JPWO2007049734A1 - Polyethylene resin composition and film thereof - Google Patents

Polyethylene resin composition and film thereof Download PDF

Info

Publication number
JPWO2007049734A1
JPWO2007049734A1 JP2007542675A JP2007542675A JPWO2007049734A1 JP WO2007049734 A1 JPWO2007049734 A1 JP WO2007049734A1 JP 2007542675 A JP2007542675 A JP 2007542675A JP 2007542675 A JP2007542675 A JP 2007542675A JP WO2007049734 A1 JPWO2007049734 A1 JP WO2007049734A1
Authority
JP
Japan
Prior art keywords
polyethylene
resin composition
density polyethylene
low density
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007542675A
Other languages
Japanese (ja)
Inventor
堀田 幸生
幸生 堀田
宮本 郁也
郁也 宮本
至亮 浜田
至亮 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Publication of JPWO2007049734A1 publication Critical patent/JPWO2007049734A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Abstract

本発明によれば、示差走査熱量測定(DSC)による融点(Tm)が110℃以下である直鎖状低密度ポリエチレン(A)20〜99.85重量%;極性官能基を分子内に有する変性低密度ポリエチレン(B)0.05〜40重量%;及び、層状珪酸塩をカチオン系界面活性剤により修飾した有機化層状珪酸塩(C)0.1〜40重量%を含む、ポリエチレン系樹脂組成物が提供される。According to the present invention, linear low density polyethylene (A) having a melting point (Tm) of 110 ° C. or less by differential scanning calorimetry (DSC) is 20 to 99.85% by weight; modification having a polar functional group in the molecule Low density polyethylene (B) 0.05 to 40% by weight; and a polyethylene resin composition comprising 0.1 to 40% by weight of organically modified layered silicate (C) obtained by modifying layered silicate with a cationic surfactant Things are provided.

Description

本発明は、弾性率等の物性に優れたポリエチレン系樹脂組成物並びにそのフィルムに関する。更に詳しくは、包装材料としてシュリンク包装に適した特性を有しており、主として食品包装の用途に使用される多層フィルムに関する。   The present invention relates to a polyethylene resin composition having excellent physical properties such as elastic modulus and a film thereof. More specifically, the present invention relates to a multilayer film that has characteristics suitable for shrink packaging as a packaging material and is mainly used for food packaging applications.

ポリエチレン、ポリプロピレンなどに代表されるポリオレフィン系樹脂は、包装用資材、自動車用材料、家電製品材料など、様々な用途に用いられている。これらポリオレフィン系樹脂の機械物性を改良するため、タルクやガラス繊維のような無機フィラーを混合する方法が従来から検討されてきた。しかしこれらの無機フィラーはポリオレフィン系樹脂中にマイクロメートルオーダーで凝集しているため、十分な物性改良効果を得るために、多量の無機フィラーの添加が必要となる。そのため、軽量化や透明性を必要とされる用途には不向きであるという問題があった。特に食品包装用に供されるような厚みが10μm程度のフィルム中に、上記のように多量かつ凝集した状態で無機フィラーが存在した場合、透明性が悪化して包装される内容物の視認が困難になるなどの問題があった。   Polyolefin resins typified by polyethylene, polypropylene, and the like are used in various applications such as packaging materials, automotive materials, and household appliance materials. In order to improve the mechanical properties of these polyolefin resins, methods for mixing inorganic fillers such as talc and glass fibers have been studied. However, since these inorganic fillers aggregate in the polyolefin resin on the order of micrometers, it is necessary to add a large amount of inorganic fillers in order to obtain a sufficient effect of improving physical properties. Therefore, there has been a problem that it is not suitable for applications that require weight reduction and transparency. In particular, when the inorganic filler is present in a large amount and agglomerated as described above in a film having a thickness of about 10 μm, which is used for food packaging, the transparency is deteriorated and the contents to be packaged are visually recognized. There were problems such as difficulty.

一方、カチオン性界面活性剤で有機化処理した層状珪酸塩をナイロンのような極性樹脂に溶融混練して得られる複合材料は、層状珪酸塩が樹脂中にナノメートルオーダーで分散している。そのために、比較的少ない添加量で樹脂の弾性率等の機械物性を改良できることが報告されている。しかし、この方法は層状珪酸塩と親和性の高い極性樹脂に限られており、極性の乏しいポリエチレン、ポリプロピレン等のポリオレフィン系樹脂には適用できない。   On the other hand, in a composite material obtained by melt-kneading a layered silicate organically treated with a cationic surfactant into a polar resin such as nylon, the layered silicate is dispersed in the resin on the nanometer order. Therefore, it has been reported that mechanical properties such as the elastic modulus of the resin can be improved with a relatively small addition amount. However, this method is limited to polar resins having a high affinity with the layered silicate, and cannot be applied to polyolefin resins such as polyethylene and polypropylene having poor polarity.

この問題を解決するために、特許文献1には、不飽和カルボン酸またはその誘導体とそれらとの反応性比の積が1以下となる単量体(例えばスチレンなど)をブロック共重合またはグラフト共重合させた共重合変性ポリオレフィン樹脂と、変性処理した層状珪酸塩とを溶融混練する方法が開示されている。この方法によると、フィラーである層状珪酸塩をポリオレフィン樹脂中に均一分散させることができ、得られたポリオレフィン複合材料は、弾性率、耐熱性に優れることが報告されている。しかしこの方法では、不飽和カルボン酸またはその誘導体とスチレンなどの単量体との2種類をブロック共重合またはグラフト共重合させなければ効果が発現しない。そのため、製造工程が煩雑であるという問題点があった。さらには変性ポリオレフィン中の変性度が高いため、疎水性などの本来のポリオレフィンの特性が失われるという問題があった。   In order to solve this problem, Patent Document 1 discloses a block copolymerization or graft copolymerization of a monomer (for example, styrene) whose unsaturated carboxylic acid or its derivative and the product of the reactivity ratio thereof are 1 or less. A method of melt-kneading a polymerized copolymer-modified polyolefin resin and a modified layered silicate is disclosed. According to this method, it is reported that the layered silicate as the filler can be uniformly dispersed in the polyolefin resin, and the obtained polyolefin composite material is excellent in elastic modulus and heat resistance. However, this method has no effect unless block copolymerization or graft copolymerization of two kinds of unsaturated carboxylic acid or a derivative thereof and a monomer such as styrene. Therefore, there is a problem that the manufacturing process is complicated. Furthermore, since the degree of modification in the modified polyolefin is high, there has been a problem that characteristics of the original polyolefin such as hydrophobicity are lost.

一方、特許文献2には、層状構造と100グラム当たり30〜250ミリ当量の陽イオン交換容量を持つ粘土、ポリマーマトリックス、およびブロック共重合体またはグラフト共重合体に基づくナノ複合材料が開示されている。このナノ複合材料は、ブロック共重合体またはグラフト共重合体が粘土と混和する1以上の第一構造単位と、ポリマーマトリックスと混和する1以上の第二構造単位からなる。この方法によれば、粘土はマトリックスポリマー中に極めて均一に混合でき、得られた複合材料は高い耐熱性や機械強度を有するとされている。   On the other hand, Patent Document 2 discloses a nanocomposite based on clay, polymer matrix, and block copolymer or graft copolymer having a layered structure and a cation exchange capacity of 30 to 250 milliequivalent per 100 grams. Yes. The nanocomposite material comprises one or more first structural units in which the block copolymer or graft copolymer is miscible with the clay and one or more second structural units that are miscible with the polymer matrix. According to this method, clay can be mixed extremely uniformly into the matrix polymer, and the resulting composite material is said to have high heat resistance and mechanical strength.

また、特許文献3には、官能基を含有する分子量500〜1,000,000のポリオレフィン系重合体(A成分)とその官能基に水素結合した有機化層状粘土鉱物(B成分)と、前記A成分とB成分を分散させたポリオレフィン樹脂のマトリクス(C成分)よりなる粘土複合材料が開示されている。この粘土複合材料は、前記官能基の含有量が前記A成分に対して0.001mmol/g以上で、かつ0.45mmol/g以下であることを特徴とする。この複合材料においては、マトリクス中に層状粘土鉱物が良好に分散し、マトリクスの機械的性質が顕著に改善されるとしている。   Further, Patent Document 3 discloses a polyolefin polymer (component A) having a molecular weight of 500 to 1,000,000 containing a functional group, an organized layered clay mineral (component B) hydrogen-bonded to the functional group, A clay composite material comprising a polyolefin resin matrix (C component) in which an A component and a B component are dispersed is disclosed. This clay composite material is characterized in that the content of the functional group is 0.001 mmol / g or more and 0.45 mmol / g or less with respect to the component A. In this composite material, the layered clay mineral is well dispersed in the matrix, and the mechanical properties of the matrix are remarkably improved.

しかし、これらの方法はポリスチレンやポリプロピレンには適用できるが、低密度ポリエチレンや直鎖状低密度ポリエチレンなどのポリエチレン系樹脂においては、機械物性の改良効果が十分でない。さらには、これらポリエチレン系樹脂が本来有する良好な延伸性等が損なわれるという問題があった。   However, although these methods can be applied to polystyrene and polypropylene, the effect of improving mechanical properties is not sufficient in polyethylene resins such as low density polyethylene and linear low density polyethylene. Furthermore, there is a problem that the good stretchability inherent to these polyethylene resins is impaired.

非特許文献1には直鎖状低密度ポリエチレン、マレイン酸変性直鎖状低密度ポリエチレン、有機化モンモリロナイトを溶融混練して得られるポリエチレン−クレイナノコンポジット組成物が開示されている。当該組成物については、特定のアルキル基鎖を有する有機化モンモリロナイトを用いることで優れた機械特性、レオロジー特性、ガス透過性が得られるとしている。
しかしこのナノコンポジット組成物を食品包装用フィルムのような厚みが10μm程度のフィルムに用いた場合は、複合材料に起因する凝集物が視認されるようになって透明性が低下し、食品包装用フィルムとしての商品価値が損なわれる。また、シュリンク包装に適した特性、すなわち優れた熱融着性や低温収縮性を充分に得られないことが、本発明者らの研究により明らかになっている。
Non-Patent Document 1 discloses a polyethylene-clay nanocomposite composition obtained by melt-kneading linear low-density polyethylene, maleic acid-modified linear low-density polyethylene, and organic montmorillonite. About the said composition, it is supposed that the outstanding mechanical characteristic, rheological characteristic, and gas permeability will be acquired by using the organic-ized montmorillonite which has a specific alkyl group chain | strand.
However, when this nanocomposite composition is used for a film having a thickness of about 10 μm, such as a film for food packaging, the aggregate resulting from the composite material becomes visible and the transparency is lowered, and the food packaging The commercial value as a film is impaired. In addition, it has been clarified by the present inventors that characteristics suitable for shrink packaging, that is, excellent heat-fusibility and low-temperature shrinkage cannot be obtained sufficiently.

以上の如く、高い機械物性を有しながらもポリエチレンが本来有する良好な延伸性や透明性を損なうことがなく、特にフィルム包装に要求される優れた熱融着性、低温収縮性を兼ね備えた組成物は得られていない。また近年、省資源という観点からは成形品の薄肉化、すなわち高強度化の要求が高まり、フィルム自動包装機に代表される著しい高速化対応という点で、良好な熱融着性や低温収縮性が必須となってきている。これらの要求を総合的に満足する組成物、フィルムが強く望まれている。   As described above, while having high mechanical properties, it does not impair the good stretchability and transparency inherent in polyethylene, and has a particularly excellent heat-fusibility and low-temperature shrinkability required for film packaging. The thing is not obtained. In recent years, from the viewpoint of saving resources, there has been an increasing demand for thinner molded products, that is, higher strength, and it has good heat fusion properties and low-temperature shrinkability in terms of significantly increasing the speed, as exemplified by automatic film packaging machines. Has become essential. There is a strong demand for compositions and films that satisfy these requirements comprehensively.

特開平10−30039号公報Japanese Patent Laid-Open No. 10-30039 特表2001−512773号公報JP-T-2001-512773 特許3489411号公報Japanese Patent No. 3489411 S.Hotta,D.R.Paul、Nanocomposites formed from linear low density polyethylene and organoclays、Polymer 45(2004)7639−7654S. Hotta, D.H. R. Paul, Nanocomposites formed from linear low density polytheylene and organoclays, Polymer 45 (2004) 7639-7654.

本発明の目的は、弾性率等の機械物性に優れ、かつ透明性や延伸加工性等のフィルム、シート特性を備えたポリエチレン系樹脂組成物を提供することである。本発明の更なる目的は、薄肉でも高強度を有し、熱融着性や低温収縮性に優れ、実用上十分な透明性や光沢を発揮し、シュリンク包装適性が良好なポリエチレン系樹脂フィルムを提供することである。   An object of the present invention is to provide a polyethylene resin composition having excellent mechanical properties such as elastic modulus and having film and sheet properties such as transparency and stretchability. A further object of the present invention is to provide a polyethylene-based resin film that has high strength even in a thin wall, is excellent in heat-fusibility and low-temperature shrinkability, exhibits practically sufficient transparency and gloss, and has good shrink wrapping suitability. Is to provide.

本発明者等は、上記課題を解決するために鋭意研究を重ねた。その結果、低融点の直鎖状低密度ポリエチレン、特定の条件を満たす変性低密度ポリエチレン及び有機化層状珪酸塩を組み合わせることにより、層状珪酸塩が均一に分散したポリエチレン系樹脂組成物が得られること、またそのポリエチレン系樹脂組成物は本来ポリエチレンが持つ透明性や延伸加工性を損なうことなく、機械物性、特に弾性率が格段に向上し、優れたシュリンク包装用フィルム特性を有することを見出し、本発明を完成させるに至った。   The inventors of the present invention have intensively studied to solve the above problems. As a result, a polyethylene resin composition in which the layered silicate is uniformly dispersed can be obtained by combining a low-melting linear low-density polyethylene, a modified low-density polyethylene that satisfies specific conditions, and an organically modified layered silicate. In addition, the polyethylene resin composition has been found to have significantly improved mechanical properties, particularly elastic modulus, and excellent shrink wrapping film properties without impairing the transparency and stretch processability inherent in polyethylene. The invention has been completed.

