WO2012147296A1 - 中継局、基地局、送信方法、及び受信方法 - Google Patents

中継局、基地局、送信方法、及び受信方法 Download PDF

Info

Publication number
WO2012147296A1
WO2012147296A1 PCT/JP2012/002565 JP2012002565W WO2012147296A1 WO 2012147296 A1 WO2012147296 A1 WO 2012147296A1 JP 2012002565 W JP2012002565 W JP 2012002565W WO 2012147296 A1 WO2012147296 A1 WO 2012147296A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
unit band
signal
relay station
bhsf
Prior art date
Application number
PCT/JP2012/002565
Other languages
English (en)
French (fr)
Inventor
西尾 昭彦
綾子 堀内
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013511907A priority Critical patent/JP5934700B2/ja
Priority to US14/002,609 priority patent/US9246574B2/en
Publication of WO2012147296A1 publication Critical patent/WO2012147296A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1635Cumulative acknowledgement, i.e. the acknowledgement message applying to all previous messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a relay station, a base station, a transmission method, and a reception method.
  • a relay station (or “RN:”) is provided between the base station and the terminal (or may be referred to as “UE: User Equipment”).
  • UE User Equipment
  • Relay technology is also being studied, in which communication between a base station and a terminal is performed via a relay station. If the relay technology is used, a terminal that cannot communicate directly with the base station can communicate with the base station.
  • LTE-A Long Term Evolution Advanced, equivalent to 3GPP Release 10
  • relay technology For LTE-A (Long Term Evolution Advanced, equivalent to 3GPP Release 10) system, where the introduction of the relay technology mentioned above is being considered, smooth transition from LTE (Long Term Evolution; equivalent to 3GPP Release 8) and From the viewpoint of coexistence with LTE, it is required to maintain compatibility with LTE. For this reason, relay technology is also required to be compatible with LTE.
  • the relay station is also required to accommodate LTE terminals.
  • LTE-A system it is considered that communication between a base station and a relay station (backhaul communication) and communication between a relay station and a terminal (access link) are performed in the same frequency band.
  • the downlink backhaul subframe (DL BHSF) is used as a subframe used for communication (backhaul communication) between the base station and the relay station at the frequency for the downlink (Down Link: DL). Is set.
  • the relay station receives a signal from the base station in DL BHSF, and transmits a signal for a terminal under its own device (a terminal in its own cell) in a subframe other than DL BHSF.
  • the uplink backhaul subframe (Uplink Backhaul Subframe: UL) is used as a subframe used for communication (backhaul communication) between the base station and the relay station after 4 subframes of DL BHSF.
  • BHSF is set.
  • the relay station transmits a signal for the base station in UL BHSF, and receives a signal from a terminal under its control in a subframe other than UL BHSF.
  • backhaul communication communication between a base station and a relay station
  • communication on an access link of the relay station (communication between a relay station and a terminal) are divided in the time domain (for example, Non-Patent Document 1). reference).
  • LTE is considering setting up MBSFN (MBMSFNSingle Frequency Network) subframes for terminals under relay stations in the downlink.
  • the MBSFN subframe is a subframe defined for transmitting data of MBMS (Multimedia Broadcast Multicast Service) service.
  • MBMS Multimedia Broadcast Multicast Service
  • an operation is defined in which the terminal does not receive a signal unless the MBMS service is notified.
  • the relay station does not communicate with the terminals under its control.
  • a method has been proposed in which a subframe for an access link that overlaps with a BHSF (DLHSBHSF and UL BHSF) in which a relay station communicates with a base station is set as an MBSFN subframe.
  • FIG. 1 shows backhaul communication (communication in an eNB cell) between a base station (eNB) and a relay station (RN), and communication (RN cell) between a relay station (RN) and a terminal (UE).
  • eNB base station
  • RN relay station
  • UE terminal
  • subframes 1 and 3 are set to DL ⁇ BHSF.
  • subframes 5 and 7 after 4 subframes of subframes 1 and 3 in which DL BHSF is set are set in UL BHSF.
  • subframes 1 and 3 set in DL BHSF in the eNB cell and subframes 5 and 7 set in UL BHSF in the uplink are respectively MBSFN subframes. Is set to The same applies to the other frames shown in FIG. In FIG.
  • DL BHSF is set to a subframe other than a subframe (for example, a subframe to which broadcast information or the like is allocated) that cannot be set to BHSF among subframes having a period of 8 subframe intervals. .
  • the band for the A system is divided into “Component Carrier (unit band)” corresponding to the supported bandwidth of the LTE system.
  • “Component Carrier” is a band having a maximum width of 20 MHz and is defined as a basic unit (basic frequency band) of a communication band.
  • “Component Carrier” may be written as Cell.
  • “Component Carrier” may be written as CC (s) as an abbreviation.
  • communication using a band in which several “Component Carrier” is bundled, so-called Carrier Aggregation is supported. In carrier aggregation, data transmission speed is improved by transmitting a data signal in each CC.
  • the above “Component Carrier” set in one terminal includes one Primary Component Carrier (or Primary Cell: PCell) and one or more Secondary Component Carriers (or Secondary Cell: SCell).
  • PCell Primary Component Carrier
  • SCell Secondary Cell
  • a / N signal ACK / NACK signal
  • Channel Quality Indicator Channel Quality Indicator
  • Control information such as (CQI) is transmitted only from the PCell. More specifically, the control information is transmitted on an uplink control channel (for example, PUCCH (Physical-Uplink-Control-Channel)) in the PCell.
  • PUCCH Physical-Uplink-Control-Channel
  • a terminal may receive a plurality of downlink data at a plurality of CCs at a time.
  • block coding using Channel ⁇ Selection (also referred to as Multiplexing), Bundling, and PUCCH format ⁇ ⁇ 3 is under consideration as a method of transmitting a plurality of A / N signals for the plurality of downlink data. .
  • Channel Selection changes not only the symbol points used for the A / N signal but also the resources for mapping the A / N signal according to the pattern of the error detection result for a plurality of downlink data.
  • a / N signal sometimes referred to as a bundle A / N signal
  • the terminal collectively encodes a plurality of response signals for a plurality of downlink data, and uses the channel called PUCCH format 3 to encode the encoded data.
  • Send Send.
  • the A / N signal is transmitted from the PCell PUCCH using Channel Selection, and the number of A / N bits is 5 bits or more.
  • the A / N signal is transmitted from PCell's PUCCH using PUCCH format 3.
  • the control information is transmitted on the uplink data channel (for example, PUSCH (Physical-Uplink-Shared-CHannel)) and the data signal and time. Multiplexed and transmitted. That is, when the PCell has a PUSCH, the control information is transmitted on the PCell PUSCH, and when the SCell has the PUSCH, the control information is transmitted on the SCell PUSCH.
  • PUSCH Physical-Uplink-Shared-CHannel
  • 3GPP Release 11 that further expands the LTE-A system, it is considered to apply Carrier aggregation for communication (backhaul communication) between a base station (eNB) and a relay station (RN) (for example, Non-patent document 6).
  • eNB base station
  • RN relay station
  • 3GPP TS 36.216 V10.2.0 “Physical layer for relaying operation (Release 10),” March 2011 3GPP TS 36.211 V10.1.0, “Physical Channels and Modulation (Release 10),” March 2011 3GPP TS 36.212 V10.1.0, “Multiplexing and channel coding (Release 10),” March 2011 3GPP TS 36.213 V10.1.0, “Physical layer procedures (Release 10),” March 2011 3GPP TS 36.214 V10.1.0, “Physical layer Measurements (Release 10),” March 2011 NTT DoCoMo, 3GPP RAN1 meeting, R1-110243, “Combination of Carrier Aggregation and Relay” in Rel-10, “January” 2011
  • the A / N signal transmission method in the carrier aggregation in 3GPP Release 10 described above (that is, A / N after 4 subframes of the subframe to which the PDSCH is allocated) It is conceivable to apply a method in which a signal is transmitted only from a PCell.
  • the PCell UL-BHSF for transmitting an A / N signal or the like is set four subframes after the PCell DL-BHSF. Therefore, in order to transmit the A / N signal for the downlink data received by the SCell, the base station needs to set the DL BHSF of the SCell before 4 subframes of the UL BHSF set to the PCell. That is, the subframe for setting DL BHSF needs to be the same for PCell and SCell.
  • FIG. 2 shows a setting example of BHSF in PCell and SCell between a base station (eNB) and a relay station (RN).
  • eNB base station
  • RN relay station
  • FIG. 2 shows a setting example of BHSF in PCell and SCell between a base station (eNB) and a relay station (RN).
  • eNB base station
  • RN relay station
  • FIG. 1 shows a setting example of BHSF in PCell and SCell between a base station (eNB) and a relay station (RN).
  • RN cell relay station cell as shown in FIG. 1 is also set in each CC.
  • the DL BHSF in SCell is set 4 subframes before UL BHSF in PCell, that is, only at the same timing as DL BHSF in PCell.
  • SCell's DL BHSF is not PCell's DL BHSF
  • wireless resource used by a backhaul is shared with the radio
  • the radio resources of the backhaul are reduced.
  • the radio resources of the access link are set to increase.
  • the backhaul propagation path condition is inferior, or when the number of terminals under the relay station is small, the backhaul radio resources increase and the access link radio resources decrease.
  • the SCell's DL BHSF can be individually set.
  • the corresponding PCell subframe is another terminal under the relay station.
  • the additionally set UL-BHSF is used for transmission of A / N signal of SCell (that is, backhaul communication)
  • the relay station uses the A / N signal from the terminal under the relay station in the additionally set UL-BHSF. N signal is not received. Therefore, as a result, the base station cannot allocate downlink data for terminals in the PCell to subframes that are four subframes before the newly set PCell UL-BHSF. For this reason, when PCell's UL BHSF is additionally set for A / N signals for downlink data transmitted by SCell, radio resources that can be used for communication between the relay station and the terminal are wasted. End up.
  • the relay station uses the first unit band and the second unit band for backhaul communication between the base station and the relay station, and is used for backhaul communication in the downlink.
  • a first subframe of one unit band and a second subframe of the first unit band used for backhaul communication in the uplink are set, and the second subframe is the first subframe.
  • a relay station used in a communication system which is a subframe after a predetermined number of subframes, and generates a response signal for a downlink signal received from a base station in each of the first unit band and the second unit band Generating means, and transmitting means for transmitting the response signal in the first unit band, wherein the transmitting means is configured to transmit the first unit band in the second unit band.
  • the first sub-frame a response signal to downlink signals received at different sub-frame and transmits in the second sub-frame of the first unit band.
  • the base station of one aspect of the present invention uses the first unit band and the second unit band for backhaul communication between the base station and the relay station, and is used for backhaul communication in the downlink.
  • a first subframe of one unit band and a second subframe of the first unit band used for backhaul communication in the uplink are set, and the second subframe is the first subframe.
  • a base station used in a communication system which is a subframe after a predetermined number of subframes, and an allocating unit that allocates a downlink signal for a relay station to each of the first unit band and the second unit band;
  • Receiving means for receiving a response signal to the downlink signal in the first unit band wherein the receiving means is configured to receive the first unit band in the second unit band.
  • the first unit band and the second unit band are used for backhaul communication between a base station and a relay station, and the first unit band is used for backhaul communication in a downlink.
  • a first subframe of one unit band and a second subframe of the first unit band used for backhaul communication in the uplink are set, and the second subframe is the first subframe.
  • a transmission method used in a communication system which is a predetermined number of subframes after a subframe, and generates a response signal for a downlink signal received from a base station in each of the first unit band and the second unit band In the second unit band, a response signal for a downlink signal received in a subframe different from the first subframe of the first unit band is Transmitted in the second subframe of the unit band.
  • the first unit band and the second unit band are used for backhaul communication between a base station and a relay station, and the first unit band is used for backhaul communication in a downlink.
  • a first subframe of one unit band and a second subframe of the first unit band used for backhaul communication in the uplink are set, and the second subframe is the first subframe.
  • a reception method used in a communication system which is a subframe after a predetermined number of subframes, assigns a downlink signal for a relay station to each of the first unit band and the second unit band, and In response to a downlink signal received in a subframe different from the first subframe of the first unit band in the unit band of the first unit band, Receiving in the second subframe.
  • the present invention when carrier aggregation is performed between a base station and a relay station, it is possible to individually set SCell BHSF without changing the PCell BHSF without wasting radio resources. .
  • Diagram showing BHSF setting example Diagram showing BHSF setting example when Carrier aggregation is applied in backhaul
  • Main configuration diagram of base station according to Embodiment 1 of the present invention Main configuration diagram of relay station according to Embodiment 1 of the present invention
  • the figure which shows the example of a setting of BHSF which concerns on Embodiment 1 of this invention The figure which shows the other example of a setting of BHSF which concerns on Embodiment 1 of this invention
  • the communication system according to Embodiment 1 of the present invention includes a base station 100, a relay station 200, and a terminal.
  • This communication system is, for example, an LTE-A system.
  • Base station 100 is, for example, an LTE-A base station, and communicates with relay station 200 in the backhaul.
  • carrier aggregation is applied in communication (backhaul communication) between the base station 100 and the relay station 200. That is, a plurality of CCs including PCell and SCell are used for backhaul communication between base station 100 and relay station 200.
  • PCell DL BHSF used for backhaul communication in the downlink (DL), PCell UL BHSF used for backhaul communication in the uplink (UL), and downlink (DL) SCell's DL BHSF used for backhaul communication is set up respectively.
  • the PCell ULPCBHSF is a subframe after a predetermined number (four subframes in this case) after the PCell DL BHSF.
  • the relay station 200 applies Channel Selection to the A / N signal for the downlink data (PDSCH) received by the PCell and the A / N signal for the downlink data (PDSCH) received by the SCell, A / N signal is transmitted by PCell. Further, the relay station 200 may bundle (bundle) a plurality of A / N signals for each of a plurality of downlink data received by the SCell. In this case, the relay station 200 performs channel selection on the A / N signals bundled together (bundle A / N signals) and the A / N signals for the downlink data (PDSCH) received by the PCell. Apply and send A / N signal on PCell.
  • FIG. 3 is a main configuration diagram of base station 100 according to the present embodiment.
  • allocation section 104 allocates a downlink signal for relay station 200 to each of PCell (first unit band) and SCell (second unit band), and A / N reception section 109 A / N signal (response signal) is received by PCell (first unit band).
  • the A / N receiving unit 109 transmits a downlink signal transmitted in a subframe different from the DL BHSF (first subframe) of the PCell (first unit band) in the SCell (second unit band).
  • a / N signal (response signal) is received by UL-BHSF (second subframe) of PCell (first unit band).
  • FIG. 4 is a main configuration diagram of relay station 200 according to the present embodiment.
  • a / N generation section 203 is an A / N signal (response signal) for a downlink signal received from base station 100 in each of PCell (first unit band) and SCell (second unit band).
  • the transmitting unit 205 transmits an A / N signal (response signal) using PCell (first unit band).
  • the transmission unit 205 performs A / N on a downlink signal received in a subframe different from DL BHSF (first subframe) of PCell (first unit band) in SCell (second unit band).
  • a signal (response signal) is transmitted by UL BHSF (second subframe) of PCell (first unit band).
  • FIG. 5 is a block diagram showing a configuration of base station 100 according to the present embodiment.
  • a base station 100 includes a control unit 101, an error correction coding unit 102, a modulation unit 103, an allocation unit 104, an allocation information generation unit 105, a mapping unit 106, a transmission unit 107, and a reception.
  • Unit 108, A / N receiver 109, demodulator 110, and error correction decoder 111 is a block diagram showing a configuration of base station 100 according to the present embodiment.
  • a base station 100 includes a control unit 101, an error correction coding unit 102, a modulation unit 103, an allocation unit 104, an allocation information generation unit 105, a mapping unit 106, a transmission unit 107, and a reception.
  • Unit 108 A / N receiver 109, demodulator 110, and error correction decoder 111.
  • the control unit 101 determines the BHSF (DL BHSF and UL) for each relay station 200 based on the propagation path condition between the base station 100 and the plurality of relay stations 200 or the number of terminals under each relay station 200.
  • BHSF BHSF
  • control unit 101 configures carrier aggregation for each relay station 200. That is, the control unit 101 sets a plurality of frequency bands called “Cell” or “Component Carrier: CC” in each relay station 200. Also, the control unit 101 sets one of a plurality of CCs set for each relay station 200 to PCell and sets other than PCell to SCell. Also, the control unit 101 sets radio parameters for the PCell and SCell set for each relay station 200.
  • the control unit 101 outputs control information including BHSF information indicating the set BHSF, CA information about the set Carrier Aggregation, radio parameters of each CC, and the like to the mapping unit 106.
  • the error correction coding unit 102 receives the transmission data, performs error correction coding (such as turbo coding) on the input transmission data, and outputs the coded transmission data to the modulation unit 103.
  • error correction coding such as turbo coding
  • the modulation unit 103 performs modulation processing (QPSK or 16QAM or the like) on the transmission data received from the error correction coding unit 102, and outputs the modulated transmission data to the mapping unit 106.
  • modulation processing QPSK or 16QAM or the like
  • the allocation unit 104 performs an allocation process of radio resources (time resources, frequency resources, or space resources) for data (PDSCH) for each relay station 200. For example, the allocating unit 104 first determines each relay station 200 set by the control unit 101 based on the propagation path quality information (CQI) of each CC reported from each relay station 200 or a delay request for each transmission data. Decide whether to assign data to PCell or SCell. For example, the assigning unit 104 assigns data with a severe delay request to the PCell, and assigns data with a loose delay request to the SCell. Next, the allocation unit 104 performs scheduling in the PCell or SCell that has determined data allocation, and allocates each data to a radio resource.
  • CQI propagation path quality information
  • the allocation unit 104 allocates retransmission data (not shown) to radio resources based on the A / N determination result (ACK or NACK) input from the A / N reception unit 109. Allocation unit 104 outputs the radio resource allocation result for the data for each relay station 200 to allocation information generation unit 105.
  • the allocation information generation unit 105 generates allocation information (for example, Downlink Control Information: DCI) including the allocation result in the allocation unit 104.
  • the allocation information generation unit 105 is bundled with allocation information related to data (PDSCH) transmitted in SCell with one UL-BHSF in the PCell, and is transmitted as a bundle A / N signal.
