JPWO2007004632A1 - Stacked manganese battery - Google Patents

Stacked manganese battery Download PDF

Info

Publication number
JPWO2007004632A1
JPWO2007004632A1 JP2006554366A JP2006554366A JPWO2007004632A1 JP WO2007004632 A1 JPWO2007004632 A1 JP WO2007004632A1 JP 2006554366 A JP2006554366 A JP 2006554366A JP 2006554366 A JP2006554366 A JP 2006554366A JP WO2007004632 A1 JPWO2007004632 A1 JP WO2007004632A1
Authority
JP
Japan
Prior art keywords
zinc
weight
zinc plate
battery
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006554366A
Other languages
Japanese (ja)
Inventor
石田 努
努 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2007004632A1 publication Critical patent/JPWO2007004632A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/12Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

本発明は、負極亜鉛板中の鉛量を従来よりも低減して環境負荷を低減するとともに、負極亜鉛板の強度および耐食性を改善して、高率放電特性および保存特性に優れた高信頼性の積層形マンガン乾電池を提供することを課題とする。本発明は、底面中央部に穴を有するカップ状の熱収縮性樹脂チューブ、および前記熱収縮性樹脂チューブの底面内側に配され、片面に炭素膜を有する負極亜鉛板からなる素電池ケースと、前記素電池ケースの内側に配された、糊材を塗布した紙からなるセパレータと、前記セパレータを介して前記素電池ケース内に収納された正極合剤と、からなる素電池の複数個を含む積層形マンガン乾電池であって、前記負極亜鉛板のビッカース硬度が45〜55Hvであることを特徴とする。The present invention reduces the environmental impact by reducing the amount of lead in the negative electrode zinc plate than before, improves the strength and corrosion resistance of the negative electrode zinc plate, and has high reliability with excellent high-rate discharge characteristics and storage characteristics. It is an object of the present invention to provide a multilayer manganese dry battery. The present invention includes a cup-shaped heat-shrinkable resin tube having a hole in the center of the bottom surface, and a unit cell case made of a negative electrode zinc plate disposed on the inside of the bottom surface of the heat-shrinkable resin tube and having a carbon film on one side; A plurality of unit cells each including a separator made of paper coated with a paste material and a positive electrode mixture housed in the unit cell case via the separator disposed inside the unit cell case; A multilayer manganese dry battery, wherein the negative electrode zinc plate has a Vickers hardness of 45 to 55 Hv.

Description

本発明は、積層形マンガン乾電池に関し、さらに詳しくは負極亜鉛板の改良に関する。  The present invention relates to a laminated manganese dry battery, and more particularly to improvement of a negative electrode zinc plate.

従来から、積層形マンガン乾電池の負極亜鉛板には、亜鉛の耐食性を向上させるために、鉛が0.4重量%添加されている。しかし、近年、使用後の乾電池がもたらす環境汚染を防止するため、電池の構成部材に、鉛等の有害物質をできるだけ用いないことが強く要望されている。  Conventionally, 0.4% by weight of lead has been added to the negative electrode zinc plate of the laminated manganese dry battery in order to improve the corrosion resistance of zinc. However, in recent years, in order to prevent environmental pollution caused by dry batteries after use, there has been a strong demand for using no harmful substances such as lead as much as possible for the constituent members of the batteries.

円筒形マンガン乾電池では、負極亜鉛缶の耐食性を向上させる方法としては、例えば、セパレータの紙に塗布された糊材にInの塩化物や、Biの化合物を添加することが提案されている(特許文献1および2)。
しかし、InやBiを添加すると、高率放電特性が低下するという問題があった。また、積層形マンガン乾電池では、亜鉛板の強度が不十分なために、電池組み立て後において開路電圧の不良が発生する場合があった。
In a cylindrical manganese dry battery, as a method for improving the corrosion resistance of the negative electrode zinc can, for example, it is proposed to add an In chloride or a Bi compound to the paste applied to the separator paper (patent) References 1 and 2).
However, when In or Bi is added, there is a problem that high-rate discharge characteristics are deteriorated. In addition, in the laminated manganese dry battery, the strength of the zinc plate is insufficient, and thus there may be a case where the open circuit voltage is poor after the battery is assembled.

また、円筒形マンガン乾電池において、鉛無添加の負極亜鉛缶にIn等を添加することが提案されている(特許文献3)。
円筒形マンガン乾電池の負極亜鉛缶は、成缶工程における圧延加工性および成缶後の電池組み立て工程における機械的強度を考慮して設計される。
In addition, in a cylindrical manganese dry battery, it has been proposed to add In or the like to a lead-free negative electrode zinc can (Patent Document 3).
The negative electrode zinc can of a cylindrical manganese dry battery is designed in consideration of rolling processability in the can-making process and mechanical strength in the battery assembly process after the can-making process.

これに対して、積層形マンガン乾電池の負極は亜鉛板であり、亜鉛板を含む素電池を複数個積層した後、この積層体を積層方向から締め付けて電池が組み立てられるため、亜鉛板には積層方向に力が加わる。鉛を添加した従来の亜鉛板では、電池組み立て時に素電池に上記のような力が加わることにより亜鉛板がたわみ、開路電圧不良が発生する場合がある。  On the other hand, the negative electrode of the laminated manganese dry battery is a zinc plate, and after stacking a plurality of unit cells including the zinc plate, the laminate is tightened from the stacking direction to assemble the battery. Force is applied in the direction. In a conventional zinc plate to which lead is added, the above-described force is applied to the unit cell during battery assembly, so that the zinc plate may bend and an open circuit voltage failure may occur.

積層形マンガン乾電池は、円筒形マンガン乾電池とは電池の構成や負極の形状が異なるため、積層形マンガン乾電池の負極亜鉛板については独自に検討する必要がある。しかし、積層形マンガン乾電池の負極亜鉛板については、機械的強度や耐食性等について依然として十分な検討がなされていない。
特開昭61−78051号公報 特開平5−159767号公報 特開平8−17424号公報
Since the structure of the laminated manganese dry battery and the shape of the negative electrode are different from those of the cylindrical manganese dry battery, the negative electrode zinc plate of the laminated manganese dry battery needs to be independently examined. However, as for the negative electrode zinc plate of the laminated manganese dry battery, the mechanical strength, the corrosion resistance and the like have not been sufficiently studied yet.
JP-A-61-78051 JP-A-5-159767 JP-A-8-17424

そこで、本発明は上記従来の問題を解決するために、負極亜鉛板中の鉛量を従来よりも低減して環境負荷を低減するとともに、負極亜鉛板の強度および耐食性を改善して、高率放電特性および保存特性に優れた高信頼性の積層形マンガン乾電池を提供することを目的とする。  Therefore, in order to solve the above-described conventional problems, the present invention reduces the environmental load by reducing the amount of lead in the negative electrode zinc plate than before, improves the strength and corrosion resistance of the negative electrode zinc plate, and increases the rate. An object of the present invention is to provide a highly reliable laminated manganese dry battery excellent in discharge characteristics and storage characteristics.