すなわち、本発明は以下のとおりである。
(1).示差走査熱量測定による融点(T)が110℃以下である直鎖状低密度ポリエチレン(A)20〜99.85重量%;極性官能基を分子内に有する変性低密度ポリエチレン(B)0.05〜40重量%;及び、層状珪酸塩をカチオン系界面活性剤により修飾した有機化層状珪酸塩(C)0.1〜40重量%を含む、ポリエチレン系樹脂組成物。
(2).有機化層状珪酸塩(C)が下記式(1)で表される合成フッ素化雲母を有機カチオン系界面活性剤で有機修飾して得られたものである、(1)項に記載のポリエチレン系樹脂組成物。
NaMg2.5Si10(FαOH(1−α) (0.8≦α≦1.0) (1)
(3).有機化層状珪酸塩(C)のX線回折測定をした際、2θ=0〜10°の範囲における回折パターンのメインピークが示す2θの値から、式(2)を用いて算出する層間距離h0が19〜35Åである、(1)項または(2)項に記載のポリエチレン系樹脂組成物。
h0(Å)=1.54(Å)/2sinθ (2)
(4).前記直鎖状低密度ポリエチレン(A)と変性低密度ポリエチレン(B)の溶融剪断粘度の関係を示す式(3)で表される溶融粘度パラメーター(V)が0.6〜1.3である、(1)項〜(3)項のいずれか1項に記載のポリエチレン系樹脂組成物。
V=VLDPE/VLDPEm (3)
LDPE:剪断速度が100sec−1における直鎖状低密度ポリエチレン(A)の溶融剪断粘度
LDPEm:剪断速度が100sec−1における変性低密度ポリエチレン(B)の溶融剪断粘度
(5).示差走査熱量測定による融点(T)が110℃以下であり、引張弾性率が150MPa以上である、(1)項〜(4)項のいずれか1項に記載のポリエチレン系樹脂組成物。
(6).直鎖状低密度ポリエチレン(A)、変性低密度ポリエチレン(B)、有機化層状珪酸塩(C)を二軸押出機で溶融混練するに際し、有機化層状珪酸塩(C)をサイドフィード法により添加することを含む、(1)項〜(5)項のいずれか1項に記載のポリエチレン系樹脂組成物の製造方法。
(7).(1)項〜(5)項のいずれか1項に記載のポリエチレン系樹脂組成物からなるポリエチレン系樹脂単層フィルム。
(8).(1)項〜(5)項のいずれか1項に記載のポリエチレン系樹脂組成物により単一で構成された層を1層以上含むポリエチレン系樹脂多層フィルム。
(9).(1)項〜(5)項のいずれか1項に記載のポリエチレン系樹脂組成物を1成分として含む層を1層以上含むポリエチレン系樹脂多層フィルム。
(10).(7)項〜(9)項のいずれか1項に記載のポリエチレン系樹脂フィルムを延伸して得られるポリエチレン系樹脂延伸フィルム。
(11).(7)項〜(9)項のいずれか1項に記載のポリエチレン系樹脂フィルムを架橋延伸して得られるポリエチレン系樹脂架橋延伸フィルム。
That is, the present invention is as follows.
(1). Linear low density polyethylene (A) having a melting point (T m ) of 110 ° C. or less by differential scanning calorimetry 20 to 99.85% by weight; modified low density polyethylene (B) having a polar functional group in the molecule And a polyethylene-based resin composition comprising 0.1 to 40% by weight of an organized layered silicate (C) obtained by modifying a layered silicate with a cationic surfactant.
(2). The polyethylene type according to item (1), wherein the organic layered silicate (C) is obtained by organically modifying a synthetic fluorinated mica represented by the following formula (1) with an organic cationic surfactant. Resin composition.
NaMg 2.5 Si 4 O 10 (F α OH (1-α)) 2 (0.8 ≦ α ≦ 1.0) (1)
(3). When the X-ray diffraction measurement of the organic layered silicate (C) is performed, the interlayer distance h0 calculated from the value of 2θ indicated by the main peak of the diffraction pattern in the range of 2θ = 0 to 10 ° using the formula (2) The polyethylene resin composition according to item (1) or (2), wherein is 19 to 35%.
h0 (Å) = 1.54 (Å) / 2sinθ (2)
(4). The melt viscosity parameter (V) represented by the formula (3) showing the relationship between the melt shear viscosity of the linear low density polyethylene (A) and the modified low density polyethylene (B) is 0.6 to 1.3. The polyethylene resin composition according to any one of items (1) to (3).
V = V LDPE / V LDPEm (3)
V LDPE: melt shear viscosity of the linear low density polyethylene shear rate at 100sec -1 (A) V LDPEm: melt shear viscosity of the modified shear rate at 100 sec -1 low density polyethylene (B) (5). The polyethylene resin composition according to any one of items (1) to (4), wherein a melting point (T m ) by differential scanning calorimetry is 110 ° C. or less and a tensile elastic modulus is 150 MPa or more.
(6). When melt-kneading the linear low density polyethylene (A), the modified low density polyethylene (B), and the organically modified layered silicate (C) with a twin screw extruder, the organically modified layered silicate (C) is obtained by a side feed method. The manufacturing method of the polyethylene-type resin composition of any one of (1) term-(5) term including adding.
(7). A polyethylene resin single layer film comprising the polyethylene resin composition according to any one of items (1) to (5).
(8). A polyethylene-based resin multilayer film comprising one or more layers composed of a single layer of the polyethylene-based resin composition according to any one of items (1) to (5).
(9). A polyethylene-based resin multilayer film including one or more layers including the polyethylene-based resin composition according to any one of items (1) to (5) as one component.
(10). A stretched polyethylene resin film obtained by stretching the polyethylene resin film according to any one of Items (7) to (9).
(11). A polyethylene resin cross-linked stretched film obtained by cross-linking and stretching the polyethylene resin film according to any one of items (7) to (9).

本発明によるポリエチレン系樹脂組成物は、ポリエチレン系フィルムの有する伸びや透明性等を損なうことなく、従来の技術により得られるポリオレフィン系樹脂組成物と比較して非常に高い弾性率改良効果が得られる。さらに、低温での良好な熱融着性、収縮性も併せ持つ。そのため、フィルムの薄肉化や、フィラー添加量の低減も可能となり、各種フィルムとして有用であるばかりか、省資源化にも有効である。   The polyethylene-based resin composition according to the present invention has a very high elastic modulus improving effect as compared with a polyolefin-based resin composition obtained by a conventional technique without impairing the elongation or transparency of the polyethylene-based film. . In addition, it has good heat-fusibility and shrinkage at low temperatures. Therefore, the thickness of the film can be reduced and the amount of filler added can be reduced, which is useful not only for various films but also for saving resources.

以下に、本発明を詳細に説明する。
本発明における直鎖状低密度ポリエチレン(A)としては、エチレンの単独重合体、エチレンとプロピレン、ブテン−1、ペンテン−1、4-メチル−ペンテン−1、ヘキセン−1、オクテン−1等の炭素数が3〜18のα−オレフィンから選ばれる少なくとも1種類の単量体との共重合体が挙げられる。マルチサイト系触媒、シングルサイト系触媒のいずれの触媒にて重合されたものでもよいが、シングルサイト触媒で重合されたものの方が透明性が優れるのでより好ましい。
The present invention is described in detail below.
Examples of the linear low density polyethylene (A) in the present invention include ethylene homopolymers, ethylene and propylene, butene-1, pentene-1, 4-methyl-pentene-1, hexene-1, octene-1, and the like. Examples thereof include a copolymer with at least one monomer selected from α-olefins having 3 to 18 carbon atoms. The polymer may be polymerized with either a multi-site catalyst or a single-site catalyst, but a polymer polymerized with a single-site catalyst is more preferable because of its excellent transparency.

また、本発明の直鎖状低密度ポリエチレン(A)の示差走査熱量測定(DSC)による融点(T)は、110℃以下である。ここで述べる融点(T)とは、(株)パーキンエルマージャパン社製の示差走査熱量計Diamond DSC(商品名)を用い、以下に示す3ステップからなる融解−結晶化−融解プロファイルの測定を行い、ステップ3における2次融解曲線のピーク温度を融点(T)とした。融解ピークが2つ以上認められる場合は、全融解熱量の20%以上を有する最も低温側のピーク温度をその融点(T)とした。
ステップ1:30℃で1分間保持→200℃まで10℃/分で昇温(1次融解)
ステップ2:200℃で1分間保持→30℃まで10℃/分で降温(結晶化)
ステップ3:30℃で1分間保持→200℃まで10℃/分で昇温(2次融解)
The melting point by differential scanning calorimetry (DSC) of linear low density polyethylene of the present invention (A) (T m) is 110 ° C. or less. The melting point (T m ) described here is a measurement of melting-crystallization-melting profile consisting of the following three steps using a differential scanning calorimeter Diamond DSC (trade name) manufactured by PerkinElmer Japan Co., Ltd. The peak temperature of the secondary melting curve in Step 3 was defined as the melting point (T m ). When two or more melting peaks were observed, the lowest peak temperature having 20% or more of the total heat of fusion was defined as the melting point (T m ).
Step 1: Hold at 30 ° C for 1 minute → Increase to 200 ° C at 10 ° C / minute (primary melting)
Step 2: Hold at 200 ° C for 1 minute → Decrease to 30 ° C at 10 ° C / min (crystallization)
Step 3: Hold at 30 ° C for 1 minute → Increase to 200 ° C at 10 ° C / min (secondary melting)

この融点(T)が110℃以下であると、フィルム、特にシュリンク包装用フィルムに必要な優れた熱融着性や低温収縮性が得られる。すなわち、ヒートシール温度やシュリンク温度が低温側に拡大、或いはシフトすることで、短時間でのシールとシュリンクが可能になり、高速の自動連続包装にも対応可能となる。高速化が進む連続自動包装に対応しながら、よりタイトで美麗な包装体を得るためには、融点(T)が107℃以下であることがより好ましく、100℃以下であることが更に好ましい。これら融点はポリマー主鎖の分子量、側鎖の分子量及び分岐度、分子量分布により影響を受ける。
上記、融点(T)が110℃以下の直鎖状低密度ポリエチレンの具体例としては、住友化学社製、商品名、スミカセンE FV101(T=107℃)、FV201(T=101℃)、FV202(T=107℃)、三井化学社製、商品名、エボリューSP0540(T=88℃)、宇部興産製、商品名、ユメリット0540F(T=87℃)、1520F(T=98℃)等が挙げられる。
When the melting point (T m ) is 110 ° C. or less, excellent heat-fusibility and low-temperature shrinkage necessary for films, particularly shrink wrapping films, can be obtained. That is, when the heat seal temperature and the shrink temperature are expanded or shifted to the low temperature side, the seal and shrink can be performed in a short time, and high-speed automatic continuous packaging can be handled. The melting point (T m ) is more preferably 107 ° C. or lower, and further preferably 100 ° C. or lower, in order to obtain a tighter and more beautiful package while supporting continuous automatic packaging where the speed is increased. . These melting points are affected by the molecular weight of the polymer main chain, the molecular weight and branching degree of the side chain, and the molecular weight distribution.
Specific examples of the above-described linear low density polyethylene having a melting point (T m ) of 110 ° C. or less include trade names, Sumikasen E FV101 (T m = 107 ° C.), FV201 (T m = 101 ° C.) manufactured by Sumitomo Chemical Co., Ltd. ), FV202 (T m = 107 ° C.), manufactured by Mitsui Chemicals, trade name, Evolue SP0540 (T m = 88 ° C.), manufactured by Ube Industries, trade name, Umerit 0540F (T m = 87 ° C.), 1520F (T m = 98 ° C.).

本発明における極性官能基を分子内に有する変性低密度ポリエチレン(B)とは、低密度ポリエチレン樹脂の変性によって、その側鎖または主鎖に極性官能基を導入したものである。上記の極性官能基としては、例えば、カルボン酸基、酸無水物基、水酸基、チオール基、ニトロ基、アミド基、イミド基等が挙げられる。
変性低密度ポリエチレン(B)の製造方法に特に限定はなく、低密度ポリエチレンを重合してから変性する重合型、あるいは高分子量ポリエチレン樹脂を分解する際に変性する方法などがある。なかでも重合型が好ましい。
The modified low-density polyethylene (B) having a polar functional group in the molecule in the present invention is one in which a polar functional group is introduced into its side chain or main chain by modification of a low-density polyethylene resin. Examples of the polar functional group include a carboxylic acid group, an acid anhydride group, a hydroxyl group, a thiol group, a nitro group, an amide group, and an imide group.
The production method of the modified low density polyethylene (B) is not particularly limited, and there are a polymerization type in which the low density polyethylene is polymerized and then modified, or a method in which the polymer is modified when the high molecular weight polyethylene resin is decomposed. Of these, the polymerization type is preferred.

変性低密度ポリエチレン(B)中に含まれる極性官能基の含有量は変性ポリエチレンに対し、0.05〜0.25mmol/gであることが好ましい。更に好ましくは0.08〜0.2mmol/gの範囲である。極性官能基含有量が0.05mmol/g以上であると、有機化層状珪酸塩の層間への挿入、即ちインターカレートが起こりやすい。そのため、得られるポリエチレン系樹脂組成物の弾性率等の機械物性が向上するので好ましい。極性官能基量が0.25mmol/g以下であると、インターカレートが十分に起き、かつマトリックスである低密度ポリエチレン(A)との相溶性も高い。そのため、ポリエチレン系樹脂組成物全体への有機化層状珪酸塩の分散が良好となり、凝集物が発生しにくく、フィルムの透明性が良くなるので好ましい。
本発明で用いることができる変性低密度ポリエチレン(B)は、上記の要件を満たしていれば構わない。直鎖状低密度ポリエチレン樹脂(A)との相溶性の点から、直鎖状低密度ポリエチレンを変性したものが好ましい。
The content of the polar functional group contained in the modified low density polyethylene (B) is preferably 0.05 to 0.25 mmol / g with respect to the modified polyethylene. More preferably, it is the range of 0.08-0.2 mmol / g. When the polar functional group content is 0.05 mmol / g or more, intercalation of the organically modified layered silicate is likely to occur. Therefore, it is preferable because mechanical properties such as elastic modulus of the obtained polyethylene resin composition are improved. When the amount of the polar functional group is 0.25 mmol / g or less, intercalation occurs sufficiently and the compatibility with the low density polyethylene (A) as a matrix is high. For this reason, the dispersion of the organically modified layered silicate in the entire polyethylene resin composition is favorable, the agglomerates are hardly generated, and the transparency of the film is improved, which is preferable.
The modified low density polyethylene (B) that can be used in the present invention only needs to satisfy the above requirements. From the viewpoint of compatibility with the linear low density polyethylene resin (A), a modified linear low density polyethylene is preferred.

変性低密度ポリエチレン(B)の具体例としては、例えば、三井化学社製、商品名、アドマーLB548、同じくLF128等の変性低密度ポリエチレン、三井・デュポンポリケミカル社製、商品名、Fusabond E MB226D、同じくMB528D、MX110D、三井化学社製、商品名、アドマーNB508、同じくNF518、NF548、Crompton社製、商品名、Polybond3109の変性直鎖状低密度ポリエチレンを挙げることができる。その中でもFusabond E MB226D、同じくMB528Dが好ましい。極性官能基量が特に好適な範囲にあり、有機化層状珪酸塩へのインターカレートが起こりやすく、得られるポリエチレン樹脂組成物の物性がより向上するためである。   Specific examples of the modified low density polyethylene (B) include, for example, Mitsui Chemicals, trade name, Admer LB548, modified low density polyethylene such as LF128, Mitsui DuPont Polychemicals, trade name, Fusabond E MB226D, Similarly, MB528D, MX110D, Mitsui Chemicals, trade name, Admer NB508, NF518, NF548, Crompton, trade name, Polybond 3109 modified linear low density polyethylene can be mentioned. Among these, Fusbond E MB226D and MB528D are also preferable. This is because the polar functional group amount is in a particularly suitable range, intercalation into the organically modified layered silicate is likely to occur, and the physical properties of the resulting polyethylene resin composition are further improved.

