JPWO2007132832A1 - Method for treating substance to be treated in aqueous liquid, apparatus used for the method, and photocatalyst material - Google Patents

Method for treating substance to be treated in aqueous liquid, apparatus used for the method, and photocatalyst material Download PDF

Info

Publication number
JPWO2007132832A1
JPWO2007132832A1 JP2008515555A JP2008515555A JPWO2007132832A1 JP WO2007132832 A1 JPWO2007132832 A1 JP WO2007132832A1 JP 2008515555 A JP2008515555 A JP 2008515555A JP 2008515555 A JP2008515555 A JP 2008515555A JP WO2007132832 A1 JPWO2007132832 A1 JP WO2007132832A1
Authority
JP
Japan
Prior art keywords
photocatalyst
aqueous liquid
light
layer
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008515555A
Other languages
Japanese (ja)
Other versions
JP5357540B2 (en
Inventor
剛久 伊藤
剛久 伊藤
Original Assignee
有限会社イールド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社イールド filed Critical 有限会社イールド
Priority to JP2008515555A priority Critical patent/JP5357540B2/en
Publication of JPWO2007132832A1 publication Critical patent/JPWO2007132832A1/en
Application granted granted Critical
Publication of JP5357540B2 publication Critical patent/JP5357540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

水性液中に溶解あるいは分散した被処理物質を分解する方法であって、前記水性液に光触媒材を浸漬させ、該水性液に光線及び超音波を同時に照射して、前記光触媒材を光エネルギー及び超音波エネルギーに曝露させる工程を含み、且つ、前記光触媒材は、金属チタン基材とその表面に一体的に形成された二酸化チタン光触媒層とからなり、前記層の厚みが1μmより大きいことを特徴とする被処理物質の処理方法、および当該方法の実施に適した装置並びに光触媒材。A method of decomposing a substance to be treated dissolved or dispersed in an aqueous liquid, wherein a photocatalyst material is immersed in the aqueous liquid, and the aqueous liquid is irradiated with light and ultrasonic waves simultaneously, so that the photocatalyst material is subjected to light energy and Including a step of exposing to ultrasonic energy, and the photocatalyst material is composed of a titanium metal substrate and a titanium dioxide photocatalyst layer integrally formed on the surface thereof, and the thickness of the layer is greater than 1 μm. And a photocatalytic material suitable for carrying out the method.

Description

本発明は、二酸化チタン光触媒を利用して、水性液中の被処理物質を処理する方法並びにその方法に使用する装置及び光触媒材に関する。より詳しくは、水性液中の二酸化チタン光触媒に光及び超音波を同時に照射して、水性液中の有害物質を分解する方法に関する。   The present invention relates to a method for treating a substance to be treated in an aqueous liquid using a titanium dioxide photocatalyst, an apparatus used for the method, and a photocatalyst material. More specifically, the present invention relates to a method for decomposing harmful substances in an aqueous liquid by simultaneously irradiating a titanium dioxide photocatalyst in an aqueous liquid with light and ultrasonic waves.

光触媒が、細菌や窒素酸化物等の有害物質を分解する能力を有することは広く知られており、様々な分野において光触媒作用の応用が検討されている。   It is widely known that photocatalysts have the ability to decompose harmful substances such as bacteria and nitrogen oxides, and application of photocatalysis is being studied in various fields.

光触媒は通常は紫外線照射によって活性化され、その作用を発揮する。そのため、光触媒が光エネルギーに曝露されるように光源を設ける必要があるが、水性溶液中の被処理物質を光触媒によって分解しようとする場合、水中の光触媒に光が届きにくいため、光源と光触媒表面の間に形成される反応空間が狭くなり、処理量が限られるという問題がある。   The photocatalyst is usually activated by irradiation with ultraviolet rays and exerts its action. Therefore, it is necessary to provide a light source so that the photocatalyst is exposed to light energy. However, when the substance to be treated in the aqueous solution is decomposed by the photocatalyst, it is difficult for light to reach the photocatalyst in water. There is a problem that a reaction space formed between the two is narrowed, and a processing amount is limited.

これに対し、特許文献1において、流体中で、超音波の照射下に、二酸化チタン触媒粒子と水を接触させることを特徴とする、ヒドロキシラジカルの製造方法が開示されている。この方法によれば、光を照射しなくても光触媒を活性化することができるため、処理量が少ないという従来の問題を解決することができる。   On the other hand, Patent Document 1 discloses a method for producing a hydroxy radical, characterized in that titanium dioxide catalyst particles and water are brought into contact with each other in a fluid under irradiation of ultrasonic waves. According to this method, since the photocatalyst can be activated without irradiating light, the conventional problem that the amount of processing is small can be solved.

また、特許文献2において、ハロゲン化有機化合物を含有する水性液の処理方法において、(a)該水性液を光触媒と接触させると共に、(b)該水性液に光線を照射し、さらにまた、(c)同時に該水性液を音波エネルギーに曝露することを特徴とする水性液の処理方法が開示されている。この方法によれば、光照射と超音波照射を組み合わせることにより、反応速度および効率をさらに改善することが可能である。特許文献2では、小粒状の光触媒が好ましいとされ、実際には、酸化チタン光触媒粒子が使用されている。   Further, in Patent Document 2, in the method for treating an aqueous liquid containing a halogenated organic compound, (a) the aqueous liquid is contacted with a photocatalyst, (b) the aqueous liquid is irradiated with light, and ( c) A method of treating an aqueous liquid is disclosed, characterized in that the aqueous liquid is exposed to sonic energy at the same time. According to this method, the reaction rate and efficiency can be further improved by combining light irradiation and ultrasonic irradiation. In Patent Document 2, a small granular photocatalyst is considered preferable, and actually titanium oxide photocatalyst particles are used.

特許文献1及び2では、粒状の二酸化チタン光触媒の使用が開示されているが、光触媒型酸化チタン粉末は、通常、粒径がナノオーダーの微粉末であり、そのまま使用した場合は、処理後に液中から酸化チタン粉末を分離回収することが困難であるという問題がある。この問題を改善するため、上記粉末をミリオーダーの粒径を持つ粉末に造粒することが考えられるが、高温で焼成する必要があるため、アナターゼ型二酸化チタンがルチル型に変異しやすく、光触媒作用が低下するという問題がある。   Patent Documents 1 and 2 disclose the use of a granular titanium dioxide photocatalyst. However, the photocatalytic titanium oxide powder is usually a fine powder having a particle size of nanometer order. There is a problem that it is difficult to separate and recover the titanium oxide powder from the inside. In order to remedy this problem, it is conceivable to granulate the above powder into a powder having a particle size of the order of millimeters. However, since it is necessary to calcinate at a high temperature, anatase-type titanium dioxide tends to be mutated to a rutile type, and photocatalyst There is a problem that the action is reduced.

一方、光触媒型の酸化チタン粉末をバインダーや分散剤、安定剤と混錬し、適当な基材上にコーティングして用いることが考えられるが、コーティング性の光触媒を用いて超音波照射を行った場合、コーティング膜が超音波による負荷に耐えられず、光触媒機能を発揮する以前にボロボロに剥離してしまい、使用することができないという問題がある。また、バインダー等の有機成分がまざるため、コーティング面すべてが光触媒機能を持つわけではなく(光触媒反応子が点在しているにすぎず)、光触媒としての性能が低下するという問題がある。   On the other hand, photocatalytic titanium oxide powder can be kneaded with binders, dispersants, and stabilizers and coated on a suitable substrate. However, ultrasonic irradiation was performed using a coating photocatalyst. In this case, there is a problem that the coating film cannot withstand the load caused by the ultrasonic wave and peels off before the photocatalytic function is exerted and cannot be used. Further, since organic components such as a binder are mixed, not all coating surfaces have a photocatalytic function (only interspersed with photocatalytic reactants), and there is a problem that performance as a photocatalyst is lowered.

さらにまた、水性液中で光触媒作用を発現させることは非常に難しく、超音波と光照射を併用した場合であっても十分な効果は得られにくく、水性液中での使用に好適な光触媒がないという問題があった。
特開2003−26406号公報 特表平5−503252号公報
Furthermore, it is very difficult to develop a photocatalytic action in an aqueous liquid, and even when ultrasonic waves and light irradiation are used together, it is difficult to obtain a sufficient effect, and there is a photocatalyst suitable for use in an aqueous liquid. There was no problem.
JP 2003-26406 A Japanese National Patent Publication No. 5-503252

従って、本発明は、水性液中でも高い光触媒作用を発揮できるとともに、超音波に対して耐久性を有し、光及び超音波の両方を照射することによって光触媒活性が増強され、且つ分離回収等の取り扱いが容易な光触媒材を用いて、水性液中の被処理物質を効率よく分解する方法及び装置を提供することを課題とする。また本発明は、水性液中での使用に好適な光触媒材を提供することを課題とする。   Therefore, the present invention can exhibit a high photocatalytic action even in an aqueous liquid, has durability against ultrasonic waves, has enhanced photocatalytic activity by irradiating both light and ultrasonic waves, and is capable of separation and recovery. It is an object of the present invention to provide a method and an apparatus for efficiently decomposing a material to be treated in an aqueous liquid using a photocatalyst material that is easy to handle. Another object of the present invention is to provide a photocatalyst material suitable for use in an aqueous liquid.

本願発明者は、上記課題を解決すべく種々検討を重ねた結果、金属チタンからなる基材を酸化処理することによって、基材表面に二酸化チタン光触媒層を析出させた光触媒材を使用することに着目し、この光触媒材が超音波に対して耐久性を有するとともに、光及び超音波の同時照射によって光触媒活性が増強されることを見出し、さらに改良を重ねた結果、水性液中でも非常に優れた光触媒活性を発揮する光触媒材の開発に成功し、前記課題を解決した。   As a result of various studies to solve the above problems, the inventor of the present application uses a photocatalyst material in which a titanium dioxide photocatalyst layer is deposited on the surface of a base material by oxidizing the base material made of titanium metal. Attention has been paid to the fact that this photocatalyst material has durability against ultrasonic waves, and it has been found that photocatalytic activity is enhanced by simultaneous irradiation with light and ultrasonic waves. We have succeeded in developing a photocatalyst material that exhibits photocatalytic activity and solved the above problems.

すなわち本発明は、水性液中に溶解あるいは分散した被処理物質を分解する方法であって、前記水性液に光触媒材を浸漬させ、該水性液に光線及び超音波を同時に照射して、前記光触媒材を光エネルギー及び超音波エネルギーに曝露させる工程を含み、前記光触媒材は、金属チタン基材とその表面に一体的に形成された二酸化チタン光触媒層とからなり、前記層の厚みが1μmより大きいことを特徴とする、被処理物質の処理方法である。   That is, the present invention is a method for decomposing a substance to be treated dissolved or dispersed in an aqueous liquid, wherein a photocatalyst material is immersed in the aqueous liquid, and the aqueous liquid is irradiated with light and ultrasonic waves at the same time. A step of exposing the material to light energy and ultrasonic energy, wherein the photocatalyst material comprises a titanium metal substrate and a titanium dioxide photocatalyst layer integrally formed on the surface thereof, and the thickness of the layer is greater than 1 μm. It is the processing method of the to-be-processed substance characterized by the above-mentioned.

