンテック社製)を用いて測定した。試験条件は、以下の通りである。
・試験片の寸法:幅2.5cm、長さ20cm
・つかみ間隔:10cm
・引張速度:10cm/分
(11) Elongation (%)
According to JIS L 1096-2003, it measured using the constant-speed expansion | extension type | mold tensile tester (Tensilon RTC-1210A: Co., Ltd. product made by Orientec Co., Ltd.). The test conditions are as follows.
・ Dimensions of test piece: width 2.5 cm, length 20 cm
・ Grip interval: 10cm
・ Tensile speed: 10 cm / min

[実施例1]
固有粘度が0.51のポリエチレンテレフタレート(以下、PETと略す)ペレットを、押出機で加熱溶融後、310℃に加熱したダイに送り込んだ。溶融PETを、直径0.3mmのノズルが1.0mmピッチで一列に配列された紡口から、ノズル当りの吐出量0.20g/分で吐出し、この紡口の開口端近傍から365℃に加熱された空気を0.24MPaの圧力で噴射させ、生成した単糸群を紡口下60cmに位置せしめた移動する捕集面上に連続的に集積し、メルトブロー不織布として巻き取った。
[Example 1]
Polyethylene terephthalate (hereinafter abbreviated as PET) pellets having an intrinsic viscosity of 0.51 were heated and melted with an extruder and fed into a die heated to 310 ° C. Molten PET is discharged at a discharge rate of 0.20 g / min per nozzle from a nozzle in which nozzles having a diameter of 0.3 mm are arranged in a row at a pitch of 1.0 mm, and the temperature is 365 ° C. from the vicinity of the opening end of the nozzle. The heated air was sprayed at a pressure of 0.24 MPa, and the produced single yarn group was continuously accumulated on a moving collecting surface positioned 60 cm below the spinning nozzle, and wound as a melt blown nonwoven fabric.

得られたメルトブロー不織布は、目付量60g/m、厚み280μm、単糸の数平均繊維径1.0μm、吸光度の標準偏差0.032であった。
一方、直接紡糸法によって単糸直径3.2μmのPET繊維を製造し、長さ5.0mmに切断した短繊維を水中に分散せしめ抄造用スラリーとした。このスラリーを抄造し、目付量42g/mの抄造シート(A)、及び、目付量17g/mの抄造シート(B)を製造した。
The obtained melt blown nonwoven fabric had a basis weight of 60 g / m 2 , a thickness of 280 μm, a single yarn number average fiber diameter of 1.0 μm, and a standard deviation of absorbance of 0.032.
On the other hand, a PET fiber having a single yarn diameter of 3.2 μm was produced by a direct spinning method, and short fibers cut to a length of 5.0 mm were dispersed in water to obtain a papermaking slurry. This slurry was made to produce a paper sheet (A) having a basis weight of 42 g / m 2 and a paper sheet (B) having a weight of 17 g / m 2 .

100デニール/48フィラメントのPET繊維仮撚り加工糸からなる目付量41g/mの平織物(経糸密度46本/2.54cm、緯糸密度54本/2.54cm、無撚)の両面に抄造シート(A)及び(B)を積層して、抄造シート(C)を製造した。100 denier / 48 plain weave fabric having a basis weight 41 g / m 2 made of PET fiber false twist textured yarn of filaments (warp density of 46 per 2.54 cm, weft density of 54 per 2.54 cm, untwisted) papermaking on both sides of the sheet (A) and (B) were laminated | stacked and the papermaking sheet | seat (C) was manufactured.

上記で得られたメルトブロー不織布を、抄造シート(C)のシート(A)側に積層した後、静圧が20kPaになるよう下方から吸引しながら、高速水流を噴射して三次元交絡させ多層構造シートを製造した。高速水流は、3.0mmピッチで一列に配列された直径0.2mmのノズルより、3.0MPaの圧力で連続的に噴射させ、ノズルから30mmの位置で、シートに高圧水流を衝突させた。   After the melt-blown nonwoven fabric obtained above is laminated on the sheet (A) side of the paper-making sheet (C), a multilayer structure is formed by spraying a high-speed water stream and sucking it three-dimensionally while sucking from below so that the static pressure is 20 kPa. A sheet was produced. The high-speed water flow was continuously ejected at a pressure of 3.0 MPa from nozzles having a diameter of 0.2 mm arranged in a line at a pitch of 3.0 mm, and the high-pressure water flow was collided with the sheet at a position 30 mm from the nozzle.