  • DAI Downlink Assignment Information
  • allocation information generation section 105 performs error correction coding processing and modulation processing on the generated allocation information, and outputs the modulated allocation information to mapping section 106.
  • the mapping unit 106 Based on the allocation information input from the allocation information generation unit 105 (allocation result at each CC of each relay station 200), the mapping unit 106 transmits the transmission data (that is, PDSCH) input from the modulation unit 103 to the radio Map to resource.
  • the mapping unit 106 maps the control information input from the control unit 101 and the allocation information input from the allocation information generation unit 105 to radio resources.
  • the signal mapped to each radio resource is output to transmitting section 107.
  • the transmission unit 107 performs radio transmission processing such as up-conversion on the signal input from the mapping unit 106 and transmits the signal via the antenna.
  • the reception unit 108 receives a signal transmitted from the relay station 200 via an antenna, performs radio processing such as down-conversion, and outputs the signal to the A / N reception unit 109 and the demodulation unit 110.
  • the A / N receiving unit 109 extracts a signal corresponding to a resource (A / N resource) to which the A / N signal should be transmitted from the signal input from the receiving unit 108.
  • a resource A / N resource
  • the A / N resource is a resource corresponding to PUSCH.
  • the uplink data (PUSCH) is not included in the signal input from the receiving unit 108, the A / N resource is a resource corresponding to the PUCCH arranged in the UL-BHSF in the PCell.
  • the A / N receiving unit 109 determines the A / N determination between the PCell and the SCell by determining at which signal point of which A / N resource used for Channel Selection the signal is transmitted. Do. Further, since the A / N signal of the SCell is a result of Bundling the A / N signal for one or a plurality of downlink data, the A / N reception unit 109 displays the result of the A / N determination of the SCell as the SCell. This is applied as an A / N signal for all PDSCHs to be bundled in FIG. The A / N receiving unit 109 outputs the A / N determination result (ACK or NACK) to the assigning unit 104.
  • ACK A / N determination result
  • Demodulation section 110 performs demodulation processing on the signal input from receiving section 108 and outputs the obtained signal to error correction decoding section 111.
  • the error correction decoding unit 111 decodes the signal input from the demodulation unit 110 to obtain received data.
  • the obtained reception data is output to a subsequent function unit (not shown).
  • FIG. 6 is a block diagram showing a configuration of relay station 200 according to the present embodiment.
  • the relay station 200 includes an error correction coding unit 201, a modulation unit 202, an A / N generation unit 203, a mapping unit 204, a transmission unit 205, a reception unit 206, a demodulation unit 207, Error correction decoding unit 208, setting unit 209, error correction coding unit 210, modulation unit 211, mapping unit 212, transmission unit 213, reception unit 214, demodulation unit 215, and error correction decoding unit 216 And have.
  • FIG. 6 is a block diagram showing a configuration of relay station 200 according to the present embodiment.
  • the relay station 200 includes an error correction coding unit 201, a modulation unit 202, an A / N generation unit 203, a mapping unit 204, a transmission unit 205, a reception unit 206, a demodulation unit 207, Error correction decoding unit 208, setting unit 209, error correction coding unit
  • error correction coding section 201 to error correction decoding section 208 constitute a transmission / reception processing section for the cell of base station 100 (for communication between base station 100 and relay station 200).
  • setting section 209 to error correction decoding section 216 constitute a transmission / reception processing section for the cell of relay station 200 (for communication between relay station 200 and a terminal under relay station 200).
  • Error correction coding section 201 receives transmission data (uplink data) for base station 100, performs error correction coding (such as turbo coding) on the input transmission data, and modulates the coded transmission data To the unit 202.
  • error correction coding such as turbo coding
  • the modulation unit 202 performs modulation processing (QPSK or 16QAM or the like) on the transmission data received from the error correction coding unit 201 and outputs the modulated transmission data to the mapping unit 204.
  • modulation processing QPSK or 16QAM or the like
  • the A / N generation unit 203 performs error detection processing on the signal input from the error correction decoding unit 208, that is, downlink data (PDSCH) received from the base station 100 in each CC (PCell and SCell), An A / N signal is generated.
  • the A / N generation unit 203 Bundling A / N signals transmitted together by one UL-BHSF of PCell among A / N signals for downlink data received by SCell.
  • the A / N generation unit 203 starts this time from a subframe 4 subframes before the ULHSBHSF (transmission target subframe) to be transmitted this time among a plurality of UL BHSFs set in the PCell.
  • a / N signal for downlink data (PDSCH) received from the base station 100 is bundled.
  • the A / N generation unit 203 specifies the number of A / N signals to be bundled from the number of PDSCH allocations in the SCell indicated in the DAI included in the allocation information input from the reception unit 206. Then, for example, when the number of PDSCH allocations in the SCell indicated in the DAI differs from the number of PDSCHs actually received in the SCell, the A / N generation unit 203 has received PDSCH but did not receive it.
  • a NACK is generated for a subframe (that is, a subframe erroneously recognized as having no PDSCH allocation due to a DCI decoding error). As a result, it is possible to prevent erroneous processing such as generating an ACK in a subframe that is erroneously recognized as having PDSCH allocation due to occurrence of a PDSCH allocation information reception error.
  • the A / N generation unit 203 may perform bundling for each spatially multiplexed data block (Transport Block).
  • the mapping unit 204 uses the transmission data (that is, PUSCH) input from the modulation unit 202 and the A / N signal input from the A / N generation unit 203 for the radio resource for transmission data and the A / N signal. To each radio resource (A / N resource).
  • mapping section 204 allocates transmission data to a PUSCH resource (or resource block) indicated by allocation information (DCI) input from receiving section 206.
  • DCI allocation information
  • the mapping unit 204 maps the transmission data to the radio resource of the subframe corresponding to the PCell UL-BHSF based on the BHSF information and the CA information input from the reception unit 206.
  • the mapping unit 204 allocates (multiplexes) the A / N signal to the PUSCH, and maps the A / N signal to a radio resource of a subframe corresponding to the PCell UL-BHSF.
  • the mapping unit 204 allocates the A / N signal to the PUCCH and maps it to the radio resource of the subframe corresponding to the PCell UL-BHSF.
  • the signal mapped to each radio resource is output to transmitting section 205.
  • the transmission unit 205 performs radio transmission processing such as up-conversion on the signal input from the mapping unit 204, and transmits the signal via an antenna. Thereby, an A / N signal for downlink data (PDSCH) received from the base station 100 in each CC (PCell and SCell) is transmitted by the PCell.
  • PDSCH downlink data
  • the receiving unit 206 receives a signal transmitted from the base station 100 via an antenna, and performs wireless processing such as down-conversion.
  • allocation information indicating an allocation result for uplink data In the signal transmitted from the base station, allocation information indicating an allocation result for uplink data, BHSF information indicating BHSF set between the base station 100 and the relay station 200, and the relay station 200 are set. CA information related to carrier aggregation, control information such as radio parameters of each CC, and downlink data (PDSCH) from the base station 100 are included.
  • Receiving section 206 outputs allocation information and BHSF information to mapping section 204 and outputs downlink data to demodulation section 207. Further, the reception unit 206 outputs the allocation information to the A / N generation unit 203 and outputs the BHSF information to the setting unit 209.
  • Demodulation section 207 performs demodulation processing on the signal input from reception section 206 and outputs the obtained signal to error correction decoding section 208.
  • the error correction decoding unit 208 decodes the signal input from the demodulation unit 207 to obtain received data.
  • the error correction decoding unit 208 outputs the obtained reception data to the A / N generation unit 203 and a subsequent function unit (not shown).
  • the setting unit 209 sets an MBSFN subframe for a cell covered by the relay station 200 (cell of the relay station 200) based on the BHSF information input from the receiving unit 206. That is, the setting unit 209 sets the subframe set to DL BHSF as the MBSFN subframe.
  • the MBSFN subframe is a subframe mainly used for the MBMS service.
  • the MBSFN subframe is composed of 14 OFDM symbols, the first 3 OFDM symbols are control channel regions, and the remaining 11 OFDM symbols are subframes in which signals are not received except by terminals that receive MBMS services.
  • the setting unit 209 outputs MBSFN subframe setting information to the mapping unit 212.
  • the setting information is transmitted as broadcast information to terminals under the relay station 200.
  • Error correction coding section 210 receives transmission data (downlink data) for terminals under relay station 200 as an input, performs error correction coding (such as turbo coding) on the input transmission data, and transmits the encoded data. Data is output to the modulation unit 211.
  • error correction coding such as turbo coding
  • Modulation section 211 performs modulation processing (QPSK or 16QAM or the like) on the transmission data received from error correction coding section 210, and outputs the modulated transmission data to mapping section 212.
  • modulation processing QPSK or 16QAM or the like
  • the mapping unit 212 maps the control information including the setting information input from the setting unit 209 and the transmission data input from the modulation unit 211 to radio resources. Note that the mapping unit 212 maps these pieces of information to subframes other than the MBSFN subframe.
  • the transmission unit 213 performs radio transmission processing such as up-conversion on the signal input from the mapping unit 212, and transmits the signal via the antenna.
  • the reception unit 214 receives a signal (uplink data) transmitted from a terminal under the relay station 200 via an antenna, performs radio processing such as down-conversion, and outputs the result to the demodulation unit 215.
  • Demodulation section 215 performs demodulation processing on the signal input from reception section 214 and outputs the obtained signal to error correction decoding section 216.
  • the error correction decoding unit 216 decodes the signal input from the demodulation unit 215 to obtain received data.
  • the obtained reception data is output to a subsequent function unit (not shown).
  • the control unit 101 sets DL BHSF independently for each of the PCell and SCell set in the relay station 200 (FIG. 6). Also, the control unit 101 sets UL ⁇ BHSF after 4 subframes of DL BHSF set to PCell in PCell.
  • the number of BHSFs set in the relay station 200 is determined based on, for example, the state of the propagation path between the base station 100 and the relay station 200 or the number of terminals under the relay station 200. For example, when the propagation path condition between the base station 100 and the relay station 200 is good, or when the number of terminals under the relay station 200 is large, the control unit 101 sets the number of BHSFs small, and the access link Increase the number of subframes. On the other hand, when the channel condition between the base station 100 and the relay station 200 is poor, or when the number of terminals under the relay station 200 is small, the control unit 101 sets a large number of BHSFs, and the access link Reduce the number of subframes for use.
  • control unit 101 may decrease the number of BHSFs when there are many terminals under the base station 100, and increase the number of BHSFs when there are few terminals under the base station 100.
  • control unit 101 may set the number of BHSFs based on both the number of terminals under the base station 100 and the number of terminals under the relay station 200 (for example, the ratio of the number of terminals or the difference in the number of terminals).
  • control unit 101 maintains the PCell BHSF setting (without changing it) when the propagation path state between the base station 100 and the relay station 200 or the number of terminals under the relay station 200 changes. ), Change the BHSF setting of SCell (add or delete BHSF).
  • FIG. 7 shows a setting example of BHSF in PCell and SCell set in the relay station 200.
  • the control unit 101 performs subframes 1 and 3 in frame 0, subframes 1 and 7 in frame 1, subframe 7 in frame 2, and frame 3 in the PCell downlink (DL).
  • Subframe 3 is set to DL BHSF.
  • the control unit 101 sets a subframe after 4 subframes from the DLellBHSF of the PCell to UL ⁇ BHSF in the PCell.
  • the control unit 101 sets DL ⁇ BHSF independently of PCell in the SCell downlink. For example, in FIG. 7, the control unit 101 performs subframes 1, 3, 6 of frame 0, subframes 2, 7, 8 of frame 1, subframes 1, 3 of frame 2 in the downlink (DL) of SCell , 6 and subframe 3 of frame 3 are set to DL BHSF.
  • DL BHSF is set only in the same subframe of PCell and SCell, whereas in FIG. 7, DL BHSF is different even in subframes different in PCell and SCell. Setting is possible.
  • the base station 100 transmits downlink data (PDSCH) to the relay station 200 using, for example, DL BHSF set in the PCell and SCell shown in FIG.
  • PDSCH downlink data
  • the allocation information generation unit 105 generates DAI indicating the allocation number (number of allocated PDSCH) of data (PUSCH) corresponding to the A / N signal to be bundled in the SCell.
  • the number of A / N signals to be bundled in SCell is set immediately before the subframe 4 ULframes before UL BHSF where the A / N signal (bundle A / N signal) after bundling is transmitted.
  • This is the number of PDSCHs allocated to the SCell within the period from the subframe after 4 subframes before UL BHSF that has been set (that is, 3 subframes before UL BHSF set immediately before). That is, the DAI includes information indicating the number of subframes (DL BHSF number) allocated to downlink data (PUSCH) received from the base station 100 by SCell within the above period.
  • UL BHSF set in subframe 1 of frame 2 shown in FIG. 7 is a subframe to be transmitted this time.
  • UL BHSF set immediately before UL BHSF set in subframe 1 of frame 2 is subframe 5 of frame 1. Therefore, the A / N signal to be bundled by UL BHSF set in subframe 1 of frame 2 is subframe of frame 2 from subframe 5 of subframe 5 of frame 1 (subframe 2 of frame 1). This is an A / N signal for the PDSCH allocated in the SCell until 4 subframes before frame 1 (subframe 7 of frame 1). Therefore, in FIG.
  • the allocation information generation unit 105 has two UL / BHSF A / N signals to be bundled in the subframe 1 of the frame 2 (the subframes 2 and 7 of the frame 1).
  • a / N signal for PDSCH received by DL BHSF That is, in this case, the DAI indicates that two DL BHSFs are set in the SCell.
  • UL BHSF set in subframe 1 of frame 3 shown in FIG. 7 is a subframe to be transmitted this time.
  • UL BHSF set immediately before UL BHSF set in subframe 1 of frame 3 is subframe 1 of frame 2. Therefore, the A / N signal to be bundled by UL BHSF set in subframe 1 of frame 3 is the subframe of frame 3 from 3 subframes before subframe 1 of frame 2 (subframe 8 of frame 1). This is an A / N signal for the PDSCH allocated in the SCell until 4 subframes before frame 1 (subframe 7 of frame 2). Therefore, in FIG.
  • the allocation information generation unit 105 has four UL / BHSF A / N signals targeted for bundling set in subframe 1 of frame 3 (subframe 8 of frame 1, frame 2).
  • a / N signal for PDSCH received in DL BHSF of subframes 1, 3 and 6 That is, in this case, DAI indicates that four DL BHSFs are set in SCell.
  • the relay station 200 receives a signal from the base station 100 using, for example, DLFBHSF set in the PCell and SCell shown in FIG.
  • a / N generation section 203 generates an A / N signal for downlink data (PDSCH) received by each CC.
  • the A / N generation unit 203 first determines an A / N signal for each downlink data received by each PCell and SCell.
  • the A / N generation unit 203 based on the DAI notified from the base station 100, among the A / N signals for the downlink data received by the SCell, a plurality of A's transmitted by the same PCell UL-BHSF
  • the bundle A / N signal is generated by bundling the / N signal.
  • the A / N generation unit 203 Bundling two A / N signals for downlink data respectively received in the DL BHSF of the SCell of the subframe 2 and the SCell of 7 shown in FIG. A bundle A / N signal to be transmitted by UL BHSF set in subframe 1 is generated.
  • the A / N generation unit 203 performs four A for the downlink data respectively received in the DL BHSF of the SCell of the subframe 8 of the frame 1, the subframes 1, 3, and 6 of the frame 2 illustrated in FIG. 7.
  • / N signal is bundled to generate a bundle A / N signal to be transmitted by UL BHSF set in subframe 1 of frame 3.
  • the transmission unit 205 of the relay station 200 transmits an A / N signal in the UL-BHSF set after 4 subframes of the DL-BHSF that received the PDSCH in the PCell.
  • transmitting section 205 transmits an A / N signal using PCell's UL BHSF, which is initially set after the fourth subframe of DL BHSF that has received PDSCH.
  • the relay station 200 transmits two A / N signals of the PCell A / N signal and the SCell A / N signal (or bundle A / N signal) in the PCell PUCCH.
  • Channel Selection is performed. That is, in relay station 200, mapping section 204 performs A / N resources (radio resources and signal points) corresponding to the states of two A / N signals (patterns of error detection results (ACK or NACK) in PCell and SCell). ) To map the A / N signal.
  • the A / N signal with respect to the downlink data received by PCell, and the A / N signal (or signal after Bundling) with respect to the downlink data received by SCell are transmitted using Channel Selection. Is done.
  • a / N generation section 203 generates an A / N signal for downlink data received from base station 100 in each of PCell and SCell.
  • the transmission part 205 transmits A / N signal by PCell.
  • the transmitting unit 205 transmits, in SCell, an A / N signal for downlink data received in a subframe different from the PCell DL BHSF, using the PCell UL BHSF.
  • the relay station 200 receives the downlink received by the DL BHSF set in the SCell in the first subframe of the PCell UL BHSF set after 4 subframes of the DL BHSF set in the SCell.
  • An A / N signal for line data is transmitted.
  • the relay station 200 Bundling the plurality of A / N signals and bundling the A / N signals after the Bundling of the SCell
  • the N signal and the PCell A / N signal are transmitted using Channel Selection.
  • allocation section 104 allocates downlink data for relay station 200 to each of PCell and SCell. Further, the A / N receiving unit 109 receives an A / N signal for downlink data by PCell. At this time, the A / N receiving unit 109 receives, in the SCell, an A / N signal for downlink data transmitted in a subframe different from the PCell DL BHSF, using the PCell UL BHSF. Specifically, the A / N receiving unit 109 of the base station 100 determines the PCell and SCell states (ACK or NACK) based on the A / N resource (radio resource and signal point) from which the A / N signal is detected. Determine.
  • the base station 100 can set the BHSF for the relay station 200 at different timings for the PCell and the SCell.
  • the BHSF is changed according to the state of the propagation path between the base station 100 and the relay station 200, the number of terminals under the relay station 200, or the change in the number of terminals under the base station 100 ( Even when adding or deleting), the base station 100 changes only the SCell BHSF setting while maintaining the PCell BHSF setting.
  • the base station 100 can change the setting of only the SCell without changing the setting of the PCell BHSF. That is, it is possible to change the resource ratio between the backhaul and the access link while avoiding the occurrence of delay due to the change of the BHSF of both PCell and SCell. Further, since the base station 100 changes only the SCell BHSF setting, the PCell does not cause a delay due to the BHSF setting change. Also, the transmission timing of the A / N signal for the PDSCH of the SCell can be longer than 4 subframes after receiving the PDSCH. However, the transmission timing of the A / N signal in PCell can maintain the timing after 4 subframes from DL BHSF. As a result, the base station 100 and the relay station 200 can perform transmission satisfying quality requirements such as delay requirements (low-delay transmission).