金属チタン基材の表面に一体的に形成された二酸化チタン光触媒層を有する光触媒材を使用することによって、超音波を照射しても光触媒層が剥離せず、光触媒機能を保持することができる。また、基材の表面に光触媒層を析出させてなるため、粒径がナノメートル単位の光触媒粉末自体を用いたときのように、分離回収が困難という問題もなく、扱いやすい。また、光照射と超音波を併用することにより、それぞれを単独で適用した場合に比べて、光触媒作用が相乗的に増強される。さらに、光触媒層の厚みを1μmより大きくすることにより、水中で使用しても、十分な効果を得ることができる。   By using a photocatalyst material having a titanium dioxide photocatalyst layer integrally formed on the surface of a metal titanium substrate, the photocatalyst layer does not peel off even when irradiated with ultrasonic waves, and the photocatalytic function can be maintained. In addition, since the photocatalyst layer is deposited on the surface of the base material, it is easy to handle without the problem that separation and recovery are difficult as in the case where the photocatalyst powder itself having a particle size of nanometer is used. Further, by using light irradiation and ultrasonic waves in combination, the photocatalytic action is synergistically enhanced as compared with the case where each is applied alone. Furthermore, by making the thickness of the photocatalyst layer larger than 1 μm, a sufficient effect can be obtained even when used in water.

前記光触媒の層の厚みは、より好ましくは1.5μm以上であり、特に好ましくは2.0μm〜3.0μmである。   The thickness of the photocatalyst layer is more preferably 1.5 μm or more, and particularly preferably 2.0 μm to 3.0 μm.

また本発明は、前記処理方法を行うための装置であって、水性液を収容する水処理槽と、処理槽内に配置されて水性液に浸漬される光触媒材と、処理槽内に配置されて光触媒材に対し超音波を照射する超音波装置と、処理槽内に配置されて光触媒材に対し光を照射する光照射装置とを備え、前記光触媒材は、金属チタン基材とその表面に一体的に形成された二酸化チタン光触媒層とからなり、前記層の厚みが1μmより大きいことを特徴とする、処理装置に関する。   Further, the present invention is an apparatus for performing the above-described treatment method, a water treatment tank that contains an aqueous liquid, a photocatalyst material that is disposed in the treatment tank and immersed in the aqueous liquid, and is disposed in the treatment tank. An ultrasonic device that irradiates the photocatalyst material with ultrasonic waves, and a light irradiation device that is disposed in the treatment tank and irradiates the photocatalyst material with light. The present invention relates to a processing apparatus comprising an integrally formed titanium dioxide photocatalyst layer, wherein the thickness of the layer is greater than 1 μm.

また本発明は、前記処理方法を行うための装置であって、壁面の少なくとも一部が光透過性素材からなる、水性液を収容する水処理槽と、処理槽内に配置されて水性液に浸漬される光触媒材と、処理槽内に配置されて光触媒材に対し超音波を照射する超音波装置と、前記光透過性素材からなる壁面に対向するように処理槽の外側に配置されて、光触媒材に対し光を照射する光照射装置とを備え、前記光触媒材は、金属チタン基材とその表面に一体的に形成された二酸化チタン光触媒層とからなり、前記層の厚みが1μmより大きいことを特徴とする、処理装置に関する。   Further, the present invention is an apparatus for performing the treatment method, wherein a water treatment tank containing an aqueous liquid, wherein at least a part of the wall surface is made of a light transmissive material, and disposed in the treatment tank to be converted into an aqueous liquid. The photocatalyst material to be immersed, the ultrasonic device that is arranged in the treatment tank and irradiates the photocatalyst material with ultrasonic waves, and is arranged outside the treatment tank so as to face the wall surface made of the light transmissive material, A photoirradiation device for irradiating light to the photocatalyst material, the photocatalyst material comprising a titanium metal substrate and a titanium dioxide photocatalyst layer integrally formed on the surface thereof, and the thickness of the layer is greater than 1 μm. The present invention relates to a processing apparatus.

前記光触媒材として、板面を貫通する多数の貫通孔を有する板状の金属チタン基材の全表面に光触媒層が形成されている光触媒板を用いれば、光触媒に対して超音波と光の両方を照射しやすく、光触媒の活性を効率よく行うことができる。また、水性液が貫通孔を通り抜けるため、水性液と接触する光触媒の表面積が広くなり、処理効率を高めることができる。特に水性液を流通させながら連続的に処理を行うのに好適である。また、板状であるため、取り替えや回収等も容易である。
前記光触媒板の一面側に超音波照射装置を、他面側に光照射装置を配置すれば、超音波と光の両方を広面積の光触媒に効率よく照射することができ、好ましい。
As the photocatalyst material, if a photocatalyst plate having a photocatalyst layer formed on the entire surface of a plate-like metal titanium substrate having a large number of through holes penetrating the plate surface is used, both ultrasonic waves and light are applied to the photocatalyst. The photocatalyst can be activated efficiently. Further, since the aqueous liquid passes through the through holes, the surface area of the photocatalyst that comes into contact with the aqueous liquid is increased, and the processing efficiency can be increased. In particular, it is suitable for carrying out the treatment continuously while circulating an aqueous liquid. Moreover, since it is plate-shaped, replacement and recovery are easy.
If an ultrasonic irradiation device is disposed on one side of the photocatalyst plate and a light irradiation device is disposed on the other surface side, both the ultrasonic wave and light can be efficiently irradiated onto the photocatalyst of a large area, which is preferable.

また、前記水処理槽が円筒あるいは角柱状であって、長手方向の一端側に水性液の投入口が、他端側に水性液の排出口が設けられ、処理槽内部の一側面には長手方向に沿って光照射装置が設置され、その反対側の側面には長手方向に沿って超音波照射装置が設置され、2つの照射装置の間に複数枚の前記光触媒板が長手方向に一列に並んで配置され、かつ各光触媒板の板面が各照射装置に対して傾斜するように配置されている処理装置を用いれば、超音波と光の両方が広面積の光触媒に効率よく照射されるとともに、投入口から排出口へ流れる水性液は、複数枚の多孔板の貫通孔を通過して流れるため、複数回にわたって光触媒と接触し、処理残しを生じることなく非常に効率よく水性液を処理することができる。   The water treatment tank is cylindrical or prismatic, and is provided with an aqueous liquid inlet at one end in the longitudinal direction and an aqueous liquid outlet at the other end. A light irradiation device is installed along the direction, an ultrasonic irradiation device is installed along the longitudinal direction on the opposite side surface, and a plurality of the photocatalyst plates are arranged in a row in the longitudinal direction between the two irradiation devices. By using a processing device that is arranged side by side and that is arranged so that the plate surface of each photocatalyst plate is inclined with respect to each irradiation device, both ultrasonic waves and light are efficiently irradiated to the photocatalyst of a large area. At the same time, since the aqueous liquid flowing from the inlet to the outlet flows through the through holes of the plurality of perforated plates, the aqueous liquid contacts the photocatalyst multiple times, and the aqueous liquid is processed very efficiently without generating a processing residue. can do.

また本発明は、液体中での使用に特に適した光触媒材であって、金属チタン基材とその表面に一体的に形成された二酸化チタン光触媒層とからなり、前記光触媒層の厚みが2μm以上であり、前記光触媒層の表面に最大径0.5μm以上の孔が点在していることを特徴とする、光触媒材に関する。   The present invention is also a photocatalyst material particularly suitable for use in a liquid, comprising a titanium metal substrate and a titanium dioxide photocatalyst layer integrally formed on the surface thereof, and the photocatalyst layer has a thickness of 2 μm or more. In addition, the present invention relates to a photocatalyst material characterized in that pores having a maximum diameter of 0.5 μm or more are scattered on the surface of the photocatalyst layer.

本発明に係る処理方法、処理装置及び光触媒材によれば、超音波を照射しても光触媒層が剥離して光触媒機能が損なわれることがなく、光照射と超音波照射を同時に行って光触媒機能を相乗的に増強させることができる。また、水性溶液中でも高い光触媒作用を発揮するため、非常に効率よく被処理物質を分解することができる。さらに、光触媒の分離回収等の取り扱いが容易である。   According to the processing method, the processing apparatus, and the photocatalyst material according to the present invention, the photocatalyst layer is not peeled off and the photocatalytic function is not impaired even when irradiated with ultrasonic waves. Can be synergistically enhanced. Moreover, since a high photocatalytic action is exhibited even in an aqueous solution, the substance to be treated can be decomposed very efficiently. Furthermore, handling such as separation and recovery of the photocatalyst is easy.

図1は、本発明にかかる光触媒材の断面を示すSEM写真である。FIG. 1 is an SEM photograph showing a cross section of the photocatalyst material according to the present invention. 図2は、本発明にかかる装置の一実施例の透視図である。FIG. 2 is a perspective view of one embodiment of the apparatus according to the present invention. 図3は、本発明にかかる装置の別の実施例の縦断面図である。FIG. 3 is a longitudinal sectional view of another embodiment of the apparatus according to the present invention. 図4は、本発明にかかる光触媒材に対し、紫外線と超音波を単独または併用して照射した場合の、メチレンブルー着色水の分解テストの結果を示すグラフである。FIG. 4 is a graph showing the results of a decomposition test of methylene blue colored water when the photocatalyst material according to the present invention is irradiated with ultraviolet rays and ultrasonic waves alone or in combination. 図5は、光触媒層の厚みとメチレンブルーの分解能力との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the thickness of the photocatalyst layer and the ability to decompose methylene blue. 図6は、光触媒材B(層の厚み0.5〜0.8μm)の表面状態を示すSEM写真である。FIG. 6 is an SEM photograph showing the surface state of the photocatalyst material B (layer thickness: 0.5 to 0.8 μm). 図7は、光触媒材D(層の厚み2μm)の表面状態を示すSEM写真である。FIG. 7 is an SEM photograph showing the surface state of the photocatalyst material D (layer thickness: 2 μm).

符号の説明Explanation of symbols

1 水処理槽
2 光触媒材
3 超音波照射装置
4 光照射装置
5 投入口
6 排出口
7 光触媒板の固定具
DESCRIPTION OF SYMBOLS 1 Water treatment tank 2 Photocatalyst material 3 Ultrasonic irradiation apparatus 4 Light irradiation apparatus 5 Inlet 6 Outlet 7 Fixing tool of photocatalyst plate

本発明において、光触媒材は、金属チタン基材とその表面に一体的に形成された二酸化チタン光触媒層とからなる。金属チタン基材の表面に一体的に形成された二酸化チタン光触媒層とは、金属チタン基材の表面を酸化処理することによって析出させた二酸化チタン光触媒層を指し、コーティングによる層は含まない。前記酸化処理としては、陽極酸化及び大気酸化を組み合わせることが好ましく、さらに好ましくは、陽極酸化の前に、過酸化物を含有する水性溶液中に前記基材を浸漬する前処理を行う。金属チタン基材の表面を酸化処理して得られた前記光触媒層は、金属チタン基材に連続して形成されるため、剥離の恐れがない。また、バインダーや分散剤等が混入されていないため、光触媒機能の低下が生じない。   In the present invention, the photocatalyst material comprises a metal titanium base material and a titanium dioxide photocatalyst layer integrally formed on the surface thereof. The titanium dioxide photocatalyst layer integrally formed on the surface of the metal titanium substrate refers to a titanium dioxide photocatalyst layer deposited by oxidizing the surface of the metal titanium substrate, and does not include a layer formed by coating. As the oxidation treatment, it is preferable to combine anodic oxidation and atmospheric oxidation, and more preferably, pretreatment of immersing the substrate in an aqueous solution containing a peroxide is performed before the anodic oxidation. Since the photocatalyst layer obtained by oxidizing the surface of the metal titanium base material is continuously formed on the metal titanium base material, there is no fear of peeling. Moreover, since a binder, a dispersing agent, etc. are not mixed, the photocatalytic function does not deteriorate.

上記前処理で用いる過酸化物としては、過酸化水素が好ましい。好適な前処理液は、3〜10重量%の過酸化水素を含む水溶液である。なお前処理液への基材の浸漬時間は、好ましくは5〜48時間である。   As the peroxide used in the pretreatment, hydrogen peroxide is preferable. A suitable pretreatment liquid is an aqueous solution containing 3 to 10% by weight of hydrogen peroxide. The immersion time of the substrate in the pretreatment liquid is preferably 5 to 48 hours.