本発明における有機化層状珪酸塩(C)を得るために用いる層状珪酸塩としては、例えば、モンモリロナイト、サポナイト、ヘクトライト、バイデライト、スティブンサイト、ノントロナイト等のスメクタイト系粘土鉱物、バーミキュライト、膨潤性マイカ等が挙げられる。これらの層状珪酸塩は、天然品を精製したものであってもよく、水熱法など公知の方法で合成した合成品であってもよい。中でもモンモリロナイトや膨潤性雲母は物性改良効果が高い。特にアスペクト比が大きい合成フッ素化雲母は、本発明の組成物中に均一に分散させた後の射出成形やフィルム延伸等の二次(成形)加工で配向させることで、より高い弾性率改良効果が得られる。さらには、二次加工の際の有機化層状珪酸塩の再凝集を抑制しやすい、すなわち膜厚の薄い食品包装フィルムでも凝集物の発生が抑制しやすいという点で好ましい。
上記、モンモリロナイトの具体例としては、SouthernClay社製、商品名、Cloisite Na、クニミネ工業社製、商品名、クニピアRG、合成フッ素化雲母の例としてはコープケミカル社製、商品名、ソマシフME100などが挙げられる。
Examples of the layered silicate used to obtain the organically modified layered silicate (C) in the present invention include smectite clay minerals such as montmorillonite, saponite, hectorite, beidellite, stevensite, nontronite, vermiculite, and swelling. Sex mica etc. are mentioned. These layered silicates may be those obtained by purifying natural products or synthetic products synthesized by a known method such as a hydrothermal method. Among them, montmorillonite and swellable mica are highly effective in improving physical properties. Synthetic fluorinated mica with a particularly large aspect ratio can be oriented by secondary (molding) processing such as injection molding or film stretching after being uniformly dispersed in the composition of the present invention, resulting in a higher elastic modulus improving effect. Is obtained. Furthermore, it is preferable in that reorganization of the organically modified layered silicate at the time of secondary processing is easily suppressed, that is, generation of aggregates is easily suppressed even in a thin food packaging film.
Specific examples of the montmorillonite include, for example, Southern Clay, trade name, Cloisite Na, Kunimine Kogyo Co., Ltd., trade name, Kunipia RG, synthetic fluorinated mica, Cope Chemical Co., trade name, Somasif ME100, etc. Can be mentioned.

これらの層状珪酸塩は連続した層構造を有しており、その層間にはナトリウムイオン、カリウムイオン、リチウムイオンなどの陽イオンが存在し、親水性を有している。そのため、水、アルコールなどの極性溶媒が層間に入り込んで膨潤し、一部が剥離分散するという性質を持つ。膨潤とは、層と層の間に第3の物質が介入することで層間距離が拡張された状態を指す。また、剥離分散とは膨潤がさらに進むことで層と層が剥離し、層状構造が崩れて微細に分散した状態を指す。   These layered silicates have a continuous layer structure, and cations such as sodium ions, potassium ions, and lithium ions exist between the layers, and are hydrophilic. For this reason, polar solvents such as water and alcohol enter the layers and swell, and partly peel and disperse. Swelling refers to a state in which the interlayer distance is expanded by interposing a third substance between layers. Moreover, peeling dispersion | distribution refers to the state which the layer mutually peeled when swelling further progressed and the layered structure collapsed and was disperse | distributed finely.

上記、層状珪酸塩は陽イオン交換量(Charge Exchange Capacity:CEC)が50〜150ミリ当量/100gであることが好ましい。これによって、層状珪酸塩の層間を大きく膨潤させることができる。50ミリ当量/100g未満の場合には、カチオン系界面活性剤との間で陽イオンの交換が十分に行われず、層状珪酸塩の層間を膨潤させることが難しい場合がある。150ミリ当量/100gを超えると層状珪酸塩の層間の結合が強くなり、膨潤させることが難しくなる可能性がある。   The layered silicate preferably has a cation exchange capacity (CEC) of 50 to 150 meq / 100 g. Thereby, the interlayer of the layered silicate can be greatly swollen. When the amount is less than 50 meq / 100 g, cation exchange with the cationic surfactant is not sufficiently performed, and it may be difficult to swell the layers of the layered silicate. If it exceeds 150 meq / 100 g, the bonding between the layers of the layered silicate becomes strong and it may be difficult to swell.

また、本発明でいう有機化層状珪酸塩(C)を得るために用いるカチオン系界面活性剤は、有機物成分とルイス塩基が配位結合をつくることによって生成された塩を指す。例えば、4級アンモニウム塩や酸性の極性溶媒に溶解させた際に陽イオンを発生する有機アミン化合物等がこれに該当し、下記化学式(4)で表される構造を有する。

Figure 2007049734

(化学式中、R、R、R、Rはそれぞれ独立して水素、あるいはメチル、エチル、プロピル、ラウリル、オレイル、ステアリル等に代表される飽和あるいは不飽和炭化水素鎖である。該炭化水素鎖は直鎖であっても分岐構造を有していてもよい。また炭化水素鎖は、牛脂やヤシ油に代表されるような天然物に由来するものでもよい。また、R〜Rの炭化水素鎖のうち少なくとも1つは、炭素数が10以上であることが好ましい。最長の炭化水素鎖を構成する炭素数が10未満であると、有機化層状珪酸塩(C)と直鎖状低密度ポリエチレン(A)との親和性が不十分となり、十分な物性改良効果が得られない場合がある。Xはアニオンを示し、特に限定されないが、主に塩化物イオンや臭化物イオンなどのハロゲン化物イオンがこれに該当する。
カチオン系界面活性剤の具体例としては、例えば、ジメチルジステアリルアンモニウムブロミド(あるいはクロリド)、オクタデシルトリメチルアンモニウムブロミド(あるいはクロリド)などの4級アンモニウム塩、オクタデシルトリメチルアミンなどのアミン類などが挙げられる。Moreover, the cationic surfactant used for obtaining the organically modified layered silicate (C) in the present invention refers to a salt produced by the coordination of an organic substance component and a Lewis base. For example, an organic amine compound that generates a cation when dissolved in a quaternary ammonium salt or an acidic polar solvent corresponds to this, and has a structure represented by the following chemical formula (4).
Figure 2007049734

(In the chemical formula, R 1 , R 2 , R 3 and R 4 are each independently hydrogen, or a saturated or unsaturated hydrocarbon chain represented by methyl, ethyl, propyl, lauryl, oleyl, stearyl, etc.) the hydrocarbon chain may have a branched structure may be linear. the hydrocarbon chain may be derived from a natural product such as represented by beef tallow and coconut oil. in addition, R 1 ~ At least one of the hydrocarbon chains of R 4 preferably has 10 or more carbon atoms, and when the carbon number constituting the longest hydrocarbon chain is less than 10, the organically modified layered silicate (C) and affinity with linear low density polyethylene (a) becomes insufficient, sufficient physical property improving effect can not be obtained .X - it represents an anion, is not particularly limited, mainly chloride ions and bromide Halogenation of ions, etc. Ion corresponds to this.
Specific examples of the cationic surfactant include quaternary ammonium salts such as dimethyl distearyl ammonium bromide (or chloride) and octadecyltrimethylammonium bromide (or chloride), and amines such as octadecyltrimethylamine.

本発明における有機化層状珪酸塩(C)とは、層状珪酸塩をカチオン系界面活性剤で処理して、層間に存在する陽イオンとカチオン系界面活性剤の陽イオンと交換して有機化したものである。層間に有機カチオンが存在することによって、有機溶媒や有機物との親和性が向上する。すなわち、層状珪酸塩が水などの極性溶媒によって膨潤するのに対し、有機化層状珪酸塩は、その層間に有機物を取り込むことで膨潤する性質を持つ。有機化層状珪酸塩は、そのような性質の故に熱可塑性樹脂などの有機物中で剥離分散しやすくなる。
カチオン系界面活性剤と層状珪酸塩から有機化層状珪酸塩を合成する方法としては特に制限はない。アミン化合物を用いる場合においては、塩酸等により親水性溶媒を酸性にした上で層状珪酸塩を分散させ、アミン化合物を陽イオン化した上でイオン交換を行う方法を用いることができる。
The organically modified layered silicate (C) in the present invention is treated by treating the layered silicate with a cationic surfactant, and is exchanged with a cation existing between the layers and a cation of the cationic surfactant to be organicated. Is. The presence of organic cations between layers improves the affinity with organic solvents and organic substances. That is, while the layered silicate swells with a polar solvent such as water, the organically modified layered silicate has a property of swelling when an organic substance is taken in between the layers. Organized layered silicate easily peels and disperses in organic materials such as thermoplastic resins because of such properties.
There is no particular limitation on the method for synthesizing the organically modified layered silicate from the cationic surfactant and the layered silicate. In the case of using an amine compound, it is possible to use a method in which a hydrophilic solvent is acidified with hydrochloric acid or the like, the layered silicate is dispersed, and the amine compound is cationized and then ion exchange is performed.

なお、本発明において、ポリエチレン系樹脂組成物が高い物性改良効果を得る為には、有機化層状珪酸塩(C)の層間距離h0を19〜35Åにすることが好ましい。更に好ましくは24〜35Å、最も好ましくは30〜35Åである。
ここで述べるh0は、(株)リガク社製X線回折装置RINT2000(商品名)を用い、加速電圧40kV、加速電流200mA、走査速度1°/min、CuのKα線で測定した粉末X線回折パターンの2θ=0〜10°の範囲におけるメインピークが示す2θの値から、式(2)を用いて算出する。
h0(Å)=1.54(Å)/2sinθ (2)
このh0の値は、先に述べたカチオン系界面活性剤の炭化水素鎖や、層状珪酸塩の陽イオン交換量(CEC)の組み合わせによって制御することができる。
In the present invention, in order for the polyethylene resin composition to obtain a high effect of improving physical properties, the interlayer distance h0 of the organically modified layered silicate (C) is preferably 19 to 35 mm. More preferably, it is 24 to 35 mm, and most preferably 30 to 35 mm.
H0 described here is powder X-ray diffraction measured using an X-ray diffractometer RINT2000 (trade name) manufactured by Rigaku Corporation with an acceleration voltage of 40 kV, an acceleration current of 200 mA, a scanning speed of 1 ° / min, and Cu Kα rays. From the 2θ value indicated by the main peak in the range of 2θ = 0 to 10 ° of the pattern, calculation is performed using Equation (2).
h0 (Å) = 1.54 (Å) / 2sinθ (2)
The value of h0 can be controlled by a combination of the hydrocarbon chain of the cationic surfactant described above and the cation exchange amount (CEC) of the layered silicate.

この要件を満足する有機化層状珪酸塩の具体例としては、モンモリロナイトをジメチルジアルキルアンモニウム塩で修飾したSouthern Clay社製、商品名、Cloisite15A(h0=31.5Å)、同じく、Cloisite20A(h0=24.2Å)や、式(1)で表される合成フッ素化雲母をジメチルジアルキルアンモニウム塩で修飾したコープケミカル社製、商品名、ソマシフMAE(h0=34.0Å)などが挙げられる。
NaMg2.5Si10(FαOH(1−α) (0.8≦α≦1.0) (1)
特に、このソマシフMAE(商品名)は、アスペクト比が大きく、本発明の組成物中に均一に分散させた後の二次(成形)加工による配向により、より高い弾性率改良効果が得られる。また、二次加工の際の有機化層状珪酸塩の再凝集も抑制しやすいため、本発明で特に好適に用いられる。
Specific examples of the organically modified layered silicate that satisfies this requirement include a product name, Cloisite 15A (h0 = 31.5Å) manufactured by Southern Clay, in which montmorillonite is modified with a dimethyldialkylammonium salt, and Cloisite 20A (h0 = 24. 2)), and the product name, Somasif MAE (h0 = 34.0Å) manufactured by Co-op Chemical Co., Ltd., which is obtained by modifying the synthetic fluorinated mica represented by the formula (1) with a dimethyldialkylammonium salt.
NaMg 2.5 Si 4 O 10 (F α OH (1-α) ) 2 (0.8 ≦ α ≦ 1.0) (1)
In particular, this Somasif MAE (trade name) has a large aspect ratio, and a higher elastic modulus improving effect can be obtained by orientation by secondary (molding) processing after being uniformly dispersed in the composition of the present invention. Moreover, since it is easy to suppress the re-aggregation of the organic layered silicate during the secondary processing, it is particularly preferably used in the present invention.

本発明のポリエチレン系樹脂組成物中の各成分の割合は、示差走査熱量測定(DSC)による融点(T)が110℃以下の直鎖状低密度ポリエチレン(A)が20〜99.85重量%、極性官能基を分子内に有する変性低密度ポリエチレン(B)が0.05〜40重量%、層状珪酸塩をカチオン系界面活性剤により修飾した有機化層状珪酸塩(C)が0.1〜40重量%である。好ましくは、直鎖状低密度ポリエチレン(A)が30〜99.775重量%、変性低密度ポリエチレン(B)が0.075〜35重量%、有機化層状珪酸塩(C)が0.15〜35重量%である。更に好ましくは、直鎖状低密度ポリエチレン(A)が40〜99.7重量%、変性低密度ポリエチレン(B)が0.1〜30重量%、有機化層状珪酸塩(C)が0.2〜30重量%である。
有機化層状珪酸塩(C)の割合が0.1重量%未満では、ポリエチレン系樹脂組成物の弾性率等の物性を改良するには至らない。一方、40重量%を超えると、ポリエチレン系樹脂組成物の溶融粘度が高くなり過ぎ成形加工性が損なわれる可能性がある。また、極性官能基を分子内に有する変性低密度ポリエチレン(B)の割合は有機化層状珪酸塩(C)に対して重量比で0.5倍以上であることが好ましい。0.5倍以上であると有機化層状珪酸塩の層間に変性低密度ポリエチレンがインターカレートしやすくなる。これによって層状珪酸塩と低密度ポリエチレンの界面が大きくなり、層状珪酸塩がポリエチレン系樹脂を補強する効果が増大する。
The proportion of each component in the polyethylene resin composition of the present invention is 20 to 99.85 weights of linear low density polyethylene (A) having a melting point ( Tm ) of 110 ° C. or less by differential scanning calorimetry (DSC). %, The modified low density polyethylene (B) having a polar functional group in the molecule is 0.05 to 40% by weight, and the organically modified layered silicate (C) obtained by modifying the layered silicate with a cationic surfactant is 0.1. -40% by weight. Preferably, the linear low density polyethylene (A) is 30 to 99.775% by weight, the modified low density polyethylene (B) is 0.075 to 35% by weight, and the organic layered silicate (C) is 0.15 to 0.15%. 35% by weight. More preferably, the linear low density polyethylene (A) is 40 to 99.7% by weight, the modified low density polyethylene (B) is 0.1 to 30% by weight, and the organically modified layered silicate (C) is 0.2. ~ 30% by weight.
If the ratio of the organic layered silicate (C) is less than 0.1% by weight, physical properties such as the elastic modulus of the polyethylene resin composition cannot be improved. On the other hand, if it exceeds 40% by weight, the melt viscosity of the polyethylene-based resin composition becomes too high, and the moldability may be impaired. Moreover, it is preferable that the ratio of the modified low density polyethylene (B) having a polar functional group in the molecule is 0.5 times or more by weight ratio with respect to the organically modified layered silicate (C). If it is 0.5 times or more, the modified low density polyethylene is easily intercalated between the layers of the organically modified layered silicate. This increases the interface between the layered silicate and the low-density polyethylene, and the effect of the layered silicate reinforcing the polyethylene resin increases.

