JPWO2007080743A1 - 検査システムおよび検査方法 - Google Patents

検査システムおよび検査方法 Download PDF

Info

Publication number
JPWO2007080743A1
JPWO2007080743A1 JP2007553857A JP2007553857A JPWO2007080743A1 JP WO2007080743 A1 JPWO2007080743 A1 JP WO2007080743A1 JP 2007553857 A JP2007553857 A JP 2007553857A JP 2007553857 A JP2007553857 A JP 2007553857A JP WO2007080743 A1 JPWO2007080743 A1 JP WO2007080743A1
Authority
JP
Japan
Prior art keywords
blood flow
multifractal
distribution
network
vascular network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007553857A
Other languages
English (en)
Inventor
考介 矢久保
考介 矢久保
吉田 和彦
和彦 吉田
仁 藤居
仁 藤居
和彦 岡
和彦 岡
聡 丹田
聡 丹田
隆二 森田
隆二 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Kyushu Institute of Technology NUC
Original Assignee
Hokkaido University NUC
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Kyushu Institute of Technology NUC filed Critical Hokkaido University NUC
Publication of JPWO2007080743A1 publication Critical patent/JPWO2007080743A1/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/416Evaluating particular organs or parts of the immune or lymphatic systems the spleen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Vascular Medicine (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Physiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Cardiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

血管網における血流速度分布のマルチフラクタル解析を行い、マルチフラクタル分布からのずれを検出することにより血流を検査する。血流速度分布は、血管網にレーザー光を照射し、血管を流れる血液中の血球による散乱光を結像レンズにより集光し、散乱光がランダムに干渉し合うことで得られるスペックルを光検出器で検出し、このスペックルの時間変化速度を各点について計算することにより画像として得られる。