上記陽極酸化の工程では、有機酸またはその塩を含む電解液が使用される。好適な有機酸および有機酸塩としては、酒石酸、クエン酸、リンゴ酸、琥珀酸、グルコン酸およびフマル酸のナトリウム塩が挙げられる。電解液中における有機酸または有機酸塩の濃度は、0.5〜5重量%が好ましい。また、電解液は、上記の有機酸や有機酸塩に加えて、陽極酸化時におけるイオン伝導を促進するためのpH調整剤を更に含んでいてもよい。好適なpH調整剤としては、硫酸、塩酸および水酸化ナトリウム等が挙げられる。このようなpH調整剤は、電解液中に、0.5〜5重量%含まれていることが好ましい。また、前記電解液は過酸化水素を0.1〜5重量%含むことが好ましい。
上記の電解液中に陽極(基板)と陰極とを設置して、これらの電極間に電圧を印加し、この印加電圧を除去するまでを1回の陽極酸化工程と考える。陽極酸化における電圧プロフィールは、0.1〜0.3V/秒の速度で電圧は段階的または連続的に上げられ、50〜250Vのピーク電圧において、100秒間以上保持されることが好ましい。その後、瞬間的または傾斜的に印加電圧を除去する。陽極酸化された基材は、十分に水洗いをしてから次の処理工程に移行されることが好ましい。
In the anodic oxidation step, an electrolytic solution containing an organic acid or a salt thereof is used. Suitable organic acids and organic acid salts include sodium salts of tartaric acid, citric acid, malic acid, succinic acid, gluconic acid and fumaric acid. The concentration of the organic acid or organic acid salt in the electrolytic solution is preferably 0.5 to 5% by weight. Further, the electrolytic solution may further contain a pH adjusting agent for promoting ionic conduction during anodic oxidation in addition to the above organic acid and organic acid salt. Suitable pH adjusters include sulfuric acid, hydrochloric acid and sodium hydroxide. Such a pH adjuster is preferably contained in the electrolytic solution in an amount of 0.5 to 5% by weight. The electrolytic solution preferably contains 0.1 to 5% by weight of hydrogen peroxide.
An anode (substrate) and a cathode are placed in the above electrolytic solution, a voltage is applied between these electrodes, and the removal of this applied voltage is considered as one anodic oxidation step. The voltage profile in anodization is preferably increased stepwise or continuously at a rate of 0.1 to 0.3 V / second, and is maintained for 100 seconds or more at a peak voltage of 50 to 250 V. Thereafter, the applied voltage is removed instantaneously or gradiently. It is preferable that the anodized base material is sufficiently washed with water and then transferred to the next processing step.

上記大気酸化の工程では、大気酸化温度は好ましくは500〜600℃であり、大気酸化時間は好ましくは0.5〜2時間である。   In the atmospheric oxidation step, the atmospheric oxidation temperature is preferably 500 to 600 ° C., and the atmospheric oxidation time is preferably 0.5 to 2 hours.

上記の陽極酸化工程と大気酸化工程とを組み合わせて行うことによって、光触媒活性を有するアナターゼ型の酸化チタン皮膜を基材の表面に確実に形成することが可能である。なお、上記陽極酸化工程と大気酸化工程の何れか又は両方を2回または3回以上繰り返してもよい。   By performing a combination of the anodizing step and the atmospheric oxidation step, it is possible to reliably form an anatase-type titanium oxide film having photocatalytic activity on the surface of the substrate. Note that either or both of the anodizing step and the atmospheric oxidizing step may be repeated twice or three times or more.

本発明において、金属チタン基材とは、純チタンまたはチタン合金から成る基材を指す。特に好ましくは純チタン基材である。上記のチタン合金を構成する金属としては、例えば白金、金、錫、パラジウム、ルテニウム、ニッケル、コバルト、クロム、モリブデン、アルミニウム、バナジウムおよびジルコニウム等が挙げられる。好適なチタン合金としては、チタン・アルミニウム・錫合金(例えばTi−5Al−2.5Sn)、チタン−アルミニウム−バナジウム合金(例えばTi−6Al−4V)、およびチタン−モリブデン−ジルコニウム合金(例えばTi−15Mo−5Zr)等が挙げられる。   In the present invention, the metal titanium substrate refers to a substrate made of pure titanium or a titanium alloy. Particularly preferred is a pure titanium substrate. Examples of the metal constituting the titanium alloy include platinum, gold, tin, palladium, ruthenium, nickel, cobalt, chromium, molybdenum, aluminum, vanadium, and zirconium. Suitable titanium alloys include titanium-aluminum-tin alloys (eg, Ti-5Al-2.5Sn), titanium-aluminum-vanadium alloys (eg, Ti-6Al-4V), and titanium-molybdenum-zirconium alloys (eg, Ti--). 15Mo-5Zr) and the like.

本発明において、光触媒材に照射する光は、使用する光触媒を活性化(励起)できる波長の光であればよく、特に限定されない。一般に光触媒は紫外光で活性化するものが多く、この場合は400nm以下の紫外線、より好ましくは360nm付近の波長域の紫外線を照射すればよい。また、300nm以下の波長域を持つ光を照射した場合は、オゾンが発生するため、光触媒作用とオゾンの複合化が見込める。従って、例えば180〜260nmの波長の紫外線を照射してもよい。また、可視光応答型の光触媒を用いた場合は、可視光を照射すればよい。実用性の高い波長として、185nm付近、254nm付近、360nm付近の紫外線を挙げることができる。特に好ましくは254nmの紫外線である。
また、光触媒の表面積に対して、0.1〜15mW/cmで光照射を行うことが好ましい。光触媒を気体中で用いる場合は1〜3mW/cmで十分な効果が期待できるが、本発明では光触媒材を水性液中で用いるため、十分な効果を得るためには、さらに強い光を照射することが好ましい。より好ましくは3〜12mW/cm、特に好ましくは5〜10mW/cmである。
In the present invention, the light applied to the photocatalyst material is not particularly limited as long as it has a wavelength that can activate (excite) the photocatalyst to be used. In general, many photocatalysts are activated by ultraviolet light, and in this case, ultraviolet light having a wavelength of 400 nm or less, more preferably ultraviolet light having a wavelength region near 360 nm may be irradiated. In addition, when light having a wavelength region of 300 nm or less is irradiated, ozone is generated, so that a combination of photocatalysis and ozone can be expected. Therefore, you may irradiate the ultraviolet-ray with a wavelength of 180-260 nm, for example. When a visible light responsive photocatalyst is used, visible light may be irradiated. Examples of highly practical wavelengths include ultraviolet rays around 185 nm, 254 nm, and 360 nm. Particularly preferred is 254 nm ultraviolet light.
Moreover, it is preferable to perform light irradiation at 0.1-15 mW / cm < 2 > with respect to the surface area of a photocatalyst. When the photocatalyst is used in a gas, a sufficient effect can be expected at 1 to 3 mW / cm 2. However, in the present invention, the photocatalyst material is used in an aqueous liquid, and therefore, in order to obtain a sufficient effect, more intense light is irradiated. It is preferable to do. More preferably 3~12mW / cm 2, particularly preferably 5~10mW / cm 2.

また、より多くの光触媒層が光エネルギーに曝露されることが好ましく、例えば、両面に光触媒層を有する金属チタン板を使用する場合、板の両側から光を照射することが好ましい。光源は、水性液を入れる容器の中に設けてもよく、あるいは容器の外側に設けて、容器の被照射面を光透過性素材で構成してもよい。当然のことながら、光透過性素材とは、使用する光触媒を活性化できる波長の光を通す素材であり、例えば紫外線応答型の光触媒を用いる場合は、波長域400nm以下の紫外光を透過できるガラスまたは透明合成樹脂などを用いることができる。   Moreover, it is preferable that more photocatalyst layers are exposed to light energy, for example, when using the metal titanium plate which has a photocatalyst layer on both surfaces, it is preferable to irradiate light from both sides of a plate. The light source may be provided in a container for containing an aqueous liquid, or may be provided outside the container, and the irradiated surface of the container may be made of a light transmissive material. Naturally, the light-transmitting material is a material that transmits light having a wavelength that can activate the photocatalyst to be used. For example, when using an ultraviolet-responsive photocatalyst, glass that can transmit ultraviolet light having a wavelength range of 400 nm or less. Alternatively, a transparent synthetic resin or the like can be used.

光触媒に照射する超音波の波長域は、1kHz〜1MHzが好ましく、30〜500kHzがより好ましく、35〜70kHzが特に好ましい。出力は、装置の大きさ等によって適宜好ましい範囲とすればよいが、一般に200W〜1500Wが好ましく、400W〜1500Wがより好ましく、特に好ましくは1000W以上である。好ましい一実施例として、35〜45kHz:1100〜1300Wの装置を挙げることができるが、用途によっては400W程度でもよい。例えば、持ち運び可能な小型の装置であれば、40kHz:400Wの装置としてもよい。   The wavelength range of the ultrasonic wave irradiated to the photocatalyst is preferably 1 kHz to 1 MHz, more preferably 30 to 500 kHz, and particularly preferably 35 to 70 kHz. The output may be set within a preferable range depending on the size of the apparatus, but is generally preferably 200 W to 1500 W, more preferably 400 W to 1500 W, and particularly preferably 1000 W or more. As a preferred embodiment, an apparatus of 35 to 45 kHz: 1100 to 1300 W can be mentioned, but it may be about 400 W depending on the application. For example, if it is a small portable device, a 40 kHz: 400 W device may be used.

また、より多くの光触媒層が超音波エネルギーに曝露されることが好ましく、例えば、両面に光触媒層を有する金属チタン板を使用する場合、板の両側から超音波を照射してもよい。   Moreover, it is preferable that more photocatalyst layers are exposed to ultrasonic energy. For example, when using a metal titanium plate having photocatalyst layers on both sides, ultrasonic waves may be irradiated from both sides of the plate.

本発明において、光触媒層の厚みは、光走査型電子顕微鏡(SEM)による断面観察によって確認することができる。本発明の光触媒層は、金属チタン基材と連続して形成されているため、コーティング性の被膜と異なり、光触媒層と基材との間に明確な境界がない。しかし、光走査型電子顕微鏡(SEM)によって断面を観察すれば、金属チタンと二酸化チタン光触媒の区別が可能となるため、おおよその層の厚みを割り出すことができる(図1参照 上下の矢印に挟まれた箇所が層厚である[2000倍 1目盛り:1.5μm])。チタン基材表面に形成される層の厚みはほぼ一定であるが、場所により厚みが若干異なるため、本発明における光触媒層の厚みとは、光触媒層が形成されている箇所における層厚の平均値を指す。   In the present invention, the thickness of the photocatalyst layer can be confirmed by cross-sectional observation with a light scanning electron microscope (SEM). Since the photocatalyst layer of the present invention is formed continuously with the metal titanium substrate, unlike the coating film, there is no clear boundary between the photocatalyst layer and the substrate. However, by observing the cross section with an optical scanning electron microscope (SEM), it is possible to distinguish between titanium metal and titanium dioxide photocatalysts, so that the approximate layer thickness can be determined (see FIG. 1 sandwiched between the up and down arrows). The measured thickness is the layer thickness [2000 times one scale: 1.5 μm]). The thickness of the layer formed on the surface of the titanium base material is substantially constant, but the thickness varies slightly depending on the location. Therefore, the thickness of the photocatalyst layer in the present invention is the average value of the layer thickness at the location where the photocatalyst layer is formed. Point to.