  • the relay station 200 Bundling a plurality of A / N signals transmitted by the same UL-BHSF of PCell among A / N signals for downlink data received by the SCell. Then, relay station 200 transmits an A / N signal for downlink data received by PCell and a Bundled A / N signal using Channel Selection.
  • the base station 100 can individually determine the PCell error detection result and the SCell error detection result. That is, even if an error is detected in the PDSCH transmitted in SCell, the base station 100 can determine whether or not the PDSCH transmitted in PCell has been normally decoded. That is, the base station 100 does not determine that not only the SCell PDSCH but also the PCell PDSCH is retransmitted when an error is detected in the SCell PDSCH. Thereby, the delay in PCell can be reduced.
  • the data (PDSCH) transmitted from the base station 100 to the relay station 200 includes data for a plurality of terminals under the relay station 200. Therefore, data (PDSCH) transmitted from the base station 100 to the relay station 200 may include data having various delay requests (QoS) such as data with severe delay requirements and data with loose delay requirements. .
  • QoS delay requests
  • the base station 100 (assignment unit 104) allocates data with severe delay requirements to PCell capable of low-delay transmission, and data other than data with severe delay requirements (including data with loose delay requirements) to the SCell. Assign it.
  • the PCell can perform data transmission that satisfies the delay requirement.
  • delay due to BHSF setting change or A / N transmission delay may occur, but the delay request for data transmitted in SCell is not strict, so there is a high probability that the delay request for the data can be satisfied .
  • data transmission satisfying a delay request or QoS is possible.
  • the base station 100 since the relay station 200 Bundling only the A / N signal for the downlink data received by the SCell, the base station 100 performs DAI (notification information on the number of subframes allocated) only for the PDSCH allocation information of the SCell. Can be added. Therefore, it is possible to reduce the overhead of resources (for example, PDCCH (Physical Downlink Control CHannel)) to which control information notified from the base station 100 to the relay station 200 is mapped.
  • DAI notification information on the number of subframes allocated
  • PDCCH Physical Downlink Control CHannel
  • UL BHSF is set after 4 subframes of PCell DL BHSF, as in FIG. That is, in FIG. 7, the correspondence relationship between DL BHSF and UL BHSF in PCell is maintained in the same manner as in FIG. In other words, the PCell BHSF setting does not depend on the DL-BHSF setting change in the SCell.
  • base station 100 can perform communication for the terminal without being affected by the setting of BHSF in SCell. That is, when performing carrier aggregation between the base station 100 and the relay station 200, even if the BHSF setting is changed in the SCell, there is no waste of radio resources in the PCell.
  • the BHSF of the SCell can be changed without changing the PCell BHSF without wasting radio resources. Can be set individually.
  • the A / N signal transmission method is not limited to Bundling.
  • the relay station transmits a plurality of A / N signals transmitted by the same UL-BHSF of PCell and the A / N signal for downlink data received by PCell. And may be transmitted using PUCCH ⁇ format 3 (see, for example, FIG. 8).
  • PUCCH ⁇ format 3 see, for example, FIG. 8
  • block coding using PUCCH format 3 all A / N signals (all bits) to be transmitted are block-coded and transmitted.
  • the base station can individually determine whether it is necessary to retransmit the PDSCH corresponding to all the A / N signals. That is, in block coding using PUCCH format 3, when the A / N signal for any one PDSCH is NACK as in Bundling, the information of the A / N signal for the remaining PDSCH is lost, and the remaining PDSCH Can also be prevented from being retransmitted.
  • the processing of the base station and the relay station in the UL-BHSF where no data signal (PUSCH) exists has been described.
  • the relay station may time-multiplex and transmit all A / N signals transmitted in the UL-BHSF to the PUSCH. That is, when the PUSCH is assigned to the PCell, the A / N signal is transmitted using the PCell PUSCH, and when the PUSCH is assigned to the SCell, the A / N signal is transmitted using the SCell PUSCH. In this case, bundling with respect to the A / N signal becomes unnecessary, and a decrease in transmission efficiency can be prevented.
  • the probability that the relay station transmits uplink data (PUSCH) is high. Therefore, as described above, the system throughput can be improved by multiplexing the A / N signal on the PUSCH.
  • the relay station may bundling a plurality of A / N signals for a plurality of downlink data respectively received by each SCell, and after bundling the A / N signal for each SCell, the PCell and the plurality of SCells Channel selection may be performed for each A / N signal.
  • one A / N signal (bundle A) obtained by bundling a plurality of A / N signals transmitted by the same UL-BHSF of PCell among A / N signals for downlink data received by SCell. / N signal) and a channel selection for one A / N signal for downlink data received by PCell (Channel selection using a 2-bit table) has been described.
  • out of A / N signals for downlink data received by SCell depending on the number of A / N signals (number of BHSFs of SCell) transmitted by the same UL-BHSF of PCell,
  • the Selection mapping table (2-bit table, 3-bit table, etc.) may be changed. Thereby, the relay station can perform Channel Selection according to the number of A / N signals in the SCell (the number of BHSFs in the SCell).
  • the relay station when carrier aggregation is applied in communication between a base station and a relay station, the relay station transmits an A / N signal based on the number and position of DL BHSFs set in the SCell. A case where the method is switched will be described.
  • the relay station is based on the number of DL BHSFs of the SCell (the number of DL BHSFs targeted by the A / N signal) that can transmit the PDSCH corresponding to the A / N signal transmitted by the same UL BHSF of the PCell.
  • the A / N signal transmission method is switched.
  • a transmission method using BPSK / QPSK, a transmission method using a combination of Bundling and Channel ⁇ Selection (N-bit table), and block encoding using PUCCH format 3 as A / N signal transmission methods is used.
  • the number of DL BHSFs of the SCell that can transmit the PDSCH corresponding to the A / N signal transmitted by the same UL BHSF of PCell is represented by “M”.
  • base station 100 (FIG. 5) according to the present embodiment, the processing in control unit 101, allocation information generation unit 105, and A / N reception unit 109 is different from that in the first embodiment.
  • the control unit 101 performs BHSF (DL BHSF and UL BHSF) settings for each relay station 200 independently for each CC, as in the first embodiment.
  • BHSF DL BHSF and UL BHSF
  • the control unit 101 sets a PUCCH resource for A / N signal transmission for each UL-BHSF set by PCell according to the A / N signal transmission method. For example, when the A / N signal is transmitted by BPSK / QPSK transmission, the control unit 101 sets one A / N resource in the PCell UL-BHSF. In addition, when the A / N signal is transmitted by a combination of Bundling and Channel Selection, the control unit 101 assigns two A / N resources (four A / N resources in the case of MIMO) to the PCell UL BHSF. Set. In addition, when the A / N signal is transmitted according to PUCCH format 3, the control unit 101 sets PUCCH format 3 for one channel in the UL BHSF of the PCell.
  • the transmission method of the A / N signal is determined in accordance with the number of DL BHSFs M of the SCell that can transmit the PDSCH corresponding to the A / N signal transmitted by UL BHSF. For example, when M is 0 (when there is no SCell DL BHSF targeted by the UL BHSF A / N signal and only the PCell A / N signal), BPSK / QPSK transmission is set, and M is 1
  • the combination of Bundling and Channel Selection is set when the threshold value is less than the preset threshold value K, and when M is K or more, transmission according to PUCCH format 3 (block coding) is set.
  • FIG. 9 shows the correspondence between M and the A / N signal transmission method described above.
  • Base station 100 and relay station 200 share the correspondence shown in FIG.
  • the threshold value K may be a predetermined number or a variable that can be set by the base station 100.
  • the base station 100 may determine the threshold value K in consideration of a trade-off relationship between “decrease in transmission efficiency due to Bundling” and “block coding gain”. For example, when the error correlation between subframes is high, such as when the channel fluctuation is moderate, the “decrease in transmission efficiency due to Bundling” is small, so the base station 100 may increase the threshold K. On the other hand, when the error correlation between subframes is low, such as when the channel fluctuation is severe, the “decrease in transmission efficiency due to Bundling” is large, and the base station 100 may decrease the threshold value K.
  • the allocation information generation unit 105 adds the allocation information regarding the data transmitted in the SCell to the allocation information in the PCell as in the first embodiment.
  • a DAI indicating the number of PDSCHs assigned to data respectively corresponding to a plurality of A / N signals that are bundled with one UL-BHSF and transmitted as bundle A / N signals is included.
  • the A / N receiving unit 109 acquires information related to the A / N signal transmission method set by the control unit 101 (not shown).
  • the A / N reception unit 109 performs A / N determination on the A / N signal input from the reception unit 108 based on the acquired transmission method of the A / N signal.
  • the processes in the A / N generation unit 203 and the mapping unit 204 are different from those in the first embodiment.
  • the A / N generation unit 203 determines the transmission method of the A / N signal according to the number of DLHSBHSFs of the SCell to which the PDSCH corresponding to the A / N signal transmitted by the same UL BHSF of the PCell can be allocated. For example, the A / N generation unit 203 holds the correspondence relationship between M and the A / N signal transmission method shown in FIG. That is, the A / N generation unit 203 sets BPSK / QPSK transmission when M is 0, and sets a combination of Bundling and Channel Selection when M is 1 or more and less than a preset threshold K. If M is greater than or equal to K, transmission by PUCCHCformat 3 (block encoding) is set. Then, the A / N generation unit 203 generates an A / N signal according to the determined A / N signal transmission method.
  • the mapping unit 204 maps the A / N signal generated by the A / N generation unit 203 to the A / N resource set by the control unit 101 of the base station 100.
  • Embodiment 1 (FIG. 7), a case will be described in which an A / N signal is transmitted by UL-BHSF in which no data signal (PUSCH) exists. That is, a case where the A / N signal is transmitted only by the PCell PUCCH will be described.
  • the base station 100 and the relay station 200 share the correspondence between M and the A / N signal transmission method shown in FIG.
  • the control unit 101 sets DL BHSF independently for each of the PCell and SCell set in the relay station 200 (FIG. 6). Also, the control unit 101 sets UL ⁇ BHSF after 4 subframes of DL BHSF set to PCell in PCell.
  • FIG. 10 shows a setting example of BHSF in PCell and SCell set in the relay station 200.
  • the control unit 101 performs subframes 1 and 3 in frame 0, subframes 1 and 7 in frame 1, subframe 7 in frame 2, and frame 3 in the PCell downlink (DL).
  • Subframe 3 is set to DL BHSF.
  • the control unit 101 sets, in PCell, a subframe that is four subframes after the DLell BHSF of the PCell to UL BHSF.
  • the control unit 101 performs subframes 1, 3, 6 for frame 0, subframes 2, 7, 8 for frame 1, and subframes for frame 2 in the SCell downlink (DL) Set 1, 3, 6 to DL BHSF.
  • control unit 101 of the base station 100 and the A / N generation unit 203 of the relay station 200 determine the transmission method of the A / N signal.
  • the SCell A / N signals transmitted in the PCell UL BHSF set in these subframes are the DLCellBHSF of the SCell set in the subframes 1 and 3 of the frame 0 and the subframe 6 of the frame 1, respectively.
  • There is only one A / N signal for downlink data (PDSCH) transmitted in (M 1). Therefore, the control unit 101 and the A / N generation unit 203 determine the transmission method of the A / N signal transmitted by the UL-BHSF as a combination of Bundling and Channel-Selection with reference to the table shown in FIG. .
  • the state of the 2-bit A / N signal of the PCell A / N signal and the SCell A / N signal ( ⁇ ACK, ACK ⁇ , ⁇ ACK, NACK ⁇ , ⁇ NACK, ACK ⁇ , ⁇ NACK, NACK ⁇ ) And A / N resources (wireless resources and signal points) are associated with each other, an A / N signal is transmitted by Channel Selection of a 2-bit table.
  • the SCell A / N signal transmitted in the PCell UL-BHSF set in this subframe corresponds to the downlink data (PDSCH) transmitted in the SCell DL-BHSF set in the subframes 2 and 7 of the frame 1
  • Two A / N signals (M 2). Therefore, the control unit 101 and the A / N generation unit 203 determine the transmission method of the A / N signal transmitted by the UL-BHSF as a combination of Bundling and Channel-Selection with reference to the table shown in FIG. .
  • the A / N generation unit 203 bundles two SCell A / N signals, and uses a 2-bit table channel for the bundled A / N signals after bundling and the PCell A / N signals. Apply Selection.
  • Channel Selection of a 3-bit or 4-bit table may be applied.
  • the SCell A / N signal transmitted by the PCell UL BHSF set in this subframe is the DL BHSF of the SCell set in the subframe 8 of the frame 1 and the subframes 1, 3 and 6 of the frame 2.
  • the control unit 101 and the A / N generation unit 203 refer to the table shown in FIG. 9 and change the transmission method of the A / N signal transmitted by the UL BHSF to block encoding using PUCCH format 3 decide.
  • the A / N generation unit 203 performs block coding on a total of five A / N signals (5 bits) of one PCell A / N signal and four SCell A / N signals as independent bits. Then, it transmits to base station 100 using PUCCH format 3.
  • the A / N generation unit 203 modulates one PCell A / N signal with BPSK.
  • QPSK may be applied to a 2-bit A / N signal.
  • transmission section 205 performs A / N signal based on the number of DL BHSFs of the SCell targeted by the A / N signal transmitted by the same UL BHSF of PCell. Switch the N signal transmission method.
  • the number of DL BHSF of the above SCell is the subframe 4 ULframes before the UL BHSF that is the current transmission target, and the subframes after 4 subframes before the UL BHSF that is the previous transmission target (that is, This is the DL BHSF number set in the SCell during the period between the previous transmission target UL BHSF 3 subframes before).
  • a plurality of A / N signals for a plurality of downlink data of SCell are bundled, and the signal after the bundling and the A for the downlink data (PDSCH) received by the PCell are used.
  • / N signal is transmitted using Channel Selection (Bundling + Channel Selection), and a plurality of SCell A / N signals and PCell A / N signals are block-encoded (block encoding using PUCCH format 3) ) And a method of transmitting only PCell A / N (BPSK / QPSK transmission).
  • the relay station 200 performs block coding when “M” is large (when M shown in FIG. 9 is equal to or greater than the threshold value K), and when “M” is low (M shown in FIG. 9). If it is less than the threshold value K, Bundling is performed.
  • M when “M” is large (when the number of A / N signals is large), it is possible to prevent the throughput from being reduced due to unnecessary retransmission due to the reduction in transmission efficiency due to bundling.
  • “M” is small (when the number of A / N signals is small), it is possible to suppress deterioration in performance of block coding.
  • an A / N signal at the time of BPSK / QPSK transmission and one A / N resource used in Channel Selection are 12 CSs (Cyclic Shift) per resource block. This is one of a maximum of 36 resources defined in combination with three OCC (Orthogonal Cover Code) sequences. Further, the number of resources corresponding to the number of bits of the A / N signal is used as the A / N resource.
  • one A / N resource used in PUCCH format 3 is defined by one of five orthogonal sequences multiplexed in one resource block. That is, one A / N resource used in PUCCH format 3 requires more resources than one A / N resource used in BPSK / QPSK transmission and Channel Selection.
  • relay station 200 transmits A / N signals according to the number of DL BHSFs of SCells in which PDSCHs corresponding to A / N signals transmitted by the same UL BHSF can be transmitted in PCell.
  • the effect of reducing overhead in the uplink by switching the method is great.
  • base station 100 sets BHSF at different timings for PCell and SCell, as in Embodiment 1. Even when the BHSF is changed (added or deleted) in accordance with the state of the propagation path between the base station 100 and the relay station 200 or the change in the number of terminals under the relay station 200 in order to improve the system throughput, the base station 100 changes only the SHS BHSF setting while maintaining the PCell BHSF setting.
  • the base station 100 can change the setting of only the SCell without changing the setting of the PCell BHSF.
  • the transmission timing of the A / N signal in the PCell can maintain the timing after 4 subframes from the DLFBHSF, the base station 100 and the relay station 200 can perform transmission satisfying quality requirements such as delay requirements (low delay). Transmission). That is, in this embodiment, as in Embodiment 1, data transmission satisfying QoS can be performed in the backhaul between base station 100 and relay station 200. Further, even if the BHSF setting is changed in the SCell, wireless resources are not wasted in the PCell.
  • the Bell SF of the PCell is changed without causing waste of radio resources.
  • SCell's BHSF can be set individually without doing so.
  • the PUCCH used for transmitting the A / N signal is switched by switching the A / N signal transmission method according to the number of A / N signals transmitted by the same UL-BHSF in the PCell. The amount of resources can be kept low.
  • the relay station may not normally transmit the A / N signal even when the PDSCH is transmitted only by the PCell. In the LTE-A system, it takes at least 15 ms to notify the BHSF number setting change from the base station to the relay station.
  • the relay station uses a predetermined A / N resource when there is PDSCH allocation only in the PCell, regardless of the presence or absence of the SCell BHSF. To transmit an A / N signal. Therefore, when transmitting an A / N signal at the timing of changing the setting of the number of BHSFs in SCell, the relay station switches between two transmission methods of BPSK / QPSK transmission and a combination of Bundling and Channel Selection. You may do it.
  • a / N in each UL BHSF is included in the allocation information related to PDSCH of PCell.
  • Information indicating the presence / absence of PDSCH allocation in the SCell that is the signal transmission target may be included.
  • the base station notifies the allocation information to the relay station.
  • the relay station can accurately identify the number of BHSFs of the Sell by referring to the allocation information even during the setting change of the number of the BHSFs of the Sell.
  • the relay station When there is no PDSCH allocation in the SCell, the relay station transmits only the PCell A / N signal by BPSK / QPSK, and when there is a PDSCH allocation in the SCell, the relay station transmits the PCell A / N signal and the SCell. These A / N signals may be block-encoded and transmitted.
  • the base station may be called NodeB, eNodeB, or donor eNB.
  • a relay station may also be called a relay.
  • a terminal may also be called a mobile station.
  • the A / N signal may include DTX in addition to ACK and NACK. If the relay station does not receive PDSCH data, it determines “DTX” and transmits it to the base station.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention is useful for mobile communication systems and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 基地局と中継局との間でCarrier aggregationを行う際、無線リソースの無駄を生じさせることなく、PCellのBHSFを変更させずにSCellのBHSFを個別に設定することができる中継局。基地局(100)と中継局(200)との間のバックホール通信にPCell及びSCellが使用され、下り回線においてバックホール通信に使用されるPCellのDL BHSFと、上り回線においてバックホール通信に使用されるPCellのUL BHSFとが設定され、UL BHSFはDL BHSFから所定数後のサブフレームである、通信システムで用いられる中継局(200)であって、A/N生成部(203)は、PCell及びSCellの各々で基地局(100)から受信した下り信号に対する応答信号を生成し、送信部(205)は、SCellにおいて、PCellののDL BHSFとは異なるサブフレームで受信した下り信号に対する応答信号を、PCellのUL BHSFで送信する。

