JPWO2007097449A1 - 無線通信装置および中継送信方法 - Google Patents

無線通信装置および中継送信方法 Download PDF

Info

Publication number
JPWO2007097449A1
JPWO2007097449A1 JP2008501777A JP2008501777A JPWO2007097449A1 JP WO2007097449 A1 JPWO2007097449 A1 JP WO2007097449A1 JP 2008501777 A JP2008501777 A JP 2008501777A JP 2008501777 A JP2008501777 A JP 2008501777A JP WO2007097449 A1 JPWO2007097449 A1 JP WO2007097449A1
Authority
JP
Japan
Prior art keywords
error
decoding
wireless communication
relay
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008501777A
Other languages
English (en)
Other versions
JP4757908B2 (ja
Inventor
綾子 堀内
綾子 堀内
三好 憲一
憲一 三好
今村 大地
大地 今村
博章 森野
博章 森野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008501777A priority Critical patent/JP4757908B2/ja
Publication of JPWO2007097449A1 publication Critical patent/JPWO2007097449A1/ja
Application granted granted Critical
Publication of JP4757908B2 publication Critical patent/JP4757908B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations

Abstract

基地局と移動局との間の通信を中継局を介して行う場合に、中継局が中継信号に誤りを検出した場合でもダイバーシチ効果を得ることができる中継送信方法。この方法に用いられる中継局において、復号部(104)は、ターボ復号等の繰り返し復号により、パリティビットを用いてシステマチックビットを誤り訂正復号して、誤り訂正復号後のシステマチックビットからなる復号結果を得る。誤り判定部(105)は、復号結果の誤りの有無を判定する。符号化部(106)は、復号結果を誤り訂正符号化して、誤り訂正符号化されたシステマチックビットおよびパリティビットを得る。選択部(107)は、誤り判定部(105)での判定結果に従って、復号部(104)から入力された復号結果または符号化部(106)から入力されたビット列のいずれかを選択して変調部(108)に出力する。送信制御部(112)は、受信データシンボルのSNRおよび誤り判定部(105)での判定結果に従って無線送信部(109)の動作を制御する。