光触媒材の形状は、とくに限定されず、板状、棒状、網状、繊維状、粒状等どんなものであってもよい。本発明において、光触媒材は固定されることが好ましいため、例えば粒状の光触媒材を用いる場合は、透明樹脂製カラム(光触媒を活性化する波長域の光線を透過する)等に充填して用いることが好ましい。多孔質粒状の光触媒を用いれば、表面積が大きく効率がよい。コストの点からは薄板形状が好ましく、また、板面を貫通する多数の孔を有する多孔板形状(例えば、ラス網状やパンチングメタル状の多孔板)とすれば、光及び超音波を一面側からのみ照射した場合にも、他面の光触媒層を活性化することができ、好ましい。多数の貫通孔を有する板としては、板面のほぼ全面に渡って貫通孔が形成されている板が好ましい。また、一定以上の機械的強度を有すれば、水性液中での固定が容易である。例えば純チタンからなる薄板形状の場合、0.5mm程度の厚みを有することが好ましい。   The shape of the photocatalyst material is not particularly limited, and may be any shape such as a plate shape, a rod shape, a net shape, a fiber shape, and a granular shape. In the present invention, since the photocatalyst material is preferably fixed, for example, when a granular photocatalyst material is used, it is used by filling a transparent resin column (transmitting light in a wavelength range that activates the photocatalyst). Is preferred. If a porous granular photocatalyst is used, the surface area is large and the efficiency is good. From the viewpoint of cost, a thin plate shape is preferable, and if a perforated plate shape having a large number of holes penetrating the plate surface (for example, a lath net-like or punching metal perforated plate) is used, light and ultrasonic waves can be transmitted from one side. Even when only irradiation is performed, the photocatalyst layer on the other surface can be activated, which is preferable. The plate having a large number of through holes is preferably a plate in which through holes are formed over almost the entire plate surface. Moreover, if it has a certain level of mechanical strength, fixation in an aqueous liquid is easy. For example, in the case of a thin plate shape made of pure titanium, it is preferable to have a thickness of about 0.5 mm.

光触媒層は、金属チタン基材の全面、あるいは水性液に浸漬する部分の金属チタン基材の全面に形成されていることが好ましいが、光及び超音波照射が一方向からのみ行われる場合は、少なくとも照射を受ける部分の表面に光触媒層が形成されていればよい。   The photocatalyst layer is preferably formed on the entire surface of the metal titanium substrate or the entire surface of the metal titanium substrate that is immersed in the aqueous liquid, but when light and ultrasonic irradiation are performed only from one direction, The photocatalyst layer should just be formed in the surface of the part which receives at least irradiation.

水性液に対する光触媒の量は、被処理物質の種類、水質の硬度、光または超音波の照射条件にもよるが、水性液1mに対し、光触媒表面積0.5m以上であることが好ましい。また、コスト及び処理効率の上限を考えた場合、水性液1mに対し10m以下が好ましい。より好ましくは水性液1mに対し1.5m以上であり、特に好ましくは2m以上である。上記表面積は、水性液中に浸漬している部分の光触媒の総表面積を指す。光触媒材は水性液中に完全に浸漬している必要はない。
例えば光触媒材として、全表面に光触媒層が析出したラス網状の多孔板(菱形状の内径が3mmと6mmの「3-6材」)を水性液中に完全に浸漬させて用いる場合、水性液1mに対し、500mm×500mm×1mmサイズの多孔板を1〜30枚用いることが好ましく、3〜20枚用いることがより好ましく、5枚以上用いることが特に好ましい。
The amount of the photocatalyst with respect to the aqueous liquid is preferably 0.5 m 2 or more of the surface area of the photocatalyst with respect to 1 m 3 of the aqueous liquid, although it depends on the type of the substance to be treated, the hardness of the water quality, and the irradiation conditions of light or ultrasonic waves. Moreover, when considering the upper limit of cost and processing efficiency, 10 m 2 or less is preferable with respect to 1 m 3 of the aqueous liquid. More preferably, it is 1.5 m 2 or more, particularly preferably 2 m 2 or more with respect to 1 m 3 of the aqueous liquid. The said surface area points out the total surface area of the photocatalyst of the part immersed in the aqueous liquid. The photocatalytic material need not be completely immersed in the aqueous liquid.
For example, as a photocatalyst material, when a lath net-like perforated plate having a photocatalyst layer deposited on the entire surface ("3-6 material" having rhombus-shaped inner diameters of 3 mm and 6 mm) is used by being completely immersed in an aqueous liquid, It is preferable to use 1 to 30 porous plates having a size of 500 mm × 500 mm × 1 mm per 1 m 3 , more preferably 3 to 20 plates, and particularly preferably 5 or more plates.

本発明の方法及び装置は、生活排水や産業排水の浄化に用いることができ、例えば、温泉、銭湯、プール、マンションの屋上の給水槽、工場の排水等に適用することができる。従って、本発明に係る被処理物質としては、上記水性液中に含まれ得る有機物や、ウイルス、細菌等の病原菌、ハロゲン化有機化合物等の環境有害物質などを挙げることができる。   The method and apparatus of the present invention can be used for purification of domestic wastewater and industrial wastewater, and can be applied to, for example, hot springs, public baths, pools, water tanks on the roof of apartments, factory wastewater, and the like. Therefore, examples of the substance to be treated according to the present invention include organic substances that can be contained in the aqueous liquid, pathogenic bacteria such as viruses and bacteria, and environmentally hazardous substances such as halogenated organic compounds.

図2に、本発明の処理装置の一実施例を示す。1は水性液を収容する水処理槽であり、2は光触媒材である。本実施例では、水1mを収容できる水処理槽の中に、全表面に光触媒層が析出したラス網状の光触媒材(0.5m×0.5m×厚み1mmの「3-6材」)が4枚設置されている。3は超音波照射装置、4は紫外線照射装置である。本実施例では光照射装置及び超音波装置は処理槽内部の側壁に設置され、光触媒材は底面に固定して設置されている。5は水性液の投入口であり、6は排出口である。
なお、超音波照射装置及び光照射装置の設置箇所は特に限られず、複数個設置しても良い。また、光照射装置を処理槽の外側に設け、光照射装置と対向する処理槽の壁面を光透過性の素材で構成しても良い。
FIG. 2 shows an embodiment of the processing apparatus of the present invention. 1 is a water treatment tank for storing an aqueous liquid, and 2 is a photocatalyst material. In the present example, 4 lath-like photocatalyst materials (0.5 m × 0.5 m × 1 mm thickness “3-6 material”) having a photocatalyst layer deposited on the entire surface in a water treatment tank capable of accommodating 1 m 3 of water. Is installed. 3 is an ultrasonic irradiation device, and 4 is an ultraviolet irradiation device. In this embodiment, the light irradiation device and the ultrasonic device are installed on the side walls inside the processing tank, and the photocatalyst material is fixed on the bottom surface. 5 is an inlet for the aqueous liquid, and 6 is an outlet.
In addition, the installation location in particular of an ultrasonic irradiation apparatus and a light irradiation apparatus is not restricted, You may install two or more. Further, the light irradiation device may be provided outside the processing tank, and the wall surface of the processing tank facing the light irradiation device may be made of a light transmissive material.

また、本発明にかかる装置の好ましい実施形態として、水処理槽の内部に超音波照射装置と光照射装置が設置され、板面に多数の貫通孔を有する板形状の純チタン基材の全表面に光触媒層が形成されてなる光触媒材が複数枚、両方の照射装置に対して板面が傾斜して面するよう設置された装置を挙げることができる。例えば図3に示すように、円筒あるいは角柱状の水処理槽を有する装置であって、長手方向の一端付近の側面に水性液の投入口が、他端付近の側面に排出口が設けられ、装置内部の一側面には長手方向に沿って光照射装置が設置され、その反対側の面には長手方向に沿って超音波照射装置が設置され、2つの照射装置の間には複数枚の多孔板形状の光触媒材が長手方向に並んで配置され、かつ各光触媒材の板面が各照射装置に対して傾斜するように設置されている連続式の水処理装置を挙げることができる。
このような構成とすることにより、超音波と光の両方が広面積の光触媒に効率よく照射されるとともに、投入口から排出口へ流れる水性液は、複数枚の多孔板の貫通孔を通過して流れるため、複数回にわたって光触媒と接触することとなり、処理残しを生じることなく非常に効率よく水性液を処理することができる。投入された水性液が光触媒と確実に接触した後に排出されることが好ましいため、前記光触媒板の板面は、水性液の流路となる水処理槽内の空洞をほぼ塞ぐ大きさ及び形状を有することが好ましい。具体的には、水処理槽内において、光触媒板の板面と同一平面の空間面積の70%以上を占める形状とサイズを有する光触媒板を使用することが好ましい。特に好ましくは前記空間面積の80%以上、さらに好ましくは90%以上を占める光触媒板を使用する。上記構成とすれば、小型の装置であっても非常に高い処理効率を発揮することができる。例えば、底面積500〜700cm×高さ50〜80cm程度の水処理槽の中に、厚みが0.5〜3mmで水性液の流路をほぼ塞ぐ大きさと形状をもち、全表面に光触媒層が形成されているラス網状の光触媒板を10〜20枚設置すれば、持ち運びができるサイズでありながら処理効率の非常に高い水処理装置を構成することができる。
Further, as a preferred embodiment of the apparatus according to the present invention, an ultrasonic irradiation device and a light irradiation device are installed inside the water treatment tank, and the entire surface of the plate-shaped pure titanium base material having a large number of through holes on the plate surface A device in which a plurality of photocatalyst materials each having a photocatalyst layer formed thereon are installed so that the plate surfaces face an inclined surface with respect to both irradiation devices. For example, as shown in FIG. 3, it is a device having a cylindrical or prismatic water treatment tank, wherein an aqueous liquid inlet is provided on the side surface near one end in the longitudinal direction, and an outlet port is provided on the side surface near the other end. A light irradiation device is installed along the longitudinal direction on one side surface inside the device, and an ultrasonic irradiation device is installed along the longitudinal direction on the opposite surface, and there are a plurality of sheets between the two irradiation devices. A continuous water treatment device in which perforated plate-shaped photocatalyst materials are arranged side by side in the longitudinal direction and the plate surface of each photocatalyst material is inclined with respect to each irradiation device can be mentioned.
With such a configuration, both the ultrasonic wave and the light are efficiently irradiated to the photocatalyst having a large area, and the aqueous liquid flowing from the inlet to the outlet passes through the through holes of the plurality of perforated plates. Therefore, the aqueous liquid can be treated very efficiently without leaving any treatment residue. Since it is preferable that the charged aqueous liquid is discharged after reliably contacting the photocatalyst, the plate surface of the photocatalyst plate has a size and shape that substantially closes the cavity in the water treatment tank that becomes the flow path of the aqueous liquid. It is preferable to have. Specifically, it is preferable to use a photocatalyst plate having a shape and size that occupy 70% or more of the space area on the same plane as the plate surface of the photocatalyst plate in the water treatment tank. It is particularly preferable to use a photocatalyst plate that occupies 80% or more, more preferably 90% or more of the space area. With the above configuration, even a small apparatus can exhibit very high processing efficiency. For example, in a water treatment tank having a bottom area of 500 to 700 cm 2 × height of about 50 to 80 cm, the photocatalyst layer is formed on the entire surface with a thickness and a size of 0.5 to 3 mm so as to substantially block the flow path of the aqueous liquid. If 10 to 20 lath net-like photocatalyst plates are formed, a water treatment apparatus having a very high treatment efficiency can be configured while being portable.

光触媒の活性を効率よく行う点から、前記光触媒板は、照射装置と板面によって形成される鋭角θ(図3参照)が、40〜75度となるよう傾斜して設置されることが好ましく、45〜70度となるよう傾斜して設置されることがより好ましい。   From the viewpoint of efficiently performing the activity of the photocatalyst, the photocatalyst plate is preferably installed with an inclination so that an acute angle θ (see FIG. 3) formed by the irradiation device and the plate surface is 40 to 75 degrees, It is more preferable to install with an inclination of 45 to 70 degrees.