本発明のポリエチレン系樹脂組成物は、直鎖状低密度ポリエチレン(A)、変性低密度ポリエチレン(B)、及び有機化層状珪酸塩(C)を溶融混練装置により混合分散すればよい。溶融混練装置としては、例えばバンバリーミキサー、ロールミキサーなどの混練機や2軸押出機(スクリュー回転数が同方向、異方向)等が挙げられる。混合の順序は、直鎖状低密度ポリエチレン(A)、極性官能基を分子内に有する変性低密度ポリエチレン(B)、有機化層状珪酸塩(C)を同時に混合してもよいし、任意の順序で混合してもよい。混練機を用いる場合には、変性低密度ポリエチレン(B)と有機化層状珪酸塩(C)を混合して5〜10分程度混練し、引き続いて直鎖状低密度ポリエチレン(A)を添加して更に5〜10分程度混合する方法;又は、変性低密度ポリエチレン(B)と有機化層状珪酸塩(C)を溶融混練して予めマスターバッチとしてから、直鎖状低密度ポリエチレン(A)と混合した後、溶融混練する混合法が好ましい。押出機を用いる場合は、単軸押出機に予め乾燥状態で混合した直鎖状低密度ポリエチレン(A)、変性低密度ポリエチレン(B)および有機化層状珪酸塩(C)の混合物をホッパーから投入して溶融混練する方法(トップフィード法)が挙げられる。混練時に効率的に剪断応力をかけることで分散性を高められる二軸押出機による混練がより好ましい。二軸押出機を用いる場合、単軸押出機と同じく、トップフィード法を用いることもできる。また、直鎖状低密度ポリエチレン(A)と変性低密度ポリエチレン(B)を混合し、ホッパーから投入して溶融混練した後、押出機途中に設けられたサイドフィーダーより有機化層状珪酸塩(C)を添加して更に溶融混練する方法(サイドフィード法)を採ることもできる。そのような方法によって、有機化層状珪酸塩の剪断応力による破壊を最小限にして弾性率等の高い機械物性改良効果を得ることができる。   The polyethylene resin composition of the present invention may be prepared by mixing and dispersing linear low density polyethylene (A), modified low density polyethylene (B), and organically modified layered silicate (C) with a melt kneader. Examples of the melt-kneader include kneaders such as Banbury mixers and roll mixers, and twin-screw extruders (screw rotational speeds are in the same direction and different directions). The order of mixing may be the simultaneous mixing of the linear low density polyethylene (A), the modified low density polyethylene (B) having a polar functional group in the molecule, and the organically modified layered silicate (C). You may mix in order. When using a kneader, the modified low density polyethylene (B) and the organically modified layered silicate (C) are mixed and kneaded for about 5 to 10 minutes, and then the linear low density polyethylene (A) is added. A method of further mixing for about 5 to 10 minutes; or the modified low density polyethylene (B) and the organically modified layered silicate (C) are melt-kneaded into a master batch in advance, and then the linear low density polyethylene (A) and A mixing method in which, after mixing, melt kneading is preferred. When using an extruder, a mixture of linear low-density polyethylene (A), modified low-density polyethylene (B), and organically modified layered silicate (C) mixed in a dry state in a single-screw extruder is charged from the hopper. And a melt kneading method (top feed method). Kneading by a twin screw extruder that can enhance dispersibility by efficiently applying shear stress during kneading is more preferable. When using a twin screw extruder, the top feed method can also be used like a single screw extruder. Further, after mixing the linear low density polyethylene (A) and the modified low density polyethylene (B), adding them from a hopper and melt-kneading them, the organic layered silicate (C ) And then melt-kneading (side feed method) may be employed. By such a method, it is possible to obtain a high mechanical property improving effect such as an elastic modulus by minimizing breakage of the organically modified layered silicate due to shear stress.

また、本発明においては直鎖状低密度ポリエチレン(A)の溶融剪断粘度と変性低密度ポリエチレン(B)の溶融剪断粘度の関係を示す溶融粘度パラメーター(V)の値は0.3〜1.3の範囲が好ましく、より好ましくは0.6〜1.2の範囲である。
ここで述べる溶融粘度パラメーター(V)は、次のようにして算出する。(株)東洋精機製作所製キャピログラフ1C(商品名)のバレル先端に10mmの長さと1.0mmのノズル径を有するキャピラリーを取り付け、バレル温度を190℃に設定、直鎖状低密度ポリエチレン(A)または変性低密度ポリエチレン(B)のペレットを数回に分けて充分に空気を抜きながらバレル内に充填、溶融させる。ピストン速度を0.5、1、2、5、10、20、50、100mm/minと段階的に上げて剪断速度を変えながらキャピラリーより押出し、それぞれの剪断速度における見掛けの溶融剪断粘度を算出する。得られた溶融剪断粘度のカーブより、剪断速度が100sec−1における直鎖状低密度ポリエチレン(A)の見かけの溶融剪断粘度VLDPE、変性低密度ポリエチレン(B)の見かけの溶融剪断粘度VLDPEmを求め、以下の式(3)よりVを求める。
V=VLDPE/VLDPEm (3)
In the present invention, the value of the melt viscosity parameter (V) indicating the relationship between the melt shear viscosity of the linear low density polyethylene (A) and the melt shear viscosity of the modified low density polyethylene (B) is 0.3 to 1. The range of 3 is preferable, and the range of 0.6 to 1.2 is more preferable.
The melt viscosity parameter (V) described here is calculated as follows. Capillograph 1C (trade name) manufactured by Toyo Seiki Seisakusho Co., Ltd. is attached with a capillary having a length of 10 mm and a nozzle diameter of 1.0 mm, the barrel temperature is set to 190 ° C., linear low density polyethylene (A) Alternatively, the pellets of the modified low density polyethylene (B) are divided into several times and filled in the barrel while being sufficiently evacuated to melt. The piston speed is increased stepwise to 0.5, 1, 2, 5, 10, 20, 50, 100 mm / min and extruded from the capillary while changing the shear rate, and the apparent melt shear viscosity at each shear rate is calculated. . From the curve of the resulting melt shear viscosity, melt shear viscosity of the apparent apparent melt shear viscosity V LDPE linear low density polyethylene shear rate at 100 sec -1 (A), modified low-density polyethylene (B) V LDPEm V is obtained from the following equation (3).
V = V LDPE / V LDPEm (3)

この溶融粘度パラメーター(V)が0.3〜1.3であれば、直鎖状低密度ポリエチレン(A)と変性低密度ポリエチレン(B)の相溶性が十分であり、変性低密度ポリエチレン(B)の分散がよく、変性低密度ポリエチレン(B)と親和性を持った有機化層状珪酸塩も凝集しにくくなる。その結果、成形品の物性が均質となり、厚みが10マイクロメートル程度の食品包装用フィルムの場合でも、凝集物が視認されにくくなり商品価値が損なわれることがない。
溶融粘度パラメーターは、直鎖状低密度ポリエチレン(A)と変性低密度ポリエチレン(B)の溶融剪断粘度の値を近づけるように各々の樹脂を選定することで本発明の好適な範囲に収めることが可能である。
When the melt viscosity parameter (V) is 0.3 to 1.3, the compatibility of the linear low density polyethylene (A) and the modified low density polyethylene (B) is sufficient, and the modified low density polyethylene (B ) Is well dispersed, and the organically modified layered silicate having an affinity for the modified low density polyethylene (B) is less likely to aggregate. As a result, the physical properties of the molded product are uniform, and even in the case of a food packaging film having a thickness of about 10 micrometers, the aggregates are hardly visible and the commercial value is not impaired.
The melt viscosity parameter can be within the preferable range of the present invention by selecting each resin so that the melt shear viscosity values of the linear low density polyethylene (A) and the modified low density polyethylene (B) are close to each other. Is possible.

本発明におけるポリエチレン系樹脂組成物には、当該樹脂組成物の所望の物性に悪影響を及ぼさない範囲の量で、当技術分野で通常用いられる酸化防止剤、紫外線吸収剤、熱安定剤、光安定剤、難燃剤、可塑剤、造核剤、着色剤、滑剤、表面光沢改良剤等の種々の添加剤を添加することができる。   In the polyethylene resin composition of the present invention, an antioxidant, an ultraviolet absorber, a heat stabilizer, and a light stabilizer, which are usually used in the art, in an amount that does not adversely affect the desired physical properties of the resin composition. Various additives such as an agent, a flame retardant, a plasticizer, a nucleating agent, a colorant, a lubricant, and a surface gloss improving agent can be added.

なお、本発明におけるポリエチレン系樹脂組成物は水冷或いは空冷のインフレーション成形、同時2軸延伸、逐次2軸延伸、Tダイによる押出成形、押出ラミネーション成形などの押出成形でフィルム状やシート状に成形することが可能である。またそれ以外にも射出成形、ブロー成形等による成形品、型内発泡によるビーズ発泡成形品、化学発泡剤や物理発泡剤を用いた押出発泡成形品にも使用可能である。   The polyethylene resin composition in the present invention is formed into a film or sheet by extrusion molding such as water-cooled or air-cooled inflation molding, simultaneous biaxial stretching, sequential biaxial stretching, T-die extrusion molding, extrusion lamination molding, or the like. It is possible. In addition, it can also be used for molded products by injection molding, blow molding, etc., bead foam molded products by in-mold foaming, and extrusion foam molded products using chemical foaming agents or physical foaming agents.

なお、本発明のポリエチレン系樹脂組成物を用いた成形品の弾性率等の改良効果を更に高めるために、上記の成形過程において樹脂組成物に配向をかけ、樹脂組成物中で有機化層状珪酸塩を配列させることが好ましい。特に、フィルム成形において延伸をかけた場合は、有機化層状珪酸塩の配向度が高くなり、その結果として得られる成形品の弾性率が更に高まる。また、射出成形においても、キャビティや金型内で詰まりが生じないようにできる限りゆっくり樹脂組成物を金型内へ充填した場合は、金型との接触面で樹脂組成物が冷却固定され、先端部との間で樹脂組成物が引き伸ばされながら流れるファウンテンフローと呼ばれる噴水状の樹脂流動が生じる。そのため、得られる成形品の表層における有機化層状珪酸塩の配向度が高まり、高い弾性率改良効果を得ることができる。   In order to further enhance the improvement effect such as the elastic modulus of a molded article using the polyethylene resin composition of the present invention, the resin composition is oriented in the molding process, and the organically modified layered silicic acid is contained in the resin composition. It is preferable to arrange the salts. In particular, when stretching is performed in film forming, the degree of orientation of the organically modified layered silicate is increased, and the resulting elastic modulus of the molded product is further increased. Also, in the injection molding, when the resin composition is filled into the mold as slowly as possible so as not to clog in the cavity and the mold, the resin composition is cooled and fixed at the contact surface with the mold, A fountain-like resin flow called a fountain flow that flows while the resin composition is stretched between the front ends is generated. Therefore, the degree of orientation of the organically modified layered silicate in the surface layer of the obtained molded product is increased, and a high elastic modulus improving effect can be obtained.

本発明におけるポリエチレン系樹脂組成物の示差走査熱量測定(DSC)による融点(T)は110℃以下である。引張弾性率は150MPa以上であることが好ましい。
ここで述べる引張弾性率は、島津製作所(株)製オートグラフAG5000D(商品名)を用いて、ポリエチレン系樹脂組成物のダンベル試験片(JIS K7113 2号形)を試験速度5mm/minで引っ張って得た応力―歪曲線図の初期(歪率1%未満)の傾斜より算出する。この引張試験に用いるダンベル試験片(JIS K7113 2号形)は、本発明のポリエチレン系樹脂組成物の乾燥ペレットをKlockner Ferromatic Desma GmbH製KLOCKNER F85(商品名)射出成形機にて、190℃、射出圧力127.1MPa、保持圧力101.2MPa、保持時間4秒、冷却時間30秒で成形して得られる。
The melting point (T m ) by differential scanning calorimetry (DSC) of the polyethylene resin composition in the present invention is 110 ° C. or less. The tensile elastic modulus is preferably 150 MPa or more.
The tensile elastic modulus described here was obtained by pulling a dumbbell test piece (JIS K7113 type 2) of a polyethylene resin composition at a test speed of 5 mm / min using an autograph AG5000D (trade name) manufactured by Shimadzu Corporation. It is calculated from the initial slope (less than 1% strain rate) of the obtained stress-strain curve diagram. A dumbbell test piece (JIS K7112 type) used for this tensile test was obtained by injecting a dry pellet of the polyethylene resin composition of the present invention at 190 ° C. with a KLOCKNER F85 (trade name) injection molding machine manufactured by Klockner Ferromatic Desma GmbH. It is obtained by molding at a pressure of 127.1 MPa, a holding pressure of 101.2 MPa, a holding time of 4 seconds, and a cooling time of 30 seconds.

引張弾性率を150MPa以上にするためには、本発明で好適に用いられる合成フッ素化雲母を有機カチオン系界面活性剤で有機修飾して得られるようなアスペクト比(L/D)の大きな有機化層状珪酸塩を用いることにより;また、有機化層状珪酸塩をサイドフィードすることにより剪断破壊によるLの低下を最小限に抑制しつつ、有機化層状珪酸塩の剥離を促進して分散性を高めL/Dをできる限り高めることにより達成できる。
本発明の上記要件を満たすポリエチレン系樹脂組成物はフィルムにした際、優れた熱融着性や低温収縮性とハリ・コシといった剛性を兼ね備えたものとなる。
In order to increase the tensile elastic modulus to 150 MPa or more, the organic compound having a large aspect ratio (L / D) obtained by organic modification of the synthetic fluorinated mica suitably used in the present invention with an organic cationic surfactant is used. By using a layered silicate; and by side-feeding the organically modified layered silicate, the decrease in L due to shear fracture is minimized, while promoting the exfoliation of the organicated layered silicate and increasing dispersibility This can be achieved by increasing L / D as much as possible.
When the polyethylene-based resin composition satisfying the above requirements of the present invention is formed into a film, it has excellent heat-fusibility, low-temperature shrinkage and rigidity such as elasticity and stiffness.

本発明におけるポリエチレン系樹脂フィルムとは、本発明のポリエチレン系樹脂組成物からなる単層フィルム;本発明のポリエチレン系樹脂が単一で層を構成し、少なくともその層が1層以上含まれる多層フィルム;本発明のポリエチレン系樹脂組成物が層の1成分を構成し、少なくともその層が1層以上含まれる多層フィルムのいずれかである。   The polyethylene-based resin film in the present invention is a single-layer film comprising the polyethylene-based resin composition of the present invention; a multilayer film in which the polyethylene-based resin of the present invention forms a single layer, and at least one layer is included. The polyethylene-based resin composition of the present invention constitutes one component of the layer, and at least one of the layers is a multilayer film containing one or more layers.