本発明は、底面中央部に穴を有するカップ状の熱収縮性樹脂チューブ、および前記熱収縮性樹脂チューブの底面内側に配され、片面に炭素膜を有する負極亜鉛板からなる素電池ケースと、前記素電池ケースの内側に配された、糊材を塗布した紙からなるセパレータと、前記セパレータを介して前記素電池ケース内に収納された正極合剤と、からなる素電池の複数個を含む積層形マンガン乾電池であって、前記亜鉛板表面のビッカース硬度が45〜55Hvであることを特徴とする。
これにより、電池作製時に発生する開路電圧不良を低減することができる。
The present invention includes a cup-shaped heat-shrinkable resin tube having a hole in the center of the bottom surface, and a unit cell case made of a negative electrode zinc plate disposed on the inside of the bottom surface of the heat-shrinkable resin tube and having a carbon film on one side; A plurality of unit cells each including a separator made of paper coated with a paste material and a positive electrode mixture housed in the unit cell case via the separator disposed inside the unit cell case; A laminated manganese dry battery, wherein the zinc plate surface has a Vickers hardness of 45 to 55 Hv.
Thereby, the open circuit voltage defect which generate | occur | produces at the time of battery manufacture can be reduced.

前記亜鉛板が、亜鉛100重量部当たり0.03重量部以下のPbおよび0.001〜0.01重量部のInを含む亜鉛合金からなるのが好ましい。
前記セパレータが、In塩化物およびBi塩化物のうち少なくとも一方の塩化物を含み、前記セパレータ中に含まれる前記塩化物におけるInおよびBiの含有量の合計が、前記糊材中の乾燥固形成分100重量部当たり0.01〜1.0重量部であるのが好ましい。
The zinc plate is preferably made of a zinc alloy containing 0.03 parts by weight or less of Pb and 0.001 to 0.01 parts by weight of In per 100 parts by weight of zinc.
The separator contains at least one chloride of In chloride and Bi chloride, and the total content of In and Bi in the chloride contained in the separator is the dry solid component 100 in the paste material. It is preferably 0.01 to 1.0 part by weight per part by weight.

本発明によれば、負極亜鉛板の強度が向上することにより、電池作製時における開路電圧不良を低減することができる。また、負極亜鉛板の耐食性が向上し、高率放電特性および保存特性に優れた積層形マンガン乾電池が得られる。負極亜鉛板中の鉛量を低減することができるため、環境負荷が低減される。  According to the present invention, since the strength of the negative electrode zinc plate is improved, it is possible to reduce open circuit voltage failure during battery production. In addition, the corrosion resistance of the negative electrode zinc plate is improved, and a laminated manganese dry battery excellent in high rate discharge characteristics and storage characteristics can be obtained. Since the amount of lead in the negative electrode zinc plate can be reduced, the environmental load is reduced.

本発明の積層形マンガン乾電池における素電池の縦断面図である。It is a longitudinal cross-sectional view of the unit cell in the laminated manganese dry battery of this invention. 本発明の積層形マンガン乾電池における素電池ケースの縦断面図である。It is a longitudinal cross-sectional view of the unit cell case in the multilayer manganese dry battery of this invention. 本発明の積層形マンガン乾電池の一部を断面とした正面図である。It is the front view which made a section of a lamination type manganese dry battery of the present invention a section.

本発明者は、積層形マンガン乾電池における負極亜鉛板の機械的強度について種々検討した結果、亜鉛板に亜鉛100重量部当たりInを0.001重量部以上含む亜鉛合金を用いた場合に、亜鉛板のビッカース硬度が45Hv以上となり、電池作製時の上下方向から加わる力による亜鉛板のたわみ等の変形が抑制され、開路電圧不良の発生を抑制することができることを見出した。一方、In含有量が0.01重量部を超えて、ビッカース硬度が55Hvを超えると、亜鉛板作製時にクラックを生じやすくなる。  As a result of various studies on the mechanical strength of the negative electrode zinc plate in the multilayer manganese dry battery, the present inventor has found that the zinc plate contains a zinc alloy containing 0.001 part by weight or more of In per 100 parts by weight of zinc. It has been found that the Vickers hardness is 45 Hv or more, deformation of the zinc plate due to the force applied from the up and down direction during battery production is suppressed, and the occurrence of open circuit voltage failure can be suppressed. On the other hand, if the In content exceeds 0.01 parts by weight and the Vickers hardness exceeds 55 Hv, cracks are likely to occur during the production of the zinc plate.

また、上記の効果と同時に、亜鉛板の耐食性が向上するため、鉛による耐食性の効果が著しく低下する鉛量である、亜鉛100重量部当たり0.03重量部以下においても、従来の鉛を0.4重量部含む亜鉛板を用いた場合と、同等以上の高率放電特性および保存特性が得られる。  Moreover, since the corrosion resistance of the zinc plate is improved at the same time as the above effects, the conventional lead is reduced to 0 even at 0.03 parts by weight or less per 100 parts by weight of zinc, which is a lead amount in which the corrosion resistance effect by lead is remarkably reduced. High rate discharge characteristics and storage characteristics equivalent to or higher than those obtained when a zinc plate containing 4 parts by weight is used.

上記の亜鉛板のビッカース硬度は、例えば、JIS Z 2244規定のビッカース硬さ試験方法により求められる。  The Vickers hardness of said zinc plate is calculated | required by the Vickers hardness test method of JISZ2244 regulation, for example.