Description

中継局、基地局、送信方法、及び受信方法
 本発明は、中継局、基地局、送信方法、及び受信方法に関する。
 近年、セルラ移動体通信システムにおいては、情報のマルチメディア化に伴い、音声データのみならず、静止画像データ及び動画像データ等の大容量データを伝送することが一般化しつつある。大容量データの伝送を実現するために、高周波の無線帯域を利用して高伝送レートを実現する技術に関する検討が盛んに行われている。
 しかし、高周波の無線帯域を利用する場合には、近距離では高伝送レートの通信が期待できる一方、遠距離になるに従って伝送距離による減衰が大きくなる。よって、高周波の無線帯域を利用した移動体通信システムを実際に運用する場合には、基地局(又は「eNB」と呼ぶこともある)のカバーエリアが小さくなるため、より多くの基地局を設置する必要がある。基地局の設置には相応のコストがかかる。従って、基地局数の増加を抑制しつつ、高周波の無線帯域を利用した通信サービスを実現するための技術が強く求められている。
 このような要求に対して、各基地局のカバーエリアを拡大させるために、基地局と端末(又は「UE:User Equipment」と呼ぶこともある)との間に、中継局(又は「RN:Relay Node」と呼ぶこともある)を設置し、基地局と端末との間の通信を中継局を介して行う、中継技術が検討されている。中継(Relay)技術を用いると、基地局と直接通信できない端末も、中継局を介して通信することができる。
 上記した中継技術の導入が検討されているLTE-A(Long Term Evolution Advanced。3GPP Release 10に相当)システムに対しては、LTE(Long Term Evolution。3GPP Release 8に相当)からのスムーズな移行及びLTEとの共存の観点から、LTEとの互換性を維持することが要求されている。そのため、中継技術に関しても、LTEとの相互互換性が求められている。
 また、中継局を用いたLTE-Aシステム(例えば、非特許文献1参照)では、中継局がLTE端末を収容することも求められている。LTE-Aシステムでは、基地局と中継局との間の通信(バックホール通信)と、中継局と端末との間(アクセスリンク)の通信と、を同一周波数帯域で行うことが検討されている。この場合、下り回線(Down Link:DL)向けの周波数では、基地局と中継局との間の通信(バックホール通信)に用いるサブフレームとして、下りバックホールサブフレーム(Downlink Backhaul Subframe:DL BHSF)が設定される。中継局は、下り回線において、DL BHSFでは基地局からの信号を受信し、DL BHSF以外のサブフレームでは自機配下の端末(自機のセル内の端末)向けの信号を送信する。また、上り回線(Uplink:UL)では、基地局と中継局との間の通信(バックホール通信)に用いるサブフレームとして、DL BHSFの4サブフレーム後に上りバックホールサブフレーム(Uplink Backhaul Subframe:UL BHSF)が設定される。中継局は、上り回線において、UL BHSFでは基地局向けの信号を送信し、UL BHSF以外のサブフレームでは自機配下の端末からの信号を受信する。このように、バックホール通信(基地局と中継局との通信)と、中継局のアクセスリンクの通信(中継局と端末との通信)とは時間領域で分割される(例えば、非特許文献1参照)。
 また、LTEでは、下り回線において、中継局配下の端末向けにMBSFN(MBMS Single Frequency Network)サブフレームを設定することが検討されている。MBSFNサブフレームは、MBMS(Multimedia Broadcast Multicast Service)サービスのデータを送信するために定義されたサブフレームである。端末は、MBSFNサブフレームではMBMSサービスが通知されない限り信号を受信しないという動作が定められている。また、上述したように、中継局が基地局と通信するBHSF(DL BHSF及びUL BHSF)では、中継局は、配下の端末向けに通信を行わない。そこで、LTEシステムでは、中継局が基地局と通信するBHSF(DL BHSF及びUL BHSF)と重なる、アクセスリンク用のサブフレームを、MBSFNサブフレームに設定する手法が提案されている。これにより、実際に送信されていない信号(CRS(Common Reference Signal:共通パイロット信号)を含む)を端末が誤って検出してしまうことによる品質測定精度の劣化等を回避することができる。
 図1は、基地局(eNB)と中継局(RN)との間のバックホール通信(eNBセルでの通信)、及び、中継局(RN)と端末(UE)との間の通信(RNセルでの通信)におけるサブフレーム設定例を示す。
 例えば、図1に示す先頭フレームに着目する。図1に示すeNBセルの下り回線では、サブフレーム1及び3がDL BHSFに設定されている。また、図1に示すeNBセルの上り回線では、DL BHSFが設定されたサブフレーム1及び3の4サブフレーム後のサブフレーム5及び7がUL BHSFに設定されている。一方、図1に示すRNセルの下り回線では、eNBセルにおいてDL BHSFに設定されたサブフレーム1及び3、及び、上り回線でUL BHSFに設定されたサブフレーム5及び7は、それぞれMBSFNサブフレームに設定されている。図1に示す他のフレームについても同様である。なお、図1では、例えば、DL BHSFは、8サブフレーム間隔の周期のサブフレームのうち、BHSFに設定できないサブフレーム(例えば、報知情報等が割り当てられるサブフレーム)以外のサブフレームに設定される。
 また、LTE-Aシステム(例えば、非特許文献2~5参照)では、LTEシステムにおける伝送速度の数倍もの超高速伝送速度による通信、及び、LTEシステムに対する互換性を同時に実現するために、LTE-Aシステム向けの帯域が、LTEシステムのサポート帯域幅に対応する「Component Carrier(単位バンド)」に区切られる。例えば、「Component Carrier」は、最大20MHzの幅を持つ帯域であって、通信帯域の基本単位(基本周波数帯域)として定義される。また、「Component Carrier」はCellと表記されることがある。また、「Component Carrier」は、略称としてCC(s)と表記されることもある。LTE-Aシステムでは、その「Component Carrier」を幾つか束ねた帯域を用いた通信、所謂Carrier aggregationがサポートされる。Carrier aggregationでは、各CCでデータ信号が送信されることで、データ伝送速度を向上させている。
 また、1つの端末に設定される上記「Component Carrier」は、1つのPrimary Component Carrier(又はPrimary Cell:PCell)と、1つ又は複数のSecondary Component Carrier(又はSecondary Cell:SCell)とを含む。例えば、上り回線で送信されるデータ信号が存在しないサブフレームでは、下り回線データに対するACK/NACK信号(応答信号。以下、「A/N信号」と記載する)及びチャネル品質情報(Channel Quality Indicator:CQI)等の制御情報は、PCellからのみ送信される。より詳細には、上記制御情報は、PCell内の上り回線制御チャネル(例えば、PUCCH(Physical Uplink Control Channel))で送信される。これは、上り回線では、異なるCCで同時に信号が送信されると、PAPR(Peak to Average Power Ratio)の増加に伴いカバレッジが減少してしまうからである。ここで、端末は、或るサブフレームにおいて、PCell及びSCellの双方で下り回線データを受信した場合、当該サブフレームの4サブフレーム後に、各CCで受信した下り回線データに対するA/N信号をPCellで送信する。つまり、LTE-Aシステム(3GPP Release 10)では、PDSCH(Physical Downlink Shared CHnannel)割当の4サブフレーム後に、PCellのみからA/N信号が送信される。
 また、前述のCarrier aggregationが適用されるLTE-Aシステムでは、端末が一度に複数のCCにおいて複数の下り回線データを受信することがある。LTE-Aシステムでは、この複数の下り回線データに対する複数のA/N信号の送信方法として、Channel Selection(Multiplexingとも呼ぶ)、Bundling、及び、PUCCH format 3を用いたブロック符号化が検討されている。
 Channel Selectionでは、複数の下り回線データに関する誤り検出結果のパターンに応じて、A/N信号に用いるシンボル点だけでなく、A/N信号をマッピングするリソースも変化させる。Bundlingでは、複数の下り回線データに関する誤り検出結果より生成されたACK又はNACKをBundlingして(すなわち、ACK=1、NACK=0とし、複数の下り回線データに関する誤り検出結果の論理積(Logical AND)を計算して)、予め決められた1つのリソースを用いてA/N信号(束A/N信号と呼ぶこともある)を送信する。また、PUCCH format 3を用いたブロック符号化を行う方法では、端末は複数の下り回線データにそれぞれ対する複数の応答信号を纏めてブロック符号化し、PUCCH format 3と呼ばれるチャネルを用いてその符号化データを送信する。
 例えば、LTE-Aシステムでは、A/Nのビット数が4ビット以下の場合、A/N信号は、Channel Selectionを用いてPCellのPUCCHから送信され、A/Nのビット数が5ビット以上の場合、A/N信号は、PUCCH format 3を用いてPCellのPUCCHから送信される。
 なお、LTE-Aシステムでは、上り回線で送信されるデータ信号が存在するサブフレームでは、上記制御情報は、上り回線データチャネル(例えば、PUSCH(Physical Uplink Shared CHannel))で、当該データ信号と時間多重されて送信される。すなわち、PCellにPUSCHがある場合には制御情報はPCellのPUSCHで送信され、SCellにPUSCHがある場合には制御情報はSCellのPUSCHで送信される。
 LTE-Aシステムをさらに拡張する3GPP Release 11では、基地局(eNB)と中継局(RN)との間の通信(バックホール通信)についてもCarrier aggregationを適用することが検討されている(例えば、非特許文献6参照)。
3GPP TS 36.216 V10.2.0, "Physical layer for relaying operation (Release 10)," March 2011 3GPP TS 36.211 V10.1.0, "Physical Channels and Modulation (Release 10)," March 2011 3GPP TS 36.212 V10.1.0, "Multiplexing and channel coding (Release 10)," March 2011 3GPP TS 36.213 V10.1.0, "Physical layer procedures(Release 10)," March 2011 3GPP TS 36.214 V10.1.0, "Physical layer Measurements(Release 10)," March 2011 NTT DoCoMo, 3GPP RAN1 meeting, R1-110243, "Combination of Carrier Aggregation and Relay in Rel-10," January 2011
 基地局と中継局との間でCarrier aggregationを行う際、上述した3GPP Release 10でのCarrier aggregationにおけるA/N信号の送信方法(つまり、PDSCHが割り当てられたサブフレームの4サブフレーム後にA/N信号がPCellのみから送信される方法)を適用することが考えられる。上述したように、A/N信号等を送信するためのPCellのUL BHSFは、PCellのDL BHSFから4サブフレーム後に設定される。よって、基地局は、SCellで受信した下り回線データに対するA/N信号を送信するためには、PCellに設定されたUL BHSFの4サブフレーム前に、SCellのDL BHSFを設定する必要がある。つまり、PCellとSCellとで、DL BHSFを設定するサブフレームが同一となる必要がある。
 例えば、図2は、基地局(eNB)と中継局(RN)との間におけるPCell及びSCellでのBHSFの設定例を示す。なお、図2では図示しないが、各CCには、図1に示すような中継局のセル(RNセル)も設定されている。
 図2に示すように、SCellでのDL BHSFは、PCellでのUL BHSFの4サブフレーム前、つまり、PCellでのDL BHSFと同一タイミングのみで設定されている。このように、基地局と中継局との間のバックホールにおいてCarrier aggregationが設定(configure)された場合に上記A/N信号の送信方法を適用すると、SCellのDL BHSFは、PCellのDL BHSF以外のサブフレームに設定できないという制約がある。
 また、中継局の運用においてシステムスループットを最大化するためには、バックホールで用いる無線リソースと、アクセスリンクで用いる無線リソースとのバランスを考慮する必要がある。また、バックホールで用いる無線リソースは、基地局のセル(マクロセル)内の端末向けの無線リソースと共有される。このため、バックホールで用いる無線リソースは、基地局のセル内の端末におけるスループットも考慮して設定する必要がある。
 例えば、バックホール(基地局と中継局との間)の伝搬路状況が良好である場合、又は、中継局配下(中継局のセル)の端末数が多い場合、バックホールの無線リソースは少なくなり、アクセスリンク(中継局と端末との間)の無線リソースは多くなるように設定される。一方、バックホールの伝搬路状況が劣悪である場合、又は、中継局配下の端末数が少ない場合、バックホールの無線リソースは多くなり、アクセスリンクの無線リソースは少なくなるように設定される。
 しかしながら、上記A/N信号の送信方法では、バックホールに用いる無線リソースの変更、つまり、BHSFの設定変更を行うには、PCell及びSCellの双方でBHSFの追加又は削除を行う必要がある。BHSFの変更は、中継局への無線リソース制御パラメータ(例えば、RRC(Radio Resource Control))の設定変更(RRC reconfiguration)のみでなく、MBSFNサブフレームの設定変更等、中継局と端末との間(RNセル)に関する設定変更も伴うため、データ伝送の遅延が大きくなってしまう。例えば、これらの設定変更により、数100msオーダーの遅延が生じる。これより、PCell及びSCellの双方でBHSFの設定変更を行うと、遅延要求の厳しいデータに対しては許容できない遅延が生じる可能性がある。
 一方、SCellで送信された下り回線データに対するA/N信号向けに、PCellのUL BHSFを追加設定することが考えられる。これにより、追加設定されたPCellのUL BHSFの4サブフレーム前にPCellのDL BHSFが設定されているか否かに関わらず、SCellのDL BHSFを個別に設定することが可能となる。
 ここで、SCell用に追加設定されたPCellのUL BHSFの4サブフレーム前の下り回線のサブフレームにおいて、PCellにDL BHSFが設定されない場合、PCellの当該サブフレームは、中継局配下の他の端末向けのサブフレームに設定され得る。しかしながら、追加設定されたUL BHSFはSCellのA/N信号の送信(つまり、バックホール通信)に使用されるので、中継局は、追加設定されたUL BHSFでは中継局配下の端末からのA/N信号を受信しない。よって、結果として、追加設定されたPCellのUL BHSFの4サブフレーム前のサブフレームには、基地局は、PCellにおいて端末向けの下り回線データを割り当てることができない。このため、SCellで送信された下り回線データに対するA/N信号向けに、PCellのUL BHSFを追加設定する場合には、中継局と端末との間の通信に使用できる無線リソースの無駄が生じてしまう。
 本発明の目的は、基地局と中継局との間でCarrier aggregationを行う際、無線リソースの無駄を生じさせることなく、PCellのBHSFを変更させずにSCellのBHSFを個別に設定することができる中継局、基地局、送信方法、及び受信方法を提供することである。
 本発明の一態様の中継局は、基地局と中継局との間のバックホール通信に第1の単位バンド及び第2の単位バンドが使用され、下り回線においてバックホール通信に使用される前記第1の単位バンドの第1のサブフレームと、上り回線においてバックホール通信に使用される前記第1の単位バンドの第2のサブフレームとが設定され、前記第2のサブフレームは前記第1のサブフレームから所定数後のサブフレームである、通信システムで用いられる中継局であって、前記第1の単位バンド及び第2の単位バンドの各々で基地局から受信した下り信号に対する応答信号を生成する生成手段と、前記応答信号を、前記第1の単位バンドで送信する送信手段と、を具備し、前記送信手段は、前記第2の単位バンドにおいて、前記第1の単位バンドの前記第1のサブフレームとは異なるサブフレームで受信した下り信号に対する応答信号を、前記第1の単位バンドの前記第2のサブフレームで送信する。
 本発明の一態様の基地局は、基地局と中継局との間のバックホール通信に第1の単位バンド及び第2の単位バンドが使用され、下り回線においてバックホール通信に使用される前記第1の単位バンドの第1のサブフレームと、上り回線においてバックホール通信に使用される前記第1の単位バンドの第2のサブフレームとが設定され、前記第2のサブフレームは前記第1のサブフレームから所定数後のサブフレームである、通信システムで用いられる基地局であって、前記第1の単位バンド及び第2の単位バンドの各々に中継局向けの下り信号を割り当てる割当手段と、前記下り信号に対する応答信号を、前記第1の単位バンドで受信する受信手段と、を具備し、前記受信手段は、前記第2の単位バンドにおいて、前記第1の単位バンドの前記第1のサブフレームとは異なるサブフレームで受信した下り信号に対する応答信号を、前記第1の単位バンドの前記第2のサブフレームで受信する。
 本発明の一態様の送信方法は、基地局と中継局との間のバックホール通信に第1の単位バンド及び第2の単位バンドが使用され、下り回線においてバックホール通信に使用される前記第1の単位バンドの第1のサブフレームと、上り回線においてバックホール通信に使用される前記第1の単位バンドの第2のサブフレームとが設定され、前記第2のサブフレームは前記第1のサブフレームから所定数後のサブフレームである、通信システムで用いられる送信方法であって、前記第1の単位バンド及び第2の単位バンドの各々で基地局から受信した下り信号に対する応答信号を生成し、前記第2の単位バンドにおいて、前記第1の単位バンドの前記第1のサブフレームとは異なるサブフレームで受信した下り信号に対する応答信号を、前記第1の単位バンドの前記第2のサブフレームで送信する。