本発明におけるポリオレフィン系樹脂フィルムは、先述のように配向をかけて弾性率等の改良効果を更に高めるために、ロール延伸法、テンター延伸法、バブルインフレーション法(ダブルバブル法を含む)等により延伸するのが好ましい。様々な延伸法があるが、同時二軸延伸法で製膜される方法が、延伸性その他合理性等より好ましい。また、延伸は、好ましくは、少なくとも1方向に面積延伸倍率で3〜50倍、より好ましくは4〜40倍で延伸し、用途により適宜選択される。   The polyolefin-based resin film in the present invention is stretched by a roll stretching method, a tenter stretching method, a bubble inflation method (including a double bubble method), etc., in order to further enhance the effect of improving the elastic modulus and the like by applying orientation as described above. It is preferable to do this. Although there are various stretching methods, a method of forming a film by the simultaneous biaxial stretching method is preferable from the viewpoint of stretchability and other rationality. Further, the stretching is preferably performed at least in one direction at an area stretching ratio of 3 to 50 times, more preferably 4 to 40 times, and is appropriately selected depending on the application.

さらに、本発明のフィルムは、その少なくとも一つの層が架橋されていてもよい。厚み方向における架橋度がほぼ均一である場合、特定の層が主に架橋されている場合、表層から厚み方向に架橋度が逐漸次変化する場合、両表層が主として架橋していて厚み方向に適宜分布をもつ場合のいずれであってもよい。この架橋処理は、延伸製膜を行う前後に、電子線(例えば、50〜1000kVのエネルギーのもの)、紫外線、X線、α線、γ線当のエネルギー線により片面、両面照射、また厚み方向に架橋の分布が生ずるような照射を行う方法;またはパーオキサイド等(場合により、特定層に架橋助剤、特定層に架橋遅延剤等の併用もよい)の添加後に加熱処理を行う方法;または両方法の併用;あるいは、その他の公知の方法によって改質処理を行ってもよい。好ましくは、電子線(例えば、50〜1000kVのエネルギーで透過深度を所定にコントロールして)による方法がクリーンでよい。架橋処理により、熱融着性、耐熱性、延伸製膜安定性(ネッキングの抑制、厚みの均一性、延伸倍率の向上、延伸温度条件範囲の拡大等)を向上することができ、必要に応じて用いられる。   Furthermore, at least one layer of the film of the present invention may be crosslinked. When the degree of cross-linking in the thickness direction is almost uniform, when a specific layer is mainly cross-linked, when the degree of cross-linking gradually changes from the surface layer to the thickness direction, both surface layers are mainly cross-linked and appropriately in the thickness direction Any of cases having a distribution may be used. This cross-linking treatment is performed before or after the stretched film is formed by single-sided or double-sided irradiation with an electron beam (for example, energy of 50 to 1000 kV), ultraviolet rays, X-rays, α-rays, and γ-rays, or in the thickness direction A method of performing irradiation such that a distribution of cross-linking is generated; or a method of performing a heat treatment after addition of peroxide or the like (in some cases, a cross-linking aid may be used in a specific layer and a cross-linking retarder may be used in a specific layer); or A combination of both methods; or other known methods may be used for the modification treatment. Preferably, a method using an electron beam (for example, by controlling the transmission depth to a predetermined level with an energy of 50 to 1000 kV) may be clean. The cross-linking treatment can improve heat-fusibility, heat resistance, stretching film formation stability (suppression of necking, uniformity of thickness, improvement of stretching ratio, expansion of stretching temperature condition range, etc.), if necessary Used.

本発明における多層延伸フィルムの好適な構成の例は、例えば、全層に占める各層の厚み比率としてエチレン−酢酸ビニル共重合体からなる両表面層が10〜60重量%、本発明のポリエチレン系樹脂組成物とエチレン−酢酸ビニル共重合体からなる両中間層が15〜80重量%、ポリプロピレンとポリプロピレン/ポリブテン−1共重合体からなる芯層が10〜60重量%の3種5層(表面層−中間層−芯層−中間層−表面層)で構成される多層延伸フィルム等である。
また、この多層延伸フィルムの中間層を構成する本発明のポリエチレン系樹脂組成物は、例えば、直鎖状低密度ポリエチレン20〜99.85重量%、マレイン酸変性直鎖状ポリエチレン0.05〜40重量%、有機化層状珪酸塩0.1〜40重量%の比率で調整できる。中間層に占める本発明のポリエチレン系樹脂組成物の割合は、10〜50重量%であることが好ましい。
Examples of suitable configurations of the multilayer stretched film in the present invention include, for example, 10 to 60% by weight of both surface layers made of an ethylene-vinyl acetate copolymer as a thickness ratio of each layer in all layers, and the polyethylene resin of the present invention. Three layers (surface layer) in which both intermediate layers composed of the composition and ethylene-vinyl acetate copolymer are 15 to 80% by weight, and the core layer composed of polypropylene and polypropylene / polybutene-1 copolymer is 10 to 60% by weight. A multilayer stretched film composed of (intermediate layer-core layer-intermediate layer-surface layer).
Moreover, the polyethylene-type resin composition of this invention which comprises the intermediate | middle layer of this multilayer stretched film is 20-99.85 weight% of linear low density polyethylene, 0.05-40 of maleic acid modified linear polyethylene, for example. It can be adjusted at a ratio of wt%, organic layered silicate 0.1-40 wt%. The proportion of the polyethylene resin composition of the present invention in the intermediate layer is preferably 10 to 50% by weight.

本発明における架橋多層延伸フィルムの好適な組成の例は、例えば、全層に占める各層の厚み比率として低密度ポリエチレンと直鎖状低密度ポリエチレンからなる両表面層が5〜40重量%、本発明のポリエチレン系樹脂組成物からなる芯層が60〜95重量%の2種3層(表面層−芯層−表面層)で構成される架橋多層延伸フィルム;あるいは、低密度ポリエチレンと直鎖状低密度ポリエチレンからなる両表面層が5〜40重量%、本発明のポリエチレン系樹脂組成物からなる両中間層が20〜50重量%、低密度ポリエチレンと直鎖状低密度ポリエチレンからなる芯層が10〜75重量%の3種5層(表面層−中間層−芯層−中間層−表面層)で構成される架橋多層延伸フィルム等である。
また本発明におけるフィルムの厚みは、高い透明性と優れた熱融着性や低温収縮性を維持しつつ、弾性率等の高い改良効果を得るために、100μm以下であることが好ましく、より好ましくは20μm以下、さらに好ましくは10μm以下である。
Examples of a suitable composition of the crosslinked multilayer stretched film in the present invention include, for example, 5 to 40% by weight of both surface layers composed of low-density polyethylene and linear low-density polyethylene as the thickness ratio of each layer occupying in all layers. Crosslinked multilayer stretched film comprising a core layer composed of a polyethylene resin composition of 60 to 95% by weight and two types and three layers (surface layer-core layer-surface layer); or low density polyethylene and linear low Both surface layers made of high-density polyethylene are 5 to 40% by weight, both intermediate layers made of the polyethylene resin composition of the present invention are 20 to 50% by weight, and the core layer made of low-density polyethylene and linear low-density polyethylene is 10 It is a cross-linked multilayer stretched film composed of 3 types and 5 layers (surface layer-intermediate layer-core layer-intermediate layer-surface layer) of -75 wt%.
In addition, the thickness of the film in the present invention is preferably 100 μm or less, more preferably in order to obtain a high improvement effect such as elastic modulus while maintaining high transparency and excellent heat-fusibility and low-temperature shrinkage. Is 20 μm or less, more preferably 10 μm or less.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの実施例により限定されるものではない。
本発明で用いられる指標及び物性の測定、算出及び評価方法などは以下の通りである。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
The measurement and calculation and evaluation methods of the indicators and physical properties used in the present invention are as follows.

(1)融点:T
(株)パーキンエルマージャパン社製の示差走査熱量計Diamond DSC(商品名)を用い、以下に示す3ステップからなる融解−結晶化−融解プロファイルの測定を行い、ステップ3における2次融解曲線のピーク温度を融点(T)とした(単位:℃)。融解ピークが2つ以上認められる場合は、全融解熱量の20%以上を有する最も低温側のピーク温度をその融点(T)とした。
ステップ1:30℃で1分間保持→200℃まで10℃/分で昇温(1次融解)
ステップ2:200℃で1分間保持→30℃まで10℃/分で降温(結晶化)
ステップ3:30℃で1分間保持→200℃まで10℃/分で昇温(2次融解)
(1) Melting point: T m
Using a differential scanning calorimeter Diamond DSC (trade name) manufactured by PerkinElmer Japan, Inc., the melting-crystallization-melting profile consisting of the following three steps was measured, and the peak of the secondary melting curve in step 3 The temperature was defined as the melting point (T m ) (unit: ° C.). When two or more melting peaks were observed, the lowest peak temperature having 20% or more of the total heat of fusion was defined as the melting point (T m ).
Step 1: Hold at 30 ° C for 1 minute → Increase to 200 ° C at 10 ° C / minute (primary melting)
Step 2: Hold at 200 ° C for 1 minute → Decrease to 30 ° C at 10 ° C / min (crystallization)
Step 3: Hold at 30 ° C for 1 minute → Increase to 200 ° C at 10 ° C / min (secondary melting)

(2)有機化層状珪酸塩のX線回折測定
(株)リガク社製X線回折装置RINT2000(商品名)を用い、加速電圧40kV、加速電流200mA、走査速度1°/min、CuのKα線による粉末X線回折により粉末X線回折パターンを得た。これに基づき、上記式(2)を用いてho(Å)を算出した。
(2) X-ray diffraction measurement of organic layered silicate Using an X-ray diffractometer RINT2000 (trade name) manufactured by Rigaku Corporation, acceleration voltage 40 kV, acceleration current 200 mA, scanning speed 1 ° / min, Cu Kα ray A powder X-ray diffraction pattern was obtained by powder X-ray diffraction. Based on this, ho (Å) was calculated using the above formula (2).

(3)溶融粘度パラメーター:V
(株)東洋精機製作所製キャピログラフ1C(商品名)のバレル先端に10mmの長さと1.0mmのノズル径を有するキャピラリーを取り付け、バレル温度を190℃に設定した。直鎖状低密度ポリエチレン(A)または変性低密度ポリエチレン(B)のペレットを数回に分けて充分に空気を抜きながらバレル内に充填、溶融させた。ピストン速度を0.5、1、2、5、10、20、50、100mm/minと段階的に上げて剪断速度を変えながらキャピラリーより押出し、それぞれの剪断速度における見掛けの溶融剪断粘度を算出した。得られた溶融剪断粘度のカーブより、剪断速度が100sec−1における直鎖状低密度ポリエチレン(A)の見かけの溶融剪断粘度VLDPE、変性低密度ポリエチレン(B)の見かけの溶融剪断粘度VLDPEmを求め、V=VLDPE/VLDPEmよりVを算出した。
(3) Melt viscosity parameter: V
A capillary having a length of 10 mm and a nozzle diameter of 1.0 mm was attached to the barrel tip of Capillograph 1C (trade name) manufactured by Toyo Seiki Seisakusho, and the barrel temperature was set to 190 ° C. The pellets of linear low-density polyethylene (A) or modified low-density polyethylene (B) were divided into several times and filled in a barrel while being sufficiently deflated. The piston speed was increased stepwise to 0.5, 1, 2, 5, 10, 20, 50, 100 mm / min and extruded from the capillary while changing the shear rate, and the apparent melt shear viscosity at each shear rate was calculated. . From the obtained curve of the melt shear viscosity, the apparent melt shear viscosity V LDPE of the linear low density polyethylene (A) at a shear rate of 100 sec −1 and the apparent melt shear viscosity V LDPEm of the modified low density polyethylene (B) are shown. V was calculated from V = V LDPE / V LDPEm .

(4)ポリエチレン系樹脂組成物の引張弾性率及び相対引張弾性率
島津製作所(株)製オートグラフAG5000D(商品名)を用いて、ポリエチレン系樹脂組成物のダンベル試験片(JIS K7113 2号形)を試験速度5mm/minで引っ張り、応力―歪曲線図を得た。その応力−歪曲線図の初期(歪率1%未満)の傾斜より引張弾性率E(MPa)を算出した。同様の方法で上記ポリエチレン系樹脂組成物に用いた直鎖状低密度ポリエチレン樹脂(A)のみで成形した射出成形品の引張弾性率E(MPa)を算出した。EをEで除した値E/Eを相対引張弾性率とした。
(4) Tensile modulus and relative tensile modulus of polyethylene resin composition Using autograph AG5000D (trade name) manufactured by Shimadzu Corporation, dumbbell test piece (JIS K7113 type 2) of polyethylene resin composition Was pulled at a test speed of 5 mm / min to obtain a stress-strain curve diagram. The tensile modulus E (MPa) was calculated from the initial slope (less than 1% strain rate) of the stress-strain curve diagram. The tensile modulus E 0 (MPa) of an injection-molded product molded only with the linear low-density polyethylene resin (A) used for the polyethylene resin composition was calculated in the same manner. And the value E / E 0 obtained by dividing the E 0 and E relative tensile modulus.