本発明の積層形マンガン乾電池の一実施の形態について図3を参照しながら説明する。図3は本発明の積層形マンガン乾電池の一部を断面とし、電池内部を示す正面図である。
積層された複数の素電池7、およびその上端面に接する正極集電板5からなる電池群が、その側面から上下端縁部にわたり、例えばポリ塩化ビニルからなる熱収縮性樹脂チューブ4で被覆され、外装缶10内に収容されている。熱収縮性樹脂チューブ4は、熱収縮により、その上下端縁が電池群の上下端縁部に密着している。
An embodiment of the multilayer manganese dry battery of the present invention will be described with reference to FIG. FIG. 3 is a front view showing a part of the laminated manganese dry battery of the present invention in cross section and showing the inside of the battery.
A battery group including a plurality of stacked unit cells 7 and a positive electrode current collector plate 5 in contact with the upper end surface thereof is covered with a heat-shrinkable resin tube 4 made of, for example, polyvinyl chloride from the side surface to the upper and lower end edges. The outer can 10 is housed. The heat-shrinkable resin tube 4 has its upper and lower edges closely adhered to the upper and lower edges of the battery group due to heat shrinkage.

端子板3に設けられた正極端子1は、正極リード6を介して正極集電板5に接続されている。一方、端子板3に設けられた負極端子2は、負極リード8を介して電池群の下端面に接続されている。端子板3および底板9は、外装缶10の上下端縁を内方に屈曲することによりそれぞれ締めつけられている。  A positive electrode terminal 1 provided on the terminal plate 3 is connected to a positive electrode current collector plate 5 through a positive electrode lead 6. On the other hand, the negative electrode terminal 2 provided on the terminal plate 3 is connected to the lower end surface of the battery group via the negative electrode lead 8. The terminal plate 3 and the bottom plate 9 are tightened by bending the upper and lower ends of the outer can 10 inward.

ここで、本発明の積層形マンガン乾電池における素電池の縦断面図を図1に示す。また、本発明の積層形マンガン乾電池における素電池ケースの縦断面図を図2に示す。
素電池7は、図2に示すような底面中央部に穴を有する、例えばポリ塩化ビニルからなるカップ状の熱収縮性樹脂チューブ12、および熱収縮性樹脂チューブ12の底面内側に配された亜鉛−炭素結合極板16からなる素電池ケースと、上記素電池ケースの内側に配されたセパレータ13と、セパレータ13を介して上記素電池ケース内に収容された正極合剤14とからなる。
Here, the longitudinal cross-sectional view of the unit cell in the laminated manganese dry battery of this invention is shown in FIG. Moreover, the longitudinal cross-sectional view of the unit cell case in the laminated manganese dry battery of this invention is shown in FIG.
The unit cell 7 includes a cup-shaped heat-shrinkable resin tube 12 made of, for example, polyvinyl chloride having a hole in the center of the bottom surface as shown in FIG. 2 and zinc disposed inside the bottom surface of the heat-shrinkable resin tube 12. -It consists of a unit cell case made of carbon-bonded electrode plate 16, a separator 13 disposed inside the unit cell case, and a positive electrode mixture 14 accommodated in the unit cell case via the separator 13.

亜鉛−炭素結合極板16は、セパレータ13と接する亜鉛板11とその下面に形成された炭素膜15からなる。また、熱収縮性樹脂チューブ12と炭素膜15とは、塩化ビニル−酢酸ビニル共重合体を主成分とした接着剤17により接着されている。
亜鉛板は亜鉛100重量部に対して0.03重量部以下のPbおよび0.001〜0.01重量部のInを含む。これにより、亜鉛板の耐食性が向上し、優れた高率放電特性および保存特性が得られる。また、従来よりも鉛量を低減できるため、環境負荷を低減することができる。
The zinc-carbon bond electrode plate 16 includes a zinc plate 11 in contact with the separator 13 and a carbon film 15 formed on the lower surface thereof. Further, the heat-shrinkable resin tube 12 and the carbon film 15 are bonded by an adhesive 17 having a vinyl chloride-vinyl acetate copolymer as a main component.
The zinc plate contains 0.03 parts by weight or less of Pb and 0.001 to 0.01 parts by weight of In with respect to 100 parts by weight of zinc. Thereby, the corrosion resistance of the zinc plate is improved, and excellent high rate discharge characteristics and storage characteristics are obtained. Moreover, since the amount of lead can be reduced as compared with the conventional case, the environmental load can be reduced.

複数の素電池7を上下方向に積層すると、上に位置する素電池7の熱収縮性樹脂チューブ12の底面中央部の穴より露出する亜鉛−炭素結合極板16の炭素膜15と、下に位置する素電池7の正極合剤14の熱収縮性樹脂チューブ12で覆われない部分とが接することにより、これらの素電池が直列に接続される。  When the plurality of unit cells 7 are stacked in the vertical direction, the carbon film 15 of the zinc-carbon bond electrode plate 16 exposed from the hole at the center of the bottom surface of the heat-shrinkable resin tube 12 of the unit cell 7 positioned above, and below These unit cells are connected in series by contacting a portion of the positive electrode mixture 14 of the unit cell 7 that is not covered with the heat-shrinkable resin tube 12.

上記のような積層形マンガン乾電池では、電池の組み立ての最終工程における外装缶10の屈曲時に、積層した素電池7群の縦方向(積層方向)に力が加わるが、亜鉛板がInを0.001〜0.01重量部含むことにより、亜鉛板のビッカース硬度が45Hv以上であるため、たわみ等の変形を大幅に軽減させ、電池組み立て後において開路電圧不良の発生を抑制することができる。  In the laminated manganese dry battery as described above, when the outer can 10 is bent in the final process of battery assembly, force is applied in the vertical direction (stacking direction) of the group of stacked unit cells 7, but the zinc plate has an In value of 0.1. By including 001 to 0.01 parts by weight, since the Vickers hardness of the zinc plate is 45 Hv or more, deformation such as deflection can be greatly reduced, and the occurrence of open circuit voltage failure after battery assembly can be suppressed.