 本発明の一態様の受信方法は、基地局と中継局との間のバックホール通信に第1の単位バンド及び第2の単位バンドが使用され、下り回線においてバックホール通信に使用される前記第1の単位バンドの第1のサブフレームと、上り回線においてバックホール通信に使用される前記第1の単位バンドの第2のサブフレームとが設定され、前記第2のサブフレームは前記第1のサブフレームから所定数後のサブフレームである、通信システムで用いられる受信方法であって、前記第1の単位バンド及び第2の単位バンドの各々に中継局向けの下り信号を割り当て、前記第2の単位バンドにおいて、前記第1の単位バンドの前記第1のサブフレームとは異なるサブフレームで受信した下り信号に対する応答信号を、前記第1の単位バンドの前記第2のサブフレームで受信する。
 本発明によれば、基地局と中継局との間でCarrier aggregationを行う際、無線リソースの無駄を生じさせることなく、PCellのBHSFを変更させずにSCellのBHSFを個別に設定することができる。
BHSFの設定例を示す図 バックホールでCarrier aggregationを適用した場合のBHSFの設定例を示す図 本発明の実施の形態1に係る基地局の主要構成図 本発明の実施の形態1に係る中継局の主要構成図 本発明の実施の形態1に係る基地局の構成を示すブロック図 本発明の実施の形態1に係る中継局の構成を示すブロック図 本発明の実施の形態1に係るBHSFの設定例を示す図 本発明の実施の形態1に係るBHSFのその他の設定例を示す図 本発明の実施の形態2に係るA/N信号送信対象のSCellのBHSF数と送信方法との対応関係の一例を示す図 本発明の実施の形態2に係るBHSFの設定例を示す図
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
 [実施の形態1]
 [通信システムの概要]
 本発明の実施の形態1に係る通信システムは、基地局100と中継局200と端末とを有する。この通信システムは、例えば、LTE-Aシステムである。そして、基地局100は、例えば、LTE-A基地局であり、バックホールにおいて中継局200と通信する。
 また、この通信システムでは、基地局100と中継局200との間の通信(バックホール通信)においてCarrier aggregationが適用される。すなわち、基地局100と中継局200との間のバックホール通信に、PCell及びSCellを含む複数のCCが使用される。
 また、この通信システムでは、下り回線(DL)においてバックホール通信に使用されるPCellのDL BHSF、上り回線(UL)においてバックホール通信に使用されるPCellのUL BHSF、及び、下り回線(DL)においてバックホール通信に使用されるSCellのDL BHSFがそれぞれ設定される。ここで、PCellのUL BHSFは、PCellのDL BHSFから所定数(ここでは4サブフレーム)後のサブフレームとする。
 また、中継局200は、PCellで受信した下り回線データ(PDSCH)に対するA/N信号とSCellで受信した下り回線データ(PDSCH)に対するA/N信号とに対して、Channel Selectionを適用して、A/N信号をPCellで送信する。また、中継局200は、SCellで受信した複数の下り回線データのそれぞれに対する複数のA/N信号を一つに束ねる(Bundlingする)ことがある。この場合、中継局200は、一つに束ねられたA/N信号(束A/N信号)と、PCellで受信した下り回線データ(PDSCH)に対するA/N信号とに対して、Channel Selectionを適用して、A/N信号をPCellで送信する。
 図3は、本実施の形態に係る基地局100の主要構成図である。基地局100において、割当部104は、PCell(第1の単位バンド)及びSCell(第2の単位バンド)の各々に中継局200向けの下り信号を割り当て、A/N受信部109は、下り信号に対するA/N信号(応答信号)を、PCell(第1の単位バンド)で受信する。ここで、A/N受信部109は、SCell(第2の単位バンド)において、PCell(第1の単位バンド)のDL BHSF(第1のサブフレーム)とは異なるサブフレームで送信された下り信号に対するA/N信号(応答信号)を、PCell(第1の単位バンド)のUL BHSF(第2のサブフレーム)で受信する。
 図4は、本実施の形態に係る中継局200の主要構成図である。中継局200において、A/N生成部203は、PCell(第1の単位バンド)及びSCell(第2の単位バンド)の各々で基地局100から受信した下り信号に対するA/N信号(応答信号)を生成し、送信部205は、A/N信号(応答信号)を、PCell(第1の単位バンド)で送信する。ここで、送信部205は、SCell(第2の単位バンド)において、PCell(第1の単位バンド)のDL BHSF(第1のサブフレーム)とは異なるサブフレームで受信した下り信号に対するA/N信号(応答信号)を、PCell(第1の単位バンド)のUL BHSF(第2のサブフレーム)で送信する。
 [基地局100の構成]
 図5は、本実施の形態に係る基地局100の構成を示すブロック図である。図5において、基地局100は、制御部101と、誤り訂正符号化部102と、変調部103と、割当部104と、割当情報生成部105と、マッピング部106と、送信部107と、受信部108と、A/N受信部109と、復調部110と、誤り訂正復号部111とを有する。
 制御部101は、例えば、基地局100と複数の中継局200との間の伝搬路状況、又は、各中継局200配下の端末数等に基づいて、各中継局200に対するBHSF(DL BHSF及びUL BHSF)の設定を行う。基地局100と中継局200との間の伝搬路状況は、例えば、パスロス、フェージング、受信電力、受信SIR(Signal to Interference Ratio)、及び、移動速度等が挙げられる。例えば、1フレームが10サブフレームで構成され、1サブフレーム=1msとすると、制御部101は、40ms(=4フレーム=40サブフレーム)周期で繰り返すDL BHSFを設定する。また、制御部101は、DL BHSFから所定数後のサブフレームをUL BHSFに設定する。例えば、制御部101は、DL BHSFの4サブフレーム後をUL BHSFに設定する。
 また、制御部101は、各中継局200に対してCarrier aggregationを設定(configure)する。すなわち、制御部101は、「Cell」又は「Component Carrier:CC」と呼ばれる複数の周波数帯域を、各中継局200に設定する。また、制御部101は、各中継局200に設定した複数のCCのうち1つをPCellに設定し、PCell以外をSCellに設定する。また、制御部101は、各中継局200にそれぞれ設定したPCell及びSCellに対して無線パラメータを設定する。
 制御部101は、設定したBHSFを示すBHSF情報、設定したCarrier aggregationに関するCA情報、各CCの無線パラメータ等を含む制御情報をマッピング部106に出力する。
 誤り訂正符号化部102は、送信データを入力とし、入力された送信データを誤り訂正符号化(ターボ符号化等)し、符号化後の送信データを変調部103に出力する。
 変調部103は、誤り訂正符号化部102から受け取る送信データに対して変調処理(QPSK又は16QAM等)を施し、変調後の送信データをマッピング部106に出力する。
 割当部104は、各中継局200向けのデータ(PDSCH)に対する無線リソース(時間リソース、周波数リソース又は空間リソース)の割当処理を行う。例えば、割当部104は、まず、各中継局200から報告される各CCの伝搬路品質情報(CQI)又は各送信データの遅延要求に基づいて、制御部101で設定された各中継局200のPCell又はSCellのいずれにデータを割り当てるかを決定する。例えば、割当部104は、遅延要求の厳しいデータをPCellに割り当て、遅延要求の緩いデータをSCellに割り当てる。次いで、割当部104は、データ割当を決定したPCell又はSCellにおいて、スケジューリングを行い、各データを無線リソースへ割り当てる。また、割当部104は、A/N受信部109から入力されるA/N判定の結果(ACK又はNACK)に基づいて、再送データ(図示せず)を無線リソースに割り当てる。割当部104は、各中継局200向けのデータに対する無線リソースの割当結果を、割当情報生成部105に出力する。
 割当情報生成部105は、割当部104での割当結果を含む割当情報(例えば、Downlink Control Information:DCI)を生成する。ここで、割当情報生成部105は、SCellで送信されるデータ(PDSCH)に関する割当情報に、PCell内の1つのUL BHSFでBundlingされ、束A/N信号として送信される複数のA/N信号にそれぞれ対応するデータに対して割り当てられたPDSCHの数(割当済みのPDSCH数又はPDSCHの割当数)を示すDAI(Downlink Assignment Information)を含める。そして、割当情報生成部105は、生成した割当情報に対して誤り訂正符号化処理及び変調処理を行い、変調後の割当情報をマッピング部106に出力する。
 マッピング部106は、割当情報生成部105から入力される割当情報(各中継局200の各CCでの割当結果)に基づいて、変調部103から入力される送信データ(つまり、PDSCH)を、無線リソースへマッピングする。また、マッピング部106は、制御部101から入力される制御情報、及び、割当情報生成部105から入力される割当情報を、無線リソースへマッピングする。各無線リソースへマッピングされた信号は、送信部107へ出力される。
 送信部107は、マッピング部106から入力される信号に対してアップコンバート等の無線送信処理を施し、アンテナを介して送信する。
 受信部108は、中継局200から送信された信号をアンテナを介して受信し、ダウンコンバート等の無線処理を施した後にA/N受信部109及び復調部110に出力する。
 A/N受信部109は、受信部108から入力される信号から、A/N信号が送信されるべきリソース(A/Nリソース)に対応する信号を抽出する。なお、受信部108から入力される信号に上り回線データ(PUSCH)が含まれる場合、A/NリソースはPUSCHに対応するリソースである。一方、受信部108から入力される信号に上り回線データ(PUSCH)が含まれない場合、A/Nリソースは、PCell内のUL BHSFに配置されたPUCCHに対応するリソースである。また、A/N受信部109は、PCellとSCellとの間については、Channel Selectionに用いられるどのA/Nリソースのどの信号点で信号が送信されたかを判定することにより、A/N判定を行う。また、SCellのA/N信号は1つ又は複数の下り回線データに対するA/N信号がBundlingされた結果であるので、A/N受信部109は、SCellのA/N判定の結果を、SCellにおけるBundling対象である全てのPDSCHに対するA/N信号として適用する。A/N受信部109は、A/N判定の結果(ACK又はNACK)を割当部104に出力する。
 復調部110は、受信部108から入力される信号に対して復調処理を施し、得られた信号を誤り訂正復号部111へ出力する。
 誤り訂正復号部111は、復調部110から入力される信号を復号し、受信データを得る。得られた受信データは、後段の機能部(図示せず)へ出力される。
 [端末200の構成]
 図6は、本実施の形態に係る中継局200の構成を示すブロック図である。図6において、中継局200は、誤り訂正符号化部201と、変調部202と、A/N生成部203と、マッピング部204と、送信部205と、受信部206と、復調部207と、誤り訂正復号部208と、設定部209と、誤り訂正符号化部210と、変調部211と、マッピング部212と、送信部213と、受信部214と、復調部215と、誤り訂正復号部216とを有する。なお、図6において、誤り訂正符号化部201~誤り訂正復号部208は、基地局100のセル向け(基地局100と中継局200との間の通信向け)の送受信処理部を構成する。また、図6において、設定部209~誤り訂正復号部216は、中継局200のセル向け(中継局200と中継局200配下の端末との間の通信向け)の送受信処理部を構成する。
 誤り訂正符号化部201は、基地局100向けの送信データ(上り回線データ)を入力とし、入力された送信データを誤り訂正符号化(ターボ符号化等)し、符号化後の送信データを変調部202に出力する。
 変調部202は、誤り訂正符号化部201から受け取る送信データに対して変調処理(QPSK又は16QAM等)を施し、変調後の送信データをマッピング部204に出力する。
 A/N生成部203は、誤り訂正復号部208から入力される信号、つまり、各CC(PCell及びSCell)で基地局100から受信した下り回線データ(PDSCH)に対して誤り検出処理を行い、A/N信号を生成する。また、A/N生成部203は、SCellで受信した下り回線データに対するA/N信号のうち、PCellの1つのUL BHSFで纏めて送信されるA/N信号をBundlingする。具体的には、A/N生成部203は、PCellに設定された複数のUL BHSFの中の今回の送信対象となるUL BHSF(送信対象サブフレーム)の4サブフレーム前のサブフレームから、今回送信対象の直前の送信対象であったUL BHSFの4サブフレーム前のサブフレームより後のサブフレーム(つまり、直前の送信対象であったUL BHSFの3サブフレーム前)までの期間で、SCellで基地局100から受信した下り回線データ(PDSCH)に対するA/N信号をBundlingする。
 例えば、A/N生成部203は、受信部206から入力される割当情報に含まれるDAIに示されるSCellでのPDSCHの割当数から、Bundling対象のA/N信号の数を特定する。そして、A/N生成部203は、例えば、DAIに示されるSCellでのPDSCHの割当数と、実際にSCellで受信したPDSCHの数とが異なる場合、PDSCHの割当があったが受信しなかったサブフレーム(つまり,DCIの復号誤りによりPDSCHの割り当てがなかったと誤って認識されたサブフレーム)に対してNACKを生成する。これにより、PDSCHの割当情報の受信誤りが発生して、PDSCHの割当が有ると誤って認識されたサブフレームにおいてACKを生成するといった、誤った処理が行われることを防止することができる。
 なお、Bundlingは、複数のA/N信号(例えば、ACK=1、NACK=0)のexclusive ORを行う処理である。よって、A/N生成部203は、Bundling対象のA/N信号が全て1(PDSCHの全てで誤り無し)の場合にはACKを生成し、Bundling対象のA/N信号のいずれか1つでも0(PDSCHのいずれか1つでも誤りが有る)場合にはNACKを生成する。また、A/N生成部203は、PDSCHが空間多重送信されている場合、空間多重されたデータブロック(Transport Block)毎にBundlingしてもよい。
 マッピング部204は、変調部202から入力される送信データ(つまり、PUSCH)、及び、A/N生成部203から入力されるA/N信号を、送信データ用の無線リソース及びA/N信号用の無線リソース(A/Nリソース)にそれぞれマッピングする。ここで、マッピング部204は、送信データを、受信部206から入力される割当情報(DCI)に示されるPUSCHのリソース(又はリソースブロック)に割り当てる。また、マッピング部204は、受信部206から入力されるBHSF情報及びCA情報に基づいて、当該送信データを、PCellのUL BHSFに対応するサブフレームの無線リソースにマッピングする。また、マッピング部204は、PCellのUL BHSFでPUSCHが割り当てられる場合、A/N信号を当該PUSCHに割り当て(多重し)、PCellのUL BHSFに対応するサブフレームの無線リソースにマッピングする。一方、マッピング部204は、PCellのUL BHSFでPUSCHが割り当てられていない場合、A/N信号をPUCCHに割り当て、PCellのUL BHSFに対応するサブフレームの無線リソースにマッピングする。各無線リソースへマッピングされた信号は、送信部205へ出力される。
 送信部205は、マッピング部204から入力される信号に対してアップコンバート等の無線送信処理を施し、アンテナを介して送信する。これにより、各CC(PCell及びSCell)で基地局100から受信した下り回線データ(PDSCH)に対するA/N信号は、PCellで送信される。
 受信部206は、基地局100から送信された信号をアンテナを介して受信し、ダウンコンバート等の無線処理を施す。なお、基地局から送信された信号には、上り回線データに対する割当結果を示す割当情報、基地局100と中継局200との間で設定されたBHSFを示すBHSF情報、中継局200に設定されたCarrier aggregationに関するCA情報、各CCの無線パラメータ等の制御情報、及び、基地局100からの下り回線データ(PDSCH)が含まれる。受信部206は、割当情報及びBHSF情報をマッピング部204に出力し、下り回線データを復調部207に出力する。また、受信部206は、割当情報をA/N生成部203に出力し、BHSF情報を設定部209に出力する。
 復調部207は、受信部206から入力される信号に対して復調処理を施し、得られた信号を誤り訂正復号部208へ出力する。
 誤り訂正復号部208は、復調部207から入力される信号を復号し、受信データを得る。誤り訂正復号部208は、得られた受信データを、A/N生成部203及び後段の機能部(図示せず)へ出力する。
 一方、設定部209は、受信部206から入力されるBHSF情報に基づいて、中継局200がカバーするセル(中継局200のセル)向けにMBSFNサブフレームを設定する。すなわち、設定部209は、DL BHSFに設定されたサブフレームを、MBSFNサブフレームに設定する。ここで、MBSFNサブフレームは、主にMBMSサービスに用いられるサブフレームである。例えば、MBSFNサブフレームは14OFDMシンボルで構成され、先頭の3OFDMシンボルは制御チャネル領域であり、残りの11OFDMシンボルは、MBMSサービスを受信する端末以外では信号が受信されないサブフレームである。設定部209は、MBSFNサブフレームの設定情報をマッピング部212に出力する。当該設定情報は、報知情報として、中継局200配下の端末に対して送信される。
 誤り訂正符号化部210は、中継局200配下の端末向けの送信データ(下り回線データ)を入力とし、入力された送信データを誤り訂正符号化(ターボ符号化等)し、符号化後の送信データを変調部211に出力する。
 変調部211は、誤り訂正符号化部210から受け取る送信データに対して変調処理(QPSK又は16QAM等)を施し、変調後の送信データをマッピング部212に出力する。
 マッピング部212は、設定部209から入力される設定情報を含む制御情報、及び、変調部211から入力される送信データを、無線リソースにそれぞれマッピングする。なお、マッピング部212は、これらの情報を、MBSFNサブフレーム以外のサブフレームにマッピングする。
 送信部213は、マッピング部212から入力される信号に対してアップコンバート等の無線送信処理を施し、アンテナを介して送信する。