次いで、この多層構造シートに、水系のポリエーテル系ポリウレタンエマルジョン(AP−18:日華化学株式会社製)を、多層構造シートに対して12wt%となるよう含浸させ、熱風乾燥機で乾燥(130℃×3分)してポリウレタンを凝固させた。
次いで、界面活性剤(エマルゲン120:花王株式会社製)を0.5wt%となるよう含浸させ、熱風乾燥機で乾燥(130℃×2分)した。この加工により、吸水性を向上させることが可能となる。
Next, this multilayer structure sheet was impregnated with an aqueous polyether polyurethane emulsion (AP-18: manufactured by Nikka Chemical Co., Ltd.) so as to be 12 wt% with respect to the multilayer structure sheet, and dried with a hot air dryer (130 C. for 3 minutes) to solidify the polyurethane.
Subsequently, a surfactant (Emulgen 120: manufactured by Kao Corporation) was impregnated so as to be 0.5 wt%, and dried with a hot air dryer (130 ° C. × 2 minutes). This processing can improve water absorption.

さらに、#240のバフィングペーパー(W54P240:理研化学社製)を用い、ペーパー速度1000m/分で、研磨側第一層であるメルトブロー不織布面をバフィングして、テクスチャー加工用研磨布を得た。   Further, a # 240 buffing paper (W54P240: manufactured by Riken Chemical Co., Ltd.) was used to buff the melt blown nonwoven fabric surface, which is the first layer on the polishing side, at a paper speed of 1000 m / min to obtain a polishing cloth for texturing.

得られたテクスチャー加工用研磨布の研磨側第一層である単糸分散不織布は、数平均繊維径が1.0μm、厚みが160μm、最大高さ粗さが42μmであり、繊維束は観察されなかった。
得られた研磨布を38mm幅にスリットして用い、以下の条件で、アルミニウム板にNi−Pメッキ後ポリッシュ加工を施したディスク基板をテクスチャー加工した。
The single yarn-dispersed nonwoven fabric, which is the polishing-side first layer of the obtained textured polishing cloth, has a number average fiber diameter of 1.0 μm, a thickness of 160 μm, a maximum height roughness of 42 μm, and a fiber bundle is observed. There wasn't.
The obtained polishing cloth was slit into a width of 38 mm, and a disk substrate obtained by subjecting an aluminum plate to Ni-P plating and polishing treatment was textured under the following conditions.

(テクスチャー加工条件)
砥粒:ダイヤモンド遊離砥粒
砥粒平均粒径:0.3μm
基板回転数:500rpm
研磨布供給速度:10cm/分
トラバース条件:振幅1mm、600回/分(10Hz)
加工後のディスク基板の表面平均粗さ(Ra)を測定したところ、0.31nmであった。
(Texture processing conditions)
Abrasive grain: Diamond free abrasive grain Abrasive grain average particle diameter: 0.3 μm
Substrate rotation speed: 500rpm
Polishing cloth supply speed: 10 cm / min Traverse condition: amplitude 1 mm, 600 times / min (10 Hz)
The surface average roughness (Ra) of the processed disk substrate was measured and found to be 0.31 nm.

[実施例2]
メルトブロー不織布の製造において、単孔吐出量を0.10g/分とした以外は実施例1と同様にして、目付量60g/m、厚み280μm、単糸の数平均繊維径0.6μm、吸光度の標準偏差0.028のメルトブロー不織布を得た。次いで、得られたメルトブロー不織布を用い、実施例1と同様にして、テクスチャー加工用研磨布の作製、及び、テクスチャー加工・Ra測定を実施した。
[Example 2]
In the production of the melt blown nonwoven fabric, the basis weight is 60 g / m 2 , the thickness is 280 μm, the number average fiber diameter of the single yarn is 0.6 μm, and the absorbance, except that the single hole discharge rate is 0.10 g / min. A melt blown nonwoven fabric having a standard deviation of 0.028 was obtained. Next, using the obtained melt-blown nonwoven fabric, in the same manner as in Example 1, production of a textured polishing cloth and texture processing / Ra measurement were performed.

単孔吐出量を実施例1の半分に低下させることによりメルトブロー不織布を構成する単糸の数平均繊維径を0.6μmに小さくすることができ、単糸の細径化によって、得られたテクスチャー加工用研磨布の研磨側第1層表面の最大高さ粗さは34μmまで小さくすることが可能となり、また、繊維束は観察されなかった。テクスチャー加工後のディスク基板の表面平均粗さ(Ra)を測定したところ、0.26nmであった。   The number average fiber diameter of the single yarn constituting the melt blown nonwoven fabric can be reduced to 0.6 μm by reducing the single hole discharge amount to half that of Example 1, and the texture obtained by reducing the diameter of the single yarn The maximum height roughness of the polishing-side first layer surface of the processing polishing cloth can be reduced to 34 μm, and no fiber bundle was observed. It was 0.26 nm when the surface average roughness (Ra) of the disk board | substrate after texture processing was measured.