セパレータ13はカップ状の紙および上記紙の亜鉛板11との接触面(外底面)に塗布された糊材からなる。セパレータ13には、例えば、クラフト紙に、架橋デンプンと酢酸ビニルを主とする結着剤とをアルコール系溶媒に溶かした糊材を塗布し乾燥させたものが用いられる。
セパレータ13は、In塩化物(InCl)およびBi塩化物(BiCl)のうち少なくとも一方の塩化物を含み、セパレータ13中に含まれる上記塩化物におけるInおよびBiの含有量の合計が、糊材中の乾燥固形成分100重量部当たり0.01〜1.0重量部であるのが好ましい。この場合、亜鉛板の耐食性が向上し、保存特性が向上する。
The separator 13 is made of a paste material applied to a contact surface (outer bottom surface) of the cup-shaped paper and the zinc plate 11 of the paper. As the separator 13, for example, a kraft paper coated with a paste obtained by dissolving a cross-linked starch and a binder mainly composed of vinyl acetate in an alcohol solvent and dried is used.
The separator 13 contains at least one chloride of In chloride (InCl 3 ) and Bi chloride (BiCl 3 ), and the total content of In and Bi in the chloride contained in the separator 13 is a paste. The amount is preferably 0.01 to 1.0 part by weight per 100 parts by weight of the dry solid component in the material. In this case, the corrosion resistance of the zinc plate is improved and the storage characteristics are improved.

セパレータ13中のInおよびBiの含有量の合計が、糊材中の乾燥固形成分100重量部当たり0.01重量部未満であると、InまたはBiによる効果が不十分となる。一方、セパレータ13中のInおよびBiの含有量の合計が、糊材中の乾燥固形成分100重量部当たり1.0重量部を超えると、高率放電性能が低下する。  When the total content of In and Bi in the separator 13 is less than 0.01 parts by weight per 100 parts by weight of the dry solid component in the paste material, the effect of In or Bi becomes insufficient. On the other hand, when the total content of In and Bi in the separator 13 exceeds 1.0 part by weight per 100 parts by weight of the dry solid component in the paste material, the high rate discharge performance is deteriorated.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限定されない。
《実施例1〜4および比較例1〜6》
図1に示す素電池を以下のように作製した。
亜鉛−炭素結合極板16における亜鉛板11の片面に形成された炭素膜15と、ポリ塩化ビニルからなるカップ状の熱収縮性樹脂チューブ12の内底面とを、塩化ビニル−酢酸ビニル共重合体を主成分とした接着剤17により接着し、亜鉛−炭素結合極板16と熱収縮性樹脂チューブ12とからなる図2に示す素電池ケースを得た。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
<< Examples 1-4 and Comparative Examples 1-6 >>
The unit cell shown in FIG. 1 was produced as follows.
A vinyl chloride-vinyl acetate copolymer comprising a carbon film 15 formed on one side of a zinc plate 11 in a zinc-carbon bond electrode plate 16 and an inner bottom surface of a cup-shaped heat-shrinkable resin tube 12 made of polyvinyl chloride. Was bonded with an adhesive 17 containing as a main component, to obtain a unit cell case shown in FIG. 2 composed of a zinc-carbon bond electrode plate 16 and a heat-shrinkable resin tube 12.

この素電池ケース内に、カップ状のセパレータ13を配置した後、セパレータ13に電解液を注液した。セパレータ13には、クラフト紙に、架橋デンプンと酢酸ビニルを主とする結着剤とをアルコール系溶媒に溶かした糊材を塗布し乾燥させたものを用いた。電解液には、30重量%の塩化亜鉛および1重量%の塩化アンモニウムを含む水溶液を用いた。そして、正極合剤14をセパレータ13の内側に挿入した後、樹脂チューブ12を熱収縮させて、素電池7を作製した。正極合剤14には、二酸化マンガンと、アセチレンブラックと、上記と同じ電解液とを重量比4.5:1:2.5の割合で混練し、ペレット状に成形したものを用いた。  After the cup-shaped separator 13 was disposed in the unit cell case, an electrolytic solution was injected into the separator 13. The separator 13 was a kraft paper coated with a paste obtained by dissolving a cross-linked starch and a binder mainly composed of vinyl acetate in an alcohol solvent and dried. As the electrolytic solution, an aqueous solution containing 30% by weight of zinc chloride and 1% by weight of ammonium chloride was used. And after inserting the positive mix 14 inside the separator 13, the resin tube 12 was heat-shrinked and the unit cell 7 was produced. As the positive electrode mixture 14, manganese dioxide, acetylene black, and the same electrolytic solution as described above were kneaded at a weight ratio of 4.5: 1: 2.5 and formed into a pellet shape.

次に、図3に示すマンガン乾電池を以下のように組み立てた。
6個の素電池7を、正極合剤を上にして積み重ね、さらに最上層の素電池7の上面に正極集電板5を配置して電池群を構成した。この電池群にポリ塩化ビニルからなる熱収縮性樹脂チューブ4を被せ、熱収縮性樹脂チューブ4を熱収縮させてその上下端縁を電池群の上下端縁部に密着させた。
Next, the manganese dry battery shown in FIG. 3 was assembled as follows.
Six unit cells 7 were stacked with the positive electrode mixture facing upward, and the positive electrode current collector plate 5 was further arranged on the upper surface of the uppermost unit cell 7 to constitute a battery group. The battery group was covered with a heat-shrinkable resin tube 4 made of polyvinyl chloride, and the heat-shrinkable resin tube 4 was heat-shrinked so that the upper and lower ends thereof were brought into close contact with the upper and lower ends of the battery group.

この電池群を端子板3と底板9とを組み合わせた組立端子板とともに外装缶10に挿入した。外装缶10の上下端縁を屈曲して端子板3および底板9を締め付けた。端子板3に設けられた正極端子1と連結する正極リード6を正極集電板5と接触させた。また、最下層の素電池7の負極から電池群の側面に沿って正極集電板5の上面まで連なる負極リード8を、端子板3に設けられた負極端子2と接触させた。  This battery group was inserted into the outer can 10 together with an assembled terminal board in which the terminal board 3 and the bottom board 9 were combined. The upper and lower edges of the outer can 10 were bent to tighten the terminal plate 3 and the bottom plate 9. The positive electrode lead 6 connected to the positive electrode terminal 1 provided on the terminal plate 3 was brought into contact with the positive electrode current collector plate 5. Moreover, the negative electrode lead 8 connected from the negative electrode of the lowermost unit cell 7 to the upper surface of the positive electrode current collector plate 5 along the side surface of the battery group was brought into contact with the negative electrode terminal 2 provided on the terminal plate 3.