 受信部214は、中継局200配下の端末から送信された信号(上り回線データ)をアンテナを介して受信し、ダウンコンバート等の無線処理を施し、復調部215に出力する。
 復調部215は、受信部214から入力される信号に対して復調処理を施し、得られた信号を誤り訂正復号部216へ出力する。
 誤り訂正復号部216は、復調部215から入力される信号を復号し、受信データを得る。得られた受信データは、後段の機能部(図示せず)へ出力される。
 [基地局100及び端末200の動作]
 以上の構成を有する基地局100及び端末200の動作について説明する。
 ここでは、特に、データ信号(PUSCH)が存在しないUL BHSFでA/N信号が送信される場合について説明する。すなわち、A/N信号がPCellのPUCCHのみで送信される場合について説明する。
 また、ここでは、中継局200(図6)に対して、2つのCC(PCell及びSCell)が設定されている場合について説明する。
 基地局100(図5)において、制御部101は、中継局200(図6)に設定されたPCell及びSCellのそれぞれについてDL BHSFを独立に設定する。また、制御部101は、PCellにおいて、PCellに設定されたDL BHSFの4サブフレーム後にUL BHSFを設定する。
 中継局200に設定されるBHSFの数は、例えば、基地局100と中継局200との間の伝搬路状況、又は、中継局200配下の端末数に基づいて決定される。例えば、基地局100と中継局200との間の伝搬路状況が良好である場合、又は、中継局200配下の端末数が多い場合、制御部101は、BHSFの数を少なく設定し、アクセスリンク用のサブフレーム数を多くする。一方、基地局100と中継局200との間の伝搬路状況が劣悪である場合、又は、中継局200配下の端末数が少ない場合、制御部101は、BHSFの数を多く設定し、アクセスリンク用のサブフレーム数を少なくする。また、制御部101は、基地局100配下の端末が多い場合にはBHSFの数を少なくし、基地局100配下の端末が少ない場合にはBHSFの数を多くしてもよい。又は、制御部101は、基地局100配下の端末数と中継局200配下の端末数の両方(例えば、端末数の比又は端末数の差)に基づいてBHSFの数を設定してもよい。
 また、制御部101は、基地局100と中継局200との間の伝搬路状況又は中継局200配下の端末数が変化した場合には、PCellのBHSFの設定を維持したまま(変更せずに)、SCellのBHSFの設定を変更(BHSFの追加又は削除)する。
 例えば、図7は、中継局200に設定されたPCell及びSCellにおけるBHSFの設定例を示す。
 図7に示すように、制御部101は、PCellの下り回線(DL)において、フレーム0のサブフレーム1,3、フレーム1のサブフレーム1,7、フレーム2のサブフレーム7、及び、フレーム3のサブフレーム3を、DL BHSFに設定する。また、図7に示すように、制御部101は、PCellにおいて、PCellのDL BHSFから4サブフレーム後のサブフレームをUL BHSFに設定する。
 また、図7に示すように、制御部101は、SCellの下り回線において、PCellとは独立にDL BHSFを設定する。例えば、図7では、制御部101は、SCellの下り回線(DL)において、フレーム0のサブフレーム1,3,6、フレーム1のサブフレーム2,7,8、フレーム2のサブフレーム1,3,6、及び、フレーム3のサブフレーム3を、DL BHSFに設定する。
 例えば、図2と図7とを比較すると、図2ではPCell及びSCellの同一サブフレームのみにDL BHSFが設定されるのに対して、図7ではPCellとSCellとで異なるサブフレームでもDL BHSFの設定が可能となる。
 そして、基地局100は、例えば、図7に示すPCell及びSCellにそれぞれ設定されたDL BHSFで、中継局200に対する下り回線データ(PDSCH)を送信する。
 また、基地局100において、割当情報生成部105は、SCellにおいてBundling対象のA/N信号に対応するデータ(PUSCH)の割当数(割当済みのPDSCH数)を示すDAIを生成する。ここで、SCellにおいてBundling対象となるA/N信号の数は、Bundling後のA/N信号(束A/N信号)が送信されるUL BHSFの4サブフレーム前のサブフレームと、直前に設定されたUL BHSFの4サブフレーム前より後のサブフレーム(つまり、直前に設定されたUL BHSFの3サブフレーム前)との間の期間内に、SCellに割り当てられたPDSCHの数である。つまり、DAIには、上記期間内にSCellで基地局100から受信した下り回線データ(PUSCH)に割り当てられたサブフレーム数(DL BHSF数)を示す情報が含まれる。
 例えば、図7に示すフレーム2のサブフレーム1に設定されたUL BHSFが今回の送信対象のサブフレームである場合について説明する。図7に示すように、フレーム2のサブフレーム1に設定されたUL BHSFの直前に設定されたUL BHSFは、フレーム1のサブフレーム5である。よって、フレーム2のサブフレーム1に設定されたUL BHSFでBundling対象となるA/N信号は、フレーム1のサブフレーム5の3サブフレーム前(フレーム1のサブフレーム2)から、フレーム2のサブフレーム1の4サブフレーム前(フレーム1のサブフレーム7)までの間にSCellで割り当てられたPDSCHに対するA/N信号である。よって、図7では、割当情報生成部105は、フレーム2のサブフレーム1に設定されたUL BHSFでBundling対象となるA/N信号の数が、2つ(フレーム1のサブフレーム2及び7のDL BHSFで受信するPDSCHに対するA/N信号)であると特定する。すなわち、この場合、DAIには、SCellに2つのDL BHSFが設定されたことが示される。
 同様に、図7に示すフレーム3のサブフレーム1に設定されたUL BHSFが今回の送信対象のサブフレームである場合について説明する。図7に示すように、フレーム3のサブフレーム1に設定されたUL BHSFの直前に設定されたUL BHSFは、フレーム2のサブフレーム1である。よって、フレーム3のサブフレーム1に設定されたUL BHSFでBundling対象となるA/N信号は、フレーム2のサブフレーム1の3サブフレーム前(フレーム1のサブフレーム8)から、フレーム3のサブフレーム1の4サブフレーム前(フレーム2のサブフレーム7)までの間にSCellで割り当てられたPDSCHに対するA/N信号である。よって、図7では、割当情報生成部105は、フレーム3のサブフレーム1に設定されたUL BHSFでBundling対象となるA/N信号の数が、4つ(フレーム1のサブフレーム8、フレーム2のサブフレーム1,3及び6のDL BHSFで受信するPDSCHに対するA/N信号)であると特定する。すなわち、この場合、DAIには、SCellに4つのDL BHSFが設定されたことが示される。
 一方、中継局200は、例えば、図7に示すPCell及びSCellにそれぞれ設定されたDL BHSFで、基地局100からの信号を受信する。
 そして、中継局200において、A/N生成部203は、各CCで受信した下り回線データ(PDSCH)に対するA/N信号を生成する。このとき、A/N生成部203は、まず、PCell及びSCellでそれぞれ受信した下り回線データに対してA/N信号をそれぞれ判定する。次いで、A/N生成部203は、基地局100から通知されるDAIに基づいて、SCellで受信した下り回線データに対するA/N信号のうち、同一のPCellのUL BHSFで送信される複数のA/N信号をBundlingして、束A/N信号を生成する。
 例えば、A/N生成部203は、図7に示すフレーム1のサブフレーム2及び7のSCellのDL BHSFでそれぞれ受信した下り回線データに対する2つのA/N信号をBundlingすることで、フレーム2のサブフレーム1に設定されたUL BHSFで送信する束A/N信号を生成する。同様に、例えば、A/N生成部203は、図7に示すフレーム1のサブフレーム8、フレーム2のサブフレーム1,3及び6のSCellのDL BHSFでそれぞれ受信した下り回線データに対する4つのA/N信号をBundlingして、フレーム3のサブフレーム1に設定されたUL BHSFで送信する束A/N信号を生成する。
 そして、中継局200の送信部205は、PCellでは、PDSCHを受信したDL BHSFの4サブフレーム後に設定されたUL BHSFでA/N信号を送信する。一方、送信部205は、SCellでは、PDSCHを受信したDL BHSFの4サブフレーム目以降で最初に設定されたPCellのUL BHSFでA/N信号を送信する。
 この際、図7に示すように、中継局200は、PCellのA/N信号及びSCellのA/N信号(又は束A/N信号)の2つのA/N信号を、PCellのPUCCH内の1つのA/Nリソースを用いて送信するために、Channel Selectionを行う。すなわち、中継局200において、マッピング部204は、2つのA/N信号の状態(PCell及びSCellでの誤り検出結果(ACK又はNACK)のパターン)に応じたA/Nリソース(無線リソース及び信号点)にA/N信号をマッピングする。これにより、送信部205では、PCellで受信した下り回線データに対するA/N信号と、SCellで受信した下り回線データに対するA/N信号(又はBundling後の信号)とが、Channel Selectionを用いて送信される。
 以上のように本実施の形態によれば、中継局200において、A/N生成部203は、PCell及びSCellの各々で基地局100から受信した下り回線データに対するA/N信号を生成する。また、送信部205は、A/N信号をPCellで送信する。ここで、送信部205は、SCellにおいて、PCellのDL BHSFとは異なるサブフレームで受信した下り回線データに対するA/N信号を、PCellのUL BHSFで送信する。具体的には、中継局200は、SCellに設定されたDL BHSFの4サブフレーム後以降に設定されたPCellのUL BHSFのうち最初のサブフレームで、SCellに設定されたDL BHSFで受信した下り回線データに対するA/N信号を送信する。また、中継局200は、PCellのUL BHSFのタイミングまでに、SCellで送信対象のA/N信号が複数ある場合には、複数のA/N信号をBundlingし、SCellのBundling後の束A/N信号と、PCellのA/N信号とをChannel Selectionを用いて送信する。
 これに対して、基地局100において、割当部104は、PCell及びSCellの各々に中継局200向けの下り回線データを割り当てる。また、A/N受信部109は、下り回線データに対するA/N信号をPCellで受信する。このとき、A/N受信部109は、SCellにおいて、PCellのDL BHSFとは異なるサブフレームで送信した下り回線データに対するA/N信号を、PCellのUL BHSFで受信する。具体的には、基地局100のA/N受信部109は、A/N信号が検出されたA/Nリソース(無線リソース及び信号点)に基づいて、PCell及びSCellの状態(ACK又はNACK)を判定する。
 こうすることにより、基地局100は、中継局200に対して、PCellとSCellとで異なるタイミングでBHSFを設定することができる。
 また、システムスループットを向上させるために、基地局100と中継局200との間の伝搬路状況又は中継局200配下の端末数,あるいは基地局100配下の端末数の変化に応じてBHSFを変更(追加又は削除)する場合でも、基地局100は、PCellのBHSFの設定を維持したまま、SCellのBHSFの設定のみを変更する。
 こうすることにより、基地局100は、PCellのBHSFの設定変更無しでSCellのみを設定変更することができる。すなわち、PCell及びSCellの双方のBHSFの変更に伴う遅延の発生を回避しつつ、バックホールとアクセスリンクとの間のリソース比を変更することができる。また、基地局100がSCellのBHSFの設定のみを変更するので、PCellではBHSFの設定変更に伴う遅延は発生しない。また,SCellのPDSCHに対するA/N信号の送信タイミングはPDSCHを受信してから4サブフレームより長くなり得る。しかし、PCellにおけるA/N信号の送信タイミングとしては、DL BHSFから4サブフレーム後のタイミングを維持できる。これにより、基地局100及び中継局200では、遅延要求等の品質要求を満たした伝送(低遅延の伝送)が可能となる。
 また、中継局200は、SCellで受信された下り回線データに対するA/N信号のうち、PCellの同一UL BHSFで送信される複数のA/N信号をBundlingする。そして、中継局200は、PCellで受信された下り回線データに対するA/N信号と、BundlingされたA/N信号とをChannel Selectionを用いて送信する。
 こうすることにより、基地局100は、PCellの誤り検出結果とSCellの誤り検出結果とを個別に判定することができる。すなわち、基地局100は、SCellで送信されたPDSCHに誤りが検出されたとしても、PCellで送信されたPDSCHが正常に復号されたか否かを判定することができる。つまり、基地局100は、SCellのPDSCHで誤りが検出されたことによって、SCellのPDSCHのみでなくPCellのPDSCHも再送すると判断することがない。これにより、PCellでの遅延を低減することができる。
 ここで、基地局100から中継局200へ送信されるデータ(PDSCH)には、中継局200配下の複数の端末向けのデータも含まれる。よって、基地局100から中継局200へ送信されるデータ(PDSCH)には、遅延要求の厳しいデータ及び遅延要求の緩いデータ等の様々な遅延要求(QoS)を有するデータが混在することが考えられる。
 そこで、基地局100(割当部104)は、遅延要求の厳しいデータを、低遅延伝送が可能なPCellに割り当て、遅延要求の厳しいデータ以外のデータ(遅延要求の緩いデータを含む)を、SCellに割り当てればよい。これにより、PCellでは、遅延要求を満たすデータ伝送が可能となる。また、SCellでは、BHSFの設定変更等に伴う遅延またはA/N送信の遅延が発生し得るものの、SCellで送信されるデータの遅延要求は厳しくないので、当該データの遅延要求を満たせる確率が高い。こうすることにより、基地局100と中継局200との間のバックホールでは遅延要求あるいはQoSを満たしたデータ伝送が可能となる。
 また、中継局200がSCellで受信した下り回線データに対するA/N信号のみをBundlingするので、基地局100は、SCellのPDSCHの割当情報に対してのみDAI(サブフレームの割当数の通知情報)を付加すればよい。よって、基地局100から中継局200へ通知する制御情報がマッピングされるリソース(例えば、PDCCH(Physical Downlink Control CHannel))のオーバーヘッドを低減することができる。
 また、図2と図7とを比較すると、図7では、図2と同様、PCellのDL BHSFの4サブフレーム後にUL BHSFが設定される。すなわち、図7では、PCellでのDL BHSFとUL BHSFとの対応関係が図2と同様に維持される。つまり、PCellのBHSFの設定は、SCellでのDL BHSFの設定変更に依らない。これにより、PCellでBHSFに設定されたサブフレーム以外のサブフレームでは、基地局100は、SCellでのBHSFの設定に影響を受けることなく、端末向けの通信を行うことができる。すなわち、基地局100と中継局200との間でCarrier aggregationを行う場合、SCellでのBHSFの設定変更を行っても、PCellにおいて無線リソースの無駄が生じることは無い。
 このようにして、本実施の形態によれば、基地局と中継局との間でCarrier aggregationを行う際、無線リソースの無駄を生じさせることなく、PCellのBHSFを変更させずにSCellのBHSFを個別に設定することができる。
 なお、本実施の形態では、A/N信号の送信方法としてBundlingを行う場合について説明した。しかし、本実施の形態において、A/N信号の送信方法はBundlingに限らない。例えば、中継局は、SCellで受信した下り回線データに対するA/N信号のうち、PCellの同一UL BHSFで送信される複数のA/N信号と、PCellで受信した下り回線データに対するA/N信号とをブロック符号化し、PUCCH format 3を用いて送信してもよい(例えば、図8参照)。PUCCH format 3を用いたブロック符号化では、送信対象の全てのA/N信号(全ビット)がブロック符号化されて送信される。これにより、基地局は、全てのA/N信号に対応するPDSCHの再送の要否を個別に判断することができる。すなわち、PUCCH format 3を用いたブロック符号化では、Bundlingのようにいずれか1つのPDSCHに対するA/N信号がNACKの場合に当該残りのPDSCHに対するA/N信号の情報が損なわれ、残りのPDSCHも再送されてしまうことを防ぐことができる。
 また、本実施の形態では、データ信号(PUSCH)が存在しないUL BHSFでの基地局及び中継局の処理について説明した。これに対して、データ信号(PUSCH)が存在するUL BHSFでは、中継局は、当該UL BHSFで送信される全てのA/N信号を、PUSCHに時間多重して送信してもよい。すなわち、PCellにPUSCHが割り当てられている場合にはA/N信号はPCellのPUSCHで送信され、SCellにPUSCHが割り当てられている場合にはA/N信号はSCellのPUSCHで送信される。この場合、A/N信号に対するBundlingが不要となり、送信効率の低下を防ぐことができる。また、一般に、中継局から基地局へ送信されるデータには、複数の端末からのデータが含まれるので、中継局が上り回線データ(PUSCH)を送信する確率は高い。このため、上述したように、PUSCHにA/N信号を多重することによるシステムスループットの向上が図れる。
 また、本実施の形態では、Carrier aggregationを行う際、中継局に対して1つのSCellが設定される場合について説明した。しかし、中継局に対して設定されるSCellの数は1個に限らず、複数のSCellを設定してもよい。この場合、中継局は、各SCellでそれぞれ受信された複数の下り回線データに対する複数のA/N信号をBundlingしてもよく、SCell毎にA/N信号をBundlingした後に、PCell及び複数のSCellの各A/N信号に対してchannel selectionを行ってもよい。
 また、本実施の形態では、SCellで受信した下り回線データに対するA/N信号のうち、PCellの同一UL BHSFで送信される複数のA/N信号をBundlingした1つのA/N信号(束A/N信号)とPCellで受信した下り回線データに対する1つのA/N信号とに対するChannel Selection(2ビットテーブルを用いたChannel Selection)が行われる場合について説明した。しかし、本実施の形態において、SCellで受信した下り回線データに対するA/N信号のうち、PCellの同一UL BHSFで送信されるA/N信号の数(SCellのBHSFの数)に応じて、Channel Selectionのマッピングテーブル(2ビットテーブル、3ビットテーブル等)を変更してもよい。これにより、中継局は、SCellでのA/N信号の数(SCellのBHSFの数)に応じたChannel Selectionを行うことができる。