Description

本発明は、無線通信装置および中継送信方法に関する。
近年、携帯電話機等に代表されるセルラ移動体通信システムにおいては、情報のマルチメディア化に伴い、音声データのみならず、静止画像、動画像等の大容量データを伝送することが一般化しつつある。大容量データの伝送を実現するために、高周波の無線帯域を利用して高伝送レートを実現する技術に関して盛んに検討がなされている。
しかし、高周波の無線帯域を利用した場合、近距離では高伝送レートを期待できる一方、遠距離になるにしたがい伝送距離による減衰が大きくなる。よって、高周波の無線帯域を利用した移動体通信システムを実際に運用する場合は、各無線通信基地局装置(以下、基地局と省略する)のカバーエリアが小さくなり、このため、より多くの基地局を設置する必要が生じる。基地局の設置には相応のコストがかかるため、基地局数の増加を抑制しつつ、高周波の無線帯域を利用した通信サービスを実現するための技術が強く求められている。
このような要求に対し、各基地局のカバーエリアを拡大させるために、基地局と無線通信移動局装置(以下、移動局と省略する)との間に無線通信中継局装置(以下、中継局と省略する)を設置し、基地局と移動局との間の通信を中継局を介して行う中継送信技術が検討されている。
また、中継送信技術の1つに、基地局と移動局との間の通信を同時に複数の中継局を介して行うものがある。この技術では、複数の中継局が協力または協同して中継送信を行い、信号受信側の基地局または移動局では複数の中継局からの信号を受信してダイバーシチ効果を得ることができる。
また、中継送信において誤りの伝搬を防ぐために、中継局が中継信号に対して誤り検出を行い、誤りが有る信号を中継しないという中継送信技術が提案されている(非特許文献1参照)。
宮野他,「単一アンテナ端末間マルチホップ通信におけるSTBCを利用した協力中継方式」,信学技報,社団法人電子情報通信学会,2004年3月,A・P2003-342、RCS2003-365,pp.71-76
しかしながら、上記非特許文献1記載の中継送信技術では、誤りが有る信号は信号受信側の基地局または移動局へ中継送信されないため、誤りの伝搬を防ぐことができる一方で、基地局または移動局ではダイバーシチ効果は得られなくなってしまう。
本発明の目的は、中継局が中継信号に誤りを検出した場合でもダイバーシチ効果を得ることができる無線通信装置および中継送信方法を提供することである。
本発明の無線通信装置は、第1無線通信装置と第2無線通信装置との間で中継送信を行う無線通信装置であって、誤り訂正符号化された第1システマチックビットおよび第1パリティビットからなる第1データシンボルを前記第1無線通信装置から受信する受信手段と、前記第1データシンボルを復調して前記第1システマチックビットおよび前記第1パリティビットを得る復調手段と、前記第1パリティビットを用いて前記第1システマチックビットを誤り訂正復号して、誤り訂正復号後の第2システマチックビットからなる復号結果を得る復号手段と、前記復号結果に誤りが有るか否かを判定する判定手段と、前記第1データシンボルの第1回線品質を測定する測定手段と、前記復号結果に誤りが有る場合、前記第2システマチックビットを含む第2データシンボルの送信有無を前記第1回線品質に応じて制御する制御手段と、を具備する構成を採る。
本発明によれば、中継局が中継信号に誤りを検出した場合でもダイバーシチ効果を得ることができる。
各実施の形態に係る移動体通信システムの構成図 実施の形態1に係る中継局の構成を示すブロック図 実施の形態1に係る受信データシンボル 実施の形態1に係る復号結果(変調方式:16QAM) 実施の形態1に係る符号化後のビット列 実施の形態1に係るしきい値設定例 実施の形態1に係る復号結果(変調方式:QPSK) 実施の形態1に係る基地局の構成を示すブロック図 実施の形態1に係るシーケンス図 実施の形態2に係る中継局の構成を示すブロック図 実施の形態2に係るフラグ付加例 実施の形態3に係る中継局の構成を示すブロック図 実施の形態3および4に係る結合後のビット列 実施の形態4に係る中継局の構成を示すブロック図 実施の形態5に係る中継局の構成を示すブロック図 実施の形態5に係る基地局の構成を示すブロック図 実施の形態5に係るフラグ付加例 実施の形態5に係るシーケンス図
以下、本発明の実施の形態について、添付図面を参照して説明する。以下に説明する無線通信装置は、第1無線通信装置から送信された信号を第2無線通信装置へ中継送信する無線通信装置であって、例えば、移動体通信システムにおいて使用される中継局に搭載されるものである。なお、以下の各実施の形態では、中継送信を行う無線通信装置を中継局、第1無線通信装置を移動局、第2無線通信装置を基地局として説明する。
また、以下の各実施の形態に係る移動体通信システムでは、図1に示すように、複数の中継局(中継局1,中継局2)が存在し、これら複数の中継局が移動局からの送信信号を基地局へ中継送信する。また、これら複数の中継局は協力または協同して中継送信を行う。移動局、中継局および基地局は、所定の時間長を有するフレームを単位として互いに同期して送受信を行う。
また、この移動体通信システムでは、移動局は、ターボ符号等の組織符号を用いて送信データ(ビット列)を誤り訂正符号化する。移動局は、送信ビット列を組織符号を用いて誤り訂正符号化することによって、送信ビット列を情報ビットそのものであるシステマチックビットと冗長ビットであるパリティビットとに符号化する。よって、移動局から中継局へ送信されるデータシンボルは、誤り訂正符号化されたシステマチックビットおよびパリティビットからなる。中継局は、このデータシンボルを受信し復調した後、ターボ復号等の繰り返し復号によりパリティビットを用いてシステマチックビットを誤り訂正復号して、誤り訂正復号後のシステマチックビットを得る。
なお、以下の各実施の形態における中継局は予め設置された中継局であってもよいし、アドホック網(例えば、特開2001−189971号公報参照)のように他の移動局を中継局として利用してもよい。
(実施の形態1)
ターボ復号等の繰り返し復号では、復号結果の信頼度情報(例えば、尤度情報)を用いて繰り返して復号を行うことにより、判定の信頼性を向上させて誤り率特性を向上させている。よって、誤り訂正復号として繰り返し復号を用いると、復号結果のいずれかのビットに誤りが有ったとしても、そのビット数は少なく、復号結果は正しいものに近くなっている可能性が高い。つまり、誤り訂正復号として繰り返し復号を用いると、CRC(Cyclic Redundancy Check)等により復号結果に誤りが検出された場合でも、その復号結果に含まれるシステマチックビットのうち誤りの有るシステマチックビットはごく一部であり、ほとんどのシステマチックビットは正しいものである可能性が高い。よって、このような復号結果はたとえ誤りが有っても中継送信の対象とすることで、基地局ではシステマチックビットについてダイバーシチ効果を得ることができる。さらに、基地局では、ダイバーシチ効果により、誤り訂正復号時にその誤りを十分訂正可能なため、誤りの伝搬も防ぐことができる。
一方で、中継局が移動局から受信したデータシンボルの回線品質が低い場合は、復号結果に含まれるシステマチックビットのうち誤りの有るシステマチックビットの数が多くなると予想される。このように復号結果に誤りの有るシステマチックビットが多く存在する場合、その復号結果から生成されたデータシンボルを基地局へ送信すると、誤りの伝搬を防ぐことができなくなり、かえって誤り率特性が劣化してしまうことがある。
さらに、復号結果に誤りが検出された場合でも、受信データシンボルの回線品質が高いほど復号結果の誤り率は低くなる傾向にある。よって、受信データシンボルの回線品質が高い場合に誤りが検出された復号結果は、正しいものに近くなっている可能性がより高い。
そこで、本実施の形態に係る中継局は、誤り訂正復号後のシステマチックビットからなる復号結果に誤りが有る場合、そのシステマチックビットを含むデータシンボルの送信有無を受信データシンボルの回線品質に応じて制御する。
本実施の形態に係る中継局100の構成を図2に示す。なお、上記の中継局1および中継局2は同一の構成を有する。また、以下の説明では、上り回線での中継送信に限定して説明するが、上り回線と同様にして下り回線の中継送信を行うことができる。
中継局100において、無線受信部102は、移動局から送信されたデータシンボルおよび後述する図8に示す基地局200から送信された通知情報をアンテナ101を介して受信し、ダウンコンバート等の無線処理を行って復調部103,回線品質測定部110および通知情報取得部111に出力する。
無線受信部102によって受信されるデータシンボル#1〜#4を図3に示す。この図に示すように、受信データシンボル#1〜#4は、誤り訂正符号化されたシステマチックビット(S)およびパリティビット(P)からなる。ここでは、移動局における誤り訂正符号化の符号化率をR=1/2とする。よって、システマチックビットとパリティビットの割合は1:1となる。また、ここでは、移動局における変調方式として16QAMを用いるものとする。
復調部103は、受信データシンボル#1〜#4を復調してシステマチックビットS〜SおよびパリティビットP〜Pを得て、復号部104に出力する。
復号部104は、ターボ復号等の繰り返し復号により、パリティビットを用いてシステマチックビットを誤り訂正復号して、誤り訂正復号後のシステマチックビットからなる復号結果を得る。復号部104は、パリティビットP〜Pを用いてシステマチックビットS〜Sを誤り訂正復号して、図4に示すように、誤り訂正復号後のシステマチックビットS'〜S'からなる復号結果を得る。そして、復号部104は、この復号結果を誤り判定部105,符号化部106および選択部107に出力する。
誤り判定部105は、CRCを用いて復号結果に誤りが有るか否かを判定する。つまり、誤り判定部105は、システマチックビットS'〜S'のいずれかに誤りが有るか否かを判定する。そして、誤り判定部105は、判定結果(誤りが有る場合:NG,誤りが無い場合:OK)を選択部107および送信制御部112に出力する。なお、誤りの有無の判定は、通常、フレーム毎に行われる。
符号化部106は、復号結果を誤り訂正符号化して、誤り訂正符号化されたシステマチックビットおよびパリティビットを得る。符号化部106は、ターボ符号等の組織符号を用いて復号結果を誤り訂正符号化する。ここでの符号化率は移動局における符号化率と同様、R=1/2とする。よって、符号化部106での誤り訂正符号化により、図5に示すように、復号結果そのものであるシステマチックビットS'〜S'と、新たな冗長ビットであるパリティビットP'〜P'とが得られる。そして、符号化部106は、このビット列を選択部107に出力する。
選択部107は、誤り判定部105での判定結果に従って、復号部104から入力された復号結果(図4)または符号化部106から入力されたビット列(図5)のいずれかを選択して変調部108に出力する。
ここで、通常、CRCを用いた誤り検出では、復号結果に誤りが有るか否かを判定することはできるが、復号結果中のどのビットに誤りが有るか、および、誤りが有るビットの数までは検出することができない。よって、誤り判定部105により復号結果に誤りが有ると判定された場合でも、上記のように、システマチックビットS'〜S'のうち誤りの有るシステマチックビットはごく一部であり、ほとんどのシステマチックビットには誤りが無い可能性が高い。
そこで、選択部107は、復号部104での復号結果(図4)に誤りが有る場合(誤り判定結果がNGの場合)、その復号結果を選択して変調部108に出力する。よって、復号部104での復号結果に誤りが有る場合、変調部108は、図4に示すように、その復号結果を変調してシステマチックビットS'〜S'のみからなるデータシンボル#1,#2を生成し、無線送信部109に出力する。ここでは、変調方式として、移動局同様、16QAMを用いるものとする。
一方、復号部104での復号結果(図4)に誤りが無い場合(誤り判定結果がOKの場合)は、選択部107は、符号化部106から入力されたビット列(図5)を選択して変調部108に出力する。よって、復号部104での復号結果に誤りが無い場合、変調部108は、図5に示すように、そのビット列を変調してシステマチックビットS'〜S'およびパリティビットP'〜P'からなるデータシンボル#1〜#4を生成し、無線送信部109に出力する。ここでの変調方式は上記同様16QAMとする。
無線送信部109は、送信制御部112からの制御の下で動作し、変調部108から入力されたデータシンボルに対しアップコンバート等の無線処理を行って、アンテナ101を介して基地局へ送信する。
ここで、図1に示す移動体通信システムにおいて、中継局1では復号結果に誤りが有り、中継局2では復号結果に誤りが無い場合もある。この場合でも基地局において中継局1からのシステマチックビットと中継局2からのシステマチックビットとを合成しやすいように、変調部108は、図5に示すように、システマチックビットとパリティビットとを別々に分けて変調する。このように変調することで中継局1と中継局2が同じタイミングで同じシステマチックビットで構成されるデータシンボルを基地局へ送信できるため(図4,図5)、基地局では互いに同じシステマチックビットから構成されるデータシンボル同士を合成することが容易となる。なお、中継局1−基地局間のチャネルと、中継局2−基地局間のチャネルとを分離できる場合は、このように同じシステマチックビットで構成されるデータシンボルが同じタイミングで中継局1と中継局2から送信される必要は特にない。
なお、復号部104での復号結果に誤りが無い場合にのみ、中継局100が符号化部106での誤り訂正符号化により生成されたパリティビットを基地局へ送信するのは、復号部104での復号結果に誤りが有る場合は、その復号結果から得られるパリティビットの信頼度が非常に低いからである。
回線品質測定部110は、受信データシンボルの回線品質、すなわち、移動局と中継局100との間の回線品質を測定して測定結果を送信制御部112に出力する。回線品質測定部110は、回線品質の測定を、例えば、SIR、SNR、SINR、CIR、CNR、CINR、RSSI、受信強度、受信電力、干渉電力、誤り率、伝送レート、スループット、干渉量、回線変動、移動局の移動速度、または、所定の誤り率を達成できるMCS等を用いて行う。ここでは、回線品質測定部110は、受信データシンボルのSNRを回線品質として測定し送信制御部112に出力する。なお、回線品質は、受信品質、CQI(Channel Quality Information)またはCSI(Channel State Information)等と表されることがある。
通知情報取得部111は、基地局200からの通知情報を取得して送信制御部112に出力する。この通知情報には、移動局と基地局200との間で中継送信を行う中継局100の数(以下、中継局数と省略する)、および、中継局100と基地局200との間の回線品質(ここでは、SNR)が含まれる。図1に示すように、1つの移動局からの信号を中継局1および中継局2の2つの中継局が協同して基地局へ中継する場合には、中継局数は‘2’となる。また、このように、移動局と基地局200との間で中継送信を行う中継局100が複数存在し、それら複数の中継局100が協同して中継送信することが想定されるため、この通知情報に含まれるSNRはそれら複数の中継局100から各々受信される複数のデータシンボルのSNRの平均値(平均SNR)とする。