(5)ポリエチレン系樹脂組成物の引張破断伸び
上記引張弾性率と同じダンベル試験片を使用し、試験速度50mm/minで引っ張った場合の破断点より引張破断伸び(%)を算出した。
(6)フィルムの凝集物評価
ポリエチレン系樹脂組成物単一のキャストフィルム(厚み約100μm)をTダイ備え付けた単軸押出機で作製し、得られたフィルムを目視により下記のように評価した。
◎:凝集物が全く確認できず、透明性も良好なレベル
○:若干の凝集物があるが、透明性は良好なレベル
△:凝集物が多く、透明性にも問題があるレベル
×:凝集物が非常に多く、製膜も困難なレベル
(5) Tensile Breaking Elongation of Polyethylene Resin Composition Using the same dumbbell test piece as the above tensile modulus, the tensile breaking elongation (%) was calculated from the breaking point when pulled at a test speed of 50 mm / min.
(6) Evaluation of Aggregate of Film A single cast film (thickness of about 100 μm) of the polyethylene resin composition was produced with a single screw extruder equipped with a T die, and the obtained film was visually evaluated as follows.
◎: Agglomerates are not confirmed at all and transparency is also good. ○: Some aggregates are present, but transparency is good. Δ: There are many aggregates and there is a problem with transparency. There are so many things that film formation is difficult

(7)多層延伸フィルム及び架橋多層延伸フィルムの引張弾性率改良効果の評価
本発明のポリエチレン系樹脂組成物をその構成成分とする多層延伸フィルム及び架橋多層延伸フィルムから、10mm幅×150mm長の短冊をMD方向(フィルムの押出方向)及びTD方向(フィルムの押出方向と直交する方向)でそれぞれ切り出して試験片とした。島津製作所(株)製オートグラフAG−IS(商品名)を用い、試験片をチャック間距離100mm、試験速度5mm/minで引っ張って応力―歪曲線図を得た。応力−歪曲線図の初期(歪率1%未満)の傾斜より、フィルムの押出方向(MD方向)、幅方向(TD方向)の引張弾性率MMD、MTD(MPa)をそれぞれn=5の平均で算出した。更にMMD、MTDを平均して引張弾性率M(MPa)とした。同様の方法で上記ポリエチレン系樹脂組成物の代わりに、そのポリエチレン系樹脂組成物に用いた直鎖状低密度ポリエチレン樹脂(A)のみを用いた多層延伸フィルムの引張弾性率M(MPa)を測定した。MをMで除した値M/Mを相対引張弾性率として、引張弾性率改良効果を下記のように評価した。
◎:引張弾性率改良効果が非常に高く、30%の薄肉化に対応可能
(相対引張弾性率1.3以上)
○:引張弾性率改良効果が高い(相対引張弾性率1.1以上1.3未満)
△:引張弾性率改良効果が低い(相対引張弾性率1.0以上1.1未満)
×:引張弾性率改良効果が認められない(相対引張弾性率1.0未満)
(7) Evaluation of tensile elastic modulus improvement effect of multilayer stretched film and crosslinked multilayer stretched film From a multilayer stretched film and a crosslinked multilayer stretched film comprising the polyethylene resin composition of the present invention as a constituent component, a 10 mm wide × 150 mm long strip Were cut out in the MD direction (film extrusion direction) and TD direction (direction perpendicular to the film extrusion direction), respectively, to obtain test pieces. Using an autograph AG-IS (trade name) manufactured by Shimadzu Corporation, the test piece was pulled at a chuck distance of 100 mm and a test speed of 5 mm / min to obtain a stress-strain curve diagram. Stress - than the slope of the initial distortion diagram (distortion less than 1%), the extrusion direction (MD direction) of the film, tensile modulus M MD in the width direction (TD direction), M TD (MPa), respectively n = 5 The average was calculated. Further, M MD and M TD were averaged to obtain a tensile elastic modulus M (MPa). In the same manner, the tensile elastic modulus M 0 (MPa) of the multilayer stretched film using only the linear low-density polyethylene resin (A) used in the polyethylene resin composition instead of the polyethylene resin composition is determined. It was measured. The value M / M 0 obtained by dividing the M 0 to M as the relative tensile modulus was evaluated tensile modulus improving effect as follows.
A: The tensile modulus improvement effect is very high, and it can cope with 30% thinning (relative tensile modulus 1.3 or more)
○: High tensile modulus improvement effect (relative tensile modulus 1.1 or more and less than 1.3)
Δ: Low tensile modulus improvement effect (relative tensile modulus 1.0 to less than 1.1)
X: Tensile modulus improvement effect is not recognized (relative tensile modulus less than 1.0)

(8)多層延伸フィルム及び架橋多層延伸フィルムの透明性評価
日本電色社製、商品名、NDH−300Aを用い、室温27℃において、ASTM−D−1003に従い、本発明の多層延伸フィルム及び架橋多層延伸フィルムのヘイズを測定した。
◎:内容物の視認が良好(ヘイズが2.5以下)
○:内容物の視認が容易(ヘイズが2.5超5.0以下)
△:内容物の視認が困難(ヘイズが5.0超)
(8) Transparency Evaluation of Multilayer Stretched Film and Crosslinked Multilayer Stretched Film Using Nippon Denshoku Co., Ltd., trade name, NDH-300A, at room temperature of 27 ° C., according to ASTM-D-1003, the multilayer stretched film and crosslink of the present invention The haze of the multilayer stretched film was measured.
A: Visibility of contents is good (haze is 2.5 or less)
○: The contents are easily visible (haze is more than 2.5 and 5.0 or less)
Δ: Difficult to see contents (haze is over 5.0)

(9)多層延伸フィルム及び多層架橋延伸フィルムの熱融着性・低温収縮性評価
内部の底部に100gの金属板を貼り付けた一般市販のPP製トレー(概略寸法:縦150mm、横115mm、高さ23mm)の縦方向に沿って、フィルムを筒状に折り曲げた。このフィルムの両端がだぶつかずにトレー底部で約半分の面積が2枚重ねになるようにトレーを包み込み、続いてトレーの横方向に沿って折り曲げないで残っているフィルムの両端をだぶつかないように折り曲げ、トレー底部で重ね合わせた。この時、トレー底部では3枚、5枚重ねの部分ができている。このように準備したトレーを、130℃に調整された熱板上に2秒間載せて底シールを行った。その後90〜110℃の熱風加熱式のトンネルを約1秒で通過させてフィルムを収縮させ、仕上がり状態を以下の基準で評価した。
◎:シール状態が良好(シール部の端を軽く引っ張っても剥離しない)かつ
収縮も90〜110℃の全範囲で良好
○:シール状態は良好だが、収縮がやや不足
△:一部分がシールされておらず、収縮不足
×:全く底シールされない
(9) Evaluation of heat-fusibility and low-temperature shrinkage of multilayer stretched film and multilayer cross-linked stretched film General commercial PP tray with a 100 g metal plate attached to the bottom inside (approximate dimensions: length 150 mm, width 115 mm, high The film was folded into a cylindrical shape along the vertical direction of 23 mm). Wrap the tray so that about half the area overlaps at the bottom of the tray without overlapping both ends of this film, and then do not fold along the lateral direction of the tray and do not bump both ends of the remaining film And folded at the bottom of the tray. At this time, three or five overlapping portions are formed at the bottom of the tray. The tray thus prepared was placed on a hot plate adjusted to 130 ° C. for 2 seconds to perform bottom sealing. Thereafter, the film was shrunk by passing through a hot air heating type tunnel at 90 to 110 ° C. in about 1 second, and the finished state was evaluated according to the following criteria.
◎: Good seal state (does not peel even if the end of the seal is pulled lightly) and good shrinkage over the entire range of 90 to 110 ° C ○: Good seal state but slightly insufficient shrinkage △: Partially sealed Not contracted, insufficient shrinkage ×: Not sealed at the bottom

(10)多層延伸フィルムの総合評価
◎:弾性率改良効果、透明性、熱融着性/低温収縮性、全てが◎であり、
包装用フィルムとして好適に使用できるレベル
○:全てが◎か○であり、包装用フィルムとして実用レベル
△:△があり、包装用フィルムとして使用が困難なレベル
×:×があり、包装用フィルムとして実用レベルでない
(10) Overall evaluation of multilayer stretched film A: Elasticity improvement effect, transparency, heat-fusibility / cold shrinkage, all are A,
Level that can be suitably used as a packaging film ○: All are ◎ or ○, practical level as packaging film △: There is a level that is difficult to use as packaging film ×: There is ×, as packaging film Not practical

(11)多層架橋延伸フィルムのハリ・コシ評価
外寸法が180mm×180mmの木枠の縁に、弛みがないようにフィルムを両面テープで固定した。次いで、この状態で90℃の熱風トンネルを3秒間通過させフィルムを収縮させ、室温(約23℃)で約3分放置した。その後、フィルムの中央を直径15mmφで先端が半球状になった金属棒で垂直に約10mm押し込んで抜き取った。その1分後にフィルムの表面を観察して、以下の基準で評価した。
◎:充分な弾性があり、弛みやシワまたは局部的な凹みが全くない
○:弾性があり、弛みやシワまたは局部的な凹みが殆どない
△:弾性がなく、弛みやシワまたは局部的な凹みがわずかに認められる
×:弾性がなく、明らかに弛みやシワ、局部的な凹みが残っている
(11) Bareness and stiffness evaluation of multilayer cross-linked stretched film The film was fixed with double-sided tape so that there was no slack at the edge of a wooden frame with an outer dimension of 180 mm x 180 mm. Next, in this state, the film was shrunk by passing through a hot air tunnel at 90 ° C. for 3 seconds, and left at room temperature (about 23 ° C.) for about 3 minutes. Thereafter, the center of the film was pulled out about 10 mm vertically with a metal rod having a diameter of 15 mmφ and a hemispherical tip. One minute later, the surface of the film was observed and evaluated according to the following criteria.
◎: Sufficient elasticity, no slack, wrinkles or local dents ○: Elasticity, almost no slack, wrinkles or local dents △: No elasticity, slacks, wrinkles or local dents ×: There is no elasticity, there is clearly slack, wrinkles, and local dents

(12)多層架橋延伸フィルムの総合評価
◎:弾性率改良効果、ハリ・コシ、透明性、熱融着性/低温収縮性、
全てが◎であり、包装用フィルムとして好適に使用できるレベル
○:全てが◎か○であり、包装用フィルムとして実用レベル
△:△があり、包装用フィルムとして使用が困難なレベル
×:×があり、包装用フィルムとして実用レベルでない
(12) Overall evaluation of multilayer cross-linked stretched film ◎: Elasticity improvement effect, elasticity, transparency, heat-fusibility / cold shrinkage,
All are ◎ and can be used suitably as packaging films ○: All are ◎ or ○, practical level as packaging film △: There is a level that is difficult to use as packaging film ×: × Yes, not practical level as packaging film

[実施例1]
直鎖状低密度ポリエチレンとしてメタロセン直鎖状低密度ポリエチレン((株)プライムポリマー社製“エボリューSP0540”(商品名)、融点88℃)90.0重量%、変性低密度ポリエチレンとしてマレイン酸変性直鎖状低密度ポリエチレン(三井・デュポンポリケミカル社製“Fusabond E MB226D”(商品名)、極性官能基量=0.09mmol/g)5.0重量%を、2軸押出機(日本製鋼所(株)製TEX30α(商品名))のホッパーから投入して、バレル温度150〜200℃、スクリュー回転数300rpmで溶融混練を行った。次いで、押出機途中に設けられたサイドフィーダーより有機化層状珪酸塩としてジメチルジアルキルアンモニウムモンモリロナイト(Southern Clay Product社製“Cloisite 15A”(商品名):h0=31.5Å)5.0重量%を添加して、更に混練を行なった(サイドフィード法)。押出機先端に取り付けられたマルチノズルダイより押出してストランドとし、冷水槽で冷却後にカットした。その後、80℃で24時間以上乾燥してポリエチレン系樹脂組成物のペレットを得た。得られたペレットは、融点(T)を測定した。またKLOCKNER F85(商品名)射出成形機にて、190℃、射出圧力127.1MPa、保持圧力101.2MPa、保持時間4秒、冷却時間30秒で成形し、JIS K7113 2号形試験片を得た。このポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Example 1]
Metallocene linear low density polyethylene (“Evolue SP0540” (trade name), melting point 88 ° C.) 90.0% by weight as linear low density polyethylene, maleic acid modified straight as modified low density polyethylene A linear low density polyethylene ("Fusabondo E MB226D" (trade name) manufactured by Mitsui DuPont Polychemical Co., Ltd., name of polar functional group = 0.09 mmol / g) of 5.0% by weight was twin screw extruder (Nippon Steel Works ( It was put in from a hopper of TEX30α (trade name) manufactured by Co., Ltd. and melt kneaded at a barrel temperature of 150 to 200 ° C. and a screw rotation speed of 300 rpm. Next, 5.0% by weight of dimethyldialkylammonium montmorillonite (“Cloisite 15A” (trade name): h0 = 31.5 mm) manufactured by Southern Clay Product, Inc.) is added as an organic layered silicate from a side feeder provided in the middle of the extruder. Then, further kneading was performed (side feed method). A strand was extruded from a multi-nozzle die attached to the tip of the extruder, and cut after cooling in a cold water bath. Then, it dried at 80 degreeC for 24 hours or more, and obtained the pellet of the polyethylene-type resin composition. The obtained pellets were measured for melting point (T m ). Also, molding was performed with a KLOCKNER F85 (trade name) injection molding machine at 190 ° C., injection pressure 127.1 MPa, holding pressure 101.2 MPa, holding time 4 seconds, and cooling time 30 seconds to obtain a JIS K7113 type 2 test piece. It was. Table 1 shows the melting point of the polyethylene resin composition and the evaluation results of tensile properties using the test piece.

[実施例2]
直鎖状低密度ポリエチレンを83.4重量%、変性低密度ポリエチレンを8.3重量%、有機化層状珪酸塩を8.3重量%とした以外は実施例1と同様の条件でポリエチレン系樹脂組成物のペレットと、試験片を得た。得られたポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Example 2]
A polyethylene resin under the same conditions as in Example 1 except that 83.4% by weight of linear low density polyethylene, 8.3% by weight of modified low density polyethylene, and 8.3% by weight of organic layered silicate were used. Composition pellets and specimens were obtained. Table 1 shows the melting point of the obtained polyethylene resin composition and the evaluation results of the tensile properties using the test piece.

[実施例3]
有機化層状珪酸塩として合成フッ素化雲母(コープケミカル(株)社製“ソマシフMAE”(商品名):h0=34.0Å)を用いた以外は実施例2と同様の条件でポリエチレン系樹脂組成物のペレットと、試験片を得た。得られたポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Example 3]
Polyethylene resin composition under the same conditions as in Example 2 except that synthetic fluorinated mica (“Somasif MAE” (trade name): h0 = 34.0 mm) manufactured by Corp Chemical Co., Ltd. was used as the organic layered silicate. Product pellets and specimens were obtained. Table 1 shows the melting point of the obtained polyethylene resin composition and the evaluation results of the tensile properties using the test piece.

[実施例4]
有機化層状珪酸塩を直鎖状低密度ポリエチレン及び変性低密度ポリエチレンと混合してホッパーから押出機に投入した(トップフィード法)以外は、実施例2と同様の条件でポリエチレン系樹脂組成物のペレットと、試験片を得た。得られたポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Example 4]
The organic resin layered silicate was mixed with linear low density polyethylene and modified low density polyethylene and charged into the extruder from the hopper (top feed method). A pellet and a test piece were obtained. Table 1 shows the melting point of the obtained polyethylene resin composition and the evaluation results of the tensile properties using the test piece.

[実施例5]
有機化層状珪酸塩としてジメチルジアルキルアンモニウムモンモリロナイト(Southern Clay Product社製“Cloisite 20A”(商品名):h0=24.2 Å)を用いた以外は、実施例4と同様の条件でポリエチレン系樹脂組成物のペレットと、試験片を得た。得られたポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Example 5]
Polyethylene resin composition under the same conditions as in Example 4 except that dimethyldialkylammonium montmorillonite (“Cloisite 20A” (trade name): h0 = 24.2 製 manufactured by Southern Clay Product) was used as the organic layered silicate. Product pellets and specimens were obtained. Table 1 shows the melting point of the obtained polyethylene resin composition and the evaluation results of the tensile properties using the test piece.

[実施例6]
有機化層状珪酸塩をサイドフィードした以外は、実施例5と同様の条件でポリエチレン系樹脂組成物のペレットと、試験片を得た。得られたポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Example 6]
A pellet of a polyethylene resin composition and a test piece were obtained under the same conditions as in Example 5 except that the organically modified layered silicate was side-fed. Table 1 shows the melting point of the obtained polyethylene resin composition and the evaluation results of the tensile properties using the test piece.