Description

この発明は、血管網における血流を検査する検査システムおよび検査方法に関し、特に血管網における血流異常を伴う疾病の診断に利用して好適なものである。
従来、多くの眼疾患および眼底に異常が現れる疾病は、生理機能検査(屈折、調節、色覚、光覚、眼位、眼球運動、眼圧)、細隙灯顕微鏡検査、眼底検査、視野検査、蛍光眼底造影検査、電気生理学的検査などを通して医師の経験に基づく診断が行われてきた。
しかしながら、このような従来の診断方法では、診断に時間がかかるだけでなく、医師によって診断結果にばらつきが生じやすいという欠点があった。
一方、生体における血流を非接触・非侵襲で測定・画像化する技術としてレーザースペックル血流画像化法(laser speckle flowgraphy)が開発されており、これを利用した眼底血流画像化システムがすでに市販されている(例えば、[平成18年1月5日検索]インターネット〈URL:http://leo10.cse.kyutech.ac.jp/lsfg.html〉参照。)。このレーザースペックル血流画像化法では、第1図に示すように、生体表面にレーザー光101を照射し、血管内を流れる血液中の散乱体(血球)102による散乱光103を結像レンズ104により集光し、散乱光103がランダムに干渉し合うことで発生する斑点模様、すなわちスペックル105をイメージセンサー106で検出し、このスペックル105の時間変化速度を各点について計算することにより血流速度分布を画像(二次元マップ)として得ることができる。そこで、このレーザースペックル血流画像化法を眼疾患および眼底に異常が現れる疾病の診断に用いることが考えられる。
しかしながら、上述のレーザースペックル血流画像化法により得られる画像から、眼疾患や眼底に異常が現れる疾病の診断を行うことは、医師の経験に負うところが多いため、結果的に医師によって診断結果にばらつきが生じやすいという欠点がある。
そこで、この発明が解決しようとする課題は、血管網における血流の検査を非接触・非侵襲で簡単にしかも正確に行うことができ、この検査により分かる血流の異常の有無や異常の度合いに基づき、他の検査方法を適宜併用することで医師が正確な診断を容易に行うことが可能になる検査システムおよび検査方法を提供することである。
本発明者らは、トポロジー(位相幾何学)的アプローチにより上記課題を解決すべく鋭意研究を行った結果、特にマルチフラクタル解析の有効性に着目し、実際に、眼球の脈絡膜血管網における血流速度分布のマルチフラクタル解析を行った。その結果、この血管網における血流が正常な時には実質的にマルチフラクタル分布とみなすことができる分布をしており、血流の異常が生じるとそれからずれることを見出した。さらに検討の結果、これは眼球の脈絡膜血管網に限らず、毛細血管網をはじめとする他の多くの血管網についても同様であるという結論に至り、この発明を案出するに至った。
ここで、マルチフラクタルについて簡単に説明する(例えば、”Fractal Concepts in Condensed Matter Physics”by T.Nakayama and K.Yakubo,Springer−Verlag,2002,p.180参照。)。まず、フラクタルは自己相似構造を有し、特徴的長さのない構造である。自己相似構造はフラクタル次元(D)により定量化することができる。よく知られているフラクタルの一例として第2図に、シェルピンスキー・ガスケット(Sierpinski gasket)を示す。第2図より、
とすると、
となる。これより、
と求められる。
マルチフラクタルは特徴的長さのない分布(μ)を持ち、分布の強度ごとに異なるフラクタル次元を持つ。マルチフラクタル分布は、無限のフラクタル次元の集合であるマルチフラクタル・スペクトルf(α)により定量化することができる。いま、第3図に示すように、一辺の長さがLの正方形の領域を考え、この領域を一辺の長さがlの区画、すなわちボックスに分割する。ボックス測度は
と表される。ボックス測度のq次のモーメントは
であり、分布がマルチフラクタルの場合、
となる。ここで、τ(q)は質量指数である。
マルチフラクタルについては、一般化次元
が定義される。マルチフラクタル・スペクトルは、ルジャンドル変換
で表される。
ただし、ルジャンドル変換による計算は、数値微分を含むため精度が悪い。そこで、実際の計算では、計算の精度向上のために、q−マイクロスコープ
を用い、マルチフラクタル・スペクトルを
により計算するのが望ましい。
マルチフラクタルであることが知られている分布の一例を挙げると、金属−絶縁体転移における臨界波動関数の分布がある。この臨界波動関数の分布の一例を第4図Aに、この分布のマルチフラクタル・スペクトルを第4図Bに示す。第4図Bに示すように、このマルチフラクタル・スペクトルは、α≒2.2の直線に関して対称で擬放物型の形状を有するのが特徴である。比較のために、マルチフラクタルではない分布の一例としてランダム分布を第5図Aに、この分布のマルチフラクタル・スペクトルを第5図Bに示す。第5図Bに示すように、このマルチフラクタル・スペクトルは、非対称で非放物型の形状を有する。
すなわち、上記課題を解決するために、第1の発明は、
血管網における血流を検査する検査システムであって、
上記血管網における血流速度分布のマルチフラクタル解析を行うことにより血流を検査することを特徴とするものである。
典型的には、被検体の血管網における血流速度分布のマルチフラクタル解析を行い、マルチフラクタル分布からのずれを検出することにより血流を検査し、血流の異常の有無や異常の度合いを判定する。血管網における血流速度分布を求める方法としては、好適にはレーザースペックル血流画像化法を用いるが、そのほかに、ドップラー効果と特殊な光学フィルター(absorption line filter)とを組み合わせ、2次元の速度場を画像の明暗として可視化するDGV(Doppler global velocimeter)法や、平面内の粒子を短時間露光し、その動きを追跡するPIV(particle image velocimeter)法、蛍光染料をレーザー光で励起発光させ、速度場を蛍光の強度として捉えるレーザー誘起蛍光法(laser induced fluorescence method)などを用いることもでき、場合によってはレーザードップラー流速計測法を用いることもできる。
被検体の血管網は、基本的には毛細血管網をはじめとする各種の血管網であり、その部位も問わない。被検体は、基本的にはいかなる動物であってもよく、人間(ヒト)とそれ以外の動物とが含まれる。被検体は、典型的には、閉鎖血管系(閉鎖循環系)を有する動物である。このような動物は、例えば脊椎動物、中でも哺乳類である。例えば、人間(ヒト)の血管網の具体例を挙げると、眼球の脈絡膜血管網、眼球の網膜血管網、身体上部の血管網、肺の血管網、肝臓の血管網、胃の血管網、脾臓の血管網、腸の血管網、腎臓の血管網、身体下部の血管網などである。