送信制御部112は、受信データシンボルのSNRおよび誤り判定部105での判定結果に従って、無線送信部109の動作を制御する。
送信制御部112は、復号部104での復号結果(図4)に誤りが無い場合は、受信データシンボルのSNRにかかわらず、システマチックビットS'〜S'およびパリティビットP'〜P'からなるデータシンボル#1〜#4(図5)を送信することを決定し、無線送信部109を動作させる。よって、この場合は、無線送信部109は、システマチックビットS'〜S'およびパリティビットP'〜P'からなるデータシンボル#1〜#4を送信する。
一方、復号部104での復号結果(図4)に誤りが有る場合は、送信制御部112は、受信データシンボルのSNRとしきい値とを比較する。
そして、受信データシンボルのSNRがしきい値以上の場合は、送信制御部112は、システマチックビットS'〜S'のみからなるデータシンボル(図4)を送信することを決定し、無線送信部109を動作させる。よって、この場合は、無線送信部109は、システマチックビットS'〜S'のみからなるデータシンボルを送信する。
一方、受信データシンボルのSNRがしきい値未満の場合は、送信制御部112は、システマチックビットS'〜S'のみからなるデータシンボル(図4)を送信しないことを決定し、無線送信部109の動作を停止させる。よって、この場合は、無線送信部109は、システマチックビットS'〜S'のみからなるデータシンボルを送信しない。
このように、送信制御部112は、復号部104での復号結果(図4)に誤りが有る場合、システマチックビットS'〜S'のみからなるデータシンボルの送信有無を受信データシンボルのSNRに応じて制御する。
次いで、上記しきい値の設定方法について説明する。
送信制御部112は、通知情報に従ってしきい値を設定する。つまり、送信制御部112は、中継局数および平均SNRに応じてしきい値を設定する。送信制御部112は、中継局数が多くなるほどしきい値を高く設定する。また、送信制御部112は、平均SNRが高くなるほどしきい値を高く設定する。より具体的には、しきい値は図6に示すように設定される。
まず、中継局数が‘2’および‘3’の場合に着目すると、中継局数が‘3’の場合の方が、中継局数が‘2’の場合よりも同一の平均SNRに対してより高いしきい値が設定される。例えば、2≦SNR<4に対して、中継局数が‘2’の場合はしきい値=2が設定され、中継局数が‘3’の場合はしきい値=5が設定される。さらに、中継局数が‘2’および‘3’のいずれの場合も、平均SNRが高くなるほどより高いしきい値が設定される。これは、中継局数が多くなるほど、および、平均SNRが高くなるほど、基地局におけるダイバーシチ効果が高くなり、基地局は所望の誤り率特性を得ることが容易になるため、中継局100は、あえて誤りの有るシステマチックビットを含むデータシンボルを基地局へ送信する必要がないからである。
また、中継局数が‘2’の場合はSNRが8以上のときにしきい値は設定されず、中継局数が‘3’の場合はSNRが6以上のときにしきい値は設定されない。送信制御部112は、このようにしきい値を設定しない場合、受信データシンボルのSNRがしきい値未満の場合と同様に、無線送信部109の動作を停止させる。なお、中継局数が‘4’以上の場合も、上記同様の理由により、平均SNRにかかわらずしきい値は設定されない。
さらに、中継局数が‘1’の場合も、平均SNRにかかわらずしきい値は設定されない。これは、中継局数が‘1’の場合は、中継局100が誤りの有るシステマチックビットを含むデータシンボルを基地局へ送信しても、他の中継局100から基地局への中継送信はないため、基地局ではそもそもダイバーシチ効果が得られないからである。
以上、送信制御部112でのしきい値の設定方法について説明した。
なお、本実施の形態では、変調部108において、復号部104での復号結果に誤りが有る場合の変調レベルを、復号部104での復号結果に誤りが無い場合の変調レベルより小さくしてもよい。例えば、誤りが無い場合の変調方式が上記のように16QAMである場合、誤りが有る場合の変調方式を図7に示すようにQPSKとする。これは、復号部104での復号結果に誤りが有る場合パリティビットが送信されないので、パリティビットに割り当てられている帯域も使用して変調レベルを下げることにより、誤りが有るシステマチックビットが中継局−基地局でさらに誤る確率を低下させるためである。
次いで、本実施の形態に係る基地局200について説明する。基地局200の構成を図8に示す。
基地局200において、無線受信部202は、中継局100から送信されたデータシンボルをアンテナ201を介して受信し、ダウンコンバート等の無線処理を行って復調部203および回線品質測定部205に出力する。
復調部203は、受信データシンボルを復調して復号部204に出力する。
復号部204は、復調後のビット列を誤り訂正復号して受信データを得る。
回線品質測定部205は、受信データシンボルの回線品質、すなわち、中継局100と基地局200との間の回線品質を測定して測定結果を通知情報生成部206に出力する。ここでは、回線品質測定部205は、受信データシンボルのSNRを回線品質として測定する。また、上記のように、移動局と基地局200との間で中継送信を行う中継局100が複数存在し、それら複数の中継局100が協同して中継送信することが想定されるため、回線品質測定部205は、それら複数の中継局100から各々受信される複数のデータシンボルのSNRの平均値(平均SNR)を求めて通知情報生成部206に出力する。
通知情報生成部206は、平均SNRと中継局数とからなる通知情報を生成して多重部209に出力する。なお、この中継局数は、基地局200と有線接続され、基地局200の上位レイヤにて基地局200を制御する無線回線制御局装置(以下、制御局と省略する)から通知されてもよい。
符号化部207は、送信データを符号化して変調部208に出力する。
変調部208は、符号化されたビット列を変調してデータシンボルを生成し、多重部209に出力する。
多重部209は、データシンボルと通知情報とを時間多重して無線送信部210に出力する。
無線送信部210は、データシンボルおよび通知情報に対しアップコンバート等の無線処理を行って、アンテナ201を介して中継局100へ送信する。
なお、基地局200において複数の中継局100毎のSNRを通知情報に含めて中継局100へ送信し、中継局100においてそれら複数のSNRの平均値(平均SNR)を求めるようにしてもよい。
また、基地局200が複数の中継局100毎のSNRを通知情報に含めて中継局100へ送信する場合、送信制御部112では、自局以外の他の中継局100のSNRの合計値(他局SNR合計値)を求め、その他局SNR合計値に応じてしきい値を設定してもよい。また、基地局200が複数の中継局100のSNRの合計値を求め、そのSNRの合計値を通知情報に含めて中継局100へ送信する場合には、中継局100がそのSNRの合計値から自局のSNRを減算して他局SNR合計値を求めるようにしてもよい。いずれの場合も、送信制御部112は、上記同様の理由により、他局SNR合計値が高くなるほどしきい値を高く設定する。
また、基地局200において複数の中継局100毎のSNRを通知情報に含めて中継局100へ送信する場合、送信制御部112では、それら複数のSNRから自局のSNRを取得し、その自局のSNRに応じてしきい値を設定してもよい。自局のSNRが高いほど中継局100−基地局200間の伝搬路において誤りが発生する確率は少なく、逆に、自局のSNRが低いほど中継局100−基地局200間の伝搬路において誤りが発生する確率は高くなるため、送信制御部112は、自局のSNRが低くなるほどしきい値を高く設定する。なお、基地局200は各中継局100へそれぞれ個別のSNRを通知してもよい。また、例えば上り回線の伝搬路状態と下り回線の伝搬路状態とが近似するTDD(Time Division Duplex)システムでは、中継局100は、基地局200から受信した下り回線信号のSNRに応じてしきい値を設定してもよい。
次いで、図9に、中継局1での復号結果に誤りが無く、中継局2での復号結果に誤りが有る場合のシーケンス図を示す。中継局1および中継局2はともに図2に示す構成を採り、基地局は図8に示す構成を採る。
まず、基地局はあらかじめ通常情報を中継局1および中継局2へ送信する。
フレーム1では、移動局が基地局宛の送信信号を中継局1と中継局2とに同時に送信する。
フレーム2では、中継局1は、復号結果に誤りが無いため(CRC=OK)、図5に示す中継信号を基地局へ送信する。一方、中継局2は、復号結果に誤りが有るため(CRC=NG)、受信データシンボルのSNRとしきい値とを比較する。そして、中継局2は、そのSNRがしきい値以上であるので、図4に示す中継信号を基地局へ送信する。そして、基地局は中継局1からの中継信号と中継局2からの中継信号を受信し、互いに同じシステマチックビットから構成されるデータシンボル同士を合成する。
このようにして、本実施の形態では、受信データシンボルの回線品質が低い場合に発生する可能性が高い誤りの伝搬を防ぎつつ、基地局においてダイバーシチ効果を得ることができる。
(実施の形態2)
本実施の形態に係る中継局は、データシンボルが誤りの有るシステマチックビットを含むか否かを示す情報を基地局へ送信する。
本実施の形態に係る中継局300の構成を図10に示す。図10において実施の形態1(図2)と同一の構成部分には同一符号を付し説明を省略する。
選択部107は、選択結果をフラグ付加部301に出力する。また、変調部108はデータシンボルをフラグ付加部301に出力する。
フラグ付加部301は、データシンボルが誤りの有るシステマチックビットを含むか否かを示す情報を選択部107での選択結果に従ってデータシンボルに付加し、無線送信部109に出力する。例えば、フラグ付加部301は、図11に示すように、誤りの有るシステマチックビットを含むデータシンボルから構成されるフレーム#1,#4の先頭にフラグ‘1’を付加し、誤りの有るシステマチックビットを含まないデータシンボルから構成されるフレーム#2,#3の先頭にフラグ‘0’を付加する。
このようにすることで、誤りの有るシステマチックビットを含むデータシンボルと含まないデータシンボルとを基地局において容易に区別することができる。
(実施の形態3)
復号部104での復号結果(図4)に誤りが有る場合でも、受信データシンボル(図3)に含まれるパリティビットP〜Pの信頼度は高いこともある。
そこで、本実施の形態に係る中継局は、誤り訂正復号後のシステマチックビットからなる復号結果に誤りが有る場合、そのシステマチックビットを含むデータシンボルを基地局へ送信する点においては実施の形態1と同一であるが、そのデータシンボルに硬判定後のパリティビットを含める点において実施の形態1と相違する。
本実施の形態に係る中継局500の構成を図12に示す。図12において実施の形態1(図2)と同一の構成部分には同一符号を付し説明を省略する。
復調部103で得られたシステマチックビットS〜SおよびパリティビットP〜Pは、復号部104および硬判定部501に入力される。
硬判定部501は、パリティビットP〜Pを硬判定して、硬判定後のパリティビットP''〜P''を得る。そして、硬判定部501は、硬判定後のパリティビット列を結合部502に出力する。
復号部104で得られた復号結果(図4)は、誤り判定部105,符号化部106および結合部502に入力される。
結合部502は、硬判定部501から入力されるビット列と復号部104から並列に入力されるビット列とを図13に示すように結合して選択部107に出力する。
選択部107は、誤り判定部105での判定結果に従って、結合部502から入力されたビット列(図13)または符号化部106から入力されたビット列(図5)のいずれかを選択して変調部108に出力する。
復号部104での復号結果(図4)に誤りが無い場合の選択部107の動作は実施の形態1と同じであるため説明を省略する。
一方、復号部104での復号結果に誤りが有る場合は、選択部107は、結合部502から入力されたビット列(図13)を選択して変調部108に出力する。よって、復号部104での復号結果に誤りが有る場合、変調部108は、図13に示すように、そのビット列を変調して、システマチックビットS'〜S'およびパリティビットP''〜P''からなるデータシンボル#1〜#4を生成し、無線送信部109に出力する。
このように、本実施の形態によれば、復号部104での復号結果に誤りが有る場合は、硬判定後のパリティビットも中継送信の対象とするため、復号部104での復号結果に誤りが有る場合でも、基地局ではさらにパリティビットについてもダイバーシチ効果を得ることができる。
(実施の形態4)
復号部104での繰り返し復号によりシステマチックビットの信頼度は高まるが、同様にパリティビットの信頼度も高まる。
そこで、本実施の形態に係る中継局は、誤り訂正復号後のシステマチックビットからなる復号結果に誤りが有る場合、そのシステマチックビットを含むデータシンボルを基地局へ送信する点においては実施の形態1と同一であるが、そのデータシンボルに誤り訂正復号時に得られるパリティビットを含める点において実施の形態1と相違する。
本実施の形態に係る中継局700の構成を図14に示す。図14において実施の形態1(図2)と同一の構成部分には同一符号を付し説明を省略する。
復号部104で得られた復号結果(図4)は、誤り判定部105,符号化部106および結合部701に入力される。また、復号部104は、繰り返し復号の最終段階で得られたパリティビットP''〜P''を結合部701に出力する。
結合部701は、復号部104から入力されるビット列を図13に示すように結合して選択部107に出力する。
選択部107は、誤り判定部105での判定結果に従って、結合部701から入力されたビット列(図13)または符号化部106から入力されたビット列(図5)のいずれかを選択して変調部108に出力する。
復号部104での復号結果(図4)に誤りが無い場合の選択部107の動作は実施の形態1と同じであるため説明を省略する。
一方、復号部104での復号結果に誤りが有る場合は、選択部107は、結合部701から入力されたビット列(図13)を選択して変調部108に出力する。よって、復号部104での復号結果に誤りが有る場合、変調部108は、図13に示すように、そのビット列を変調して、システマチックビットS'〜S'およびパリティビットP''〜P''からなるデータシンボル#1〜#4を生成し、無線送信部109に出力する。
このように、本実施の形態によれば、復号部104での復号結果に誤りが有る場合は、誤り訂正復号時に得られるパリティビットも中継送信の対象とするため、復号部104での復号結果に誤りが有る場合でも、基地局ではさらにパリティビットについてもダイバーシチ効果を得ることができる。
なお、実施の形態3および本実施の形態においては、データシンボルの送信有無を複数のしきい値を用いて制御するようにしてもよい。例えば、しきい値Aと、そのしきい値Aよりも高いしきい値Bの2つのしきい値を用い、しきい値AによりシステマチックビットS'〜S'からなるデータシンボルを送信するか否か制御し、しきい値BによりパリティビットP''〜P''からなるデータシンボルを送信するか否か制御する。これは、回線品質が高いときは誤りが発生する確率は低いのでシステマチックビットおよびパリティビットの双方を送信し、回線品質が低いときは誤りが発生する確率が高いので、パリティビットよりは誤りが発生する確率が低いシステマチックビットのみを送信するようにするためである。