本発明の処理槽の大きさや形状は特に限定されず、設置場所や処理水量等に合わせて適宜変更可能である。   The size and shape of the treatment tank of the present invention are not particularly limited, and can be appropriately changed according to the installation location, the amount of treated water, and the like.

本発明の二酸化チタン光触媒層は、層の厚みが2μm以上あり、表面に最大径0.5μm以上の孔が点在しているものが好ましい。層の表面積1000μmあたり、最大径0.5μm以上の孔が10個以上存在していることが好ましく、より好ましくは20個以上、さらに好ましくは50個以上、特に好ましくは100個以上存在する。The titanium dioxide photocatalyst layer of the present invention is preferably one having a layer thickness of 2 μm or more and dotted with holes having a maximum diameter of 0.5 μm or more on the surface. It is preferable that 10 or more holes having a maximum diameter of 0.5 μm or more are present per surface area of 1000 μm 2 of the layer, more preferably 20 or more, still more preferably 50 or more, and particularly preferably 100 or more.

以下、実施例により本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

[光触媒材の製造]
15mm×50mmで厚さ1mmの純チタンからなる板状の基材を用意した。この基材はあらかじめ、10重量%フッ化水素水でおよび3重量%フッ化水素水と10重量%過酸化水素で酸洗しておいた。上記の基材を、5重量%の過酸化水素水溶液に常温で24時間浸漬して、前処理を行った。上記の前処理に引き続いて、上記の基材を、1重量%酒石酸ナトリウム、1重量%硫酸および2重量%の過酸化水素からなる電解液中において陽極酸化処理した。陽極酸化処理条件として、1.5秒毎に0.24Vづつ電圧を段階的に上げ、120Vに達したところで100秒間保持し、そしてスイッチをオフする電圧プログラムからなる陽極酸化を行った。引き続いて上記の基材を、水洗の後乾燥させて、500℃に於いて60分間大気酸化を行った。上記基材を再び、1重量%酒石酸ナトリウム、1重量%硫酸および2重量%の過酸化水素からなる電解液中において陽極酸化処理した。陽極酸化処理条件として、1.5秒毎に0.24Vづつ電圧を段階的に上げ、120Vに達したところで100秒間保持し、そしてスイッチをオフする電圧プログラムからなる陽極酸化を行った。上記の基材を水洗の後乾燥させた後、再び、500℃に於いて60分間大気酸化を行いサンプルとした。
上記方法で得られた光触媒材は、基材となる純チタン全表面に二酸化チタン光触媒層が析出していた。
[Manufacture of photocatalyst materials]
A plate-like substrate made of pure titanium having a thickness of 15 mm × 50 mm and a thickness of 1 mm was prepared. This substrate was previously pickled with 10 wt% hydrogen fluoride water and with 3 wt% hydrogen fluoride water and 10 wt% hydrogen peroxide. The substrate was pretreated by immersing it in a 5% by weight aqueous hydrogen peroxide solution at room temperature for 24 hours. Subsequent to the pretreatment, the substrate was anodized in an electrolyte solution consisting of 1 wt% sodium tartrate, 1 wt% sulfuric acid and 2 wt% hydrogen peroxide. As anodizing conditions, the voltage was increased stepwise by 0.24 V every 1.5 seconds, and when 120 V was reached, the voltage was maintained for 100 seconds, and anodizing consisting of a voltage program for turning off the switch was performed. Subsequently, the substrate was washed with water, dried, and then subjected to atmospheric oxidation at 500 ° C. for 60 minutes. The substrate was again anodized in an electrolyte solution consisting of 1 wt% sodium tartrate, 1 wt% sulfuric acid and 2 wt% hydrogen peroxide. As anodizing conditions, the voltage was increased stepwise by 0.24 V every 1.5 seconds, and when 120 V was reached, the voltage was maintained for 100 seconds, and anodizing consisting of a voltage program for turning off the switch was performed. The substrate was washed with water and dried, and then again subjected to atmospheric oxidation at 500 ° C. for 60 minutes to obtain a sample.
The photocatalyst material obtained by the above method had a titanium dioxide photocatalyst layer deposited on the entire surface of pure titanium serving as a base material.

図1に前記光触媒材の断面図の写真を示す。該写真は、光走査型電子顕微鏡(SEM)によるものである。図1に示すように、光走査型電子顕微鏡(SEM)で断面を観察した場合、二酸化チタン光触媒層が白っぽい層として観察されるため、二酸化チタン光触媒と純チタンとの区別が可能である。図1から分かるように、実施例1で製造した光触媒材の光触媒層は、純チタン基材の表面に一体的に形成されており、二酸化チタン光触媒が純チタンに連続している構成を有する。   FIG. 1 shows a photograph of a cross-sectional view of the photocatalyst material. The photograph is from an optical scanning electron microscope (SEM). As shown in FIG. 1, when the cross section is observed with a light scanning electron microscope (SEM), the titanium dioxide photocatalyst layer is observed as a whitish layer, so that it is possible to distinguish between the titanium dioxide photocatalyst and pure titanium. As can be seen from FIG. 1, the photocatalyst layer of the photocatalyst material produced in Example 1 is formed integrally with the surface of the pure titanium base material, and has a configuration in which the titanium dioxide photocatalyst is continuous with the pure titanium.

[比較例1]
(超音波単独照射)
実施例1で製造した光触媒材を用いて、超音波のみを照射してメチレンブルー着色水の分解テストを行った。
[Comparative Example 1]
(Ultrasonic single irradiation)
Using the photocatalyst material produced in Example 1, a decomposition test of methylene blue colored water was performed by irradiating only ultrasonic waves.

メチレンブルー着色水の分解テスト
10ppm濃度に調整したメチレンブルー水溶液100mlをキャップ付ガラス瓶に入れたサンプルケースを2個用意した。上記作製した光触媒材をあらかじめ、30分間予備照射し、表面を清浄な状態にした後、ガラス瓶に入れ、もう一方のガラス瓶には何もいれずブランクとした。つぎに超音波洗浄機(300mm×240mm深さ150mm)を用意し、水道水4Lをこの超音波洗浄機槽の中に入れ、超音波発信基となる洗浄機槽底部中央の超音波振動板にそれぞれのガラス瓶が中央に位置するようガラス瓶を固定した後、高周波出力を39kHz/200Wとなるように設定した超音波を照射し、一定時間ごとにメチレンブルー水溶液を採取し、分光光度計にて吸光度比を測定した。
Decomposition test of methylene blue colored water
Two sample cases were prepared in which 100 ml of an aqueous methylene blue solution adjusted to a concentration of 10 ppm was placed in a glass bottle with a cap. The photocatalyst material prepared above was pre-irradiated for 30 minutes in advance to clean the surface, and then put into a glass bottle, and nothing was put into the other glass bottle to make a blank. Next, prepare an ultrasonic cleaner (300mm x 240mm, depth 150mm), put 4L of tap water into this ultrasonic cleaner tank, and put it on the ultrasonic vibration plate at the center of the bottom of the cleaner tank that will be the ultrasonic transmission base. After fixing the glass bottle so that each glass bottle is located in the center, irradiate ultrasonic waves set so that the high frequency output is 39 kHz / 200 W, collect methylene blue aqueous solution at regular time intervals, and absorb the absorbance ratio with a spectrophotometer Was measured.

光触媒材を入れたガラス瓶中のメチレンブルー濃度は、超音波を照射することで徐々に薄く分解されているが、ブランクの濃度はほとんど変化していない。これにより、光触媒材に超音波を照射することで紫外線照射をしなくても分解できることがわかった。   The methylene blue concentration in the glass bottle containing the photocatalyst material is gradually decomposed thinly by irradiating with ultrasonic waves, but the blank concentration is hardly changed. Thus, it was found that the photocatalyst material can be decomposed without irradiating with ultraviolet rays by applying ultrasonic waves.

[比較例2]
(紫外線単独照射)
実施例1で製造した光触媒材を用いて、紫外線のみを照射してメチレンブルー着色水の分解テストを行った。
[Comparative Example 2]
(UV irradiation alone)
Using the photocatalyst material produced in Example 1, a decomposition test of methylene blue colored water was performed by irradiating only ultraviolet rays.

メチレンブルー着色水の分解テスト
10ppm濃度に調整したメチレンブルー水溶液100mlをキャップ付ガラス瓶に入れたサンプルケースを2個用意した。上記作製した光触媒材をあらかじめ、30分間予備照射し、表面を清浄な状態にした後、ガラス瓶に入れ、もう一方のガラス瓶には何もいれずブランクとした。つぎに超音波洗浄機(300mm×240mm深さ150mm)を用意し、水道水4Lをこの超音波洗浄機槽の中に入れ、超音波発信基となる洗浄機槽底部中央の超音波振動板にそれぞれのガラス瓶が中央に位置するようガラス瓶を固定した後、超音波は照射せず、20W×2本のブラックライトを超音波洗浄機槽中に固定したガラス瓶に上方から、1mW/cm2の紫外線強度になるよう紫外線照射して、一定時間ごとにメチレンブルー水溶液を採取し、分光光度計にて吸光度比を測定した。
Decomposition test of methylene blue colored water
Two sample cases were prepared in which 100 ml of an aqueous methylene blue solution adjusted to a concentration of 10 ppm was placed in a glass bottle with a cap. The photocatalyst material prepared above was pre-irradiated for 30 minutes in advance to clean the surface, and then put into a glass bottle, and nothing was put into the other glass bottle to make a blank. Next, prepare an ultrasonic cleaner (300mm x 240mm, depth 150mm), put 4L of tap water into this ultrasonic cleaner tank, and put it on the ultrasonic vibration plate at the center of the bottom of the cleaner tank that will be the ultrasonic transmission base. After fixing the glass bottle so that each glass bottle is located in the center, without irradiating with ultrasonic waves, UV light of 1 mW / cm 2 from above on the glass bottle fixed with 20 W × 2 black lights in the ultrasonic cleaner tank Ultraviolet rays were irradiated so as to obtain an intensity, and a methylene blue aqueous solution was collected at regular intervals, and the absorbance ratio was measured with a spectrophotometer.

光触媒材を入れたガラス瓶のメチレンブルー溶液は、紫外線照射をすることで徐々に薄く分解されているが、ブランクの濃度はほとんど変化していない。この実験により、本来の紫外線照射のみで発現する光触媒酸化分解反応が確認できると共に、紫外線照射単独と超音波照射単独では、ほとんど差がなくメチレンブルー濃度が減少されることが分かった。   The methylene blue solution in the glass bottle containing the photocatalyst material is gradually decomposed thinly by irradiation with ultraviolet rays, but the concentration of the blank hardly changes. From this experiment, it was found that the photocatalytic oxidative decomposition reaction that appears only by the original ultraviolet irradiation was confirmed, and there was almost no difference between the ultraviolet irradiation alone and the ultrasonic irradiation alone, and the methylene blue concentration was reduced.

[紫外線と超音波の同時照射]
実施例1で製造した光触媒材を用いて、紫外線及び超音波を同時に照射してメチレンブルー着色水の分解テストを行った。
[Simultaneous irradiation of ultraviolet rays and ultrasonic waves]
Using the photocatalyst material produced in Example 1, a decomposition test of methylene blue colored water was performed by simultaneously irradiating ultraviolet rays and ultrasonic waves.