第2の発明は、
血管網における血流を検査する検査システムであって、
上記血管網にレーザー光を照射するためのレーザー光源と、
上記血管網に上記レーザー光を照射したときに発生する散乱光を検出する光検出器と、
上記光検出器の出力信号に基づいて上記血管網における血流速度分布を求め、この血流速度分布のマルチフラクタル解析を行い、マルチフラクタル分布からのずれを検出する演算装置とを有することを特徴とするものである。
レーザー光源は、検査の対象となる動物や検査部位などに応じて適宜選ぶことができ、種類も問わないが、一般的には、近赤外光から可視光の波長帯のレーザー光を発生させることができるものが用いられる。光検出器としては各種のものを用いることができ、必要に応じて選ぶことができるが、具体的には、例えば、二次元イメージセンサー(CCDセンサー、MOSセンサー、撮像管など)である。演算装置としては、コンピュータを用いることができる。演算装置による演算結果は、必要に応じて、ディスプレイ上に数値あるいはグラフの形で表示し、あるいはプリンタでプリントする。
第2の発明においては、上記以外のことについては、第1の発明に関連して説明したことが成立する。
第3の発明は、
血管網における血流を検査する検査方法であって、
上記血管網における血流速度分布のマルチフラクタル解析を行うことにより血流を検査することを特徴とするものである。
第3の発明においては、第1の発明に関連して説明したことが成立する。
第1図はレーザースペックル血流画像化法を説明するための略線図である。
第2図はフラクタルを説明するための略線図である。
第3図はマルチフラクタルを説明するための略線図である。
第4図Aおよび第4図Bは金属−絶縁体転移における臨界波動関数の分布の一例およびこの分布のマルチフラクタル・スペクトルを示す略線図である。
第5図Aおよび第5図Bはランダム分布の一例およびこのランダム分布のマルチフラクタル・スペクトルを示す略線図である。
第6図はこの発明の一実施形態による検査システムを示す略線図である。
第7図はマルチフラクタル性を評価するときの基本となる三つの量αmin、αmax、αの意味を説明するための略線図である。
第8図は眼球の水平断面を示す断面図である。
第9図は網膜、脈絡膜および強膜の一部の断面構造を示す断面図である。
第10図は脈絡膜血管網の一例を示す略線図である。
第11図は眼底カメラで撮影した眼底写真の一例を示す図面代用写真である。
第12図は評価次数qおよび評価関数幅wを説明するための略線図である。
第13図A、第13図B、第13図Cおよび第13図Dは健常眼を持つ被験者A〜Dの眼底写真を評価指標1〜3の値とともに示す図面代用写真である。
第14図A、第14図B、第14図Cおよび第14図Dは健常眼を持つ被験者E〜Hの眼底写真を評価指標1〜3の値とともに示す図面代用写真である。
第15図A、第15図B、第15図Cおよび第15図Dは両眼がAMD疾患を持つ被験者1〜4の眼底写真を評価指標1〜3の値とともに示す図面代用写真である。
第16図Aおよび第16図Bは一方の眼だけがAMD疾患を持つ被験者5のAMDではない方の眼およびPIC疾患を持つ被験者の眼底写真を評価指標1〜3の値とともに示す図面代用写真である。
第17図は健常眼を持つ被験者A〜H、AMD疾患を持つ被験者1〜5およびPIC疾患を持つ被験者の評価指標1〜3の値を示すグラフである。
第18図は健常眼を持つ被験者Eのマルチフラクタル・スペクトルを示す略線図である。
第19図はAMD疾患を持つ被験者1のマルチフラクタル・スペクトルを示す略線図である。
符号の説明
1 レーザー光源
2 結像レンズ
3 光検出器
4 演算装置
5 ディスプレイ
6 レーザー光
7 血管網
8 散乱光
以下、この発明の一実施形態について、図面を参照しながら説明する。
第6図はこの実施形態による検査システムを示す。この検査システムでは、レーザースペックル血流画像化を用いて血管網における血流速度分布を測定する。第6図に示すように、この検査システムは、レーザー光源1、結像レンズ2、光検出器3、演算装置4およびディスプレイ5を有する。
この検査システムでは、レーザー光源1により発生されるレーザー光6を被検体の検査部位の血管網7に照射し、この血管網7を流れる血液中の血球による散乱光8を結像レンズ2を介して集光することでスペックル(図示せず)を発生させ、これを光検出器3で検出する。この光検出器3から出力されるアナログ信号をアナログ−ディジタル変換によりディジタル信号に変換して演算装置4で演算を行い、血管網7における血流速度分布を得る。そして、こうして得られる血流速度分布のデータを用いてマルチフラクタル解析を行う。ディスプレイ5は、こうして得られる血流速度分布を画像(二次元マップ)および可読な数値データとして表示することができるとともに、このマルチフラクタル解析の結果をマルチフラクタル・スペクトルおよびこのマルチフラクタル・スペクトルのマルチフラクタル分布からのずれを数値化したものを表示することができるようになっている。
レーザー光源1、結像レンズ2、光検出器3、演算装置4およびディスプレイ5を有する検査システムとして、レーザースペックル血流画像化法を用いた市販の眼底血流画像化システム(例えば、[平成18年1月5日検索]インターネット〈URL:http://leo10.cse.kyutech.ac.jp/lsfg.html〉参照。)を用いた。この眼底血流画像化システムでは、眼底カメラにレーザー光源1、結像レンズ2および光検出器3が設けられている。レーザー光源1としては、近赤外領域の波長のレーザー光6を発生させることができるものとして、発光波長が830nmの半導体レーザーを用いた。光検出器3としては二次元CCDイメージセンサーを用いた。演算装置4およびディスプレイ5としては、市販のパーソナルコンピュータシステムを用いた。パーソナルコンピュータ本体のハードディスクには、レーザースペックル血流画像化のプログラム、血流速度分布を速度値に比例する数値としてCSV(comma separated value)などのフォーマットで出力するプログラムおよびマルチフラクタル解析のプログラムが格納されている。マルチフラクタル・スペクトルは計算の精度向上のために、上記の(10)〜(12)式を用いる方法により計算する。
また、血流速度分布のマルチフラクタル性を定量的に評価するために三つの評価指標を用いる。マルチフラクタル性を評価するときの基本となる三つの量αmin、αmax、αの意味は第7図に示す通りである。
評価指標1は、αが[αmin,αmax]の中点からどの程度ずれているかを表す指標であり、
で定義される。αが[αmin,αmax]の完全に中点となっている場合(すなわちマルチフラクタル性が良い場合)、評価指標1=0であり、完全に偏っている場合(すなわちマルチフラクタル性が極めて悪い場合で、α=αmaxまたはα=αminの場合)、評価指標1=1となる。
評価指標2は、