上記の積層形マンガン乾電池の作製において、亜鉛板が亜鉛100重量部当たり表1に示す量のPbやInを含むように、純度が99.99重量%の亜鉛地金を溶解し、これに所定量のPbおよびInを添加して亜鉛合金を得た。この亜鉛合金を用いて、冷間圧延により厚さ0.34mmの亜鉛板を作製した。
また、比較としてPbのみを含む場合(比較例1〜3)、ならびにPbおよびInを含まない場合(比較例4)についても、上記と同様に亜鉛板を作製した。
In the production of the above-mentioned laminated manganese dry battery, a zinc metal having a purity of 99.99% by weight was dissolved so that the zinc plate contained Pb and In in amounts shown in Table 1 per 100 parts by weight of zinc. A certain amount of Pb and In were added to obtain a zinc alloy. Using this zinc alloy, a zinc plate having a thickness of 0.34 mm was produced by cold rolling.
Moreover, the zinc plate was produced similarly to the above also about the case where only Pb is included as a comparison (Comparative Examples 1 to 3) and the case where Pb and In are not included (Comparative Example 4).

Figure 2007004632
Figure 2007004632

[評価]
(1)亜鉛板の機械的強度の測定
上記で得られた亜鉛板について、JIS Z 2244のビッカース硬さ試験法に基づいてビッカース硬度を測定した。
(2)電池作製時における開路電圧不良の発生率
各電池を1000個ずつ作製し、開路電圧不良を発生した電池の割合を調べた。このとき、各電池の開路電圧分布において、開路電圧が最頻値より−50mV以下であった電池について、開路電圧不良が発生したと判断した。
[Evaluation]
(1) Measurement of mechanical strength of zinc plate About the zinc plate obtained above, the Vickers hardness was measured based on the Vickers hardness test method of JIS Z2244.
(2) Incidence rate of open circuit voltage failure during battery fabrication Each battery was fabricated in 1000 pieces, and the percentage of batteries that had open circuit voltage failure was examined. At this time, in the open circuit voltage distribution of each battery, it was determined that an open circuit voltage failure occurred for the battery whose open circuit voltage was −50 mV or less from the mode value.

(3)製造直後(初度)の電池の高率放電特性の評価
製造直後の各電池を180Ωの負荷で放電(終止電圧:5.4V)させて、このときの放電時間を測定した。
(4)電池の保存特性の評価
製造直後の各電池を45℃環境下で3ヶ月間保存した。そして、保存後の各電池を上記(3)と同様の条件で放電させて、このときの放電時間を調べた。
上記の評価結果を表2に示す。
(3) Evaluation of high rate discharge characteristics of batteries immediately after production (first time) Each battery immediately after production was discharged with a load of 180Ω (end voltage: 5.4 V), and the discharge time at this time was measured.
(4) Evaluation of storage characteristics of batteries Each battery immediately after production was stored in a 45 ° C environment for 3 months. And each battery after a preservation | save was discharged on the conditions similar to said (3), and the discharge time at this time was investigated.
The evaluation results are shown in Table 2.

Figure 2007004632
Figure 2007004632

比較例1〜4より、亜鉛板中のPb含有量が少ないほど、亜鉛板の耐食性が低下し、保存特性が悪くなった。また、ビッカース硬度が45Hv未満であるため、電池作製時に開路電圧不良を発生した電池がみられた。  From Comparative Examples 1 to 4, as the Pb content in the zinc plate was smaller, the corrosion resistance of the zinc plate was lowered and the storage characteristics were deteriorated. Moreover, since Vickers hardness was less than 45 Hv, the battery which generate | occur | produced the open circuit voltage defect at the time of battery preparation was seen.

これに対して、In含有量が亜鉛100重量部当たり0.001〜0.01重量部のとき、亜鉛板の耐食性が改善され、保存特性が改善された。また、ビッカース硬度が45Hv以上となり、電池作製時に亜鉛板が変形しないため、開路電圧不良の発生が見られなかった。In含有量が亜鉛100重量部当たり0.0005重量部である比較例5では、ビッカース硬度が45Hv未満となり、電池作製時に開路電圧不良を発生した電池が見られた。一方、In含有量が亜鉛100重量部当たり0.02重量部の比較例6では、亜鉛板作製時に亜鉛板にクラックが発生し、負極として用いることができなかった。  On the other hand, when the In content was 0.001 to 0.01 parts by weight per 100 parts by weight of zinc, the corrosion resistance of the zinc plate was improved, and the storage characteristics were improved. In addition, since the Vickers hardness was 45 Hv or more and the zinc plate was not deformed during battery production, no open circuit voltage failure was observed. In Comparative Example 5 in which the In content was 0.0005 parts by weight per 100 parts by weight of zinc, a battery having a Vickers hardness of less than 45 Hv and causing an open circuit voltage failure when the battery was produced was seen. On the other hand, in Comparative Example 6 in which the In content was 0.02 parts by weight per 100 parts by weight of zinc, cracks occurred in the zinc plate during the production of the zinc plate, and it could not be used as the negative electrode.

《実施例5〜18》
セパレータが、糊材の乾燥固形成分100重量部当たり表3に示す量のInまたはBiを含むように、セパレータの糊材にInClまたはBiClを添加した。これ以外は、実施例2と同様の方法により積層形マンガン乾電池を作製し、上記と同様に評価した。これらの評価結果を表4に示す。
<< Examples 5 to 18 >>
InCl 3 or BiCl 3 was added to the separator paste so that the separator contained the amount of In or Bi shown in Table 3 per 100 parts by weight of the dry solid component of the paste. Except for this, a stacked manganese dry battery was produced in the same manner as in Example 2 and evaluated in the same manner as described above. These evaluation results are shown in Table 4.

Figure 2007004632
Figure 2007004632

Figure 2007004632
Figure 2007004632

InまたはBiの含有量が糊材の乾燥固形成分100重量部当たり0.01〜1重量部のとき、電池の保存特性が向上した。  When the content of In or Bi was 0.01 to 1 part by weight per 100 parts by weight of the dry solid component of the paste material, the storage characteristics of the battery were improved.

《実施例19〜30》
セパレータが、糊材の乾燥固形成分100重量部当たり表5に示す割合でInおよびBiを含むように、セパレータの糊材にInClおよびBiClを添加した。これ以外は、実施例2と同様の方法により積層形マンガン乾電池を作製し、上記と同様に評価した。これらの評価結果を表6に示す。
<< Examples 19 to 30 >>
InCl 3 and BiCl 3 were added to the separator paste so that the separator contained In and Bi at a rate shown in Table 5 per 100 parts by weight of the dry solid component of the paste. Except for this, a stacked manganese dry battery was produced in the same manner as in Example 2 and evaluated in the same manner as described above. These evaluation results are shown in Table 6.