[実施例3]
メルトブロー不織布の製造において、ポリマーにナイロン6(UBEナイロン1011FB:宇部興産株式会社製)を用いた以外は実施例1と同様にして、目付量60g/m、厚み280μm、単糸の数平均繊維径1.4μm、吸光度の標準偏差0.038のメルトブロー不織布を得た。次いで、得られたメルトブロー不織布を用い、実施例1と同様にして、テクスチャー加工用研磨布の作製、及び、テクスチャー加工・Ra測定を実施した。
[Example 3]
In the production of the melt blown nonwoven fabric, the weight per unit area was 60 g / m 2 , the thickness was 280 μm, and the number average fiber of single yarn, except that nylon 6 (UBE nylon 1011FB: manufactured by Ube Industries) was used as the polymer. A meltblown nonwoven fabric having a diameter of 1.4 μm and a standard deviation of absorbance of 0.038 was obtained. Next, using the obtained melt-blown nonwoven fabric, in the same manner as in Example 1, production of a textured polishing cloth and texture processing / Ra measurement were performed.

得られたテクスチャー加工用研磨布の研磨側第一層である単糸分散不織布の数平均繊維径は1.4μm、厚みは120μm、最大高さ粗さは48μmであり、繊維束は観察されなかった。テクスチャー加工後のディスク基板の表面平均粗さ(Ra)を測定したところ、0.39nmであった。   The number average fiber diameter of the single yarn-dispersed nonwoven fabric, which is the polishing-side first layer of the resulting textured polishing cloth, is 1.4 μm, the thickness is 120 μm, the maximum height roughness is 48 μm, and no fiber bundle is observed. It was. It was 0.39 nm when the surface average roughness (Ra) of the disk board | substrate after texture processing was measured.

[実施例4]
実施例1と同様にして得られた、目付量60g/m、厚み280μm、単糸の数平均繊維径1.0μm、吸光度の標準偏差0.032のメルトブロー不織布を用い、多層構造シートにポリエーテル系水系ポリウレタンエマルジョンを含浸させず、#500のバフィングペーパー(C54P500:理研化学社製)を用い、ペーパー速度1000m/分で研磨側第一層である単糸分散不織布面を4回バフィングした以外は、実施例1と同様にして、テクスチャー加工用研磨布の作製、及び、テクスチャー加工・Ra測定を実施した。
[Example 4]
A melt blown nonwoven fabric obtained in the same manner as in Example 1 and having a basis weight of 60 g / m 2 , a thickness of 280 μm, a single yarn number average fiber diameter of 1.0 μm, and a standard deviation of absorbance of 0.032 was used. Except for impregnating with ether-based water-based polyurethane emulsion, using # 500 buffing paper (C54P500: manufactured by Riken Chemical Co., Ltd.) and buffing the single yarn-dispersed non-woven fabric surface, which is the first layer on the polishing side, four times at a paper speed of 1000 m / min. In the same manner as in Example 1, production of a textured polishing cloth and texture processing / Ra measurement were performed.

得られたテクスチャー加工用研磨布の研磨側第一層である単糸分散不織布の数平均繊維径は1.0μm、厚みは110μm、最大高さ粗さは56μmであり、繊維束は観察されなかった。テクスチャー加工後のディスク基板の表面平均粗さ(Ra)を測定したところ、0.42nmであった。   The number average fiber diameter of the single yarn-dispersed nonwoven fabric, which is the polishing-side first layer of the textured polishing cloth, is 1.0 μm, the thickness is 110 μm, the maximum height roughness is 56 μm, and no fiber bundle is observed. It was. The surface average roughness (Ra) of the textured disk substrate was measured and found to be 0.42 nm.

[比較例1]
実施例1と同様にして得られた、目付量60g/m、厚み280μm、単糸の数平均繊維径1.0μm、吸光度の標準偏差0.032のメルトブロー不織布を用い、多層構造シートにポリエーテル系水系ポリウレタンエマルジョンを含浸させない以外は、実施例1と同様にして、テクスチャー加工用研磨布の作製、及び、テクスチャー加工・Ra測定を実施した。
[Comparative Example 1]
A melt blown nonwoven fabric obtained in the same manner as in Example 1 and having a basis weight of 60 g / m 2 , a thickness of 280 μm, a single yarn number average fiber diameter of 1.0 μm, and a standard deviation of absorbance of 0.032 was used. Except not impregnating with the ether-based aqueous polyurethane emulsion, the production of the textured polishing cloth and the texture processing / Ra measurement were carried out in the same manner as in Example 1.

高分子弾性体を含浸させずに、比較的目の粗いバフィングペーパーを用いてバフィングしたため、研磨層の平滑性が悪く、研磨側第一層である単糸分散不織布の表面の最大高さ粗さは98μmであり、高分子弾性体を含浸させた実施例1と比較して約2倍の最大高さ粗さであった。テクスチャー加工後のディスク基板の表面平均粗さ(Ra)を測定したところ、0.68nmであった。   Buffing using a relatively coarse buffing paper without impregnating the polymer elastic body, the smoothness of the polishing layer is poor, and the maximum height roughness of the surface of the single yarn-dispersed nonwoven fabric that is the first layer on the polishing side Was 98 μm, and the maximum height roughness was about twice that of Example 1 impregnated with a polymer elastic body. It was 0.68 nm when the surface average roughness (Ra) of the disk board | substrate after texture processing was measured.