とがどの程度ずれているかを表す指標であり、やはりf(α)の対称性の程度を評価するものである。定義式は、
である。この場合も、完全に対称な場合、評価指標2=0、完全に偏っている場合(すなわちShighまたはSslowのどちらかがゼロとなる場合)、評価指標2=1となる。
評価指標1や評価指標2が、マルチフラクタル・スペクトルf(α)の対称性に着目しているのに対し、評価指標3はf(α)の理論式とのずれを定量化したものである。ここでいう理論式とは、理論的にf(α)が求められている階層抵抗ネットワークの電位差分布に対する理論式を一般化したものである。
この階層抵抗ネットワークの電位差分布に対するマルチフラクタル・スペクトルf(α)は、
で与えられる(例えば、”Fractal Concepts in Condensed Matter Physics”by T.Nakayama and K.Yakubo,Springer−Verlag,2002,p.180参照。)。ここで、νは相関長の臨界指数である。また、αmaxおよびαmin
で与えられる。これらのαmax、αminを用いて(17)式のf(α)を書くと、
となる。この関数は、α=αminおよびα=αmaxで1/νの値を取る。血流速度分布のf(α)は明らかにf(αmin)=f(αmax)=0であるから、上式の第1項をゼロと置いた式を比較する理論式の候補として考える。すなわち、
とする。ここで、(18)、(19)式から得られる
を(21)式に代入すると、
が得られる。
(23)式の係数1/log2は階層抵抗ネットワークに特有のものであり、また(17)式の第1項をゼロと置いているため正しいf(α)の高さを与えていない。そこで、この係数1/log2をfと置いて、f(α)が満たすべき条件から血流速度分布におけるfの値を求める。関数f(α)の最大値f(α)は、分布のサポート(台)の次元に等しくなくてはならない。血流速度分布の場合、この次元は2であるから、
が成立していなければならない。(23)式のf(α)は、その最大値に関して対称であるので、
である。ゆえに、(24)式から
となり、これを計算すると
となる。従って、
となる。本解析では、このfをf=1/logbとして計算する。このとき、
である。結局、理論的に評価されるマルチフラクタル・スペクトルは
によって与えられる。
以上の議論から、αmaxとαminとから、比較すべきf(α)の理論式が求められる。評価指標3を計算するために、変数αの定義域を[αmin,αmax]から[0,1]にリスケールしている。すなわち、
で変数をα´に変更する。新しい変数における理論式
と実際のf(α´)との差の2乗の積分、すなわち
は、理論式とのずれをαの定義域に依存せず評価することができる。さらに、理論式と最大限にずれたとき評価指標3が1となるようにするため、f(α´)=2α´という完全非対称スペクトル(このときα=αminまたはα=αmaxである)の場合のImaxの積で積分値をリスケールした。実際、(30)式からImaxは計算できて、
となる。最終的に、評価指標3は、
によって定義される。
上記の眼底血流画像化システムにより、被験者の眼球の黄斑部脈絡膜血管網を次のようにして検査した。第8図に眼球の水平断面、第9図に網膜、脈絡膜および強膜の一部の断面構造を示す。第10図に脈絡膜血管網の一例を示す(山口和克監修「新版 病気の地図帳」(講談社、2000年11月20日発行)p.26の図の一部を改変したもの)。
まず、眼底カメラにより眼底を観察する。第11図に眼底カメラで撮影した眼底写真の一例を示し、矢印で示した○の領域が黄斑部である。この眼底写真において主として○の外側に見られる太い血管は網膜のものであり、○の領域において網膜血管は見えていない。眼底カメラの結像レンズの一方の焦点が光検出器3としての二次元CCDセンサーの受光面に合うように位置合わせを行う。レーザー光源1により近赤外領域の波長のレーザー光6を発生させ、結像レンズ2を介して眼底に照射する。こうして眼底に入射したレーザー光6は内部に拡散しながら入っていき、脈絡膜血管網に到達する。このとき、手前側(観測側)に出てくる、脈絡膜血管網による散乱光8を結像レンズ2を介して二次元CCDセンサーの受光面に結像させ、この二次元CCDセンサーから出力されるアナログ信号をディジタル変換して得られるディジタル信号を用いてパーソナルコンピュータシステムにより演算を行って黄斑部脈絡膜血管網における血流速度分布を実時間で測定する。この測定は数心拍にわたって行う。
こうして得られる数心拍にわたる実時間血流速度分布データから、1心拍間の平均血流速度分布を計算し、合成マップを得る。全合成マップデータから解析対象とする黄斑部を抽出する。その際、マルチフラクタル解析の精度を高めるために、約数の数(分割ボックスの種類)の多い領域サイズを選ぶようにする。具体的には、領域サイズは、例えば、240×240または180×180とする。
解析結果が測定時の条件変化に依存しないように、血流速度の最大値および最小値がそれぞれ4および1になるように線形変換を行う。こうしてリスケールされた血流速度値データから、α、αmin、αmax、計算を効率化するための評価次数qおよび評価関数幅wをそれぞれ計算する。評価関数を用いることにより効率的に実測値および理論値のf(α)を計算する。そして、結果をディスプレイ5上に表示する。