 [実施の形態2]
 本実施の形態では、基地局と中継局との間の通信においてCarrier aggregationが適用される際、中継局が、SCellに設定されるDL BHSFの数及び位置に基づいて、A/N信号の送信方法を切り替える場合について説明する。
 具体的には、中継局は、PCellの同一UL BHSFで送信されるA/N信号に対応するPDSCHが送信されうるSCellのDL BHSF数(A/N信号が対象とするDL BHSF数)に基づいて、A/N信号の送信方法を切り替える。以下の説明では、A/N信号の送信方法として、BPSK/QPSKを用いた送信方法、BundlingとChannel Selection(Nビットテーブル)との組み合わせの送信方法、及び、PUCCH format 3を用いたブロック符号化による送信方法が用いられる。
 以下の説明では、PCellの同一UL BHSFで送信されるA/N信号に対応するPDSCHが送信されうるSCellのDL BHSF数を「M」で表す。
 本実施の形態に係る基地局100(図5)において、制御部101、割当情報生成部105及びA/N受信部109での処理が実施の形態1と異なる。
 制御部101は、実施の形態1と同様、各中継局200に対するBHSF(DL BHSF及びUL BHSF)の設定をCC毎に独立に行う。
 また、制御部101は、A/N信号の送信方法に応じて、PCellで設定したUL BHSF毎に、A/N信号送信用のPUCCHリソースを設定する。例えば、制御部101は、BPSK/QPSK送信によるA/N信号の送信が行われる場合、PCellのUL BHSFに1つのA/Nリソースを設定する。また、制御部101は、BundlingとChannel Selectionとの組み合わせによるA/N信号の送信が行われる場合、PCellのUL BHSFに2つのA/Nリソース(MIMOの場合は4つのA/Nリソース)を設定する。また、制御部101は、PUCCH format 3によるA/N信号の送信が行われる場合、PCellのUL BHSFにPUCCH format 3を1チャネル分設定する。
 ここで、A/N信号の送信方法は、UL BHSFで送信されるA/N信号に対応するPDSCHが送信されうるSCellのDL BHSF数Mに応じて決定される。例えば、Mが0の場合(当該UL BHSFのA/N信号が対象とするSCellのDL BHSFが無く、PCellのA/N信号のみの場合)にはBPSK/QPSK送信が設定され、Mが1以上かつ予め設定された閾値K未満の場合にはBundlingとChannel Selectionとの組み合わせが設定され、MがK以上の場合にはPUCCH format 3(ブロック符号化)による送信が設定される。
 上述したMとA/N信号の送信方法との対応関係を図9に示す。基地局100及び中継局200は、図9に示す対応関係を共有する。なお、閾値Kは、予め決定された所定の数でもよく、基地局100が設定可能な変数でもよい。
 閾値Kが大きいほど、BundlingとChannel Selectionとの組み合わせが設定される確率が高くなり、Bundlingに起因する送信効率の低下がより大きくなる。一方、閾値Kが小さいほど、より少ない数のA/N信号に対してPUCCH format 3を用いるブロック符号化が設定される確率が高くなり、ブロック符号化のゲインが小さくなる。そこで、基地局100は、「Bundlingに起因する送信効率の低下」と「ブロック符号化のゲイン」とのトレードオフの関係を考慮して閾値Kを決定してもよい。例えば、伝搬路変動が緩やかな場合等、サブフレーム間の誤り相関が高い場合には「Bundlingに起因する送信効率の低下」は小さいので、基地局100は閾値Kを大きくしてもよい。一方、伝搬路変動が激しい場合等、サブフレーム間の誤り相関が低い場合には「Bundlingに起因する送信効率の低下」は大きいので、基地局100は閾値Kを小さくしてもよい。
 割当情報生成部105は、A/N信号の送信方法が、BundlingとChannel Selectionとの組み合わせである場合、実施の形態1と同様にして、SCellで送信されるデータに関する割当情報に、PCell内の1つのUL BHSFでBundlingされ、束A/N信号として送信される複数のA/N信号にそれぞれ対応するデータに対して割り当てられたPDSCHの数を示すDAIを含める。
 A/N受信部109は、制御部101で設定されたA/N信号の送信方法に関する情報を取得する(図示せず)。そして、A/N受信部109は、取得したA/N信号の送信方法に基づいて、受信部108から入力されるA/N信号に対して、A/N判定を行う。
 本実施の形態に係る中継局200(図6)において、A/N生成部203及びマッピング部204での処理が実施の形態1と異なる。
 A/N生成部203は、PCellの同一UL BHSFで送信されるA/N信号に対応するPDSCHが割り当てられうるSCellのDL BHSF数Mに応じて、A/N信号の送信方法を決定する。例えば、A/N生成部203は、図9に示すMとA/N信号の送信方法との対応関係を保持する。すなわち、A/N生成部203は、Mが0の場合にはBPSK/QPSK送信を設定し、Mが1以上かつ予め設定された閾値K未満の場合にはBundlingとChannel Selectionとの組み合わせを設定し、MがK以上の場合にはPUCCH format 3(ブロック符号化)による送信を設定する。そして、A/N生成部203は、決定したA/N信号の送信方法に応じて、A/N信号を生成する。
 マッピング部204は、A/N生成部203で生成されたA/N信号を、基地局100の制御部101で設定されたA/Nリソースにマッピングする。
 [基地局100及び端末200の動作]
 以上の構成を有する基地局100及び端末200の動作について説明する。
 ここでは、実施の形態1(図7)と同様、データ信号(PUSCH)が存在しないUL BHSFでA/N信号が送信される場合について説明する。すなわち、A/N信号がPCellのPUCCHのみで送信される場合について説明する。
 また、ここでは、中継局200(図6)に対して、2つのCC(PCell及びSCell)が設定されている場合について説明する。また、基地局100及び中継局200は、図9に示すMとA/N信号の送信方法との対応関係を共有する。ここでは、一例として、図9に示す閾値K=4とする。
 基地局100(図5)において、制御部101は、中継局200(図6)に設定されたPCell及びSCellのそれぞれについてDL BHSFを独立に設定する。また、制御部101は、PCellにおいて、PCellに設定されたDL BHSFの4サブフレーム後にUL BHSFを設定する。
 例えば、図10は、中継局200に設定されたPCell及びSCellにおけるBHSFの設定例を示す。図10に示すように、制御部101は、PCellの下り回線(DL)において、フレーム0のサブフレーム1,3、フレーム1のサブフレーム1,7、フレーム2のサブフレーム7、及び、フレーム3のサブフレーム3を、DL BHSFに設定する。また、図10に示すように、制御部101は、PCellにおいて、PCellのDL BHSFから4サブフレーム後のサブフレームをUL BHSFに設定する。また、図10に示すように、制御部101は、SCellの下り回線(DL)において、フレーム0のサブフレーム1,3,6、フレーム1のサブフレーム2,7,8、フレーム2のサブフレーム1,3,6を、DL BHSFに設定する。
 また、基地局100の制御部101、及び、中継局200のA/N生成部203は、A/N信号の送信方法を決定する。
 例えば、図10に示すフレーム0のサブフレーム5、7、及び、フレーム1のサブフレーム5にそれぞれ着目する。これらのサブフレームに設定されたPCellのUL BHSFでそれぞれ送信されるSCellのA/N信号は、フレーム0のサブフレーム1、3、及び、フレーム1のサブフレーム6に設定されたSCellのDL BHSFで送信された下り回線データ(PDSCH)に対する1つのA/N信号のみである(M=1)。よって、制御部101及びA/N生成部203は、図9に示すテーブルを参照して、上記UL BHSFで送信されるA/N信号の送信方法を、BundlingとChannel Selectionとの組み合わせに決定する。ここでは、PCellのA/N信号及びSCellのA/N信号の2ビットのA/N信号の状態({ACK,ACK}、{ACK,NACK}、{NACK,ACK}、{NACK,NACK})とA/Nリソース(無線リソース及び信号点)とが対応付けられた2ビットテーブルのChannel Selectionによって、A/N信号が送信される。
 同様に、図10に示すフレーム2のサブフレーム1に着目する。このサブフレームに設定されたPCellのUL BHSFで送信されるSCellのA/N信号は、フレーム1のサブフレーム2、7に設定されたSCellのDL BHSFで送信された下り回線データ(PDSCH)に対する2つのA/N信号である(M=2)。よって、制御部101及びA/N生成部203は、図9に示すテーブルを参照して、上記UL BHSFで送信されるA/N信号の送信方法を、BundlingとChannel Selectionとの組み合わせに決定する。ここでは、A/N生成部203は、SCellの2つのA/N信号をBundlingして、Bundling後の束A/N信号と、PCellのA/N信号とに対して、2ビットテーブルのChannel Selectionを適用する。なお、MIMOによる空間多重が行われる場合には3ビット又は4ビットテーブルのChannel Selectionが適用されてもよい。
 同様に、図10に示すフレーム3のサブフレーム1に着目する。このサブフレームに設定されたPCellのUL BHSFで送信されるSCellのA/N信号は、フレーム1のサブフレーム8、及び、フレーム2のサブフレーム1,3,6に設定されたSCellのDL BHSFで送信された下り回線データ(PDSCH)に対する4つのA/N信号である(M=4)。よって、制御部101及びA/N生成部203は、図9に示すテーブルを参照して、上記UL BHSFで送信されるA/N信号の送信方法を、PUCCH format 3を用いたブロック符号化に決定する。すなわち、A/N生成部203は、PCellの1つのA/N信号、及び、SCellの4つのA/N信号の合計5つのA/N信号(5ビット)をそれぞれ独立なビットとしてブロック符号化して、PUCCH format 3を用いて基地局100へ送信する。
 最後に、図10に示すフレーム3のサブフレーム7に着目する。このサブフレームに設定されたPCellのUL BHSFで送信されるSCellのA/N信号は無い(M=0)。よって、制御部101及びA/N生成部203は、図9に示すテーブルを参照して、上記UL BHSFで送信されるA/N信号の送信方法を、BPSK/QPSK送信に決定する。ここでは、A/N生成部203は、PCellの1つのA/N信号をBPSKで変調する。なお、MIMOによる空間多重が行われる場合には2ビットのA/N信号に対してQPSKが適用されてもよい。
 以上のように本実施の形態によれば、中継局200において、送信部205は、PCellの同一UL BHSFで送信されるA/N信号が対象とするSCellのDL BHSF数に基づいて、A/N信号の送信方法を切り替える。ここで、上記SCellのDL BHSF数は、今回の送信対象であるUL BHSFの4サブフレーム前のサブフレームと、直前の送信対象であるUL BHSFの4サブフレーム前より後のサブフレーム(つまり、直前の送信対象であるUL BHSFの3サブフレーム前)との間の期間内にSCellに設定されたDL BHSF数である。また、例えば、A/Nの送信方法には、SCellの複数の下り回線データに対する複数のA/N信号をBundlingして、Bundling後の信号と、PCellで受信した下り回線データ(PDSCH)に対するA/N信号とをChannel Selectionを用いて送信する方法(Bundling+Channel Selection)と、SCellの複数のA/N信号及びPCellのA/N信号をブロック符号化する方法(PUCCH format 3を用いたブロック符号化)と、PCellのA/Nのみを送信する方法(BPSK/QPSK送信)とがある。
 こうすることにより、中継局200は、「M」が多い場合(図9に示すMが閾値K以上の場合)にはブロック符号化を行い、「M」が少ない場合(図9に示すMが閾値K未満の場合)にはBundlingを行う。これにより、「M」が多い場合(A/N信号の数が多い場合)にはBundlingに起因する送信効率の低下により無駄な再送が生じてスループットが低下することを防ぐことができる。一方、「M」が少ない場合(A/N信号の数が少ない場合)のブロック符号化の性能劣化を抑えることができる。
 ここで、LTE-Aシステムでは、BPSK/QPSK送信時のA/N信号、及び、Channel Selectionで用いられる1つのA/Nリソースは、リソースブロックあたり12個のCS(Cyclic Shift:巡回シフト)と3つのOCC(Orthogonal Cover Code)系列との組み合わせで定義される最大36個のリソースのうちの1つである。また、A/Nリソースは、A/N信号のビット数に応じたリソース数が用いられる。一方、PUCCH format 3で用いられる1つのA/Nリソースは、1つのリソースブロックに多重される5個の直交系列のうちの1つで定義される。つまり、PUCCH format 3で用いられる1つのA/Nリソースは、BPSK/QPSK送信時及びChannel Selectionで用いられる1つのA/Nリソースよりも多くのリソースを要する。
 従って、本実施の形態のように、中継局200が、PCellにおいて同一UL BHSFで送信されるA/N信号に対応するPDSCHが送信されうるSCellのDL BHSF数に応じてA/N信号の送信方法を切り替えることによる、上り回線でのオーバーヘッドの低減効果は大きい。
 また、本実施の形態では、基地局100は、実施の形態1と同様、PCellとSCellとで異なるタイミングでBHSFを設定する。また、システムスループットを向上させるために基地局100と中継局200との間の伝搬路状況又は中継局200配下の端末数の変化に応じてBHSFを変更(追加又は削除)する場合でも、基地局100は、PCellのBHSFの設定を維持したまま、SCellのBHSFの設定のみを変更する。
 こうすることにより、基地局100は、PCellのBHSFの設定変更無しでSCellのみを設定変更することができる。また、PCellにおけるA/N信号の送信タイミングとして、DL BHSFから4サブフレーム後のタイミングを維持できるので、基地局100及び中継局200では、遅延要求等の品質要求を満たした伝送(低遅延の伝送)が可能となる。つまり、本実施の形態では、実施の形態1と同様、基地局100と中継局200との間のバックホールではQoSを満たしたデータ伝送が可能となる。また、SCellでのBHSFの設定変更を行っても、PCellにおいて無線リソースの無駄が生じることは無い。
 このようにして、本実施の形態によれば、実施の形態1と同様、基地局と中継局との間でCarrier aggregationを行う際、無線リソースの無駄を生じさせることなく、PCellのBHSFを変更させずにSCellのBHSFを個別に設定することができる。更に、本実施の形態によれば、PCellにおいて同一UL BHSFで送信されるA/N信号の数に応じたA/N信号の送信方法を切り替えることで、A/N信号の送信に使用するPUCCHのリソース量を低く抑えることができる。
 なお、PUCCH format 3を用いたブロック符号化を行う際、SCellのBHSF数の設定変更の途中等、中継局においてSCellのBHSF数を特定できない場合には、A/N信号の送信に用いるPUCCHのリソースを特定できない可能性がある。よって、この場合、PCellのみでPDSCHが送信される場合でも、中継局はA/N信号を正常に伝送できない恐れがある。LTE-Aシステムでは、BHSF数の設定変更の基地局から中継局への通知には最低15msを要する。一方、BPSK/QPSK送信、及び、BundlingとChannel Selectionとの組み合わせでは、中継局は、SCellのBHSFの有無に依らず、PCellにのみPDSCH割当があった場合には所定のA/Nリソースを用いてA/N信号を送信する。そこで、SCellのBHSF数の設定変更の途中のタイミングでA/N信号を送信する場合には、中継局は、BPSK/QPSK送信、及び、BundlingとChannel Selectionとの組み合わせの2つの送信方法を切り替えるようにしてもよい。
 又は、SellのBHSF数の設定変更の途中におけるPUCCH format 3を用いたブロック符号化を行う際の上記課題を解決するために、PCellのPDSCHに関する割当情報の中に、各UL BHSFでA/N信号の送信対象となるSCellでのPDSCHの割当の有無を示す情報を含めてもよい。基地局は、当該割当情報を中継局へ通知する。これにより、中継局は、SellのBHSF数の設定変更の途中であっても、割当情報を参照することで、SellのBHSF数を正確に特定することができる。そして、中継局は、SCellでのPDSCHの割当が無い場合にはPCellのA/N信号のみをBPSK/QPSK送信し、SCellでのPDSCHの割当が有る場合にはPCellのA/N信号とSCellのA/N信号とをブロック符号化して送信してもよい。
 また、本実施の形態では、1つの中継局に対して1つのSCellのみを設定する場合について説明したが、1つの中継局に対して2つ以上のSCellを設定してもよい。1つの中継局に対して複数のSCellが設定される場合、例えば、全てのSCellにおけるA/N信号の送信対象となるBHSF数を、図9に示すMとしてもよい。
 以上、各実施の形態について説明した。
 なお、基地局は、NodeB、eNodeB又はドナーeNBと呼ばれることもある。また、中継局はリレー(relay)と呼ばれることもある。また、端末は、移動局と呼ばれることもある。
 また、A/N信号には、ACK、NACKのほかにDTXを含んでも良い。中継局はPDSCHデータを受信しなかった場合に”DTX”と判断し基地局に伝送する。
 上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2011年4月27日出願の特願2011-099477の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明は、移動体通信システム等に有用である。
 100 基地局
 101 制御部
 102,201,210 誤り訂正符号化部
 103,202,211 変調部
 104 割当部
 105 割当情報生成部
 106,204,212 マッピング部
 107,205,213 送信部
 108,206,214 受信部
 109 A/N受信部
 110,207,215 復調部
 111,208,216 誤り訂正復号部
 200 中継局
 203 A/N生成部
 209 設定部