Figure 2007004632
Figure 2007004632

Figure 2007004632
Figure 2007004632

InおよびBiを合計した含有量が糊材の乾燥固形成分100重量部当たり0.01〜1重量%のとき、さらに保存特性が向上した。  When the total content of In and Bi was 0.01 to 1% by weight per 100 parts by weight of the dry solid component of the paste material, the storage characteristics were further improved.

《実施例31〜36》
鉛を無添加とし、亜鉛100重量部当たりInを0.0025重量部を添加した以外は、実施例1と同様の方法により負極亜鉛板を作製した。そして、セパレータが、糊材の乾燥固形成分100重量部当たり表7に示す量のInまたはBiを含むように、セパレータの糊材にInClまたはBiClを添加した。これ以外は、実施例2と同様の方法により積層形マンガン乾電池を作製し、上記と同様に評価した。これらの評価結果を表8に示す。
<< Examples 31-36 >>
A negative electrode zinc plate was produced in the same manner as in Example 1 except that lead was not added and 0.0025 part by weight of In was added per 100 parts by weight of zinc. Then, InCl 3 or BiCl 3 was added to the separator paste so that the separator contained the amount of In or Bi shown in Table 7 per 100 parts by weight of the dry solid component of the paste. Except for this, a stacked manganese dry battery was produced in the same manner as in Example 2 and evaluated in the same manner as described above. These evaluation results are shown in Table 8.

Figure 2007004632
Figure 2007004632

Figure 2007004632
Figure 2007004632

鉛を無添加とした場合でも、亜鉛板にInを添加し、セパレータにInやBiを含めることにより、電池作製時の開路電圧不良の発生が抑制され、かつ優れた高率放電特性および保存特性が得られた。  Even when lead is not added, by adding In to the zinc plate and including In or Bi in the separator, the occurrence of open circuit voltage failure during battery fabrication is suppressed, and excellent high-rate discharge characteristics and storage characteristics was gotten.

本発明の積層形マンガン乾電池は、優れた高率放電特性および保存特性を有し、情報機器やポータブル機器等の電子機器の電源として好適に用いられる。  The multilayer manganese dry battery of the present invention has excellent high rate discharge characteristics and storage characteristics, and is suitably used as a power source for electronic equipment such as information equipment and portable equipment.

本発明は、積層形マンガン乾電池に関し、さらに詳しくは負極亜鉛板の改良に関する。   The present invention relates to a laminated manganese dry battery, and more particularly to improvement of a negative electrode zinc plate.

従来から、積層形マンガン乾電池の負極亜鉛板には、亜鉛の耐食性を向上させるために、鉛が0.4重量%添加されている。しかし、近年、使用後の乾電池がもたらす環境汚染を防止するため、電池の構成部材に、鉛等の有害物質をできるだけ用いないことが強く要望されている。   Conventionally, 0.4% by weight of lead has been added to the negative electrode zinc plate of the laminated manganese dry battery in order to improve the corrosion resistance of zinc. However, in recent years, in order to prevent environmental pollution caused by dry batteries after use, there has been a strong demand for using no harmful substances such as lead as much as possible for the constituent members of the batteries.

円筒形マンガン乾電池では、負極亜鉛缶の耐食性を向上させる方法としては、例えば、セパレータの紙に塗布された糊材にInの塩化物や、Biの化合物を添加することが提案されている(特許文献1および2)。
しかし、InやBiを添加すると、高率放電特性が低下するという問題があった。また、積層形マンガン乾電池では、亜鉛板の強度が不十分なために、電池組み立て後において開路電圧の不良が発生する場合があった。
In a cylindrical manganese dry battery, as a method for improving the corrosion resistance of the negative electrode zinc can, for example, it is proposed to add an In chloride or a Bi compound to the paste applied to the separator paper (patent) References 1 and 2).
However, when In or Bi is added, there is a problem that high-rate discharge characteristics are deteriorated. In addition, in the laminated manganese dry battery, the strength of the zinc plate is insufficient, and thus there may be a case where the open circuit voltage is poor after the battery is assembled.

また、円筒形マンガン乾電池において、鉛無添加の負極亜鉛缶にIn等を添加することが提案されている(特許文献3)。
円筒形マンガン乾電池の負極亜鉛缶は、成缶工程における圧延加工性および成缶後の電池組み立て工程における機械的強度を考慮して設計される。
In addition, in a cylindrical manganese dry battery, it has been proposed to add In or the like to a lead-free negative electrode zinc can (Patent Document 3).
The negative electrode zinc can of a cylindrical manganese dry battery is designed in consideration of rolling processability in the can-making process and mechanical strength in the battery assembly process after the can-making process.

これに対して、積層形マンガン乾電池の負極は亜鉛板であり、亜鉛板を含む素電池を複数個積層した後、この積層体を積層方向から締め付けて電池が組み立てられるため、亜鉛板には積層方向に力が加わる。鉛を添加した従来の亜鉛板では、電池組み立て時に素電池に上記のような力が加わることにより亜鉛板がたわみ、開路電圧不良が発生する場合がある。   On the other hand, the negative electrode of the laminated manganese dry battery is a zinc plate, and after stacking a plurality of unit cells including the zinc plate, the laminate is tightened from the stacking direction to assemble the battery. Force is applied in the direction. In a conventional zinc plate to which lead is added, the above-described force is applied to the unit cell during battery assembly, so that the zinc plate may bend and an open circuit voltage failure may occur.