第12図を参照して評価次数qおよび評価関数幅wを説明する。本解析では、マルチフラクタル・スペクトルf(α)が、αに対してなるべく均等にデータが与えられるように以下のような工夫をした。まず、qとαとの関係を大雑把に
であるとした(第12図参照)。ここで、幅wを決定するのにαmaxからαmax−αminのRAT倍離れた点αを与えるqを求める。この計算は、αの点をおおよそ均等に与えるのが目的であるから、qとαとの関係を厳密に求める必要はない。qおよびαを使って、(35)式をwについて解いた式、
によってtanh関数の幅wが求められる。従って、(35)式から得られる
を使い均等なαを得るためのqを計算し、このqに対するf(α)を求める。
実際に行った検査の結果について説明する。
被験者として、健常眼を持つ8人(A〜Hとする)、AMD(agerelated macular degeneration)(加齢黄斑変性症)疾患を持つ5人およびPIC(punctate inner choroidopathy)疾患を持つ1人を選び、黄斑部脈絡膜血管網を上記の方法により検査し、評価指標1〜3を求めた。ただし、AMD疾患を持つ5人のうちの4人(AMD1〜AMD4とする)は両眼がAMDであり、その一方の眼について検査し、1人は一方の眼だけがAMDであり、AMDではない方の眼について検査した。第13図A〜D、第14図A〜D、第15図A〜D、第16図AおよびBに、これらの14人の被験者の眼底のレーザースペックル血流画像化法による画像および評価指標1〜3の値を示す。また、第17図にこれらの14人の被験者の評価指標1〜3の値をグラフに示した。この結果から分かるように、評価指標1〜3はいずれも同じ傾向を示すが、評価指標3が最も敏感にマルチフラクタル性の度合いを示している。また、第18図に健常眼を持つ被験者Eのマルチフラクタル・スペクトルを、第19図にAMD疾患を持つ被験者AMD1のマルチフラクタル・スペクトルを示す。第18図および第19図の縦軸は流速(相対値)である。
第13図A〜D、第14図A〜D、第15図A〜D、第16図AおよびBより、AMD疾患を持つ被験者AMD1〜AMD4の評価指標1〜3はいずれも、健常眼を持つ被験者A〜Hの評価指標1〜3に比べて明らかに大きく、被験者AMD1〜AMD4の黄斑部脈絡膜血管網の血流分布がマルチフラクタル分布から大きくずれていることが分かる。逆に言えば、この結果から、評価指標1〜3に基づいて、被験者の黄斑部脈絡膜血管網の血流の異常の有無や異常の度合いを簡単に検査することができることが分かる。例えば、評価指標3が0.3以下である場合には、黄斑部脈絡膜血管網の血流が正常で健常眼であり、評価指標3が0.5以上の場合には、黄斑部脈絡膜血管網の血流が異常であると判定することができる。こうして血流が異常と判定された場合には、生理機能検査、細隙灯顕微鏡検査、眼底検査、視野検査、蛍光眼底造影検査、電気生理学的検査などを適宜行うことで、眼疾患あるいはこの異常が現れる疾病を診断することが可能である。
また、一方の眼だけがAMD疾患を持つ被験者5のAMDではない方の眼についての評価指標3は約0.36であり、健常眼を持つ被験者A〜Hの評価指標3の値と両眼がAMD疾患を持つ被験者AMD1〜AMD4の評価指標3の値との中間の値であることから、この被験者5のAMDではない方の眼もAMDになる可能性があることを示唆していると考えることもできる。
以上のように、この実施形態によれば、被験者の検査部位の血管網における血流速度分布を測定し、こうして得られる血流速度分布に対してマルチフラクタル解析を行い、あらかじめ選ばれた評価指標を求めることにより、この血管網における血流を非接触・非侵襲で簡単にしかも正確に検査することができ、血流の異常の有無や異常の度合いを正確に判定することができる。そして、こうして血流の異常が発見された被験者に対して適宜他の検査を併用することにより、従来の方法に比べて、疾病を短時間で容易にしかも正確に診断することが可能となり、ひいては医師による診断結果のばらつきも少なくすることが可能となる。
以上、この発明の一実施形態および一実施例について具体的に説明したが、この発明は上述の実施形態および実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
例えば、上述の実施形態および実施例において挙げた数値、構成、評価指数などはあくまでも例に過ぎず、必要に応じて、これらと異なる数値、構成、評価指数などを用いてもよい。
以上説明したように、この発明によれば、血管網における血流速度分布は、レーザースペックル血流画像化法などを用いて非接触・非侵襲で測定することができる。また、血管網における血流速度分布のマルチフラクタル解析は、演算装置を用いて自動的に短時間で簡単に行うことができる。このマルチフラクタル解析により、マルチフラクタル分布からのずれを定量的に評価することで血管網における血流を簡単にしかも正確に検査することができ、血流の異常の有無や異常の度合いが簡単にしかも正確に分かる。そして、この検査結果に基づき、他の検査方法を適宜併用することで、血管網における血流の異常を伴う疾病の正確な診断を容易に行うことが可能となる。