[比較例2]
実施例1と同様にして得られた、目付量60g/m、厚み280μm、単糸の数平均繊維径1.0μm、吸光度の標準偏差0.032のメルトブロー不織布を用い、抄造シート(A)と(B)を構成する短繊維の単糸直径を10.1μmとした以外は、実施例1と同様にして、テクスチャー加工用研磨布の作製、及び、テクスチャー加工・Ra測定を実施した。
テクスチャー加工後のディスク基板の表面平均粗さ(Ra)を測定したところ、0.61nmであった。
[Comparative Example 2]
Using a melt blown nonwoven fabric obtained in the same manner as in Example 1 and having a basis weight of 60 g / m 2 , a thickness of 280 μm, a single yarn number average fiber diameter of 1.0 μm, and a standard deviation of absorbance of 0.032, a papermaking sheet (A) And (B), except that the single yarn diameter of the short fibers was 10.1 μm, the production of the textured polishing cloth and the texture processing / Ra measurement were carried out in the same manner as in Example 1.
It was 0.61 nm when the surface average roughness (Ra) of the disk board | substrate after texture processing was measured.

[比較例3]
アルカリ減量し易いポリエステル共重合体ポリマー(分子量4000のポリエチレングリコールを10wt%共重合したPET)を海成分に用い、レギュラータイプのPET(固有粘度0.65)を島成分に用いた。この2種のポリマーを各々ギアポンプで計量し、海成分35wt%、島成分65wt%の割合で、島本数100本/ホールの紡口を用いて290℃で溶融紡糸して未延伸糸を得た。
[Comparative Example 3]
A polyester copolymer polymer (PET obtained by copolymerizing 10 wt% of polyethylene glycol having a molecular weight of 4000) which is easily reduced in alkali was used as a sea component, and regular type PET (inherent viscosity 0.65) was used as an island component. Each of these two polymers was weighed with a gear pump and melt-spun at 290 ° C. using a spout with 100 islands / hole at a ratio of 35 wt% sea component and 65 wt% island component to obtain an undrawn yarn. .

得られた未延伸糸を、温度75℃、延伸倍率2.8倍で熱延伸し、130℃で熱セットして、島成分の繊維径1.2μmの海島型複合繊維(繊維径14.8μm)を得た。
得られた海島型複合繊維を5.0mmに切断し、水中に分散せしめて抄造用スラリーとした。このスラリーを抄造し、目付量17g/mの抄造シート(B)及び目付量150g/mの抄造シート(D)を製造した。
The obtained undrawn yarn was heat-drawn at a temperature of 75 ° C. and a draw ratio of 2.8 times, and heat-set at 130 ° C. )
The obtained sea-island type composite fiber was cut to 5.0 mm and dispersed in water to obtain a papermaking slurry. The slurry was papermaking to produce a papermaking sheet having a basis weight 17g / m 2 (B) and the papermaking sheet basis weight 150g / m 2 (D).

次いで、実施例1と同様にして、100デニール/48フィラメントのPET繊維からなる目付量41g/mの平織物の両面に、抄造シート(D)と抄造シート(B)を積層した後、静圧が15kPaになるよう下方から吸引しながら、高速水流を噴射して三次元交絡させ多層構造シート(E)を製造した。高速水流は、3.0mmピッチで一列に配列された直径0.2mmのノズルより、3.0MPaの圧力で連続的に噴射させ、ノズルから30mmの位置で該シートに高圧水流を衝突させた。Next, in the same manner as in Example 1, the paper sheet (D) and the paper sheet (B) were laminated on both sides of a plain fabric with a basis weight of 41 g / m 2 made of 100 denier / 48 filament PET fibers, While sucking from below so that the pressure becomes 15 kPa, a high-speed water flow was jetted to make a three-dimensional entanglement to produce a multilayer structure sheet (E). The high-speed water flow was continuously ejected at a pressure of 3.0 MPa from nozzles having a diameter of 0.2 mm arranged in a row at a pitch of 3.0 mm, and the high-pressure water flow was made to collide with the sheet at a position 30 mm from the nozzle.

得られた多層構造シート(E)に溶剤系のポリエーテル系ポリウレタンエマルジョンのジメチルホルムアミド(DMF)溶液を、多層構造シートに対して26wt%となるよう含浸させ、水槽に浸漬させることでポリウレタンを凝固(湿式凝固)後、熱風乾燥機で乾燥(130℃×3分)した。さらに、80℃の5wt%NaOH水溶液で海成分を溶出して、数平均繊維径1.2μmである極細繊維を形成させた。なお、走査型電子顕微鏡(JSM−5510:日本電子株式会社製)で観察した際、繊維束の存在が確認された。   The obtained multilayer structure sheet (E) is impregnated with a dimethylformamide (DMF) solution of a solvent-based polyether polyurethane emulsion so that the multilayer structure sheet is 26 wt%, and is immersed in a water bath to solidify the polyurethane. After (wet coagulation), it was dried with a hot air dryer (130 ° C. × 3 minutes). Further, sea components were eluted with a 5 wt% NaOH aqueous solution at 80 ° C. to form ultrafine fibers having a number average fiber diameter of 1.2 μm. In addition, when observed with a scanning electron microscope (JSM-5510: manufactured by JEOL Ltd.), the presence of the fiber bundle was confirmed.