積層形マンガン乾電池は、円筒形マンガン乾電池とは電池の構成や負極の形状が異なるため、積層形マンガン乾電池の負極亜鉛板については独自に検討する必要がある。しかし、積層形マンガン乾電池の負極亜鉛板については、機械的強度や耐食性等について依然として十分な検討がなされていない。
特開昭61−78051号公報 特開平5−159767号公報 特開平8−17424号公報
Since the structure of the laminated manganese dry battery and the shape of the negative electrode are different from those of the cylindrical manganese dry battery, the negative electrode zinc plate of the laminated manganese dry battery needs to be independently examined. However, as for the negative electrode zinc plate of the laminated manganese dry battery, the mechanical strength, the corrosion resistance and the like have not been sufficiently studied yet.
JP-A-61-78051 JP-A-5-159767 JP-A-8-17424

そこで、本発明は上記従来の問題を解決するために、負極亜鉛板中の鉛量を従来よりも低減して環境負荷を低減するとともに、負極亜鉛板の強度および耐食性を改善して、高率放電特性および保存特性に優れた高信頼性の積層形マンガン乾電池を提供することを目的とする。   Therefore, in order to solve the above-described conventional problems, the present invention reduces the environmental load by reducing the amount of lead in the negative electrode zinc plate than before, improves the strength and corrosion resistance of the negative electrode zinc plate, and increases the rate. An object of the present invention is to provide a highly reliable laminated manganese dry battery excellent in discharge characteristics and storage characteristics.

本発明は、底面中央部に穴を有するカップ状の熱収縮性樹脂チューブ、および前記熱収縮性樹脂チューブの底面内側に配され、片面に炭素膜を有する負極亜鉛板からなる素電池ケースと、前記素電池ケースの内側に配された、糊材を塗布した紙からなるセパレータと、前記セパレータを介して前記素電池ケース内に収納された正極合剤と、からなる素電池の複数個を含む積層形マンガン乾電池であって、前記亜鉛板表面のビッカース硬度が45〜55Hvであることを特徴とする。
これにより、電池作製時に発生する開路電圧不良を低減することができる。
The present invention includes a cup-shaped heat-shrinkable resin tube having a hole in the center of the bottom surface, and a unit cell case made of a negative electrode zinc plate disposed on the inside of the bottom surface of the heat-shrinkable resin tube and having a carbon film on one side; A plurality of unit cells each including a separator made of paper coated with a paste material and a positive electrode mixture housed in the unit cell case via the separator disposed inside the unit cell case; A laminated manganese dry battery, wherein the zinc plate surface has a Vickers hardness of 45 to 55 Hv.
Thereby, the open circuit voltage defect which generate | occur | produces at the time of battery manufacture can be reduced.

前記亜鉛板が、亜鉛100重量部当たり0.03重量部以下のPbおよび0.001〜0.01重量部のInを含む亜鉛合金からなるのが好ましい。
前記セパレータが、In塩化物およびBi塩化物のうち少なくとも一方の塩化物を含み、
前記セパレータ中に含まれる前記塩化物におけるInおよびBiの含有量の合計が、前記糊材中の乾燥固形成分100重量部当たり0.01〜1.0重量部であるのが好ましい。
The zinc plate is preferably made of a zinc alloy containing 0.03 parts by weight or less of Pb and 0.001 to 0.01 parts by weight of In per 100 parts by weight of zinc.
The separator contains at least one of In chloride and Bi chloride;
The total content of In and Bi in the chloride contained in the separator is preferably 0.01 to 1.0 part by weight per 100 parts by weight of the dry solid component in the paste material.

本発明によれば、負極亜鉛板の強度が向上することにより、電池作製時における開路電圧不良を低減することができる。また、負極亜鉛板の耐食性が向上し、高率放電特性および保存特性に優れた積層形マンガン乾電池が得られる。負極亜鉛板中の鉛量を低減することができるため、環境負荷が低減される。   According to the present invention, since the strength of the negative electrode zinc plate is improved, it is possible to reduce open circuit voltage failure during battery production. In addition, the corrosion resistance of the negative electrode zinc plate is improved, and a laminated manganese dry battery excellent in high rate discharge characteristics and storage characteristics can be obtained. Since the amount of lead in the negative electrode zinc plate can be reduced, the environmental load is reduced.

本発明者は、積層形マンガン乾電池における負極亜鉛板の機械的強度について種々検討した結果、亜鉛板に亜鉛100重量部当たりInを0.001重量部以上含む亜鉛合金を用いた場合に、亜鉛板のビッカース硬度が45Hv以上となり、電池作製時の上下方向から加わる力による亜鉛板のたわみ等の変形が抑制され、開路電圧不良の発生を抑制することができることを見出した。一方、In含有量が0.01重量部を超えて、ビッカース硬度が55Hvを超えると、亜鉛板作製時にクラックを生じやすくなる。   As a result of various studies on the mechanical strength of the negative electrode zinc plate in the multilayer manganese dry battery, the present inventor found that the zinc plate contained a zinc alloy containing 0.001 part by weight or more of In per 100 parts by weight of zinc. It has been found that the Vickers hardness is 45 Hv or more, deformation of the zinc plate due to the force applied from the up and down direction during battery production is suppressed, and the occurrence of open circuit voltage failure can be suppressed. On the other hand, if the In content exceeds 0.01 parts by weight and the Vickers hardness exceeds 55 Hv, cracks are likely to occur during the production of the zinc plate.

また、上記の効果と同時に、亜鉛板の耐食性が向上するため、鉛による耐食性の効果が著しく低下する鉛量である、亜鉛100重量部当たり0.03重量部以下においても、従来の鉛を0.4重量部含む亜鉛板を用いた場合と、同等以上の高率放電特性および保存特性が得られる。   Moreover, since the corrosion resistance of the zinc plate is improved at the same time as the above effects, the conventional lead is reduced to 0 even at 0.03 parts by weight or less per 100 parts by weight of zinc, which is a lead amount in which the corrosion resistance effect by lead is remarkably reduced. High rate discharge characteristics and storage characteristics equivalent to or higher than those obtained when a zinc plate containing 4 parts by weight is used.

上記の亜鉛板のビッカース硬度は、例えば、JIS Z 2244規定のビッカース硬さ試験方法により求められる。   The Vickers hardness of the zinc plate is determined by, for example, the Vickers hardness test method specified in JIS Z 2244.

本発明の積層形マンガン乾電池の一実施の形態について図3を参照しながら説明する。図3は本発明の積層形マンガン乾電池の一部を断面とし、電池内部を示す正面図である。
積層された複数の素電池7、およびその上端面に接する正極集電板5からなる電池群が、その側面から上下端縁部にわたり、例えばポリ塩化ビニルからなる熱収縮性樹脂チューブ4で被覆され、外装缶10内に収容されている。熱収縮性樹脂チューブ4は、熱収縮により、その上下端縁が電池群の上下端縁部に密着している。
An embodiment of the multilayer manganese dry battery of the present invention will be described with reference to FIG. FIG. 3 is a front view showing a part of the laminated manganese dry battery of the present invention in cross section and showing the inside of the battery.
A battery group including a plurality of stacked unit cells 7 and a positive electrode current collector plate 5 in contact with the upper end surface thereof is covered with a heat-shrinkable resin tube 4 made of, for example, polyvinyl chloride from the side surface to the upper and lower end edges. The outer can 10 is housed. The heat-shrinkable resin tube 4 has its upper and lower edges closely adhered to the upper and lower edges of the battery group due to heat shrinkage.