Claims (6)

  1. 血管網における血流を検査する検査システムであって、
    上記血管網における血流速度分布のマルチフラクタル解析を行うことにより血流を検査することを特徴とする検査システム。
  2. 上記血管網における血流速度分布のマルチフラクタル解析を行い、マルチフラクタル分布からのずれを検出することにより血流を検査することを特徴とする請求の範囲1記載の検査システム。
  3. レーザースペックル血流画像化法により上記血管網における血流速度分布を求めることを特徴とする請求の範囲1記載の検査システム。
  4. 上記血管網は脈絡膜血管網であることを特徴とする請求の範囲1記載の検査システム。
  5. 血管網における血流を検査する検査システムであって、
    上記血管網にレーザー光を照射するためのレーザー光源と、
    上記血管網に上記レーザー光を照射したときに発生する散乱光を検出する光検出器と、
    上記光検出器の出力信号に基づいて上記血管網における血流速度分布を求め、この血流速度分布のマルチフラクタル解析を行い、マルチフラクタル分布からのずれを検出する演算装置とを有することを特徴とする検査システム。
  6. 血管網における血流を検査する検査方法であって、
    上記血管網における血流速度分布のマルチフラクタル解析を行うことにより血流を検査することを特徴とする検査方法。
JP2007553857A 2006-01-16 2006-12-08 検査システムおよび検査方法 Pending JPWO2007080743A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006006976 2006-01-16
JP2006006976 2006-01-16
PCT/JP2006/325117 WO2007080743A1 (ja) 2006-01-16 2006-12-08 検査システムおよび検査方法