(実施の形態5)
本実施の形態に係る中継局は、基地局からの送信要求に応じて中継信号を基地局へ送信する。
本実施の形態に係る中継局900の構成を図15に示す。図15において実施の形態1(図2)と同一の構成部分には同一符号を付し説明を省略する。
無線受信部102は、移動局から送信されたデータシンボルおよび後述する図16に示す基地局400から送信された送信要求をアンテナ101を介して受信し、ダウンコンバート等の無線処理を行って復調部103,回線品質測定部110および送信要求取得部901に出力する。
送信要求取得部901は、基地局400からの送信要求を取得して選択部903に出力する。この送信要求は、基地局400が中継局900に対して中継信号の送信を要求するときに基地局400から中継局900へ送信されるものである。
回線品質測定部110で測定された受信データシンボルのSNR(すなわち、移動局と中継局900との間の回線品質)は通知情報生成部902に入力される。
通知情報生成部902は、受信データシンボルのSNRからなる通知情報を生成して選択部903に出力する。
選択部903は、誤り判定部105での判定結果および送信要求の有無に従って、復号部104から入力された復号結果(図4)、符号化部106から入力されたビット列(図5)、または、通知情報のいずれかを選択して変調部108に出力する。
選択部903は、復号部104での復号結果(図4)に誤りが有り、かつ、基地局400から送信要求が有った場合、その復号結果を選択して変調部108に出力する。よって、この場合は、変調部108は、図4に示すように、その復号結果を変調してシステマチックビットS'〜S'のみからなるデータシンボル#1,#2を生成し、無線送信部109に出力する。
また、選択部903は、復号部104での復号結果(図4)に誤りが有る場合は、送信要求の有無にかかわらず、通知情報を選択して無線送信部109に出力する。よって、通知情報は、復号結果に誤りが有る場合に基地局400へ送信される。
また、選択部903は、復号部104での復号結果(図4)に誤りが無い場合は、送信要求の有無にかかわらず、符号化部106から入力されたビット列(図5)を選択して変調部108に出力する。よって、この場合は、変調部108は、図5に示すように、そのビット列を変調してシステマチックビットS'〜S'およびパリティビットP'〜P'からなるデータシンボル#1〜#4を生成し、無線送信部109に出力する。
次いで、本実施の形態に係る基地局400について説明する。基地局400の構成を図16に示す。図16において実施の形態1(図8)と同一の構成部分には同一符号を付し説明を省略する。
無線受信部202は、中継局900から送信されたデータシンボルおよび通知情報をアンテナ201を介して受信し、ダウンコンバート等の無線処理を行って復調部203,回線品質測定部205および通知情報取得部401に出力する。
通知情報取得部401は、中継局900からの通知情報を取得して送信要求生成部403に出力する。
回線品質測定部205で求められた平均SNRは送信要求生成部403に入力される。
また、復号部204で得られた受信データは誤り判定部402に入力される。
誤り判定部402は、CRCを用いて受信データに誤りが有るか否かを判定し、判定結果(誤りが有る場合:NG,誤りが無い場合:OK)を送信要求生成部403に出力する。なお、誤りの有無の判定は、通常、フレーム毎に行われる。
送信要求生成部403は、通知情報から得られる中継局900での受信データシンボルのSNRおよび誤り判定部402での判定結果に従って、送信要求を生成する。
送信要求生成部403は、受信データに誤りが無い場合は、中継局900での受信データシンボルのSNRにかかわらず、送信要求を生成しない。
一方、受信データに誤りが有る場合は、送信要求生成部403は、中継局900での受信データシンボルのSNRとしきい値とを比較する。
そして、そのSNRがしきい値以上の場合は、送信要求生成部403は、送信要求を生成して多重部209に出力する。
一方、そのSNRがしきい値未満の場合は、送信要求生成部403は、送信要求を生成しない。
なお、送信要求生成部403におけるしきい値の設定方法は、実施の形態1に係る送信制御部112におけるもの(図6)と同じであるため説明を省略する。
多重部209は、データシンボルと送信要求とを時間多重して無線送信部210に出力する。
なお、本実施の形態においては、実施の形態2同様、図17に示すように、中継局900が、誤りの有るシステマチックビットを含むデータシンボルから構成されるフレーム#1,#3の先頭にフラグ‘11’を付加し、誤りの有るシステマチックビットを含まないデータシンボルから構成されるフレーム#2の先頭にフラグ‘00’を付加し、通知情報から構成されるフレーム#4の先頭にフラグ‘10’を付加して、基地局において、誤りの有るシステマチックビットを含むデータシンボルと、含まないデータシンボルと、通知情報とを容易に区別することができるようにしてもよい。
次いで、図18に、中継局1での復号結果に誤りが無く、中継局2での復号結果に誤りが有る場合のシーケンス図を示す。中継局1および中継局2は図15に示す構成を採り、基地局は図16に示す構成を採る。
フレーム1では、移動局が基地局宛の送信信号を中継局1と中継局2とに同時に送信する。
フレーム2では、中継局1は、復号結果に誤りが無いため(CRC=OK)、図5に示す中継信号を基地局へ送信する。一方、中継局2は、復号結果に誤りが有るため(CRC=NG)、通知情報を基地局へ送信する。そして、基地局は中継局1からの中継信号と中継局2からの通知情報を受信する。
フレーム3では、基地局は、中継局1からの中継信号の誤りの有無を判定し、誤りが有る場合(CRC=NG)、中継局1での受信データシンボルのSNRとしきい値とを比較する。そして、基地局は、そのSNRがしきい値以上であるので、送信要求を中継局2へ送信する。
フレーム4では、中継局2は、基地局からの送信要求に応じて図4に示す中継信号を基地局へ送信する。そして、基地局は中継局2からの中継信号を受信し、中継局1からの中継信号と中継局2からの中継信号とにおいて互いに同じシステマチックビットから構成されるデータシンボル同士を合成する。
このようにして、本実施の形態では、実施の形態1同様、受信データシンボルの回線品質が低い場合に発生する可能性が高い誤りの伝搬を防ぎつつ、基地局においてダイバーシチ効果を得ることができる。
以上、本発明の実施の形態について説明した。
なお、上記各実施の形態では、中継局の数が3つ以上であってもよい。
また、上記各実施の形態では、中継局と基地局との間、または、移動局と中継局との間に、さらに他の中継局が存在してもよい。
また、上記各実施の形態における基地局はNode B、移動局はUE、制御局はRNCと表されることがある。また、上記各実施の形態における中継局は、リピータ、簡易基地局、クラスタヘッド等と呼ばれることもある。
また、上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
2006年2月27日出願の特願2006−051174の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
本発明は、移動局や基地局等の無線通信装置が中継局を介して無線通信を行う通信システム(例えば、マルチホップシステム)等に適用することができる。
本発明は、無線通信装置および中継送信方法に関する。
近年、携帯電話機等に代表されるセルラ移動体通信システムにおいては、情報のマルチメディア化に伴い、音声データのみならず、静止画像、動画像等の大容量データを伝送することが一般化しつつある。大容量データの伝送を実現するために、高周波の無線帯域を利用して高伝送レートを実現する技術に関して盛んに検討がなされている。
しかし、高周波の無線帯域を利用した場合、近距離では高伝送レートを期待できる一方、遠距離になるにしたがい伝送距離による減衰が大きくなる。よって、高周波の無線帯域を利用した移動体通信システムを実際に運用する場合は、各無線通信基地局装置(以下、基地局と省略する)のカバーエリアが小さくなり、このため、より多くの基地局を設置する必要が生じる。基地局の設置には相応のコストがかかるため、基地局数の増加を抑制しつつ、高周波の無線帯域を利用した通信サービスを実現するための技術が強く求められている。
このような要求に対し、各基地局のカバーエリアを拡大させるために、基地局と無線通信移動局装置(以下、移動局と省略する)との間に無線通信中継局装置(以下、中継局と省略する)を設置し、基地局と移動局との間の通信を中継局を介して行う中継送信技術が検討されている。
また、中継送信技術の1つに、基地局と移動局との間の通信を同時に複数の中継局を介して行うものがある。この技術では、複数の中継局が協力または協同して中継送信を行い、信号受信側の基地局または移動局では複数の中継局からの信号を受信してダイバーシチ効果を得ることができる。
また、中継送信において誤りの伝搬を防ぐために、中継局が中継信号に対して誤り検出を行い、誤りが有る信号を中継しないという中継送信技術が提案されている(非特許文献1参照)。
宮野他,「単一アンテナ端末間マルチホップ通信におけるSTBCを利用した協力中継方式」,信学技報,社団法人電子情報通信学会,2004年3月,A・P2003-342、RCS2003-365,pp.71-76
しかしながら、上記非特許文献1記載の中継送信技術では、誤りが有る信号は信号受信側の基地局または移動局へ中継送信されないため、誤りの伝搬を防ぐことができる一方で、基地局または移動局ではダイバーシチ効果は得られなくなってしまう。
本発明の目的は、中継局が中継信号に誤りを検出した場合でもダイバーシチ効果を得ることができる無線通信装置および中継送信方法を提供することである。
本発明の無線通信装置は、第1無線通信装置と第2無線通信装置との間で中継送信を行う無線通信装置であって、誤り訂正符号化された第1システマチックビットおよび第1パリティビットからなる第1データシンボルを前記第1無線通信装置から受信する受信手段と、前記第1データシンボルを復調して前記第1システマチックビットおよび前記第1パリティビットを得る復調手段と、前記第1パリティビットを用いて前記第1システマチックビットを誤り訂正復号して、誤り訂正復号後の第2システマチックビットからなる復号結果を得る復号手段と、前記復号結果に誤りが有るか否かを判定する判定手段と、前記第1データシンボルの第1回線品質を測定する測定手段と、前記復号結果に誤りが有る場合、前記第2システマチックビットを含む第2データシンボルの送信有無を前記第1回線品質に応じて制御する制御手段と、を具備する構成を採る。
本発明によれば、中継局が中継信号に誤りを検出した場合でもダイバーシチ効果を得ることができる。
以下、本発明の実施の形態について、添付図面を参照して説明する。以下に説明する無線通信装置は、第1無線通信装置から送信された信号を第2無線通信装置へ中継送信する無線通信装置であって、例えば、移動体通信システムにおいて使用される中継局に搭載されるものである。なお、以下の各実施の形態では、中継送信を行う無線通信装置を中継局、第1無線通信装置を移動局、第2無線通信装置を基地局として説明する。
また、以下の各実施の形態に係る移動体通信システムでは、図1に示すように、複数の中継局(中継局1,中継局2)が存在し、これら複数の中継局が移動局からの送信信号を基地局へ中継送信する。また、これら複数の中継局は協力または協同して中継送信を行う。移動局、中継局および基地局は、所定の時間長を有するフレームを単位として互いに同期して送受信を行う。
また、この移動体通信システムでは、移動局は、ターボ符号等の組織符号を用いて送信データ(ビット列)を誤り訂正符号化する。移動局は、送信ビット列を組織符号を用いて誤り訂正符号化することによって、送信ビット列を情報ビットそのものであるシステマチックビットと冗長ビットであるパリティビットとに符号化する。よって、移動局から中継局へ送信されるデータシンボルは、誤り訂正符号化されたシステマチックビットおよびパリティビットからなる。中継局は、このデータシンボルを受信し復調した後、ターボ復号等の繰り返し復号によりパリティビットを用いてシステマチックビットを誤り訂正復号して、誤り訂正復号後のシステマチックビットを得る。
なお、以下の各実施の形態における中継局は予め設置された中継局であってもよいし、アドホック網(例えば、特開2001−189971号公報参照)のように他の移動局を中継局として利用してもよい。
(実施の形態1)
ターボ復号等の繰り返し復号では、復号結果の信頼度情報(例えば、尤度情報)を用いて繰り返して復号を行うことにより、判定の信頼性を向上させて誤り率特性を向上させている。よって、誤り訂正復号として繰り返し復号を用いると、復号結果のいずれかのビットに誤りが有ったとしても、そのビット数は少なく、復号結果は正しいものに近くなっている可能性が高い。つまり、誤り訂正復号として繰り返し復号を用いると、CRC(Cyclic Redundancy Check)等により復号結果に誤りが検出された場合でも、その復号結果に含まれるシステマチックビットのうち誤りの有るシステマチックビットはごく一部であり、ほとんどのシステマチックビットは正しいものである可能性が高い。よって、このような復号結果はたとえ誤りが有っても中継送信の対象とすることで、基地局ではシステマチックビットについてダイバーシチ効果を得ることができる。さらに、基地局では、ダイバーシチ効果により、誤り訂正復号時にその誤りを十分訂正可能なため、誤りの伝搬も防ぐことができる。
一方で、中継局が移動局から受信したデータシンボルの回線品質が低い場合は、復号結果に含まれるシステマチックビットのうち誤りの有るシステマチックビットの数が多くなると予想される。このように復号結果に誤りの有るシステマチックビットが多く存在する場合、その復号結果から生成されたデータシンボルを基地局へ送信すると、誤りの伝搬を防ぐことができなくなり、かえって誤り率特性が劣化してしまうことがある。
さらに、復号結果に誤りが検出された場合でも、受信データシンボルの回線品質が高いほど復号結果の誤り率は低くなる傾向にある。よって、受信データシンボルの回線品質が高い場合に誤りが検出された復号結果は、正しいものに近くなっている可能性がより高い。
そこで、本実施の形態に係る中継局は、誤り訂正復号後のシステマチックビットからなる復号結果に誤りが有る場合、そのシステマチックビットを含むデータシンボルの送信有無を受信データシンボルの回線品質に応じて制御する。
本実施の形態に係る中継局100の構成を図2に示す。なお、上記の中継局1および中継局2は同一の構成を有する。また、以下の説明では、上り回線での中継送信に限定して説明するが、上り回線と同様にして下り回線の中継送信を行うことができる。
中継局100において、無線受信部102は、移動局から送信されたデータシンボルおよび後述する図8に示す基地局200から送信された通知情報をアンテナ101を介して受信し、ダウンコンバート等の無線処理を行って復調部103,回線品質測定部110および通知情報取得部111に出力する。