[実施例7]
有機化層状珪酸塩をトップフィードした以外は、実施例3と同様の条件でポリエチレン系樹脂組成物のペレットと、試験片を得た。得られたポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Example 7]
A pellet of a polyethylene resin composition and a test piece were obtained under the same conditions as in Example 3 except that the organic layered silicate was top-fed. Table 1 shows the melting point of the obtained polyethylene resin composition and the evaluation results of the tensile properties using the test piece.

[実施例8]
変性低密度ポリエチレンとしてマレイン酸変性直鎖状低密度ポリエチレン(三井・デュポンポリケミカル社製“Fusabond MB528D”(商品名)、極性官能基量=0.13mmol/g)を用いた以外は、実施例3と同様の条件でポリエチレン系樹脂組成物のペレットと、試験片を得た。得られたポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Example 8]
Example except that maleic acid-modified linear low-density polyethylene (“Fusabondo MB528D” (trade name), polar functional group amount = 0.13 mmol / g, manufactured by Mitsui DuPont Polychemical Co., Ltd.) was used as the modified low-density polyethylene. Under the same conditions as in No. 3, pellets of a polyethylene resin composition and test pieces were obtained. Table 1 shows the melting point of the obtained polyethylene resin composition and the evaluation results of the tensile properties using the test piece.

[実施例9]
有機化層状珪酸塩としてジメチルジアルキルアンモニウムモンモリロナイト(Southern Clay Product社製“Cloisite 25A”(商品名):h0=18.6 Å)を用いた以外は、実施例4と同様の条件でポリエチレン系樹脂組成物のペレットと、試験片を得た。得られたポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Example 9]
Polyethylene resin composition under the same conditions as in Example 4 except that dimethyldialkylammonium montmorillonite (“Cloisite 25A” (trade name): h0 = 18.6 製 manufactured by Southern Clay Product) was used as the organic layered silicate. Product pellets and specimens were obtained. Table 1 shows the melting point of the obtained polyethylene resin composition and the evaluation results of the tensile properties using the test piece.

[実施例10]
直鎖状低密度ポリエチレンとしてメタロセン直鎖状低密度ポリエチレン(宇部丸善ポリエチレン(株)社製“ユメリット1520F”(商品名)、融点98℃)を用いた以外は、実施例3と同様の条件でポリエチレン系樹脂組成物のペレットと、試験片を得た。得られたポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Example 10]
The same conditions as in Example 3 were used except that metallocene linear low density polyethylene ("Umerit 1520F" (trade name), melting point 98 ° C, manufactured by Ube Maruzen Polyethylene Co., Ltd.) was used as the linear low density polyethylene. Polyethylene resin composition pellets and test pieces were obtained. Table 1 shows the melting point of the obtained polyethylene resin composition and the evaluation results of the tensile properties using the test piece.

[実施例11]
直鎖状低密度ポリエチレンとしてメタロセン直鎖状低密度ポリエチレン(住友化学(株)社製“スミカセンE FV101”(商品名)、融点107℃)を用いた以外は、実施例3と同様の条件でポリエチレン系樹脂組成物のペレットと、試験片を得た。得られたポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Example 11]
The same conditions as in Example 3 were used except that metallocene linear low density polyethylene (“Sumikasen E FV101” (trade name), melting point 107 ° C., manufactured by Sumitomo Chemical Co., Ltd.) was used as the linear low density polyethylene. Polyethylene resin composition pellets and test pieces were obtained. Table 1 shows the melting point of the obtained polyethylene resin composition and the evaluation results of the tensile properties using the test piece.

[実施例12]
直鎖状低密度ポリエチレンとしてメタロセン直鎖状低密度ポリエチレン(住友化学(株)社製“スミカセンE FV201”(商品名)、融点101℃)を用いた以外は、実施例3と同様の条件でポリエチレン系樹脂組成物のペレットと、試験片を得た。得られたポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Example 12]
The same conditions as in Example 3 were used except that metallocene linear low density polyethylene (“Sumikasen E FV201” (trade name), melting point 101 ° C., manufactured by Sumitomo Chemical Co., Ltd.) was used as the linear low density polyethylene. Polyethylene resin composition pellets and test pieces were obtained. Table 1 shows the melting point of the obtained polyethylene resin composition and the evaluation results of the tensile properties using the test piece.

[比較例1]
メタロセン直鎖状低密度ポリエチレン((株)プライムポリマー社製“エボリューSP0540”(商品名)、融点88℃)の射出成形品試験片を実施例1と同様の条件で得た。得られた試験片を用いた引張物性の評価結果を表1に示す。
[Comparative Example 1]
An injection-molded article test piece of metallocene linear low-density polyethylene (“Evolue SP0540” (trade name), melting point 88 ° C., manufactured by Prime Polymer Co., Ltd.) was obtained under the same conditions as in Example 1. Table 1 shows the evaluation results of the tensile properties using the obtained test pieces.

[比較例2]
直鎖状低密度ポリエチレン(Dow Chemical社製“Dowlex2032”(商品名)、融点122℃)の射出成形品試験片を実施例1と同様の条件で得た。得られた試験片を用いた引張物性の評価結果を表1に示す。
[Comparative Example 2]
An injection molded product test piece of linear low density polyethylene (“Dowlex 2032” (trade name), melting point 122 ° C., manufactured by Dow Chemical Co., Ltd.) was obtained under the same conditions as in Example 1. Table 1 shows the evaluation results of the tensile properties using the obtained test pieces.

[比較例3]
直鎖状低密度ポリエチレンとして(Dow Chemical社製“Dowlex2032”(商品名)、融点122℃)を用いた以外は、実施例9と同様の条件でポリエチレン系樹脂組成物のペレットと、試験片を得た。得られたポリエチレン系樹脂組成物の融点と試験片を用いた引張物性の評価結果を表1に示す。
[Comparative Example 3]
A polyethylene resin composition pellet and a test piece were prepared under the same conditions as in Example 9, except that (Dow Chemical's “Dowlex 2032” (trade name), melting point 122 ° C.) was used as the linear low density polyethylene. Obtained. Table 1 shows the melting point of the obtained polyethylene resin composition and the evaluation results of the tensile properties using the test piece.

[比較例4]
メタロセン直鎖状低密度ポリエチレン(宇部丸善ポリエチレン(株)社製“ユメリット1520F”(商品名)、融点98℃)の射出成形品試験片を実施例1と同様の条件で得た。得られた試験片を用いた引張物性の評価結果を表1に示す。
[Comparative Example 4]
An injection molded product test piece of metallocene linear low density polyethylene ("Umerit 1520F" (trade name), melting point 98 ° C, manufactured by Ube Maruzen Polyethylene Co., Ltd.) was obtained under the same conditions as in Example 1. Table 1 shows the evaluation results of the tensile properties using the obtained test pieces.

[比較例5]
メタロセン直鎖状低密度ポリエチレン(住友化学(株)社製“スミカセンE FV101”(商品名)、融点107℃)の射出成形品試験片を実施例1と同様の条件で得た。得られた試験片を用いた引張物性の評価結果を表1に示す。
[Comparative Example 5]
An injection molded product test piece of metallocene linear low density polyethylene (“Sumikasen E FV101” (trade name), melting point 107 ° C., manufactured by Sumitomo Chemical Co., Ltd.) was obtained under the same conditions as in Example 1. Table 1 shows the evaluation results of the tensile properties using the obtained test pieces.

[比較例6]
メタロセン直鎖状低密度ポリエチレン(住友化学(株)社製“スミカセンE FV201”(商品名)、融点101℃)の射出成形品試験片を実施例1と同様の条件で得た。得られた試験片を用いた引張物性の評価結果を表1に示す。
表1の結果から判るように、本発明のポリエチレン系樹脂組成物は、用いた直鎖状低密度ポリエチレン(A)の融点をほとんど変えることなく、また伸びを大きく低下させることなく、非常に高い引張弾性率改良効果が得られている。
[Comparative Example 6]
An injection-molded product test piece of metallocene linear low-density polyethylene (“Sumikasen E FV201” (trade name), melting point 101 ° C., manufactured by Sumitomo Chemical Co., Ltd.) was obtained under the same conditions as in Example 1. Table 1 shows the evaluation results of the tensile properties using the obtained test pieces.
As can be seen from the results in Table 1, the polyethylene-based resin composition of the present invention is very high without substantially changing the melting point of the linear low-density polyethylene (A) used and without greatly reducing the elongation. The effect of improving the tensile modulus is obtained.

[実施例13]
実施例8で得られたポリオレフィン系樹脂組成物(直鎖状低密度ポリエチレンと変性低密度ポリエチレンの溶融粘度パラメーター:V=0.9)を、その先端にTダイを備えた単軸押出機を用いて、バレル温度150〜200℃、スクリュー回転数50rpmで溶融混練を行い、厚み100μm程度のキャストフィルムを得た。得られたフィルムの凝集物評価結果を表2に示す。
[Example 13]
A single-screw extruder equipped with the polyolefin resin composition obtained in Example 8 (melt viscosity parameter of linear low-density polyethylene and modified low-density polyethylene: V = 0.9) and a T-die at the tip. It was used and melt kneaded at a barrel temperature of 150 to 200 ° C. and a screw rotation speed of 50 rpm to obtain a cast film having a thickness of about 100 μm. Table 2 shows the aggregate evaluation results of the obtained film.

[実施例14]
実施例3で得られたポリオレフィン系樹脂組成物(直鎖状低密度ポリエチレンと変性低密度ポリエチレンの溶融粘度パラメーター:V=0.4)を用いた以外は、実施例13と同様の条件でキャストフィルムを得た。得られたフィルムの凝集物評価結果を表2に示す。
[Example 14]
Cast under the same conditions as in Example 13, except that the polyolefin resin composition obtained in Example 3 (melt viscosity parameter of linear low density polyethylene and modified low density polyethylene: V = 0.4) was used. A film was obtained. Table 2 shows the aggregate evaluation results of the obtained film.

[実施例15]
実施例10で得られたポリオレフィン系樹脂組成物(直鎖状低密度ポリエチレンと変性低密度ポリエチレンの溶融粘度パラメーター:V=0.6)を用いた以外は、実施例13と同様の条件でキャストフィルムを得た。得られたフィルムの凝集物評価結果を表2に示す。
[Example 15]
Cast under the same conditions as in Example 13 except that the polyolefin-based resin composition obtained in Example 10 (melt viscosity parameter of linear low-density polyethylene and modified low-density polyethylene: V = 0.6) was used. A film was obtained. Table 2 shows the aggregate evaluation results of the obtained film.

[実施例16]
実施例11で得られたポリオレフィン系樹脂組成物(直鎖状低密度ポリエチレンと変性低密度ポリエチレンの溶融粘度パラメーター:V=0.8)を用いた以外は、実施例13と同様の条件でキャストフィルムを得た。得られたフィルムの凝集物評価結果を表2に示す。
[Example 16]
Cast under the same conditions as in Example 13 except that the polyolefin resin composition obtained in Example 11 (melt viscosity parameter of linear low-density polyethylene and modified low-density polyethylene: V = 0.8) was used. A film was obtained. Table 2 shows the aggregate evaluation results of the obtained film.

[実施例17]
実施例12で得られたポリオレフィン系樹脂組成物(直鎖状低密度ポリエチレンと変性低密度ポリエチレンの溶融粘度パラメーター:V=0.6)を用いた以外は、実施例13と同様の条件でキャストフィルムを得た。得られたフィルムの凝集物評価結果を表2に示す。
[Example 17]
Cast under the same conditions as in Example 13 except that the polyolefin resin composition obtained in Example 12 (melt viscosity parameter of linear low density polyethylene and modified low density polyethylene: V = 0.6) was used. A film was obtained. Table 2 shows the aggregate evaluation results of the obtained film.

[比較例7]
直鎖状低密度ポリエチレンとして(Dow Chemical社製“Dowlex2032”(商品名)、融点122℃)、有機化層状珪酸塩としてジメチルジアルキルアンモニウムモンモリロナイト(Southern Clay Product社製“Cloisite 20A”(商品名):h0=24.2Å)を用いた以外は、実施例8と同様の条件でポリエチレン系樹脂組成物のペレットを得た(直鎖状低密度ポリエチレンと変性低密度ポリエチレンの溶融粘度パラメーター:V=16.4)。このペレットを用い、実施例13と同様の条件でキャストフィルムを得た。得られたフィルムの凝集物評価結果を表2に示す。
表2から明らかなように、本発明のポリエチレン系樹脂組成物は、フィルムにした際の凝集物の発生を抑制でき、良好な透明性が得られている。
[Comparative Example 7]
As a linear low density polyethylene (“Dowlex 2032” (trade name) manufactured by Dow Chemical, melting point: 122 ° C.), a dimethyldialkylammonium montmorillonite (“Cloite 20A” (trade name) manufactured by Southern Clay Products) as an organic layered silicate: Except that h0 = 24.224 was used, pellets of a polyethylene resin composition were obtained under the same conditions as in Example 8 (melt viscosity parameters of linear low-density polyethylene and modified low-density polyethylene: V = 16 .4). Using this pellet, a cast film was obtained under the same conditions as in Example 13. Table 2 shows the aggregate evaluation results of the obtained film.
As is clear from Table 2, the polyethylene resin composition of the present invention can suppress the generation of aggregates when formed into a film, and good transparency is obtained.

[実施例18〜20、比較例8]
表3に示すような組成で、3台の押出機を使用し、3種5層の環状ダイスより両表面層、芯層、両中間層からなる5層構成のチューブを溶融押出し、水冷リングを用いて急冷却して未延伸チューブ(パリソン)を得た。各層所定の比率になるように、各押出量を調整し、断面観察にて層構成を確認した。押出機の温度設定は長手方向で6つの温度調整ゾーンがあり、樹脂供給ホッパーから順に表面層、中間層の押出機については、180℃、200℃、210℃、220℃、230℃、230℃で行い、芯層については、200℃、200℃、200℃、190℃、190℃、190℃で行なった。
[Examples 18 to 20, Comparative Example 8]
With the composition shown in Table 3, three extruders were used, and a five-layer tube consisting of both surface layers, core layers, and both intermediate layers was melt-extruded from three types of five-layer annular dies, and a water-cooled ring was used. It was used and rapidly cooled to obtain an unstretched tube (parison). Each extrusion amount was adjusted so that each layer had a predetermined ratio, and the layer configuration was confirmed by cross-sectional observation. The temperature setting of the extruder has six temperature adjustment zones in the longitudinal direction. For the surface layer and intermediate layer extruders in order from the resin supply hopper, 180 ° C, 200 ° C, 210 ° C, 220 ° C, 230 ° C, 230 ° C. The core layer was formed at 200 ° C., 200 ° C., 200 ° C., 190 ° C., 190 ° C., and 190 ° C.