Claims (10)

  1.  基地局と中継局との間のバックホール通信に第1の単位バンド及び第2の単位バンドが使用され、下り回線においてバックホール通信に使用される前記第1の単位バンドの第1のサブフレームと、上り回線においてバックホール通信に使用される前記第1の単位バンドの第2のサブフレームとが設定され、前記第2のサブフレームは前記第1のサブフレームから所定数後のサブフレームである、通信システムで用いられる中継局であって、
     前記第1の単位バンド及び第2の単位バンドの各々で基地局から受信した下り信号に対する応答信号を生成する生成手段と、
     前記応答信号を、前記第1の単位バンドで送信する送信手段と、
     を具備し、
     前記送信手段は、前記第2の単位バンドにおいて、前記第1の単位バンドの前記第1のサブフレームとは異なるサブフレームで受信した下り信号に対する応答信号を、前記第1の単位バンドの前記第2のサブフレームで送信する、
     中継局。
  2.  前記第1の単位バンドには、複数の前記第1のサブフレーム、及び、前記複数の第1のサブフレームにそれぞれ対応する複数の前記第2のサブフレームが設定され、
     前記送信手段は、前記複数の第2のサブフレームの中の一つである送信対象サブフレームの直前の前記第2のサブフレームの前記所定数前のサブフレームから、前記送信対象サブフレームの前記所定数前のサブフレームまでの期間において、前記第2の単位バンドで基地局から受信した下り信号に対する応答信号を、前記第1の単位バンドの前記送信対象サブフレームで送信する、
     請求項1記載の中継局。
  3.  前記生成手段は、前記期間内に、前記第2の単位バンドで基地局から受信した複数の下り信号に対する複数の応答信号をBundlingし、
     送信手段は、Bundling後の信号と、前記第1の単位バンドで受信した下り信号に対する応答信号とをChannel Selectionを用いて送信する、
     請求項2記載の中継局。
  4.  前記期間内に、前記第2の単位バンドで基地局から受信した複数の下り信号に割り当てられたサブフレーム数を基地局から受信する受信手段、を更に具備し、
     前記生成手段は、受信された前記サブフレーム数に基づいて、前記複数の応答信号をBundlingする、
     請求項2記載の中継局。
  5.  前記生成手段は、前記期間内に、前記第2の単位バンドで基地局から受信した複数の下り信号に対する複数の応答信号、及び、前記第1の単位バンドで受信した下り信号に対する応答信号をブロック符号化する、
     請求項2記載の中継局。
  6.  前記送信手段は、前記期間内に前記第2の単位バンドで基地局から受信した複数の下り信号に割り当てられたサブフレーム数に基づいて、応答信号の送信方法を切り替える、
     請求項2記載の中継局。
  7.  前記送信手段は、前記サブフレーム数に基づいて、第1の送信方法と第2の送信方法と第3の方法とを切り替え、前記第1の送信方法は、前記複数の下り信号に対する複数の応答信号をBundlingして、Bundling後の信号と、前記第1の単位バンドで受信した下り信号に対する応答信号とをChannel Selectionを用いて送信する方法であり、前記第2の送信方法は、前記複数の応答信号及び前記第1の単位バンドで受信した下り信号に対する応答信号をブロック符号化する方法であり、前記第3送信方法は、前記第1の単位バンドで受信した下り信号に対する応答信号のみを送信する方法である、
     請求項6記載の中継局。
  8.  基地局と中継局との間のバックホール通信に第1の単位バンド及び第2の単位バンドが使用され、下り回線においてバックホール通信に使用される前記第1の単位バンドの第1のサブフレームと、上り回線においてバックホール通信に使用される前記第1の単位バンドの第2のサブフレームとが設定され、前記第2のサブフレームは前記第1のサブフレームから所定数後のサブフレームである、通信システムで用いられる基地局であって、
     前記第1の単位バンド及び第2の単位バンドの各々に中継局向けの下り信号を割り当てる割当手段と、
     前記下り信号に対する応答信号を、前記第1の単位バンドで受信する受信手段と、
     を具備し、
     前記受信手段は、前記第2の単位バンドにおいて、前記第1の単位バンドの前記第1のサブフレームとは異なるサブフレームで送信された下り信号に対する応答信号を、前記第1の単位バンドの前記第2のサブフレームで受信する、
     基地局。
  9.  基地局と中継局との間のバックホール通信に第1の単位バンド及び第2の単位バンドが使用され、下り回線においてバックホール通信に使用される前記第1の単位バンドの第1のサブフレームと、上り回線においてバックホール通信に使用される前記第1の単位バンドの第2のサブフレームとが設定され、前記第2のサブフレームは前記第1のサブフレームから所定数後のサブフレームである、通信システムで用いられる送信方法であって、
     前記第1の単位バンド及び第2の単位バンドの各々で基地局から受信した下り信号に対する応答信号を生成し、
     前記第2の単位バンドにおいて、前記第1の単位バンドの前記第1のサブフレームとは異なるサブフレームで受信した下り信号に対する応答信号を、前記第1の単位バンドの前記第2のサブフレームで送信する、
     送信方法。
  10.  基地局と中継局との間のバックホール通信に第1の単位バンド及び第2の単位バンドが使用され、下り回線においてバックホール通信に使用される前記第1の単位バンドの第1のサブフレームと、上り回線においてバックホール通信に使用される前記第1の単位バンドの第2のサブフレームとが設定され、前記第2のサブフレームは前記第1のサブフレームから所定数後のサブフレームである、通信システムで用いられる受信方法であって、
     前記第1の単位バンド及び第2の単位バンドの各々に中継局向けの下り信号を割り当て、
     前記第2の単位バンドにおいて、前記第1の単位バンドの前記第1のサブフレームとは異なるサブフレームで送信された下り信号に対する応答信号を、前記第1の単位バンドの前記第2のサブフレームで受信する、
     受信方法。
PCT/JP2012/002565 2011-04-27 2012-04-13 中継局、基地局、送信方法、及び受信方法 WO2012147296A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013511907A JP5934700B2 (ja) 2011-04-27 2012-04-13 中継局、基地局、送信方法、及び受信方法
US14/002,609 US9246574B2 (en) 2011-04-27 2012-04-13 Increase base station coverage through efficient relay station backhaul communication using carrier aggregation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011099477 2011-04-27
JP2011-099477 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147296A1 true WO2012147296A1 (ja) 2012-11-01

Family

ID=47071829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002565 WO2012147296A1 (ja) 2011-04-27 2012-04-13 中継局、基地局、送信方法、及び受信方法

Country Status (3)

Country Link
US (1) US9246574B2 (ja)
JP (1) JP5934700B2 (ja)
WO (1) WO2012147296A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015131407A1 (zh) * 2014-03-07 2015-09-11 华为技术有限公司 一种中继节点RN、宿主基站DeNB及一种通信方法
CN110933708A (zh) * 2019-12-12 2020-03-27 北京邮电大学 中继辅助智慧工厂通信的资源分配方法及装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102177665B (zh) * 2008-08-12 2015-04-22 黑莓有限公司 在无线通信网络中实现下行链路透明中继的方法、设备及系统
WO2015102445A1 (ko) * 2014-01-05 2015-07-09 엘지전자 주식회사 근접 서비스 기반의 그룹 통신을 중계하는 방법 및 사용자 장치
WO2016008160A1 (en) * 2014-07-18 2016-01-21 Nokia Solutions And Networks Oy Monitoring and optimizing of control channel usage
GB2540628A (en) * 2015-07-24 2017-01-25 Fujitsu Ltd Control messages in wireless communication
US11357004B1 (en) * 2015-11-24 2022-06-07 Sprint Spectrum L.P. Method and system for latency-based management of carriers on which to serve a user equipment device
KR20180050015A (ko) * 2016-11-04 2018-05-14 삼성전자주식회사 무선통신시스템에서 고신뢰 저지연 통신을 위한 데이터 송수신 방법 및 장치
US10531457B1 (en) 2017-01-26 2020-01-07 Sprint Communications Company L.P. Wireless access point control over Carrier Aggregation (CA) through a wireless repeater chain
CN111919409B (zh) * 2018-03-26 2023-05-05 Lg电子株式会社 在无线通信系统中发送和接收物理信号和/或信道的方法和用于该方法的设备
US11051312B1 (en) * 2019-03-21 2021-06-29 Sprint Spectrum L.P. Controlling carrier assignment based on quantities of relay-served UEs
CN114285446A (zh) * 2020-09-27 2022-04-05 北京三星通信技术研究有限公司 大规模多输入多输出系统中的传输方式切换方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150517A1 (ja) * 2009-06-22 2010-12-29 パナソニック株式会社 無線通信中継局装置、無線通信装置、無線通信中継方法、及び無線通信方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137839A2 (ko) * 2009-05-24 2010-12-02 엘지전자 주식회사 다중 반송파 시스템에서 중계국의 하이브리드 자동 재전송 요청 수행 방법 및 장치
US8665775B2 (en) * 2009-05-24 2014-03-04 Lg Electronics Inc. Method and apparatus in which a relay station makes a hybrid automatic repeat request in a multi-carrier system
WO2010137926A2 (ko) * 2009-05-29 2010-12-02 엘지전자 주식회사 중계기 백홀 상향링크에서 제어 정보의 전송 방법 및 장치
JP5682090B2 (ja) * 2011-04-07 2015-03-11 株式会社ニフコ クリップ
US9300387B2 (en) * 2011-04-27 2016-03-29 Panasonic Intellectual Property Corporation Of America Relay station, base station, transmission method, and reception method
CN103858375A (zh) * 2011-08-11 2014-06-11 诺基亚公司 用于fdd scell ack/nack传输的pdsch指配指示
US8923196B2 (en) * 2012-03-16 2014-12-30 Blackberry Limited Uplink control channel resource collision resolution in carrier aggregation systems
US9088977B2 (en) * 2012-05-30 2015-07-21 Intel Corporation Hybrid automatic repeat request (HARQ) mapping for carrier aggregation (CA)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150517A1 (ja) * 2009-06-22 2010-12-29 パナソニック株式会社 無線通信中継局装置、無線通信装置、無線通信中継方法、及び無線通信方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer for relaying operation (Release 10)", 3GPP TS 36.216 V10.2.0, March 2011 (2011-03-01), pages 1 - 16 *
CATT: "Way forward on TDD UL ACK/NAK on Un PUCCH in Rel-10", TSG-RAN WG1 MEETING #64, R1-111200, February 2011 (2011-02-01) *
ERICSSON ET AL.: "PUCCH feedback on Un for TDD", 3GPP TSG-RAN WG1 #64, TDOC R1-110646, January 2011 (2011-01-01), pages 1 - 3 *
NTT DOCOMO: "Combination of Carrier Aggregation and Relay in Rel-10", 3GPP TSG RAN WG1 MEETING #63BIS, R1-110243, January 2011 (2011-01-01), pages 1 - 3 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015131407A1 (zh) * 2014-03-07 2015-09-11 华为技术有限公司 一种中继节点RN、宿主基站DeNB及一种通信方法
US10349459B2 (en) 2014-03-07 2019-07-09 Huawei Technologies Co., Ltd. Relay node RN, donor eNodeB DeNB and communication method
CN110933708A (zh) * 2019-12-12 2020-03-27 北京邮电大学 中继辅助智慧工厂通信的资源分配方法及装置
CN110933708B (zh) * 2019-12-12 2021-02-26 北京邮电大学 中继辅助智慧工厂通信的资源分配方法及装置

Also Published As

Publication number Publication date
JPWO2012147296A1 (ja) 2014-07-28
US20130336201A1 (en) 2013-12-19
US9246574B2 (en) 2016-01-26
JP5934700B2 (ja) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5934700B2 (ja) 中継局、基地局、送信方法、及び受信方法
US11700106B2 (en) Communication apparatus and communication method
KR101549025B1 (ko) 중계기에 대한 자원 할당 방법
KR101737647B1 (ko) 무선 통신 시스템에서 데이터 통신을 위한 장치 및 방법
US9900874B2 (en) Wireless communication system
JP5828891B2 (ja) 中継局、基地局、送信方法、及び受信方法
JP6013453B2 (ja) 送信装置、受信装置、送信方法及び受信方法
US11695510B2 (en) Base station, terminal, and communication method
US11026184B2 (en) Terminal apparatus, base station apparatus, and communication method for transmitting resource information and transmission power control information to the terminal device with a grant-free access resource allocation or a scheduled access resource allocation
US20130107855A1 (en) Radio communication system
US11863478B2 (en) Base station, terminal, and communication method
JP2020504469A (ja) 端末、基地局及び通信方法
WO2012108138A1 (ja) 送信装置、受信装置、送信方法、及び受信方法
KR20180091004A (ko) Tdd 서브프레임 구조에서의 커플링된 모드 공통 업링크 버스트
CN115398832A (zh) 在全双工模式下对码块组的时间交织
KR20190033281A (ko) 무선통신 시스템에서 제어 정보 송수신 방법 및 장치
WO2021183264A1 (en) Full-duplex index modulation
WO2017217182A1 (ja) 基地局、端末及び通信方法
WO2023208512A1 (en) Methods, communications device, and infrastructure equipment
WO2016182040A1 (ja) 端末装置、基地局装置および通信方法
WO2016136780A1 (ja) 端末装置、基地局装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511907

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14002609

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776940

Country of ref document: EP

Kind code of ref document: A1