無線受信部102によって受信されるデータシンボル#1〜#4を図3に示す。この図に示すように、受信データシンボル#1〜#4は、誤り訂正符号化されたシステマチックビット(S)およびパリティビット(P)からなる。ここでは、移動局における誤り訂正符号化の符号化率をR=1/2とする。よって、システマチックビットとパリティビットの割合は1:1となる。また、ここでは、移動局における変調方式として16QAMを用いるものとする。
復調部103は、受信データシンボル#1〜#4を復調してシステマチックビットS〜SおよびパリティビットP〜Pを得て、復号部104に出力する。
復号部104は、ターボ復号等の繰り返し復号により、パリティビットを用いてシステマチックビットを誤り訂正復号して、誤り訂正復号後のシステマチックビットからなる復号結果を得る。復号部104は、パリティビットP〜Pを用いてシステマチックビットS〜Sを誤り訂正復号して、図4に示すように、誤り訂正復号後のシステマチックビットS'〜S'からなる復号結果を得る。そして、復号部104は、この復号結果を誤り判定部105,符号化部106および選択部107に出力する。
誤り判定部105は、CRCを用いて復号結果に誤りが有るか否かを判定する。つまり、誤り判定部105は、システマチックビットS'〜S'のいずれかに誤りが有るか否かを判定する。そして、誤り判定部105は、判定結果(誤りが有る場合:NG,誤りが無い場合:OK)を選択部107および送信制御部112に出力する。なお、誤りの有無の判定は、通常、フレーム毎に行われる。
符号化部106は、復号結果を誤り訂正符号化して、誤り訂正符号化されたシステマチックビットおよびパリティビットを得る。符号化部106は、ターボ符号等の組織符号を用いて復号結果を誤り訂正符号化する。ここでの符号化率は移動局における符号化率と同様、R=1/2とする。よって、符号化部106での誤り訂正符号化により、図5に示すように、復号結果そのものであるシステマチックビットS'〜S'と、新たな冗長ビットであるパリティビットP'〜P'とが得られる。そして、符号化部106は、このビット列を選択部107に出力する。
選択部107は、誤り判定部105での判定結果に従って、復号部104から入力された復号結果(図4)または符号化部106から入力されたビット列(図5)のいずれかを選択して変調部108に出力する。
ここで、通常、CRCを用いた誤り検出では、復号結果に誤りが有るか否かを判定することはできるが、復号結果中のどのビットに誤りが有るか、および、誤りが有るビットの数までは検出することができない。よって、誤り判定部105により復号結果に誤りが有ると判定された場合でも、上記のように、システマチックビットS'〜S'のうち誤りの有るシステマチックビットはごく一部であり、ほとんどのシステマチックビットには誤りが無い可能性が高い。
そこで、選択部107は、復号部104での復号結果(図4)に誤りが有る場合(誤り判定結果がNGの場合)、その復号結果を選択して変調部108に出力する。よって、復号部104での復号結果に誤りが有る場合、変調部108は、図4に示すように、その復号結果を変調してシステマチックビットS'〜S'のみからなるデータシンボル#1,#2を生成し、無線送信部109に出力する。ここでは、変調方式として、移動局同様、16QAMを用いるものとする。
一方、復号部104での復号結果(図4)に誤りが無い場合(誤り判定結果がOKの場合)は、選択部107は、符号化部106から入力されたビット列(図5)を選択して変調部108に出力する。よって、復号部104での復号結果に誤りが無い場合、変調部108は、図5に示すように、そのビット列を変調してシステマチックビットS'〜S'およびパリティビットP'〜P'からなるデータシンボル#1〜#4を生成し、無線送信部109に出力する。ここでの変調方式は上記同様16QAMとする。
無線送信部109は、送信制御部112からの制御の下で動作し、変調部108から入力されたデータシンボルに対しアップコンバート等の無線処理を行って、アンテナ101を介して基地局へ送信する。
ここで、図1に示す移動体通信システムにおいて、中継局1では復号結果に誤りが有り、中継局2では復号結果に誤りが無い場合もある。この場合でも基地局において中継局1からのシステマチックビットと中継局2からのシステマチックビットとを合成しやすいように、変調部108は、図5に示すように、システマチックビットとパリティビットとを別々に分けて変調する。このように変調することで中継局1と中継局2が同じタイミングで同じシステマチックビットで構成されるデータシンボルを基地局へ送信できるため(図4,図5)、基地局では互いに同じシステマチックビットから構成されるデータシンボル同士を合成することが容易となる。なお、中継局1−基地局間のチャネルと、中継局2−基地局間のチャネルとを分離できる場合は、このように同じシステマチックビットで構成されるデータシンボルが同じタイミングで中継局1と中継局2から送信される必要は特にない。
なお、復号部104での復号結果に誤りが無い場合にのみ、中継局100が符号化部106での誤り訂正符号化により生成されたパリティビットを基地局へ送信するのは、復号部104での復号結果に誤りが有る場合は、その復号結果から得られるパリティビットの信頼度が非常に低いからである。
回線品質測定部110は、受信データシンボルの回線品質、すなわち、移動局と中継局100との間の回線品質を測定して測定結果を送信制御部112に出力する。回線品質測定部110は、回線品質の測定を、例えば、SIR、SNR、SINR、CIR、CNR、CINR、RSSI、受信強度、受信電力、干渉電力、誤り率、伝送レート、スループット、干渉量、回線変動、移動局の移動速度、または、所定の誤り率を達成できるMCS等を用いて行う。ここでは、回線品質測定部110は、受信データシンボルのSNRを回線品質として測定し送信制御部112に出力する。なお、回線品質は、受信品質、CQI(Channel Quality Information)またはCSI(Channel State Information)等と表されることがある。
通知情報取得部111は、基地局200からの通知情報を取得して送信制御部112に出力する。この通知情報には、移動局と基地局200との間で中継送信を行う中継局100の数(以下、中継局数と省略する)、および、中継局100と基地局200との間の回線品質(ここでは、SNR)が含まれる。図1に示すように、1つの移動局からの信号を中継局1および中継局2の2つの中継局が協同して基地局へ中継する場合には、中継局数は‘2’となる。また、このように、移動局と基地局200との間で中継送信を行う中継局100が複数存在し、それら複数の中継局100が協同して中継送信することが想定されるため、この通知情報に含まれるSNRはそれら複数の中継局100から各々受信される複数のデータシンボルのSNRの平均値(平均SNR)とする。
送信制御部112は、受信データシンボルのSNRおよび誤り判定部105での判定結果に従って、無線送信部109の動作を制御する。
送信制御部112は、復号部104での復号結果(図4)に誤りが無い場合は、受信データシンボルのSNRにかかわらず、システマチックビットS'〜S'およびパリティビットP'〜P'からなるデータシンボル#1〜#4(図5)を送信することを決定し、無線送信部109を動作させる。よって、この場合は、無線送信部109は、システマチックビットS'〜S'およびパリティビットP'〜P'からなるデータシンボル#1〜#4を送信する。
一方、復号部104での復号結果(図4)に誤りが有る場合は、送信制御部112は、受信データシンボルのSNRとしきい値とを比較する。
そして、受信データシンボルのSNRがしきい値以上の場合は、送信制御部112は、システマチックビットS'〜S'のみからなるデータシンボル(図4)を送信することを決定し、無線送信部109を動作させる。よって、この場合は、無線送信部109は、システマチックビットS'〜S'のみからなるデータシンボルを送信する。
一方、受信データシンボルのSNRがしきい値未満の場合は、送信制御部112は、システマチックビットS'〜S'のみからなるデータシンボル(図4)を送信しないことを決定し、無線送信部109の動作を停止させる。よって、この場合は、無線送信部109は、システマチックビットS'〜S'のみからなるデータシンボルを送信しない。
このように、送信制御部112は、復号部104での復号結果(図4)に誤りが有る場合、システマチックビットS'〜S'のみからなるデータシンボルの送信有無を受信データシンボルのSNRに応じて制御する。
次いで、上記しきい値の設定方法について説明する。
送信制御部112は、通知情報に従ってしきい値を設定する。つまり、送信制御部112は、中継局数および平均SNRに応じてしきい値を設定する。送信制御部112は、中継局数が多くなるほどしきい値を高く設定する。また、送信制御部112は、平均SNRが高くなるほどしきい値を高く設定する。より具体的には、しきい値は図6に示すように設定される。
まず、中継局数が‘2’および‘3’の場合に着目すると、中継局数が‘3’の場合の方が、中継局数が‘2’の場合よりも同一の平均SNRに対してより高いしきい値が設定される。例えば、2≦SNR<4に対して、中継局数が‘2’の場合はしきい値=2が設定され、中継局数が‘3’の場合はしきい値=5が設定される。さらに、中継局数が‘2’および‘3’のいずれの場合も、平均SNRが高くなるほどより高いしきい値が設定される。これは、中継局数が多くなるほど、および、平均SNRが高くなるほど、基地局におけるダイバーシチ効果が高くなり、基地局は所望の誤り率特性を得ることが容易になるため、中継局100は、あえて誤りの有るシステマチックビットを含むデータシンボルを基地局へ送信する必要がないからである。
また、中継局数が‘2’の場合はSNRが8以上のときにしきい値は設定されず、中継局数が‘3’の場合はSNRが6以上のときにしきい値は設定されない。送信制御部112は、このようにしきい値を設定しない場合、受信データシンボルのSNRがしきい値未満の場合と同様に、無線送信部109の動作を停止させる。なお、中継局数が‘4’以上の場合も、上記同様の理由により、平均SNRにかかわらずしきい値は設定されない。
さらに、中継局数が‘1’の場合も、平均SNRにかかわらずしきい値は設定されない。これは、中継局数が‘1’の場合は、中継局100が誤りの有るシステマチックビットを含むデータシンボルを基地局へ送信しても、他の中継局100から基地局への中継送信はないため、基地局ではそもそもダイバーシチ効果が得られないからである。
以上、送信制御部112でのしきい値の設定方法について説明した。
なお、本実施の形態では、変調部108において、復号部104での復号結果に誤りが有る場合の変調レベルを、復号部104での復号結果に誤りが無い場合の変調レベルより小さくしてもよい。例えば、誤りが無い場合の変調方式が上記のように16QAMである場合、誤りが有る場合の変調方式を図7に示すようにQPSKとする。これは、復号部104での復号結果に誤りが有る場合パリティビットが送信されないので、パリティビットに割り当てられている帯域も使用して変調レベルを下げることにより、誤りが有るシステマチックビットが中継局−基地局でさらに誤る確率を低下させるためである。
次いで、本実施の形態に係る基地局200について説明する。基地局200の構成を図8に示す。
基地局200において、無線受信部202は、中継局100から送信されたデータシンボルをアンテナ201を介して受信し、ダウンコンバート等の無線処理を行って復調部203および回線品質測定部205に出力する。
復調部203は、受信データシンボルを復調して復号部204に出力する。
復号部204は、復調後のビット列を誤り訂正復号して受信データを得る。
回線品質測定部205は、受信データシンボルの回線品質、すなわち、中継局100と基地局200との間の回線品質を測定して測定結果を通知情報生成部206に出力する。
ここでは、回線品質測定部205は、受信データシンボルのSNRを回線品質として測定する。また、上記のように、移動局と基地局200との間で中継送信を行う中継局100が複数存在し、それら複数の中継局100が協同して中継送信することが想定されるため、回線品質測定部205は、それら複数の中継局100から各々受信される複数のデータシンボルのSNRの平均値(平均SNR)を求めて通知情報生成部206に出力する。
通知情報生成部206は、平均SNRと中継局数とからなる通知情報を生成して多重部209に出力する。なお、この中継局数は、基地局200と有線接続され、基地局200の上位レイヤにて基地局200を制御する無線回線制御局装置(以下、制御局と省略する)から通知されてもよい。
符号化部207は、送信データを符号化して変調部208に出力する。
変調部208は、符号化されたビット列を変調してデータシンボルを生成し、多重部209に出力する。
多重部209は、データシンボルと通知情報とを時間多重して無線送信部210に出力する。
無線送信部210は、データシンボルおよび通知情報に対しアップコンバート等の無線処理を行って、アンテナ201を介して中継局100へ送信する。
なお、基地局200において複数の中継局100毎のSNRを通知情報に含めて中継局100へ送信し、中継局100においてそれら複数のSNRの平均値(平均SNR)を求めるようにしてもよい。
また、基地局200が複数の中継局100毎のSNRを通知情報に含めて中継局100へ送信する場合、送信制御部112では、自局以外の他の中継局100のSNRの合計値(他局SNR合計値)を求め、その他局SNR合計値に応じてしきい値を設定してもよい。また、基地局200が複数の中継局100のSNRの合計値を求め、そのSNRの合計値を通知情報に含めて中継局100へ送信する場合には、中継局100がそのSNRの合計値から自局のSNRを減算して他局SNR合計値を求めるようにしてもよい。いずれの場合も、送信制御部112は、上記同様の理由により、他局SNR合計値が高くなるほどしきい値を高く設定する。
また、基地局200において複数の中継局100毎のSNRを通知情報に含めて中継局100へ送信する場合、送信制御部112では、それら複数のSNRから自局のSNRを取得し、その自局のSNRに応じてしきい値を設定してもよい。自局のSNRが高いほど中継局100−基地局200間の伝搬路において誤りが発生する確率は少なく、逆に、自局のSNRが低いほど中継局100−基地局200間の伝搬路において誤りが発生する確率は高くなるため、送信制御部112は、自局のSNRが低くなるほどしきい値を高く設定する。なお、基地局200は各中継局100へそれぞれ個別のSNRを通知してもよい。また、例えば上り回線の伝搬路状態と下り回線の伝搬路状態とが近似するTDD(Time Division Duplex)システムでは、中継局100は、基地局200から受信した下り回線信号のSNRに応じてしきい値を設定してもよい。
次いで、図9に、中継局1での復号結果に誤りが無く、中継局2での復号結果に誤りが有る場合のシーケンス図を示す。中継局1および中継局2はともに図2に示す構成を採り、基地局は図8に示す構成を採る。
まず、基地局はあらかじめ通常情報を中継局1および中継局2へ送信する。
フレーム1では、移動局が基地局宛の送信信号を中継局1と中継局2とに同時に送信する。