得られた未延伸チューブを延伸部に送り、赤外加熱ヒーターを用いて熱風加熱にて加熱した。そのゾーンでは縦方向に延伸されており、その延伸倍率は、加熱入りのピンチローラーの速度と巻き取り機の速度の速度比で調整した。空冷リングで冷却させながらエアーを注入してバブルを形成、55℃で延伸した。その後、デフレータ部で折りたたみダブルのフィルムとして50℃で若干のヒートセットを行い、巻き取り機で巻き取った。この時のフィルムの幅とパリソンの幅にて横方向の延伸倍率を調整した。延伸倍率については、バブルが一番安定する倍率を用い、所定の厚みとなるよう押出量を調整した。スリッターにて、ダブルのフィルム原反よりシングルに剥ぎながらスリットを行い実施例18〜20、比較例8の多層延伸フィルムを得た。得られたフィルムの引張弾性率改良効果、透明性、熱融着性・低温収縮性評価結果を表3に示す。
表3の結果から判るように本発明のポリエチレン系樹脂組成物を用いた多層延伸フィルムは、高い引張弾性率改良効果と透明性、優れた熱融着性、低温収縮性を兼ね備えたフィルムである。
The obtained unstretched tube was sent to the stretched part and heated by hot air heating using an infrared heater. The zone was stretched in the longitudinal direction, and the stretch ratio was adjusted by the speed ratio of the heated pinch roller and the winder. While cooling with an air cooling ring, air was injected to form bubbles and stretched at 55 ° C. Then, a slight heat set was performed at 50 ° C. as a folding double film in the deflator part, and the film was wound up by a winder. The draw ratio in the transverse direction was adjusted by the width of the film and the width of the parison at this time. About the draw ratio, the amount of extrusion was adjusted so that it might become predetermined | prescribed thickness using the magnification which a bubble is most stable. Using a slitter, slitting was performed while peeling the double film original into a single film, and multilayer stretched films of Examples 18 to 20 and Comparative Example 8 were obtained. Table 3 shows the tensile elastic modulus improvement effect, transparency, heat-fusibility, and low-temperature shrinkage evaluation results of the obtained film.
As can be seen from the results in Table 3, the multilayer stretched film using the polyethylene resin composition of the present invention is a film having both a high tensile elastic modulus improving effect and transparency, excellent heat-fusibility and low-temperature shrinkage. .

[実施例21〜23、比較例9〜12]
表4に示すような組成で、3台の押出機を使用し、2種3層の環状ダイスより両表面層、芯層からなる3層構成のチューブを溶融押出し、水冷リングを用いて急冷却して約560μmの厚みの未延伸チューブ(パリソン)を得た。各層所定の比率になるように、各押出量を調整し、断面観察にて層構成を確認した。押出機の温度設定は長手方向で6つの温度調整ゾーンがあり、樹脂供給ホッパーから順に180℃、200℃、220℃、230℃、245℃、245℃で行なった。得られた厚み約560μmの未延伸チューブに対して500kVの加速した電子線を85kGy照射して架橋処理を行った。引き続いてインフラヒーターによる輻射加熱で未延伸チューブを140℃まで加熱しつつ、2組のニップロール間の速度比により流れ方向に約8〜9倍、チューブ内にエアーを注入することにより幅方向(機械の流れ方向に対し垂直方向)に約6〜7倍延伸し、エアーリングよりバブル最大径の部分に冷風を当てて冷却した。その後、折りたたんで、両端をスリットしつつシングルに剥ぎながら巻き取り機で巻き取って厚み約9〜11μmのフィルム原反を得た。得られたフィルムの引張弾性率改良効果、透明性、熱融着性・低温収縮性評価結果を表4に示す。
表4の結果から判るように本発明のポリエチレン系樹脂組成物を用いた架橋多層延伸フィルムは高い引張弾性率改良効果を有しており、薄肉化しても充分なハリ・コシを維持できる上に透明性、優れた熱融着性、低温収縮性を兼ね備えたフィルムである。
[Examples 21 to 23, Comparative Examples 9 to 12]
With the composition shown in Table 4, three extruders were used, a three-layer tube consisting of two surface layers and a core layer was melt-extruded from two types of three-layer annular dies, and rapidly cooled using a water-cooled ring Thus, an unstretched tube (parison) having a thickness of about 560 μm was obtained. Each extrusion amount was adjusted so that each layer had a predetermined ratio, and the layer configuration was confirmed by cross-sectional observation. The temperature setting of the extruder has six temperature adjustment zones in the longitudinal direction, and was performed at 180 ° C., 200 ° C., 220 ° C., 230 ° C., 245 ° C., and 245 ° C. in order from the resin supply hopper. The resulting unstretched tube having a thickness of about 560 μm was subjected to a crosslinking treatment by irradiating an electron beam of 500 kV with 85 kGy. Subsequently, the unstretched tube is heated to 140 ° C. by radiant heating with an infrastructure heater, and the width direction (machine) is injected by injecting air into the tube approximately 8 to 9 times in the flow direction by the speed ratio between the two nip rolls. The film was stretched about 6 to 7 times in the direction perpendicular to the flow direction of the water and cooled by applying cold air to the bubble maximum diameter portion from the air ring. Thereafter, the film was folded and wound up with a winder while slitting both ends into a single film to obtain a film original having a thickness of about 9 to 11 μm. Table 4 shows the tensile modulus improvement effect, transparency, heat-fusibility and low-temperature shrinkage evaluation results of the obtained film.
As can be seen from the results in Table 4, the cross-linked multilayer stretched film using the polyethylene resin composition of the present invention has a high tensile elastic modulus improving effect, and can maintain sufficient elasticity and stiffness even when it is thinned. It is a film that combines transparency, excellent heat-fusibility, and low-temperature shrinkage.

Figure 2007049734
Figure 2007049734

Figure 2007049734
Figure 2007049734

Figure 2007049734
Figure 2007049734

Figure 2007049734
Figure 2007049734

Figure 2007049734
Figure 2007049734

Figure 2007049734
Figure 2007049734

Figure 2007049734
Figure 2007049734

本発明のポリエチレン系樹脂組成物は、優れた機械物性、透明性、延伸加工性、熱融着性、低温収縮性を有し、シュリンク包装用フィルムとして好適である。   The polyethylene resin composition of the present invention has excellent mechanical properties, transparency, stretch processability, heat-fusibility, and low-temperature shrinkage, and is suitable as a shrink wrapping film.

Claims (11)

示差走査熱量測定による融点(T)が110℃以下である直鎖状低密度ポリエチレン(A)20〜99.85重量%;極性官能基を分子内に有する変性低密度ポリエチレン(B)0.05〜40重量%;及び、層状珪酸塩をカチオン系界面活性剤により修飾した有機化層状珪酸塩(C)0.1〜40重量%を含む、ポリエチレン系樹脂組成物。Linear low density polyethylene (A) having a melting point (T m ) of 110 ° C. or less by differential scanning calorimetry 20 to 99.85% by weight; modified low density polyethylene (B) having a polar functional group in the molecule And a polyethylene-based resin composition comprising 0.1 to 40% by weight of an organized layered silicate (C) obtained by modifying a layered silicate with a cationic surfactant. 有機化層状珪酸塩(C)が下記式(1)で表される合成フッ素化雲母を有機カチオン系界面活性剤で有機修飾して得られたものである、請求項1記載のポリエチレン系樹脂組成物。
NaMg2.5Si10(FαOH(1−α)(0.8≦α≦1.0) (1)
The polyethylene resin composition according to claim 1, wherein the organically modified layered silicate (C) is obtained by organically modifying a synthetic fluorinated mica represented by the following formula (1) with an organic cationic surfactant. object.
NaMg 2.5 Si 4 O 10 (F α OH (1-α) ) 2 (0.8 ≦ α ≦ 1.0) (1)
有機化層状珪酸塩(C)のX線回折測定をした際、2θ=0〜10°の範囲における回折パターンのメインピークが示す2θの値から、式(2)を用いて算出する層間距離h0が19〜35Åである、請求項1または2に記載のポリエチレン系樹脂組成物。
h0(Å)=1.54(Å)/2sinθ (2)
When the X-ray diffraction measurement of the organic layered silicate (C) is performed, the interlayer distance h0 calculated from the value of 2θ indicated by the main peak of the diffraction pattern in the range of 2θ = 0 to 10 ° using the formula (2) The polyethylene-based resin composition according to claim 1, wherein is 19 to 35%.
h0 (Å) = 1.54 (Å) / 2sinθ (2)
前記直鎖状低密度ポリエチレン(A)と変性低密度ポリエチレン(B)の溶融剪断粘度の関係を示す式(3)で表される溶融粘度パラメーター(V)が0.3〜1.3である、請求項1〜3のいずれか1項に記載のポリエチレン系樹脂組成物。
V=VLDPE/VLDPEm (3)
LDPE:剪断速度が100sec−1における直鎖状低密度ポリエチレン(A)の溶融剪断粘度
LDPEm:剪断速度が100sec−1における変性低密度ポリエチレン(B)の溶融剪断粘度
The melt viscosity parameter (V) represented by the formula (3) showing the relationship between the melt shear viscosity of the linear low density polyethylene (A) and the modified low density polyethylene (B) is 0.3 to 1.3. The polyethylene resin composition according to any one of claims 1 to 3.
V = V LDPE / V LDPEm (3)
V LDPE: melt shear viscosity of the linear low density polyethylene shear rate at 100sec -1 (A) V LDPEm: melt shear viscosity of the modified shear rate at 100 sec -1 low density polyethylene (B)
示差走査熱量測定による融点(T)が110℃以下であり、引張弾性率が150MPa以上である、請求項1〜4のいずれか1項に記載のポリエチレン系樹脂組成物。The polyethylene-type resin composition of any one of Claims 1-4 whose melting | fusing point ( Tm ) by differential scanning calorimetry is 110 degrees C or less, and whose tensile elasticity modulus is 150 Mpa or more. 直鎖状低密度ポリエチレン(A)、変性低密度ポリエチレン(B)、有機化層状珪酸塩(C)を二軸押出機で溶融混練するに際し、有機化層状珪酸塩(C)をサイドフィード法により添加することを含む、請求項1〜5のいずれか1項に記載のポリエチレン系樹脂組成物の製造方法。   When melt-kneading the linear low density polyethylene (A), the modified low density polyethylene (B), and the organically modified layered silicate (C) with a twin screw extruder, the organically modified layered silicate (C) is obtained by a side feed method. The manufacturing method of the polyethylene-type resin composition of any one of Claims 1-5 including adding. 請求項1〜5のいずれか1項に記載のポリエチレン系樹脂組成物からなるポリエチレン系樹脂単層フィルム。   The polyethylene-type resin single layer film which consists of a polyethylene-type resin composition of any one of Claims 1-5. 請求項1〜5のいずれか1項に記載のポリエチレン系樹脂組成物により単一で構成された層を1層以上含むポリエチレン系樹脂多層フィルム。   A polyethylene-based resin multilayer film comprising at least one layer composed of the polyethylene-based resin composition according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載のポリエチレン系樹脂組成物を1成分として含む層を1層以上含むポリエチレン系樹脂多層フィルム。   The polyethylene-type resin multilayer film containing 1 or more layers which contain the polyethylene-type resin composition of any one of Claims 1-5 as one component. 請求項7〜9のいずれか1項に記載のポリエチレン系樹脂フィルムを延伸して得られるポリエチレン系樹脂延伸フィルム。   The polyethylene-type resin stretched film obtained by extending | stretching the polyethylene-type resin film of any one of Claims 7-9. 請求項7〜9のいずれか1項に記載のポリエチレン系樹脂フィルムを架橋延伸して得られるポリエチレン系樹脂架橋延伸フィルム。   A polyethylene resin cross-linked stretched film obtained by cross-linking and stretching the polyethylene resin film according to claim 7.
JP2007542675A 2005-10-28 2006-10-27 Polyethylene resin composition and film thereof Pending JPWO2007049734A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005315139 2005-10-28
JP2005315139 2005-10-28
PCT/JP2006/321470 WO2007049734A1 (en) 2005-10-28 2006-10-27 Polyethylene resin composition and film thereof

Publications (1)

Publication Number Publication Date
JPWO2007049734A1 true JPWO2007049734A1 (en) 2009-04-30

Family

ID=37967842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007542675A Pending JPWO2007049734A1 (en) 2005-10-28 2006-10-27 Polyethylene resin composition and film thereof

Country Status (2)

Country Link
JP (1) JPWO2007049734A1 (en)
WO (1) WO2007049734A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008255573B2 (en) * 2007-06-01 2012-11-08 Plantic Technologies Ltd Starch nanocomposite materials
JP2016004978A (en) * 2014-06-19 2016-01-12 富士フイルム株式会社 White laminate polyester film for solar battery backsheet, manufacturing method thereof, solar battery backsheet, and solar battery module
JP2016215412A (en) * 2015-05-15 2016-12-22 旭化成株式会社 Belt-state film and package
JP6612917B2 (en) * 2018-04-03 2019-11-27 旭化成株式会社 Polyethylene-based crosslinked shrink film
KR102416188B1 (en) * 2021-02-18 2022-07-05 한국세라믹기술원 Antimicrobial ceramic hybrid film for Keep-freshness packaging and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129056A (en) * 1998-10-21 2000-05-09 Showa Denko Kk Adhesive resin composite and its layered product
US6414070B1 (en) * 2000-03-08 2002-07-02 Omnova Solutions Inc. Flame resistant polyolefin compositions containing organically modified clay
JP2003206364A (en) * 2001-11-12 2003-07-22 Sekisui Film Kk Fine porous film and process for producing it
AU2003281617A1 (en) * 2002-07-19 2004-02-09 Asahi Kasei Kabushiki Kaisha Polyolefin resin composition

Also Published As

Publication number Publication date
WO2007049734A1 (en) 2007-05-03

Similar Documents

Publication Publication Date Title
EP2363276B1 (en) Methods for forming articles having improved environmental stress crack resistance
WO2015116958A9 (en) Nanocomposite packaging film
JP5276091B2 (en) Method for producing a polyolefin composition
US7211620B2 (en) Foldable polyolefin films
EP1245620A2 (en) Polypropylene base porous film and production process for the same
US11725086B2 (en) Shrink films and methods for making the same
JPWO2007049734A1 (en) Polyethylene resin composition and film thereof
WO2010001471A1 (en) Process for producing evoh composite material
US9279046B2 (en) Nanocomposites and nanocomposite foams and methods and products related to same
JP5363280B2 (en) Recycled resin composition and heat-shrinkable film comprising crosslinked polyethylene
JP7018300B2 (en) Agricultural polyolefin multilayer film
KR101909577B1 (en) Manufacturing method of polypropylene composition for higher transparency, softness and shrinkage
JP5674608B2 (en) Polypropylene resin composition, laminate comprising the same, and biaxially oriented polypropylene film
JP2007245459A (en) Oriented multilayer crosslinked polyolefin resin film
KR20160059184A (en) Manufacturing method of polypropylene resin composition for higher shrinkage film
JP2007260911A (en) Crosslinked multilayered stretched film of polyolefinic resin
JP5388429B2 (en) Resin composite and method for producing the same
JP3461951B2 (en) Polyolefin composition
JPH0764942B2 (en) Method for producing porous sheet
Sun et al. Influence of intercalated montmorillonite/polyethylene glycol binary processing aids on the rheological and mechanical properties of metallocene linear low-density polyethylene
JPS59136334A (en) Manufacture of porous sheet
US20190284353A1 (en) Coefficient of friction improvement in packaging materials
JP5110743B2 (en) Production method of resin composition
JPH0418338A (en) Opaque laminated oriented molding and manufacture thereof
JP2004082481A (en) Manufacturing method for polyethylenic foam