メチレンブルー着色水の分解テスト
10ppm濃度に調整したメチレンブルー水溶液100mlをキャップ付ガラス瓶に入れたサンプルケースを2個用意した。上記作製した光触媒材をあらかじめ、30分間予備照射し、表面を清浄な状態にした後、ガラス瓶に入れ、もう一方のガラス瓶には何もいれずブランクとした。つぎに超音波洗浄機(300mm×240mm深さ150mm)を用意し、水道水4Lをこの超音波洗浄機槽の中に入れ、超音波発信基となる洗浄機槽底部中央の超音波振動板にそれぞれのガラス瓶が中央に位置するようガラス瓶を固定した。高周波出力を39kHz/200Wとなるように設定した超音波を照射し、また、あわせて同時に20W×2本のブラックライトを超音波洗浄機槽中に固定したガラス瓶に上方から、1mW/cm2の紫外線強度になるよう紫外線照射して、一定時間ごとにメチレンブルー水溶液を採取し、分光光度計にて吸光度比を測定した。本実施例では、光触媒サンプルおよびブランクに対して、紫外線および超音波を同時に照射した。
Decomposition test of methylene blue colored water
Two sample cases were prepared in which 100 ml of an aqueous methylene blue solution adjusted to a concentration of 10 ppm was placed in a glass bottle with a cap. The photocatalyst material prepared above was pre-irradiated for 30 minutes in advance to clean the surface, and then put into a glass bottle, and nothing was put into the other glass bottle to make a blank. Next, prepare an ultrasonic cleaner (300mm x 240mm, depth 150mm), put 4L of tap water into this ultrasonic cleaner tank, and put it on the ultrasonic vibration plate at the center of the bottom of the cleaner tank that will be the ultrasonic transmission base. The glass bottles were fixed so that each glass bottle was located in the center. Irradiate the ultrasonic wave set so that the high frequency output is 39kHz / 200W, and at the same time, from the top to the glass bottle with 20W × 2 black lights fixed in the ultrasonic cleaner tank, 1mW / cm 2 Ultraviolet rays were irradiated so as to obtain an ultraviolet intensity, and a methylene blue aqueous solution was collected at regular intervals, and the absorbance ratio was measured with a spectrophotometer. In this example, the photocatalyst sample and the blank were irradiated with ultraviolet rays and ultrasonic waves simultaneously.

比較例1・2及び実施例2の結果を表1及び図4に示す。表中の数値は吸光度比である。表1及び図4に示す通り、超音波および紫外線の単独照射(比較例1及び比較例2)と比較して、超音波と紫外線を同時に照射した場合、メチレンブルー濃度が大幅に減少することが確認された。なお、実施例2のブランクについてはほとんど濃度減少がみられなかった。この結果により紫外線および超音波を光触媒材に同時に照射することで被処理物質の酸化分解能力が大きく向上することが明らかとなった。   The results of Comparative Examples 1 and 2 and Example 2 are shown in Table 1 and FIG. The numerical values in the table are absorbance ratios. As shown in Table 1 and FIG. 4, it is confirmed that the methylene blue concentration is greatly reduced when ultrasonic and ultraviolet rays are simultaneously irradiated as compared with single irradiation of ultrasonic and ultraviolet rays (Comparative Example 1 and Comparative Example 2). It was done. In addition, about the blank of Example 2, density reduction was hardly seen. As a result, it became clear that the ability to oxidatively decompose the substance to be treated was greatly improved by simultaneously irradiating the photocatalyst material with ultraviolet rays and ultrasonic waves.

[光触媒層の有無による性能比較]
15mm×50mmで厚さ1mmの純チタンからなる板状の基材を用意した。この基材はあらかじめ、10重量%フッ化水素水でおよび3重量%フッ化水素水と10重量%過酸化水素で酸洗しておいた。上記の基材を、5重量%の過酸化水素水溶液に常温で24時間浸漬して、前処理を行った。上記の前処理に引き続いて、上記の基材を、1重量%酒石酸ナトリウム、1重量%硫酸および2重量%の過酸化水素からなる電解液中において陽極酸化処理した。陽極酸化処理条件として、1.5秒毎に0.24Vづつ電圧を段階的に上げ、120Vに達したところで100秒間保持し、そしてスイッチをオフする電圧プログラムからなる陽極酸化を行った。引き続いて上記の基材を、水洗の後乾燥させて、500℃に於いて60分間大気酸化を行った。
上記の基材を再び、1重量%酒石酸ナトリウム、1重量%硫酸および2重量%の過酸化水素からなる電解液中において陽極酸化処理した。陽極酸化処理条件として、1.5秒毎に0.24Vづつ電圧を段階的に上げ、120Vに達したところで100秒間保持し、そしてスイッチをオフする電圧プログラムからなる陽極酸化を行った。上記の基材を水洗の後乾燥させた後、再び、500℃に於いて60分間大気酸化を行い光触媒材サンプルとした。得られた光触媒材の光触媒層の厚みは約0.8〜1μmであった。
一方、基材の純チタンに酸洗のみを行い光触媒処理は行わない無処理純チタン板材を、無処理サンプルとした。
[Performance comparison with and without photocatalyst layer]
A plate-like substrate made of pure titanium having a thickness of 15 mm × 50 mm and a thickness of 1 mm was prepared. This substrate was previously pickled with 10 wt% hydrogen fluoride water and with 3 wt% hydrogen fluoride water and 10 wt% hydrogen peroxide. The substrate was pretreated by immersing it in a 5% by weight aqueous hydrogen peroxide solution at room temperature for 24 hours. Subsequent to the pretreatment, the substrate was anodized in an electrolyte solution consisting of 1 wt% sodium tartrate, 1 wt% sulfuric acid and 2 wt% hydrogen peroxide. As anodizing conditions, the voltage was increased stepwise by 0.24 V every 1.5 seconds, and when 120 V was reached, the voltage was maintained for 100 seconds, and anodizing consisting of a voltage program for turning off the switch was performed. Subsequently, the substrate was washed with water, dried, and then subjected to atmospheric oxidation at 500 ° C. for 60 minutes.
The substrate was again anodized in an electrolyte consisting of 1 wt% sodium tartrate, 1 wt% sulfuric acid and 2 wt% hydrogen peroxide. As anodizing conditions, the voltage was increased stepwise by 0.24 V every 1.5 seconds, and when 120 V was reached, the voltage was maintained for 100 seconds, and anodizing consisting of a voltage program for turning off the switch was performed. The substrate was washed with water and dried, and then again subjected to atmospheric oxidation at 500 ° C. for 60 minutes to obtain a photocatalyst material sample. The thickness of the photocatalyst layer of the obtained photocatalyst material was about 0.8 to 1 μm.
On the other hand, an untreated pure titanium plate material in which pure titanium as a base material was only pickled and not subjected to photocatalytic treatment was used as an untreated sample.

メチレンブルー着色水の分解テスト
10ppm濃度に調整したメチレンブルー水溶液100mlをキャップ付ガラス瓶に入れたサンプルケースを2個用意した。上記作製した光触媒材をあらかじめ、30分間予備照射し、表面を清浄な状態にした後、ガラス瓶に入れ、もう一方のガラス瓶には無処理の純チタン板材をいれ無処理サンプルとした。つぎに超音波洗浄機(300mm×240mm深さ150mm)を用意し、水道水4Lをこの超音波洗浄機槽の中に入れ、超音波発信基となる洗浄機槽底部中央の超音波振動板にそれぞれのガラス瓶が中央に位置するようガラス瓶を固定した。高周波出力を39kHz/200Wとなるように設定した超音波を照射し、また、あわせて同時に20W×2本のブラックライトを超音波洗浄機槽中に固定したガラス瓶に上方から、1mW/cm2の紫外線強度になるよう紫外線照射して、一定時間ごとにメチレンブルー水溶液を採取し、分光光度計にて吸光度比を測定した。
Decomposition test of methylene blue colored water
Two sample cases were prepared in which 100 ml of an aqueous methylene blue solution adjusted to a concentration of 10 ppm was placed in a glass bottle with a cap. The prepared photocatalyst material was pre-irradiated for 30 minutes in advance to clean the surface, and then put into a glass bottle. An untreated pure titanium plate was placed in the other glass bottle to prepare an untreated sample. Next, prepare an ultrasonic cleaner (300mm x 240mm, depth 150mm), put 4L of tap water into this ultrasonic cleaner tank, and put it on the ultrasonic vibration plate at the center of the bottom of the cleaner tank that will be the ultrasonic transmission base. The glass bottles were fixed so that each glass bottle was located in the center. Irradiate the ultrasonic wave set so that the high frequency output is 39kHz / 200W, and at the same time, from the top to the glass bottle with 20W × 2 black lights fixed in the ultrasonic cleaner tank, 1mW / cm 2 Ultraviolet rays were irradiated so as to obtain an ultraviolet intensity, and a methylene blue aqueous solution was collected at regular intervals, and the absorbance ratio was measured with a spectrophotometer.

結果を表2に示す。実施例2と同様、処理有り(光触媒層あり)は、紫外線および超音波照射によりメチレンブルーの濃度を大幅に減少したが、処理無し(光触媒層なし)では、ほとんど濃度減少が認められないことがわかった。
超音波照射により発生するキャビテーションエネルギーによって、無処理純チタン板材には光触媒機能はないものの障害物となり、一定の濃度減少を及ぼすと推察されたが、ほとんど影響がないことが分かった。このことから、紫外線および超音波照射による大幅なメチレンブルーの分解は、ほぼ全て光触媒作用に基づくことが明らかとなった。
The results are shown in Table 2. Similar to Example 2, with treatment (with photocatalyst layer), the concentration of methylene blue was significantly reduced by ultraviolet and ultrasonic irradiation, but without treatment (without photocatalyst layer), it was found that almost no decrease in concentration was observed. It was.
The cavitation energy generated by ultrasonic irradiation was thought to be an obstacle to the untreated pure titanium plate material, although it did not have a photocatalytic function. From this, it became clear that the substantial decomposition of methylene blue by ultraviolet and ultrasonic irradiation is almost entirely based on photocatalysis.

[光触媒層の厚みの検討]
光触媒材の製造
チタン基材として、15mm×50mm×厚さ1mmの板状の純チタンを用い、上記基材を酸洗(エッチング[10重量%フッ化水素水で1次エッチングの後、3重量%フッ化水素と10重量%過酸化水素混合水溶液で2次エッチングする酸洗工程を施す])し、下記の処理を行って光触媒層の厚みの異なる各光触媒材A〜Cを得た。
光触媒材A(光触媒層の厚み0.3〜0.5μm)・・・過酸化水素水溶液浸漬前処理(以下、前処理)、陽極酸化処理(以下、陽)、大気酸化処理(以下、大)。
光触媒材B(光触媒層の厚み0.5〜0.8μm)・・・前処理、陽、陽、大。
光触媒材C(光触媒層の厚み0.8〜1μm)・・・前処理、陽、大、陽、大。
[Examination of photocatalyst layer thickness]
Manufacture of photocatalyst material Plate-like pure titanium of 15mm x 50mm x 1mm thickness was used as the titanium base, and the above base was pickled (etched [etched with 10wt% hydrogen fluoride water after primary etching, 3wt. Then, a photo-washing step of secondary etching with a mixed aqueous solution of% hydrogen fluoride and 10% by weight of hydrogen peroxide is performed]), and the following treatment is performed to obtain photocatalyst materials A to C having different photocatalyst layer thicknesses.
Photocatalyst material A (photocatalyst layer thickness: 0.3 to 0.5 μm)... Pretreatment for immersion in hydrogen peroxide solution (hereinafter, pretreatment), anodizing treatment (hereinafter, positive), atmospheric oxidation treatment (hereinafter, large).
Photocatalyst material B (photocatalyst layer thickness 0.5-0.8 μm): pretreatment, positive, positive, large.
Photocatalyst material C (photocatalyst layer thickness 0.8-1 μm): pretreatment, positive, large, positive, large.