次いで、#240のバフィングペーパー(理研化学社製、W54P240)を用い、ペーパー速度1000m/分で第一層表面をバフィングして起毛し、テクスチャー加工用研磨布を得た。研磨層第一層である不織布を構成する単糸の数平均繊維径が1.2μmであり、また、高分子弾性体を含浸しているにも関らず、繊維束が存在していたため、テクスチャー加工用研磨布の研磨側第一層の最大高さ粗さは120μmであり、きわめて大きかった。
実施例1と同様にして、テクスチャー加工・Ra測定を実施した結果、テクスチャー加工後のディスク基板の表面平均粗さ(Ra)は0.84nmであった。
Then, using a # 240 buffing paper (W54P240, manufactured by Riken Chemical Co., Ltd.), the surface of the first layer was buffed and raised at a paper speed of 1000 m / min to obtain a polishing cloth for texturing. Because the number average fiber diameter of the single yarn constituting the nonwoven fabric as the first layer of the polishing layer is 1.2 μm, and the fiber bundle was present despite impregnating the polymer elastic body, The maximum height roughness of the polishing-side first layer of the textured polishing cloth was 120 μm, which was extremely large.
As a result of carrying out texture processing and Ra measurement in the same manner as in Example 1, the surface average roughness (Ra) of the disk substrate after texturing was 0.84 nm.

[比較例4]
加熱空気温度を340℃としたこと以外は、実施例1と同様にしてメルトブロー不織布を製造した。得られたメルトブロー不織布は、目付量60g/m、厚み280μm、単糸の数平均繊維径1.8μm、吸光度の標準偏差0.046であった。
このメルトブロー不織布を用い、実施例1と同様にして、テクスチャー加工用研磨布の作製、及び、テクスチャー加工・Ra測定を実施した結果、テクスチャー加工後のディスク基板の表面平均粗さ(Ra)は0.52nmであった。
[Comparative Example 4]
A melt blown nonwoven fabric was produced in the same manner as in Example 1 except that the heating air temperature was 340 ° C. The obtained meltblown nonwoven fabric had a basis weight of 60 g / m 2 , a thickness of 280 μm, a single yarn number average fiber diameter of 1.8 μm, and a standard deviation of absorbance of 0.046.
Using this melt-blown nonwoven fabric, a textured polishing cloth was produced and textured and Ra was measured in the same manner as in Example 1. As a result, the surface average roughness (Ra) of the disk substrate after texturing was 0. 0.52 nm.

研磨側第一層である単糸分散不織布の表面の最大高さ粗さは70μm以下であるが、メルトブロー不織布の製造における加熱空気温度が低かった(実施例1では365℃で実施)ため、メルトブロー不織布の数平均繊維径が増大して、研磨砥粒の水平方向への分散性が悪くなり、その結果、テクスチャー加工後のディスク基板の表面平均粗さ(Ra)が大きくなったと考えられる。   Although the maximum height roughness of the surface of the single yarn-dispersed nonwoven fabric that is the first layer on the polishing side is 70 μm or less, the heated air temperature in the production of the meltblown nonwoven fabric was low (implemented at 365 ° C. in Example 1). It is considered that the number average fiber diameter of the non-woven fabric is increased and the dispersibility of the abrasive grains in the horizontal direction is deteriorated, and as a result, the surface average roughness (Ra) of the disk substrate after texturing is increased.

[比較例5]
加熱空気温度を315℃として、整流器を用いなかったこと以外は、実施例1と同様にしてメルトブロー不織布を製造した。得られたメルトブロー不織布は、目付量60g/m、厚み280μm、単糸の数平均繊維径2.5μm、吸光度の標準偏差0.068であった。
このメルトブロー不織布を用い、実施例1と同様にして、テクスチャー加工用研磨布の作製、及び、テクスチャー加工・Ra測定を実施した結果、テクスチャー加工後のディスク基板の表面平均粗さ(Ra)は0.65nmであった。
[Comparative Example 5]
A melt blown nonwoven fabric was produced in the same manner as in Example 1 except that the heating air temperature was 315 ° C. and the rectifier was not used. The obtained melt blown nonwoven fabric had a basis weight of 60 g / m 2 , a thickness of 280 μm, a single yarn number average fiber diameter of 2.5 μm, and a standard deviation of absorbance of 0.068.
Using this melt-blown nonwoven fabric, the surface roughness average (Ra) of the disk substrate after texturing was 0 as a result of producing a textural polishing cloth and texturing / Ra measurement in the same manner as in Example 1. It was .65 nm.