Publications (1)

Publication Number Publication Date
JPWO2007080743A1 true JPWO2007080743A1 (ja) 2009-06-11

Family

ID=38256155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007553857A Pending JPWO2007080743A1 (ja) 2006-01-16 2006-12-08 検査システムおよび検査方法

Country Status (3)

Country Link
US (1) US20090177098A1 (ja)
JP (1) JPWO2007080743A1 (ja)
WO (1) WO2007080743A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028421B2 (en) * 2009-05-13 2015-05-12 Kyushu Institute Of Technology Blood flow image diagnosing device
DE102010016598A1 (de) * 2010-04-23 2011-10-27 Leica Microsystems Cms Gmbh Verfahren zum Untersuchen einer fluoreszierende Farbstoffe enthaltenden Probe mit Hilfe eines Mikroskops
US9226673B2 (en) 2011-01-10 2016-01-05 East Carolina University Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling
US9271658B2 (en) * 2011-01-10 2016-03-01 East Carolina University Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling
ES2593619T3 (es) * 2012-01-20 2016-12-12 Medizinisches Laserzentrum Lübeck GmbH Procedimiento interferométrico de moteado y sistema para detectar un movimiento de una superficie
WO2013155301A1 (en) 2012-04-11 2013-10-17 University Of Florida Research Foundation, Inc. System and method for analyzing random patterns
WO2014066598A1 (en) * 2012-10-24 2014-05-01 The Uab Research Foundation Imaging retinal intrinsic optical signals
US9527240B2 (en) 2013-03-15 2016-12-27 Stratasys, Inc. Additive manufacturing system and method for printing three-dimensional parts using velocimetry
EP3188651A4 (en) 2014-10-14 2018-07-04 East Carolina University Methods, systems and computer program products for visualizing anatomical structures and blood flow and perfusion physiology using imaging techniques
US11553844B2 (en) 2014-10-14 2023-01-17 East Carolina University Methods, systems and computer program products for calculating MetaKG signals for regions having multiple sets of optical characteristics
JP2017534378A (ja) 2014-10-14 2017-11-24 イースト カロライナ ユニバーシティ 血流量及び灌流量のマルチスペクトル画像化によって得られる信号を使用して血行動態パラメータを決定する方法、システム、及びコンピュータプログラム製品
US10390718B2 (en) 2015-03-20 2019-08-27 East Carolina University Multi-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design
US10058256B2 (en) 2015-03-20 2018-08-28 East Carolina University Multi-spectral laser imaging (MSLI) methods and systems for blood flow and perfusion imaging and quantification
TWI568408B (zh) * 2015-12-23 2017-02-01 財團法人工業技術研究院 一種眼壓檢測裝置及其檢測方法
CN107088071B (zh) * 2016-02-17 2021-10-15 松下知识产权经营株式会社 生物体信息检测装置
WO2018180079A1 (en) 2017-03-29 2018-10-04 Sony Corporation Medical imaging system, method, and computer program
IL295510A (en) * 2020-02-14 2022-10-01 Activ Surgical Inc Systems and methods for processing laser speckle signals