メチレンブルー着色水の分解テスト
実施例2と同様にして、光触媒材に紫外線と超音波を同時に照射する条件の下、上記光触媒材A〜Cの性能比較を行った。結果を表3に示す。表3に示すように、光触媒層の厚みが増大するに伴い、メチレンブルーの分解能力が向上することが確認できた。
Decomposition test of methylene blue colored water In the same manner as in Example 2, the performance of the photocatalyst materials A to C was compared under the condition of simultaneously irradiating the photocatalyst material with ultraviolet rays and ultrasonic waves. The results are shown in Table 3. As shown in Table 3, it was confirmed that the decomposition ability of methylene blue was improved as the thickness of the photocatalyst layer was increased.

[光触媒層の厚みがより大きい光触媒材の製造]
実施例4の結果に鑑み、光触媒層をより厚くすることによって、水性液中の被処理物質の分解スピードがより向上するかどうかを確認するため、1μmより厚い光触媒層を有する光触媒材の製造を試みた。改良を重ねた結果、光触媒層の厚みが2μm以上の光触媒材を製造することに成功した。以下の処理により製造した光触媒材Dを用いて、実施例4と同じ手順でメチレンブルー着色水の分解テストを行った。
光触媒材D(光触媒層の厚み2μm)・・・前処理、陽、陽、大、陽、陽、大。
[Production of photocatalyst material having a larger photocatalyst layer thickness]
In view of the results of Example 4, in order to confirm whether or not the decomposition speed of the substance to be treated in the aqueous liquid is further improved by making the photocatalyst layer thicker, production of a photocatalyst material having a photocatalyst layer thicker than 1 μm is performed. Tried. As a result of repeated improvements, a photocatalyst material having a photocatalyst layer thickness of 2 μm or more was successfully produced. Using the photocatalyst material D produced by the following treatment, a decomposition test of methylene blue colored water was performed in the same procedure as in Example 4.
Photocatalyst material D (photocatalyst layer thickness 2 μm): pretreatment, positive, positive, large, positive, positive, large.

結果を表4に示す。また、実施例4及び実施例5の結果をまとめたグラフを図5に示す。図5に示すように、光触媒層の厚みが2μmの光触媒材Dは、非常に優れた分解スピードを持つことがわかった。   The results are shown in Table 4. Moreover, the graph which put together the result of Example 4 and Example 5 is shown in FIG. As shown in FIG. 5, it was found that the photocatalyst material D having a photocatalyst layer thickness of 2 μm has a very excellent decomposition speed.

[光触媒層の表面状態の観察]
コーティング性の光触媒でも、塗りと乾燥を繰り返すことにより、層の厚みを大きくすることは可能であるが、厚みを大きくしても光触媒の性能は向上しないか、あるいはバインダーなどの有機物が不純物因子として被膜中に残るため、却って性能が低下すると考えられる。
本発明において、光触媒層の厚みを大きくすることにより、光触媒の性能が向上した原因を探るため、光触媒材B(光触媒層の厚み0.5〜0.8μm)及び光触媒材D(光触媒層の厚み2μm)の表面をSEMで観察した。図6及び図7に光触媒材B及びDの光触媒層表面の写真を示す(6000倍 1目盛:0.5μm)。
[Observation of surface state of photocatalyst layer]
Even with a coating photocatalyst, it is possible to increase the thickness of the layer by repeating coating and drying, but even if the thickness is increased, the performance of the photocatalyst does not improve, or organic substances such as binders are used as impurity factors. Since it remains in the film, the performance is considered to deteriorate.
In the present invention, in order to investigate the cause of the improvement in the performance of the photocatalyst by increasing the thickness of the photocatalyst layer, the photocatalyst material B (photocatalyst layer thickness 0.5 to 0.8 μm) and photocatalyst material D (photocatalyst layer thickness 2 μm) The surface was observed with SEM. 6 and 7 show photographs of the photocatalyst layer surfaces of the photocatalyst materials B and D (6000 ×, 1 scale: 0.5 μm).

図に示すように、光触媒材Bと光触媒材Dの表面には明らかな差があった。光触媒材Bの表面は、表面に無数の小さな凹凸があり、0.1μm程度の径をもつ小さな孔が存在していたが、光触媒材Dの表面は、多孔質の層が幾重にも重なったような外観を呈し、最大径が0.2μm以上の孔が多数見られ、最大径が0.5〜1.0μm程度の非円形の不規則な形状の孔が点在し、1.0μm以上の最大径を持つ孔も観察された。   As shown in the figure, there was a clear difference between the surfaces of the photocatalyst material B and the photocatalyst material D. The surface of the photocatalyst material B had innumerable small irregularities on the surface, and small pores having a diameter of about 0.1 μm existed, but the surface of the photocatalyst material D seemed to have multiple layers of porous layers. A large number of holes with a maximum diameter of 0.2 μm or more, many non-circular irregularly shaped holes with a maximum diameter of about 0.5 to 1.0 μm, and holes with a maximum diameter of 1.0 μm or more Was also observed.

このことから、本発明における光触媒層の厚みと光触媒性能の関係は、多孔質積層状の表面状態による光触媒表面積の増大が原因と考えられる。なお、このような表面形状は、大気酸化処理によってアモルファス皮膜を結晶性のある酸化チタンに変える際に形成される他、前処理である過酸化水素化学処理や陽極酸化処理でできるだけ負荷をかけて強制的に皮膜成長を行うため、表面が荒れた状態となり、多孔質状態が形成されると考えられる。   From this, it is considered that the relationship between the thickness of the photocatalyst layer and the photocatalytic performance in the present invention is caused by an increase in the surface area of the photocatalyst due to the surface state of the porous laminate. Such a surface shape is formed when the amorphous film is changed to crystalline titanium oxide by atmospheric oxidation treatment, and is loaded as much as possible by pretreatment hydrogen peroxide chemical treatment or anodization treatment. Since the film growth is forcibly performed, it is considered that the surface becomes rough and a porous state is formed.

[病原性細菌に対する抗菌効果]
レジオネラ菌を含む水性液及び大腸菌を含む水性液に光触媒材Dを浸漬し、紫外線及び超音波を同時に照射して抗菌効果を検討した。その結果、光触媒材Dは、レジオネラ菌及び大腸菌を短時間で大幅に減少させた。このことより、本発明が病原性細菌に対しても有効であることが実証された。
[Antimicrobial effect against pathogenic bacteria]
Photocatalytic material D was immersed in an aqueous solution containing Legionella and an aqueous solution containing Escherichia coli, and the antibacterial effect was examined by simultaneously irradiating ultraviolet rays and ultrasonic waves. As a result, the photocatalyst material D significantly reduced Legionella and E. coli in a short time. This proves that the present invention is also effective against pathogenic bacteria.

[本発明の装置]
本発明による連続式の水処理装置を製作した。図3にその模式図の縦断面図を示す。具体的には20cm×30cm×高さ60cmの角柱状の水処理槽1を構成し、底面側の側面に水性液の投入口5を、上面側の側面に水性液の排出口6を構成した。また、前記処理槽内の一側面には縦方向に長い光照射装置4を設置し、その反対側の側面には縦方向に長い超音波照射装置3を設置した。そして、2つの照射装置の間に、光触媒材Dと同様の方法で製造したラス網状(3-6材)の光触媒板2を15枚、傾斜角θが70度となるよう各照射装置に対して傾斜させて一列に配列した。光触媒板は水処理槽の一側面に設けた固定具7により固定した。光照射装置としては254nmの紫外光を5〜10mW/cmで照射する装置を用い、超音波照射装置としては38kHz・400Wの装置を用いた。また、光触媒板は、厚みが1mmであり、傾斜した状態にて処理槽内中空部の同一傾斜面をほぼ塞ぐ大きさ及び形状の光触媒板を用いた。
[Device of the present invention]
A continuous water treatment apparatus according to the present invention was manufactured. FIG. 3 is a longitudinal sectional view of the schematic diagram. Specifically, a prismatic water treatment tank 1 having a size of 20 cm × 30 cm × height 60 cm is configured, an aqueous liquid inlet 5 is formed on the bottom side, and an aqueous liquid outlet 6 is formed on the top side. . Moreover, the light irradiation apparatus 4 long in the vertical direction was installed on one side surface in the treatment tank, and the ultrasonic irradiation apparatus 3 long in the vertical direction was installed on the opposite side surface. Then, between the two irradiation devices, each of the irradiation devices has 15 lath-like (3-6) photocatalyst plates 2 manufactured in the same manner as the photocatalyst material D, and an inclination angle θ of 70 degrees. And arranged in a row. The photocatalyst plate was fixed by a fixture 7 provided on one side of the water treatment tank. As the light irradiation device, a device that irradiates 254 nm ultraviolet light at 5 to 10 mW / cm 2 was used, and as the ultrasonic irradiation device, a 38 kHz / 400 W device was used. The photocatalyst plate had a thickness of 1 mm, and a photocatalyst plate having a size and a shape that substantially closed the same inclined surface of the hollow portion in the treatment tank in an inclined state.

前記装置を用いて10ppm濃度に調製したメチレンブルー水溶液を流速100L/分で連続的に流し、超音波と紫外線を同時に照射した。投入したメチレンブルー水溶液と排出口から排出されたメチレンブルー水溶液の吸光度を分光光度計で測定し、吸光度比からメチレンブルーの分解率を調べたところ、その分解率はほぼ100%となり、本発明の装置が非常に高い処理能力を有することが明らかになった。   A methylene blue aqueous solution prepared to a concentration of 10 ppm using the above apparatus was continuously flowed at a flow rate of 100 L / min, and was irradiated with ultrasonic waves and ultraviolet rays simultaneously. The absorbance of the methylene blue aqueous solution introduced and the methylene blue aqueous solution discharged from the outlet was measured with a spectrophotometer, and the decomposition rate of methylene blue was examined from the absorbance ratio. It has become clear that it has a high processing capacity.

実施例の結果から、本発明の光触媒材に紫外線及び超音波を同時に照射することによって、光触媒活性が大幅に向上することが明らかとなった。また、金属チタンを基材として表面酸化処理だけで形成した光触媒層が、超音波照射といった非常に負荷の大きい環境に耐えて、高い光触媒活性を発揮すること、及び光触媒層の厚みを1μmより大きくすることにより、水性液中という非常に光触媒機能を発現させにくい状況においても、被処理物質を非常に効率よく分解できることが分かった。
従って、従来は、水流・水質・水圧・物質拡散速度等の条件やコーティング性光触媒の剥離の問題から、水性液中では光触媒はほとんど効果を発揮できず、水質浄化への展開は困難であるとされていたが、本発明であれば、水質浄化用途においても十分に効果を発揮できることが明らかになった。
From the results of Examples, it has been clarified that the photocatalytic activity is greatly improved by simultaneously irradiating the photocatalyst material of the present invention with ultraviolet rays and ultrasonic waves. In addition, a photocatalyst layer formed only by surface oxidation treatment using titanium metal as a base material can withstand a very heavy load environment such as ultrasonic irradiation, exhibits high photocatalytic activity, and the thickness of the photocatalyst layer is larger than 1 μm. Thus, it was found that the substance to be treated can be decomposed very efficiently even in a situation where it is difficult to exhibit the photocatalytic function in an aqueous liquid.
Therefore, in the past, photocatalysts were hardly effective in aqueous liquids due to conditions such as water flow, water quality, water pressure, material diffusion rate, etc. and coating photocatalyst peeling, and it was difficult to develop water purification. However, it has been clarified that the present invention can be sufficiently effective in water purification applications.