[比較例6]
メルトブロー不織布の製造において、ポリマーにナイロン6(UBEナイロン1011FB:宇部興産株式会社製)を用いた以外は実施例1と同様にして、目付量60g/m、厚み280μm、単糸の数平均繊維径1.0μm、吸光度の標準偏差0.032のメルトブロー不織布を得た。
[Comparative Example 6]
In the production of the melt blown nonwoven fabric, the weight per unit area was 60 g / m 2 , the thickness was 280 μm, and the number average fiber of single yarn, except that nylon 6 (UBE nylon 1011FB: manufactured by Ube Industries) was used as the polymer. A meltblown nonwoven fabric having a diameter of 1.0 μm and a standard deviation of absorbance of 0.032 was obtained.

得られたメルトブロー不織布を用い、実施例1と同様にして多層構造シートを作製し、次いで、界面活性剤を含浸させないこと、溶剤系のポリエーテル系ポリウレタンエマルジョンのジメチルホルムアミド(DMF)溶液を、多層構造シートに対して11wt%となるように含浸させたこと以外は、実施例3と同様にして、テクスチャー加工用研磨布の作製、及び、テクスチャー加工・Ra測定を実施した。
テクスチャー加工後のディスク基板の表面平均粗さ(Ra)を測定したところ、0.58nmであった。
Using the obtained melt blown nonwoven fabric, a multilayer structure sheet was produced in the same manner as in Example 1. Next, a surfactant was not impregnated, and a dimethylformamide (DMF) solution of a solvent-based polyether polyurethane emulsion was added to the multilayer sheet. Fabrication of a textured polishing cloth and texture processing / Ra measurement were performed in the same manner as in Example 3 except that the structure sheet was impregnated so as to be 11 wt%.
It was 0.58 nm when the surface average roughness (Ra) of the disk board | substrate after texture processing was measured.

[比較例7]
実施例1と同様にして得られた、目付量60g/m、厚み280μm、単糸の数平均繊維径1.0μm、吸光度の標準偏差0.032のメルトブロー不織布を用い、実施例1と同様にして多層構造シートを作製した。
[Comparative Example 7]
Similar to Example 1 using a melt blown nonwoven fabric obtained in the same manner as in Example 1 having a basis weight of 60 g / m 2 , a thickness of 280 μm, a single yarn number average fiber diameter of 1.0 μm, and a standard deviation of absorbance of 0.032. Thus, a multilayer structure sheet was produced.

次いで、多層構造シートに溶剤系のポリカーボネート系ポリウレタンエマルジョンのジメチルホルムアミド(DMF)溶液を、多層構造シートに対して34wt%となるように含浸させ、水槽に浸漬することによってポリウレタンを凝固(湿式凝固)させた後、熱風乾燥機で乾燥(130℃×3分)したこと以外は、実施例1と同様にして、テクスチャー加工用研磨布の作製、及び、テクスチャー加工・Ra測定を実施した。
テクスチャー加工後のディスク基板の表面平均粗さ(Ra)を測定したところ、0.59nmであった。
Next, the multilayer structure sheet is impregnated with a dimethylformamide (DMF) solution of a solvent-based polycarbonate polyurethane emulsion so that the multilayer structure sheet is 34 wt%, and the polyurethane is solidified by dipping in a water tank (wet coagulation). Then, production of a textured polishing cloth and texture processing / Ra measurement were carried out in the same manner as in Example 1 except that it was dried (130 ° C. × 3 minutes) with a hot air dryer.
It was 0.59 nm when the surface average roughness (Ra) of the disk board | substrate after texture processing was measured.

[比較例8]
固有粘度が0.39のPETペレットを用いた以外は、実施例1と同様にして得られた、目付量60g/m、厚み280μm、単糸の数平均繊維径0.9μm、吸光度の標準偏差0.045のメルトブロー不織布を用い、実施例1と同様にして多層構造シートを作製した。
[Comparative Example 8]
A basis weight of 60 g / m 2 , a thickness of 280 μm, a number average fiber diameter of a single yarn of 0.9 μm, and an absorbance standard obtained in the same manner as in Example 1 except that PET pellets having an intrinsic viscosity of 0.39 were used. Using a melt blown nonwoven fabric with a deviation of 0.045, a multilayer structure sheet was produced in the same manner as in Example 1.

得られたメルトブロー不織布を用い、実施例1と同様にしてテクスチャー加工用研磨布の作製を試みた。研磨側第一層であるメルトブロー不織布面をバフィングしたところ、多くの単糸が切断してしまい、評価に値するテクスチャー加工用研磨布を作製することができなかった。研磨側第一層である単糸分散不織布の結晶化度を測定したところ、27.2%であった。   Using the obtained meltblown nonwoven fabric, an attempt was made to produce a textured polishing cloth in the same manner as in Example 1. When the surface of the melt blown nonwoven fabric, which is the first layer on the polishing side, was buffed, many single yarns were cut, and a textured polishing cloth worthy of evaluation could not be produced. When the degree of crystallinity of the single yarn-dispersed nonwoven fabric as the polishing side first layer was measured, it was 27.2%.