フレーム2では、中継局1は、復号結果に誤りが無いため(CRC=OK)、図5に示す中継信号を基地局へ送信する。一方、中継局2は、復号結果に誤りが有るため(CRC=NG)、受信データシンボルのSNRとしきい値とを比較する。そして、中継局2は、そのSNRがしきい値以上であるので、図4に示す中継信号を基地局へ送信する。そして、基地局は中継局1からの中継信号と中継局2からの中継信号を受信し、互いに同じシステマチックビットから構成されるデータシンボル同士を合成する。
このようにして、本実施の形態では、受信データシンボルの回線品質が低い場合に発生する可能性が高い誤りの伝搬を防ぎつつ、基地局においてダイバーシチ効果を得ることができる。
(実施の形態2)
本実施の形態に係る中継局は、データシンボルが誤りの有るシステマチックビットを含むか否かを示す情報を基地局へ送信する。
本実施の形態に係る中継局300の構成を図10に示す。図10において実施の形態1(図2)と同一の構成部分には同一符号を付し説明を省略する。
選択部107は、選択結果をフラグ付加部301に出力する。また、変調部108はデータシンボルをフラグ付加部301に出力する。
フラグ付加部301は、データシンボルが誤りの有るシステマチックビットを含むか否かを示す情報を選択部107での選択結果に従ってデータシンボルに付加し、無線送信部109に出力する。例えば、フラグ付加部301は、図11に示すように、誤りの有るシステマチックビットを含むデータシンボルから構成されるフレーム#1,#4の先頭にフラグ‘1’を付加し、誤りの有るシステマチックビットを含まないデータシンボルから構成されるフレーム#2,#3の先頭にフラグ‘0’を付加する。
このようにすることで、誤りの有るシステマチックビットを含むデータシンボルと含まないデータシンボルとを基地局において容易に区別することができる。
(実施の形態3)
復号部104での復号結果(図4)に誤りが有る場合でも、受信データシンボル(図3)に含まれるパリティビットP〜Pの信頼度は高いこともある。
そこで、本実施の形態に係る中継局は、誤り訂正復号後のシステマチックビットからなる復号結果に誤りが有る場合、そのシステマチックビットを含むデータシンボルを基地局へ送信する点においては実施の形態1と同一であるが、そのデータシンボルに硬判定後のパリティビットを含める点において実施の形態1と相違する。
本実施の形態に係る中継局500の構成を図12に示す。図12において実施の形態1(図2)と同一の構成部分には同一符号を付し説明を省略する。
復調部103で得られたシステマチックビットS〜SおよびパリティビットP〜Pは、復号部104および硬判定部501に入力される。
硬判定部501は、パリティビットP〜Pを硬判定して、硬判定後のパリティビットP''〜P''を得る。そして、硬判定部501は、硬判定後のパリティビット列を結合部502に出力する。
復号部104で得られた復号結果(図4)は、誤り判定部105,符号化部106および結合部502に入力される。
結合部502は、硬判定部501から入力されるビット列と復号部104から並列に入力されるビット列とを図13に示すように結合して選択部107に出力する。
選択部107は、誤り判定部105での判定結果に従って、結合部502から入力されたビット列(図13)または符号化部106から入力されたビット列(図5)のいずれかを選択して変調部108に出力する。
復号部104での復号結果(図4)に誤りが無い場合の選択部107の動作は実施の形態1と同じであるため説明を省略する。
一方、復号部104での復号結果に誤りが有る場合は、選択部107は、結合部502から入力されたビット列(図13)を選択して変調部108に出力する。よって、復号部104での復号結果に誤りが有る場合、変調部108は、図13に示すように、そのビット列を変調して、システマチックビットS'〜S'およびパリティビットP''〜P''からなるデータシンボル#1〜#4を生成し、無線送信部109に出力する。
このように、本実施の形態によれば、復号部104での復号結果に誤りが有る場合は、硬判定後のパリティビットも中継送信の対象とするため、復号部104での復号結果に誤りが有る場合でも、基地局ではさらにパリティビットについてもダイバーシチ効果を得ることができる。
(実施の形態4)
復号部104での繰り返し復号によりシステマチックビットの信頼度は高まるが、同様にパリティビットの信頼度も高まる。
そこで、本実施の形態に係る中継局は、誤り訂正復号後のシステマチックビットからなる復号結果に誤りが有る場合、そのシステマチックビットを含むデータシンボルを基地局へ送信する点においては実施の形態1と同一であるが、そのデータシンボルに誤り訂正復号時に得られるパリティビットを含める点において実施の形態1と相違する。
本実施の形態に係る中継局700の構成を図14に示す。図14において実施の形態1(図2)と同一の構成部分には同一符号を付し説明を省略する。
復号部104で得られた復号結果(図4)は、誤り判定部105,符号化部106および結合部701に入力される。また、復号部104は、繰り返し復号の最終段階で得られたパリティビットP''〜P''を結合部701に出力する。
結合部701は、復号部104から入力されるビット列を図13に示すように結合して選択部107に出力する。
選択部107は、誤り判定部105での判定結果に従って、結合部701から入力されたビット列(図13)または符号化部106から入力されたビット列(図5)のいずれかを選択して変調部108に出力する。
復号部104での復号結果(図4)に誤りが無い場合の選択部107の動作は実施の形態1と同じであるため説明を省略する。
一方、復号部104での復号結果に誤りが有る場合は、選択部107は、結合部701から入力されたビット列(図13)を選択して変調部108に出力する。よって、復号部104での復号結果に誤りが有る場合、変調部108は、図13に示すように、そのビット列を変調して、システマチックビットS'〜S'およびパリティビットP''〜P''からなるデータシンボル#1〜#4を生成し、無線送信部109に出力する。
このように、本実施の形態によれば、復号部104での復号結果に誤りが有る場合は、誤り訂正復号時に得られるパリティビットも中継送信の対象とするため、復号部104での復号結果に誤りが有る場合でも、基地局ではさらにパリティビットについてもダイバーシチ効果を得ることができる。
なお、実施の形態3および本実施の形態においては、データシンボルの送信有無を複数のしきい値を用いて制御するようにしてもよい。例えば、しきい値Aと、そのしきい値Aよりも高いしきい値Bの2つのしきい値を用い、しきい値AによりシステマチックビットS'〜S'からなるデータシンボルを送信するか否か制御し、しきい値BによりパリティビットP''〜P''からなるデータシンボルを送信するか否か制御する。これは、回線品質が高いときは誤りが発生する確率は低いのでシステマチックビットおよびパリティビットの双方を送信し、回線品質が低いときは誤りが発生する確率が高いので、パリティビットよりは誤りが発生する確率が低いシステマチックビットのみを送信するようにするためである。
(実施の形態5)
本実施の形態に係る中継局は、基地局からの送信要求に応じて中継信号を基地局へ送信する。
本実施の形態に係る中継局900の構成を図15に示す。図15において実施の形態1(図2)と同一の構成部分には同一符号を付し説明を省略する。
無線受信部102は、移動局から送信されたデータシンボルおよび後述する図16に示す基地局400から送信された送信要求をアンテナ101を介して受信し、ダウンコンバート等の無線処理を行って復調部103,回線品質測定部110および送信要求取得部901に出力する。
送信要求取得部901は、基地局400からの送信要求を取得して選択部903に出力する。この送信要求は、基地局400が中継局900に対して中継信号の送信を要求するときに基地局400から中継局900へ送信されるものである。
回線品質測定部110で測定された受信データシンボルのSNR(すなわち、移動局と中継局900との間の回線品質)は通知情報生成部902に入力される。
通知情報生成部902は、受信データシンボルのSNRからなる通知情報を生成して選択部903に出力する。
選択部903は、誤り判定部105での判定結果および送信要求の有無に従って、復号部104から入力された復号結果(図4)、符号化部106から入力されたビット列(図5)、または、通知情報のいずれかを選択して変調部108に出力する。
選択部903は、復号部104での復号結果(図4)に誤りが有り、かつ、基地局400から送信要求が有った場合、その復号結果を選択して変調部108に出力する。よって、この場合は、変調部108は、図4に示すように、その復号結果を変調してシステマチックビットS'〜S'のみからなるデータシンボル#1,#2を生成し、無線送信部109に出力する。
また、選択部903は、復号部104での復号結果(図4)に誤りが有る場合は、送信要求の有無にかかわらず、通知情報を選択して無線送信部109に出力する。よって、通知情報は、復号結果に誤りが有る場合に基地局400へ送信される。
また、選択部903は、復号部104での復号結果(図4)に誤りが無い場合は、送信要求の有無にかかわらず、符号化部106から入力されたビット列(図5)を選択して変調部108に出力する。よって、この場合は、変調部108は、図5に示すように、そのビット列を変調してシステマチックビットS'〜S'およびパリティビットP'〜P'からなるデータシンボル#1〜#4を生成し、無線送信部109に出力する。
次いで、本実施の形態に係る基地局400について説明する。基地局400の構成を図16に示す。図16において実施の形態1(図8)と同一の構成部分には同一符号を付し説明を省略する。
無線受信部202は、中継局900から送信されたデータシンボルおよび通知情報をアンテナ201を介して受信し、ダウンコンバート等の無線処理を行って復調部203,回線品質測定部205および通知情報取得部401に出力する。
通知情報取得部401は、中継局900からの通知情報を取得して送信要求生成部403に出力する。
回線品質測定部205で求められた平均SNRは送信要求生成部403に入力される。
また、復号部204で得られた受信データは誤り判定部402に入力される。
誤り判定部402は、CRCを用いて受信データに誤りが有るか否かを判定し、判定結果(誤りが有る場合:NG,誤りが無い場合:OK)を送信要求生成部403に出力する。なお、誤りの有無の判定は、通常、フレーム毎に行われる。
送信要求生成部403は、通知情報から得られる中継局900での受信データシンボルのSNRおよび誤り判定部402での判定結果に従って、送信要求を生成する。
送信要求生成部403は、受信データに誤りが無い場合は、中継局900での受信データシンボルのSNRにかかわらず、送信要求を生成しない。
一方、受信データに誤りが有る場合は、送信要求生成部403は、中継局900での受信データシンボルのSNRとしきい値とを比較する。
そして、そのSNRがしきい値以上の場合は、送信要求生成部403は、送信要求を生成して多重部209に出力する。
一方、そのSNRがしきい値未満の場合は、送信要求生成部403は、送信要求を生成しない。
なお、送信要求生成部403におけるしきい値の設定方法は、実施の形態1に係る送信制御部112におけるもの(図6)と同じであるため説明を省略する。
多重部209は、データシンボルと送信要求とを時間多重して無線送信部210に出力する。
なお、本実施の形態においては、実施の形態2同様、図17に示すように、中継局900が、誤りの有るシステマチックビットを含むデータシンボルから構成されるフレーム#1,#3の先頭にフラグ‘11’を付加し、誤りの有るシステマチックビットを含まないデータシンボルから構成されるフレーム#2の先頭にフラグ‘00’を付加し、通知情報から構成されるフレーム#4の先頭にフラグ‘10’を付加して、基地局において、誤りの有るシステマチックビットを含むデータシンボルと、含まないデータシンボルと、通知情報とを容易に区別することができるようにしてもよい。
次いで、図18に、中継局1での復号結果に誤りが無く、中継局2での復号結果に誤りが有る場合のシーケンス図を示す。中継局1および中継局2は図15に示す構成を採り、基地局は図16に示す構成を採る。
フレーム1では、移動局が基地局宛の送信信号を中継局1と中継局2とに同時に送信する。
フレーム2では、中継局1は、復号結果に誤りが無いため(CRC=OK)、図5に示す中継信号を基地局へ送信する。一方、中継局2は、復号結果に誤りが有るため(CRC=NG)、通知情報を基地局へ送信する。そして、基地局は中継局1からの中継信号と中継局2からの通知情報を受信する。
フレーム3では、基地局は、中継局1からの中継信号の誤りの有無を判定し、誤りが有る場合(CRC=NG)、中継局1での受信データシンボルのSNRとしきい値とを比較する。そして、基地局は、そのSNRがしきい値以上であるので、送信要求を中継局2へ送信する。
フレーム4では、中継局2は、基地局からの送信要求に応じて図4に示す中継信号を基地局へ送信する。そして、基地局は中継局2からの中継信号を受信し、中継局1からの中継信号と中継局2からの中継信号とにおいて互いに同じシステマチックビットから構成されるデータシンボル同士を合成する。
このようにして、本実施の形態では、実施の形態1同様、受信データシンボルの回線品質が低い場合に発生する可能性が高い誤りの伝搬を防ぎつつ、基地局においてダイバーシチ効果を得ることができる。
以上、本発明の実施の形態について説明した。
なお、上記各実施の形態では、中継局の数が3つ以上であってもよい。
また、上記各実施の形態では、中継局と基地局との間、または、移動局と中継局との間に、さらに他の中継局が存在してもよい。
また、上記各実施の形態における基地局はNode B、移動局はUE、制御局はRNCと表されることがある。また、上記各実施の形態における中継局は、リピータ、簡易基地局、クラスタヘッド等と呼ばれることもある。
また、上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
2006年2月27日出願の特願2006−051174の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
本発明は、移動局や基地局等の無線通信装置が中継局を介して無線通信を行う通信システム(例えば、マルチホップシステム)等に適用することができる。
各実施の形態に係る移動体通信システムの構成図 実施の形態1に係る中継局の構成を示すブロック図 実施の形態1に係る受信データシンボル 実施の形態1に係る復号結果(変調方式:16QAM) 実施の形態1に係る符号化後のビット列 実施の形態1に係るしきい値設定例 実施の形態1に係る復号結果(変調方式:QPSK) 実施の形態1に係る基地局の構成を示すブロック図 実施の形態1に係るシーケンス図 実施の形態2に係る中継局の構成を示すブロック図 実施の形態2に係るフラグ付加例 実施の形態3に係る中継局の構成を示すブロック図 実施の形態3および4に係る結合後のビット列 実施の形態4に係る中継局の構成を示すブロック図 実施の形態5に係る中継局の構成を示すブロック図 実施の形態5に係る基地局の構成を示すブロック図 実施の形態5に係るフラグ付加例 実施の形態5に係るシーケンス図