Claims (9)

水性液中に溶解あるいは分散した被処理物質を分解する方法であって、
前記水性液に光触媒材を浸漬させ、
該水性液に光線及び超音波を同時に照射して、前記光触媒材を光エネルギー及び超音波エネルギーに曝露させる工程を含み、
前記光触媒材は、金属チタン基材とその表面に一体的に形成された二酸化チタン光触媒層とからなり、前記層の厚みが1μmより大きいことを特徴とする、被処理物質の処理方法。
A method for decomposing a substance to be treated dissolved or dispersed in an aqueous liquid,
Immerse the photocatalyst material in the aqueous liquid,
Irradiating the aqueous liquid with light and ultrasonic waves simultaneously to expose the photocatalytic material to light energy and ultrasonic energy,
The said photocatalyst material consists of a metal titanium base material and the titanium dioxide photocatalyst layer integrally formed in the surface, The thickness of the said layer is larger than 1 micrometer, The processing method of the to-be-processed substance characterized by the above-mentioned.
前記層の厚みが、1.5μm以上である、請求項1に記載の方法。 The method according to claim 1, wherein the thickness of the layer is 1.5 μm or more. 前記層の厚みが、2μm〜3μmである、請求項1に記載の方法。 The method according to claim 1, wherein the thickness of the layer is 2 μm to 3 μm. 被処理物質を溶解あるいは分散状態で含有する水性液を処理するための装置であって、
前記水性液を収容する水処理槽と、
前記処理槽内に配置されて前記水性液に浸漬される光触媒材と、
前記処理槽内に配置されて前記光触媒材に対し超音波を照射する超音波照射装置と、
前記処理槽内に配置されて前記光触媒材に対し光を照射する光照射装置とを備え、
前記光触媒材は、金属チタン基材とその表面に一体的に形成された二酸化チタン光触媒層とからなり、前記層の厚みが1μmより大きいことを特徴とする、処理装置。
An apparatus for treating an aqueous liquid containing a substance to be treated in a dissolved or dispersed state,
A water treatment tank containing the aqueous liquid;
A photocatalytic material disposed in the treatment tank and immersed in the aqueous liquid;
An ultrasonic irradiation device that is disposed in the treatment tank and irradiates the photocatalyst material with ultrasonic waves;
A light irradiation device disposed in the treatment tank and irradiating light to the photocatalyst material;
The said photocatalyst material consists of a titanium metal base material and the titanium dioxide photocatalyst layer integrally formed in the surface, The thickness of the said layer is larger than 1 micrometer, The processing apparatus characterized by the above-mentioned.
被処理物質を溶解あるいは分散状態で含有する水性液を処理するための装置であって、
壁面の少なくとも一部が光透過性素材からなる、前記水性液を収容する水処理槽と、
前記処理槽内に配置されて前記水性液に浸漬される光触媒材と、
前記処理槽内に配置されて前記光触媒材に対し超音波を照射する超音波照射装置と、
前記光透過性素材からなる壁面に対向するように前記処理槽の外側に配置されて、前記光触媒材に対し光を照射する光照射装置とを備え、
前記光触媒材は、金属チタン基材とその表面に一体的に形成された二酸化チタン光触媒層とからなり、前記層の厚みが1μmより大きいことを特徴とする、処理装置。
An apparatus for treating an aqueous liquid containing a substance to be treated in a dissolved or dispersed state,
A water treatment tank containing the aqueous liquid, wherein at least a part of the wall surface is made of a light-transmitting material;
A photocatalytic material disposed in the treatment tank and immersed in the aqueous liquid;
An ultrasonic irradiation device that is disposed in the treatment tank and irradiates the photocatalyst material with ultrasonic waves;
A light irradiation device that is disposed outside the treatment tank so as to face the wall surface made of the light transmissive material, and irradiates light to the photocatalyst material;
The said photocatalyst material consists of a titanium metal base material and the titanium dioxide photocatalyst layer integrally formed in the surface, The thickness of the said layer is larger than 1 micrometer, The processing apparatus characterized by the above-mentioned.
前記光触媒材が、多数の貫通孔を有する板状の金属チタン基材の全表面に光触媒層が形成されてなる光触媒板であることを特徴とする、請求項4または5に記載の処理装置。 6. The processing apparatus according to claim 4, wherein the photocatalyst material is a photocatalyst plate in which a photocatalyst layer is formed on the entire surface of a plate-like metal titanium base material having a large number of through holes. 前記光触媒板の一面側に前記超音波照射装置が、他面側に前記光照射装置が配置されていることを特徴とする、請求項6に記載の処理装置。 The processing apparatus according to claim 6, wherein the ultrasonic irradiation device is disposed on one surface side of the photocatalyst plate, and the light irradiation device is disposed on the other surface side. 前記水処理槽が円筒あるいは角柱状であって、長手方向の一端側に水性液の投入口が、他端側に水性液の排出口が設けられ、前記処理槽内部の一側面には長手方向に沿って前記光照射装置が設置され、その反対側の側面には長手方向に沿って前記超音波照射装置が設置され、2つの照射装置の間に複数枚の前記光触媒板が長手方向に一列に配置され、かつ各光触媒板の板面が各照射装置に対して傾斜するように配置されていることを特徴とする、請求項7に記載の処理装置。 The water treatment tank is cylindrical or prismatic, and is provided with an inlet for an aqueous liquid at one end in the longitudinal direction and an outlet for an aqueous liquid at the other end. The ultrasonic irradiation device is installed along the longitudinal direction on the opposite side surface, and a plurality of the photocatalyst plates are arranged in a row in the longitudinal direction between the two irradiation devices. The processing apparatus according to claim 7, wherein the processing apparatus is arranged so that a plate surface of each photocatalyst plate is inclined with respect to each irradiation apparatus. 金属チタン基材とその表面に一体的に形成された二酸化チタン光触媒層とからなり、前記光触媒層の厚みが2μm以上であり、前記光触媒層の表面に最大径0.5μm以上の孔が点在していることを特徴とする、光触媒材。 It consists of a titanium metal substrate and a titanium dioxide photocatalyst layer integrally formed on the surface thereof. The photocatalyst layer has a thickness of 2 μm or more, and the surface of the photocatalyst layer is dotted with holes having a maximum diameter of 0.5 μm or more. A photocatalytic material characterized by
JP2008515555A 2006-05-15 2007-05-15 Method for treating substance to be treated in aqueous liquid, apparatus used for the method, and photocatalyst material Active JP5357540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008515555A JP5357540B2 (en) 2006-05-15 2007-05-15 Method for treating substance to be treated in aqueous liquid, apparatus used for the method, and photocatalyst material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006135872 2006-05-15
JP2006135872 2006-05-15
JP2008515555A JP5357540B2 (en) 2006-05-15 2007-05-15 Method for treating substance to be treated in aqueous liquid, apparatus used for the method, and photocatalyst material
PCT/JP2007/059919 WO2007132832A1 (en) 2006-05-15 2007-05-15 Method for processing object substance in aqueous solution, and apparatus and photocatalyst material used for the method

Publications (2)

Publication Number Publication Date
JPWO2007132832A1 true JPWO2007132832A1 (en) 2009-09-24
JP5357540B2 JP5357540B2 (en) 2013-12-04

Family

ID=38693922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008515555A Active JP5357540B2 (en) 2006-05-15 2007-05-15 Method for treating substance to be treated in aqueous liquid, apparatus used for the method, and photocatalyst material

Country Status (2)

Country Link
JP (1) JP5357540B2 (en)
WO (1) WO2007132832A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986174B2 (en) * 2008-10-30 2012-07-25 独立行政法人産業技術総合研究所 Reaction tube for microreactor and manufacturing method thereof
JP5802483B2 (en) * 2011-08-25 2015-10-28 株式会社キッツ Water treatment apparatus for plating process and water treatment method for plating process
JP5789058B2 (en) * 2013-04-08 2015-10-07 日立金属株式会社 Method for producing photocatalyst body
CN107381974A (en) * 2017-09-14 2017-11-24 中国石油化工股份有限公司 Residual organic matter advanced treatment system in evaporation condensed water
CN113617344B (en) * 2021-07-29 2023-09-26 联科华技术有限公司 Monoatomic photocatalytic plate for sewage treatment and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130031A (en) * 1990-11-01 1992-07-14 Sri International Method of treating aqueous liquids using light energy, ultrasonic energy, and a photocatalyst
JP3251144B2 (en) * 1995-03-03 2002-01-28 株式会社神戸製鋼所 Oxidized titanium or titanium-based alloy material having photocatalytic activity and method for producing the same
JP3812968B2 (en) * 1996-03-31 2006-08-23 日本無機株式会社 Photocatalyst cartridge
JPH10192696A (en) * 1996-12-27 1998-07-28 Nishihara Environ Sanit Res Corp Photocatalytic reaction apparatus
JPH11100695A (en) * 1997-09-26 1999-04-13 Nippon Alum Co Ltd Production of titanium material having photocatalytic activity
JP2907814B1 (en) * 1998-05-13 1999-06-21 扶桑建設工業株式会社 Photocatalytic reactor
JP2000086497A (en) * 1998-09-18 2000-03-28 Tao:Kk Three-dimensional photocatalyst filter and filter device
JP3922825B2 (en) * 1999-01-25 2007-05-30 株式会社荏原製作所 Liquid processing method and apparatus using bubble contraction
JP2001218820A (en) * 2000-02-14 2001-08-14 Hitachi Metals Ltd Deodorizing device
JP2003284946A (en) * 2002-03-28 2003-10-07 Meidensha Corp Photocatalyst reaction device and unit therefor

Also Published As

Publication number Publication date
JP5357540B2 (en) 2013-12-04
WO2007132832A1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
Ye et al. Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species
Butterfield et al. Applied studies on immobilized titanium dioxide films ascatalysts for the photoelectrochemical detoxification of water
Ye et al. Effect of dissolved natural organic matter on the photocatalytic micropollutant removal performance of TiO2 nanotube array
JP5357540B2 (en) Method for treating substance to be treated in aqueous liquid, apparatus used for the method, and photocatalyst material
Mousset et al. A new 3D-printed photoelectrocatalytic reactor combining the benefits of a transparent electrode and the Fenton reaction for advanced wastewater treatment
JP4758399B2 (en) Ultraviolet oxidation apparatus and ultraviolet oxidation method
JP5093801B2 (en) Method for producing titanium oxide film molded member, photocatalyst, photoelectrode, and water treatment apparatus
US5932111A (en) Photoelectrochemical reactor
Lee et al. OH radical generation in a photocatalytic reactor using TiO2 nanotube plates
WO2017192057A4 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
Nyongesa et al. Electrophoretic deposition of titanium dioxide thin films for photocatalytic water purification systems
Carlson et al. An effective, point-of-use water disinfection device using immobilized black TiO2 nanotubes as an electrocatalyst
Thind et al. A highly efficient photocatalytic system for environmental applications based on TiO 2 nanomaterials
Ashley et al. Emerging investigator series: photocatalytic membrane reactors: fundamentals and advances in preparation and application in wastewater treatment
JP2008302308A (en) Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof
Rastgar et al. Photocatalytic/adsorptive removal of methylene blue dye by electrophoretic nanostructured TiO2/montmorillonite composite films
KR100926126B1 (en) Method for preparing integral nanotube photocatalyst, apparatus and method for reducing hexavalent chrominum
KR100888677B1 (en) Method of manufacuring oxidized layer of oxidized titanium for photo-catalyst and Oxidized layer oxidized titanium for photo-catalyst manufactured by the same
Sreekantan et al. Post-annealing treatment for Cu-TiO2 nanotubes and their use in photocatalytic methyl orange degradation and Pb (II) heavy metal ions removal
Farrugia Anodic titanium dioxide nanotubes for greywater reclamation
Pablos et al. Electrochemical Enhancement of Photocatalytic TiO Disinfection 2 Nanotubes
Al Jabri et al. Application of solar nano-photocatalysis in the pretreatment of reverse osmosis seawater desalination
Lincho et al. Effect morphology of reusing electrolytes on TiO2 nanotubes activity and
Lincho et al. Effect of reusing electrolytes on TiO2 nanotubes activity and morphology
KR102377108B1 (en) Electrode and method for producing the same and apparatus for treating water including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130830

R150 Certificate of patent or registration of utility model

Ref document number: 5357540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250