[比較例9]
実施例1と同様にして得られた、目付量30g/m、厚み140μm、単糸の数平均繊維径1.0μm、吸光度の標準偏差0.032のメルトブロー不織布を用い、実施例1と同様にして多層構造シートを作製した。
この多層構造シートからなるテクスチャー加工用研磨布を用いて、テクスチャー加工・Ra測定を実施した。テクスチャー加工後のディスク基板の表面平均粗さ(Ra)を測定したところ、0.63nmであった。
以上の実施例、比較例で作製された研磨布の構造および物性を、表1、2に示す。

Figure 2007142235
Figure 2007142235
[Comparative Example 9]
Similar to Example 1, using a melt blown nonwoven fabric obtained in the same manner as in Example 1 and having a basis weight of 30 g / m 2 , a thickness of 140 μm, a single yarn number average fiber diameter of 1.0 μm, and a standard deviation of absorbance of 0.032. Thus, a multilayer structure sheet was produced.
Texture processing and Ra measurement were carried out using the textured polishing cloth comprising this multilayer structure sheet. It was 0.63 nm when the surface average roughness (Ra) of the disk substrate after texturing was measured.
Tables 1 and 2 show the structures and physical properties of the polishing cloths produced in the above Examples and Comparative Examples.
Figure 2007142235
Figure 2007142235

Claims (11)

単糸分散不織布と支持体を積層した2層以上の多層構造シートからなる研磨布であり、単糸分散不織布を研磨側の表層の第一層とし、単糸分散不織布を構成する単糸の数平均繊維径は0.1〜1.7μmであり、第一層の表面が起毛されており、第一層表面の最大高さ粗さが70μm以下であり、吸水速度が100〜240mm、圧縮エネルギーが0.10〜0.30gf・cm/cmであることを特徴とする精密加工用研磨布。The number of single yarns constituting a single yarn-dispersed nonwoven fabric, which is a polishing cloth comprising two or more layers of multilayered sheets laminated with a single yarn-dispersed nonwoven fabric and a support. The average fiber diameter is 0.1 to 1.7 μm, the surface of the first layer is raised, the maximum height roughness of the surface of the first layer is 70 μm or less, the water absorption speed is 100 to 240 mm, and the compression energy Is a polishing cloth for precision processing, characterized in that is 0.10 to 0.30 gf · cm / cm 2 . 単糸分散不織布がメルトブロー不織布であることを特徴とする請求項1に記載の精密加工用研磨布。   The abrasive cloth for precision processing according to claim 1, wherein the single yarn-dispersed nonwoven fabric is a melt blown nonwoven fabric. 第一層の単糸分散不織布の厚みが100μm以上であることを特徴とする請求項1または2に記載の精密加工用研磨布。   The precision processing abrasive cloth according to claim 1 or 2, wherein the thickness of the single-layered single-fiber dispersed nonwoven fabric is 100 µm or more. 第一層に使用する単糸分散不織布が、標準偏差0.050以下の吸光度を有することを特徴とする請求項1〜3のいずれかに記載の精密加工用研磨布。   The abrasive cloth for precision processing according to any one of claims 1 to 3, wherein the single yarn-dispersed nonwoven fabric used for the first layer has an absorbance with a standard deviation of 0.050 or less. 第一層の単糸分散不織布がポリエステル繊維から成り、該ポリエステル繊維の結晶化度が35%以上であることを特徴とする請求項1〜4のいずれかに記載の精密加工用研磨布。   The abrasive cloth for precision processing according to any one of claims 1 to 4, wherein the single-layer dispersed nonwoven fabric of the first layer is made of polyester fibers, and the crystallinity of the polyester fibers is 35% or more. 多層構造シート中に高分子弾性体が含浸されていることを特徴とする請求項1〜5のいずれかに記載の精密加工用研磨布。   The abrasive cloth for precision processing according to any one of claims 1 to 5, wherein the multilayer structure sheet is impregnated with a polymer elastic body. 高分子弾性体が、多層構造シートに対して30wt%以下で付与されていることを特徴とする請求項1〜6のいずれかに記載の精密加工用研磨布。   The polishing cloth for precision processing according to any one of claims 1 to 6, wherein the polymer elastic body is applied to the multilayer structure sheet at 30 wt% or less. 高分子弾性体がポリウレタンであることを特徴とする請求項1〜7のいずれかに記載の精密加工用研磨布。   The abrasive cloth for precision processing according to any one of claims 1 to 7, wherein the polymer elastic body is polyurethane. 1.0kgf/cm荷重時の長手方向の伸度が4%以下、幅方向の伸度が12%以下であることを特徴とする請求項1〜8のいずれかに記載の精密加工用研磨布。   The polishing cloth for precision machining according to any one of claims 1 to 8, wherein the elongation in the longitudinal direction at a load of 1.0 kgf / cm is 4% or less and the elongation in the width direction is 12% or less. . 支持体が不織布であることを特徴とする請求項1〜9のいずれかに記載の精密加工用研磨布。   The polishing pad for precision processing according to any one of claims 1 to 9, wherein the support is a nonwoven fabric. 支持体が、織物の両面に繊維径10μm以下の極細繊維層を積層させた積層体であることを特徴とする請求項1〜10のいずれかに記載の精密加工用研磨布。   The abrasive cloth for precision processing according to any one of claims 1 to 10, wherein the support is a laminate in which ultrafine fiber layers having a fiber diameter of 10 µm or less are laminated on both surfaces of the woven fabric.
JP2008520589A 2006-06-05 2007-06-05 Abrasive cloth for precision processing Active JP5032472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008520589A JP5032472B2 (en) 2006-06-05 2007-06-05 Abrasive cloth for precision processing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006156000 2006-06-05
JP2006156000 2006-06-05
JP2008520589A JP5032472B2 (en) 2006-06-05 2007-06-05 Abrasive cloth for precision processing
PCT/JP2007/061372 WO2007142235A1 (en) 2006-06-05 2007-06-05 Polishing cloth for precision processing