Claims (12)

  1. 第1無線通信装置と第2無線通信装置との間で中継送信を行う無線通信装置であって、
    誤り訂正符号化された第1システマチックビットおよび第1パリティビットからなる第1データシンボルを前記第1無線通信装置から受信する受信手段と、
    前記第1データシンボルを復調して前記第1システマチックビットおよび前記第1パリティビットを得る復調手段と、
    前記第1パリティビットを用いて前記第1システマチックビットを誤り訂正復号して、誤り訂正復号後の第2システマチックビットからなる復号結果を得る復号手段と、
    前記復号結果に誤りが有るか否かを判定する判定手段と、
    前記第1データシンボルの第1回線品質を測定する測定手段と、
    前記復号結果に誤りが有る場合、前記第2システマチックビットを含む第2データシンボルの送信有無を前記第1回線品質に応じて制御する制御手段と、
    を具備する無線通信装置。
  2. 前記制御手段は、前記第1回線品質がしきい値以上の場合は前記第2データシンボルを送信すると決定し、前記第1回線品質がしきい値未満の場合は前記第2データシンボルを送信しないと決定する、
    請求項1記載の無線通信装置。
  3. 前記制御手段は、前記第1無線通信装置と前記第2無線通信装置との間で中継送信を行う無線通信装置の数に応じて前記しきい値を設定する、
    請求項2記載の無線通信装置。
  4. 前記制御手段は、前記数が多くなるほど前記しきい値を高くする、
    請求項3記載の無線通信装置。
  5. 前記制御手段は、前記第1無線通信装置と前記第2無線通信装置との間で中継送信を行う無線通信装置と前記第2無線通信装置との間の第2回線品質に応じて前記しきい値を設定する、
    請求項2記載の無線通信装置。
  6. 前記制御手段は、前記第2回線品質が高くなるほど前記しきい値を高くする、
    請求項5記載の無線通信装置。
  7. 前記制御手段は、前記第2回線品質の平均値に応じて前記しきい値を設定する、
    請求項5記載の無線通信装置。
  8. 前記制御手段は、前記第1無線通信装置と前記第2無線通信装置との間で中継送信を行う他の無線通信装置と前記第2無線通信装置との間の回線品質の合計値に応じて前記しきい値を設定する、
    請求項2記載の無線通信装置。
  9. 前記制御手段は、前記合計値が高くなるほど前記しきい値を高くする、
    請求項8記載の無線通信装置。
  10. 前記復号結果を誤り訂正符号化して、誤り訂正符号化された第3システマチックビットおよび第2パリティビットを得る符号化手段、をさらに具備し、
    前記制御手段は、前記復号結果に誤りが無い場合、前記第1回線品質にかかわらず、前記第3システマチックビットおよび前記第2パリティビットからなる前記第2データシンボルを送信すると決定する、
    請求項1記載の無線通信装置。
  11. 前記第2データシンボルが誤りの有る前記第2システマチックビットを含むか否かを示す情報を前記第2データシンボルに付加する付加手段、をさらに具備する、
    請求項1記載の無線通信装置。
  12. 第1無線通信装置と第2無線通信装置との間で中継送信を行う無線通信装置における中継送信方法であって、
    誤り訂正符号化された第1システマチックビットおよび第1パリティビットからなる第1データシンボルを前記第1無線通信装置から受信する受信工程と、
    前記第1データシンボルを復調して前記第1システマチックビットおよび前記第1パリティビットを得る復調工程と、
    前記第1パリティビットを用いて前記第1システマチックビットを誤り訂正復号して、誤り訂正復号後の第2システマチックビットからなる復号結果を得る復号工程と、
    前記復号結果に誤りが有るか否かを判定する判定工程と、
    前記第1データシンボルの回線品質を測定する測定工程と、
    前記復号結果に誤りが有る場合、前記第2システマチックビットを含む第2データシンボルの送信有無を前記回線品質に応じて制御する制御工程と、
    を具備する中継送信方法。
JP2008501777A 2006-02-27 2007-02-26 無線通信装置および中継送信方法 Expired - Fee Related JP4757908B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008501777A JP4757908B2 (ja) 2006-02-27 2007-02-26 無線通信装置および中継送信方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006051174 2006-02-27
JP2006051174 2006-02-27
JP2008501777A JP4757908B2 (ja) 2006-02-27 2007-02-26 無線通信装置および中継送信方法
PCT/JP2007/053529 WO2007097449A1 (ja) 2006-02-27 2007-02-26 無線通信装置および中継送信方法