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113672A (ja) * 1987-10-28 1989-05-02 Kowa Co 速度分布測定装置
JPH0347136A (ja) * 1989-03-29 1991-02-28 Medco Res Inc 血管診断助剤
JPH04193255A (ja) * 1990-11-27 1992-07-13 A T R Shichiyoukaku Kiko Kenkyusho:Kk 眼球制御系の解析装置
JPH07163532A (ja) * 1993-12-14 1995-06-27 Canon Inc 眼科測定装置
JP2002028141A (ja) * 2000-07-13 2002-01-29 Mitsunobu Nagao 脳血流分布の不均一性評価方法及びその評価装置
WO2004093650A2 (en) * 2003-04-17 2004-11-04 The General Hospital Corporation Method for monitoring blood flow and metabolic uptake in tissue with radiolabeled alkanoic acid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69016071T2 (de) * 1989-03-06 1995-06-22 Kowa Co Verfahren zur Augen-Diagnostik.
JP2005118320A (ja) * 2003-10-16 2005-05-12 Taiyo Denshi Kk 超音波診断装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113672A (ja) * 1987-10-28 1989-05-02 Kowa Co 速度分布測定装置
JPH0347136A (ja) * 1989-03-29 1991-02-28 Medco Res Inc 血管診断助剤
JPH04193255A (ja) * 1990-11-27 1992-07-13 A T R Shichiyoukaku Kiko Kenkyusho:Kk 眼球制御系の解析装置
JPH07163532A (ja) * 1993-12-14 1995-06-27 Canon Inc 眼科測定装置
JP2002028141A (ja) * 2000-07-13 2002-01-29 Mitsunobu Nagao 脳血流分布の不均一性評価方法及びその評価装置
WO2004093650A2 (en) * 2003-04-17 2004-11-04 The General Hospital Corporation Method for monitoring blood flow and metabolic uptake in tissue with radiolabeled alkanoic acid

Also Published As

Publication number Publication date
US20090177098A1 (en) 2009-07-09
WO2007080743A1 (ja) 2007-07-19

Similar Documents

Publication Publication Date Title
JPWO2007080743A1 (ja) 検査システムおよび検査方法
Sampson et al. Towards standardizing retinal optical coherence tomography angiography: a review
JP5474435B2 (ja) 眼底解析装置及び眼底解析プログラム
Yazdanfar et al. Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography
JP5166889B2 (ja) 眼底血流量の定量測定装置
JP6062793B2 (ja) 血流画像診断装置
JP6278295B2 (ja) 脈絡膜の血管網を選択的に可視化し解析する光干渉断層計装置及びその画像処理プログラム
JP6086345B2 (ja) 眼科装置
JP6550745B2 (ja) 血流計測装置
US20060147897A1 (en) Characterization of arteriosclerosis by optical imaging
Liu et al. Accuracy of retinal oximetry: a Monte Carlo investigation
KR101746763B1 (ko) 망막 또는 맥락막 내 혈관조영 광가간섭 단층촬영 장치 및 이를 이용한 질병 진단방법
Choi et al. In vivo imaging of functional microvasculature within tissue beds of oral and nasal cavities by swept-source optical coherence tomography with a forward/side-viewing probe
Liu et al. In vivo measurement of organelle motility in human retinal pigment epithelial cells
Chen et al. Monte Carlo investigation of optical coherence tomography retinal oximetry
Landa et al. Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI)
WO2014043378A1 (en) Apparatus and method for volumetric imaging of blood flow properties
Chu et al. Complex signal-based optical coherence tomography angiography enables in vivo visualization of choriocapillaris in human choroid
JP7348374B2 (ja) 眼科情報処理装置、眼科撮影装置、眼科情報処理方法、及びプログラム
Ferris et al. Forward multiple scattering dominates speckle decorrelation in whole-blood flowmetry using optical coherence tomography
Afsharan et al. Polarization properties of retinal blood vessel walls measured with polarization sensitive optical coherence tomography
US9844320B2 (en) System and method for observing an object in a blood vessel
Dong et al. High resolution imaging and quantification of the nailfold microvasculature using optical coherence tomography angiography (OCTA) and capillaroscopy: a preliminary study in healthy subjects
JP6646021B2 (ja) 眼科画像処理装置
Rossow et al. Spatiotemporal image correlation spectroscopy measurements of flow demonstrated in microfluidic channels

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306