Publications (2)

Publication Number Publication Date
JPWO2007142235A1 true JPWO2007142235A1 (en) 2009-10-29
JP5032472B2 JP5032472B2 (en) 2012-09-26

Family

ID=38801486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008520589A Active JP5032472B2 (en) 2006-06-05 2007-06-05 Abrasive cloth for precision processing

Country Status (3)

Country Link
JP (1) JP5032472B2 (en)
TW (1) TWI410298B (en)
WO (1) WO2007142235A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5341447B2 (en) * 2008-09-19 2013-11-13 旭化成せんい株式会社 Textured polishing cloth
JP5356149B2 (en) * 2009-08-21 2013-12-04 株式会社クラレ Polishing pad surface processing method and polishing pad obtained thereby

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3877369B2 (en) * 1996-01-24 2007-02-07 日本バイリーン株式会社 Polishing sheet
JPH10128674A (en) * 1996-10-28 1998-05-19 Rooder Nitta Kk Polishing pad
JP2000237951A (en) * 1999-02-19 2000-09-05 Toray Ind Inc Polishing cloth and polishing device
JP3901939B2 (en) * 2000-12-05 2007-04-04 帝人コードレ株式会社 Polishing base fabric and polishing method
JP2003025215A (en) * 2001-07-10 2003-01-29 Unitika Ltd Nonwoven fabric for polishing and abrasive sheet
JP2004130395A (en) * 2002-10-08 2004-04-30 Toray Ind Inc Abrasive cloth for glass texture working, and method of manufacturing magnetic recording medium using the same
JP2004303280A (en) * 2003-03-28 2004-10-28 Hoya Corp Method for manufacturing glass substrate for information recording medium
JP2004005981A (en) * 2003-05-27 2004-01-08 Kanebo Ltd Polishing tape used for manufacturing magnetic recording medium
TWI341230B (en) * 2004-04-21 2011-05-01 Toray Industries Polishing cloth and production method for the nanofiber construction
JP4736514B2 (en) * 2004-04-21 2011-07-27 東レ株式会社 Polishing cloth

Also Published As

Publication number Publication date
TWI410298B (en) 2013-10-01
JP5032472B2 (en) 2012-09-26
WO2007142235A1 (en) 2007-12-13
TW200825241A (en) 2008-06-16

Similar Documents

Publication Publication Date Title
EP1757406B1 (en) Abrasive cloth and method for preparing nano-fiber structure
TW491757B (en) Abrasive sheet for texturing and method of producing same
JP4736514B2 (en) Polishing cloth
JP4645361B2 (en) Polishing cloth
JP5629266B2 (en) Polishing pad and chemical mechanical polishing method
US20100129592A1 (en) Polishing cloth and production method thereof
KR20130138720A (en) Polishing cloth and method for producing same
JP5810802B2 (en) Polishing cloth
JP2008155359A (en) Abrasive cloth for mirror-finishing glass substrate and manufacturing method thereof
JP5543213B2 (en) Wiping products
JP5029104B2 (en) Polishing cloth
JP4423915B2 (en) Abrasive cloth and texture processing method using the same
JP5032472B2 (en) Abrasive cloth for precision processing
JP5341447B2 (en) Textured polishing cloth
JP5018094B2 (en) Polishing cloth
JP2005074576A (en) Polishing cloth
JP2007283420A (en) Abrasive cloth
JP2007308829A (en) Abrasive cloth
JP2005074577A (en) Polishing cloth
JP2009066749A (en) Abrasive cloth and method for manufacturing the same
JP5040260B2 (en) Abrasive cloth and method for producing the same
JP5029040B2 (en) Sheet material and method for producing the same
JP5453710B2 (en) Sheet
JP2005238361A (en) Polishing cloth
JP2009090454A (en) Method for producing abrasive cloth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120628

R150 Certificate of patent or registration of utility model

Ref document number: 5032472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350