Publications (2)

Publication Number Publication Date
JPWO2007097449A1 true JPWO2007097449A1 (ja) 2009-07-16
JP4757908B2 JP4757908B2 (ja) 2011-08-24

Family

ID=38437484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008501777A Expired - Fee Related JP4757908B2 (ja) 2006-02-27 2007-02-26 無線通信装置および中継送信方法

Country Status (4)

Country Link
US (1) US20100279603A1 (ja)
EP (1) EP1990932A1 (ja)
JP (1) JP4757908B2 (ja)
WO (1) WO2007097449A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7684337B2 (en) * 2006-01-17 2010-03-23 Mitsubishi Electric Research Laboratories, Inc. Method and system for communicating in cooperative relay networks
EP1981179B1 (en) * 2006-02-28 2018-01-10 Panasonic Intellectual Property Corporation of America Radio communication device and relay transmission method
US8503374B2 (en) * 2007-08-02 2013-08-06 Qualcomm Incorporated Method for scheduling orthogonally over multiple hops
US9699688B2 (en) 2007-08-02 2017-07-04 Qualcomm Incorporated Method for scheduling orthogonally over multiple hops
US20110053495A1 (en) * 2008-06-20 2011-03-03 Mitsubishi Electric Corporation Communication apparatus and wireless communication system
US8515341B2 (en) 2009-03-31 2013-08-20 Panasonic Corporation Relay station apparatus and relay method
CN101986744B (zh) * 2009-07-29 2013-03-20 中兴通讯股份有限公司 一种长期演进系统中信号检测的方法及装置
WO2013030825A1 (en) * 2011-08-31 2013-03-07 Acceleradio Ltd. Method and system for automated adaptive relay for tactical communication

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103817B1 (en) * 2001-04-19 2006-09-05 Cisco Technology, Inc. Method and system for dynamically controlling frame retransmissions in a wireless network
WO2003021440A1 (en) * 2001-09-01 2003-03-13 Bermai, Inc. Decoding architecture for low density parity check codes
KR100891782B1 (ko) * 2002-06-11 2009-04-07 삼성전자주식회사 고속 데이터 전송 시스템에서 순방향 오류 정정 장치 및방법
KR100502608B1 (ko) * 2002-12-24 2005-07-20 한국전자통신연구원 계산이 간단한 저밀도 패리티 검사 부호를 위한 메시지 전달 복호기
JP3880542B2 (ja) * 2003-05-19 2007-02-14 松下電器産業株式会社 誤り訂正符号化/復号化装置および誤り訂正符号化/復号化方法
CN1826780B (zh) * 2003-05-28 2010-04-28 艾利森电话股份有限公司 用于使用协同中继的无线通信网络的方法和结构
JP2006051174A (ja) 2004-08-11 2006-02-23 Aruze Corp 遊技機
US7451361B2 (en) * 2005-01-27 2008-11-11 General Instrument Corporation Method and apparatus for forward error correction in a content distribution system
WO2007064249A1 (en) * 2005-11-29 2007-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling in a wireless multi-hop relay network
WO2007063521A2 (en) * 2005-12-02 2007-06-07 Koninklijke Philips Electronics N.V. Wireless systems and methods including cooperative communication medium access control

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6011004127, Tsuyoshi Miyaho, et.al., "Cooperative relaying scheme with space time code for multihop communications among single antenna te", IEEE Global Telecommunications Conference, 2004. GLOBECOM ’04., 20041129, vol.6, pages.3763−3767, US, IEEE *
JPN6011004129, Todd e.Hunter, et.al., "Cooperation diversity through coding", IEEE International Symposium on Information Theory, 2002. Proceedings., 2002, page 220, US, IEEE *
JPN6011004132, Todd E.Hunter, et.al., "Diversity through coded cooperation", IEEE Transactions on Wireless Communications, 20060223, Vol.5, Issue 2, page.283−289, US, IEEE *
JPN6011004134, Birsen Sirkeci−Mergen, et.al., "Randomized distributed space−time coding for cooperative communication in self organized networks", IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005, 20050605, page 500−504, US, IEEE *

Also Published As

Publication number Publication date
WO2007097449A1 (ja) 2007-08-30
EP1990932A1 (en) 2008-11-12
JP4757908B2 (ja) 2011-08-24
US20100279603A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4800378B2 (ja) 無線通信装置および中継送信方法
USRE45125E1 (en) Integrated circuit
JP4898911B2 (ja) 無線通信方法、無線通信装置、無線通信システム、および中継方法
JP4757908B2 (ja) 無線通信装置および中継送信方法
JP4772039B2 (ja) 通信中継装置および通信中継方法
JP4704359B2 (ja) 無線通信装置、無線通信方法および無線通信システム
JP4772038B2 (ja) 無線通信装置および無線通信方法
US20160366651A1 (en) Packet Delay Optimization in the Uplink of a Multi-Hop Cooperative Relay-Enabled Wireless Network
KR100956121B1 (ko) 통신 시스템에서 불균형을 관리하기 위한 방법 및 장치
JP5537550B2 (ja) 無線通信装置、信号中継方法、および信号割当方法
WO2012147296A1 (ja) 中継局、基地局、送信方法、及び受信方法
JP5828891B2 (ja) 中継局、基地局、送信方法、及び受信方法
US20100278153A1 (en) Wireless communication appparatus, wireless communication method and wireless communication system
WO2011096764A2 (ko) 다중 단말을 이용한 협력 통신 방법
US8743769B2 (en) Radio communication device and radio communication system
JP2008193240A (ja) 無線通信装置および無線通信方法
JP2007266752A (ja) ダイバシティ合成方法および通信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350