端子板3に設けられた正極端子1は、正極リード6を介して正極集電板5に接続されている。一方、端子板3に設けられた負極端子2は、負極リード8を介して電池群の下端面に接続されている。端子板3および底板9は、外装缶10の上下端縁を内方に屈曲することによりそれぞれ締めつけられている。   A positive electrode terminal 1 provided on the terminal plate 3 is connected to a positive electrode current collector plate 5 through a positive electrode lead 6. On the other hand, the negative electrode terminal 2 provided on the terminal plate 3 is connected to the lower end surface of the battery group via the negative electrode lead 8. The terminal plate 3 and the bottom plate 9 are tightened by bending the upper and lower ends of the outer can 10 inward.

ここで、本発明の積層形マンガン乾電池における素電池の縦断面図を図1に示す。また、本発明の積層形マンガン乾電池における素電池ケースの縦断面図を図2に示す。
素電池7は、図2に示すような底面中央部に穴を有する、例えばポリ塩化ビニルからなるカップ状の熱収縮性樹脂チューブ12、および熱収縮性樹脂チューブ12の底面内側に配された亜鉛−炭素結合極板16からなる素電池ケースと、上記素電池ケースの内側に配されたセパレータ13と、セパレータ13を介して上記素電池ケース内に収容された正極合剤14とからなる。
Here, the longitudinal cross-sectional view of the unit cell in the laminated manganese dry battery of this invention is shown in FIG. Moreover, the longitudinal cross-sectional view of the unit cell case in the laminated manganese dry battery of this invention is shown in FIG.
The unit cell 7 includes a cup-shaped heat-shrinkable resin tube 12 made of, for example, polyvinyl chloride having a hole in the center of the bottom surface as shown in FIG. 2 and zinc disposed inside the bottom surface of the heat-shrinkable resin tube 12. -It consists of a unit cell case made of carbon-bonded electrode plate 16, a separator 13 disposed inside the unit cell case, and a positive electrode mixture 14 accommodated in the unit cell case via the separator 13.

亜鉛−炭素結合極板16は、セパレータ13と接する亜鉛板11とその下面に形成された炭素膜15からなる。また、熱収縮性樹脂チューブ12と炭素膜15とは、塩化ビニル−酢酸ビニル共重合体を主成分とした接着剤17により接着されている。
亜鉛板は亜鉛100重量部に対して0.03重量部以下のPbおよび0.001〜0.01重量部のInを含む。これにより、亜鉛板の耐食性が向上し、優れた高率放電特性および保存特性が得られる。また、従来よりも鉛量を低減できるため、環境負荷を低減することができる。
The zinc-carbon bond electrode plate 16 includes a zinc plate 11 in contact with the separator 13 and a carbon film 15 formed on the lower surface thereof. Further, the heat-shrinkable resin tube 12 and the carbon film 15 are bonded by an adhesive 17 having a vinyl chloride-vinyl acetate copolymer as a main component.
The zinc plate contains 0.03 parts by weight or less of Pb and 0.001 to 0.01 parts by weight of In with respect to 100 parts by weight of zinc. Thereby, the corrosion resistance of the zinc plate is improved, and excellent high rate discharge characteristics and storage characteristics are obtained. Moreover, since the amount of lead can be reduced as compared with the conventional case, the environmental load can be reduced.

複数の素電池7を上下方向に積層すると、上に位置する素電池7の熱収縮性樹脂チューブ12の底面中央部の穴より露出する亜鉛−炭素結合極板16の炭素膜15と、下に位置する素電池7の正極合剤14の熱収縮性樹脂チューブ12で覆われない部分とが接することにより、これらの素電池が直列に接続される。   When the plurality of unit cells 7 are stacked in the vertical direction, the carbon film 15 of the zinc-carbon bond electrode plate 16 exposed from the hole at the center of the bottom surface of the heat-shrinkable resin tube 12 of the unit cell 7 positioned above, and below These unit cells are connected in series by contacting a portion of the positive electrode mixture 14 of the unit cell 7 that is not covered with the heat-shrinkable resin tube 12.

上記のような積層形マンガン乾電池では、電池の組み立ての最終工程における外装缶10の屈曲時に、積層した素電池7群の縦方向(積層方向)に力が加わるが、亜鉛板がInを0.001〜0.01重量部含むことにより、亜鉛板のビッカース硬度が45Hv以上であるため、たわみ等の変形を大幅に軽減させ、電池組み立て後において開路電圧不良の発生を抑制することができる。   In the laminated manganese dry battery as described above, when the outer can 10 is bent in the final process of battery assembly, force is applied in the vertical direction (stacking direction) of the group of stacked unit cells 7, but the zinc plate has an In value of 0.1. By including 001 to 0.01 parts by weight, since the Vickers hardness of the zinc plate is 45 Hv or more, deformation such as deflection can be greatly reduced, and the occurrence of open circuit voltage failure can be suppressed after battery assembly.

セパレータ13はカップ状の紙および上記紙の亜鉛板11との接触面(外底面)に塗布された糊材からなる。セパレータ13には、例えば、クラフト紙に、架橋デンプンと酢酸ビニルを主とする結着剤とをアルコール系溶媒に溶かした糊材を塗布し乾燥させたものが用いられる。
セパレータ13は、In塩化物(InCl3)およびBi塩化物(BiCl3)のうち少なくとも一方の塩化物を含み、セパレータ13中に含まれる上記塩化物におけるInおよびBiの含有量の合計が、糊材中の乾燥固形成分100重量部当たり0.01〜1.0重量部であるのが好ましい。この場合、亜鉛板の耐食性が向上し、保存特性が向上する。
The separator 13 is made of a paste material applied to a contact surface (outer bottom surface) of the cup-shaped paper and the zinc plate 11 of the paper. As the separator 13, for example, a kraft paper coated with a paste obtained by dissolving a cross-linked starch and a binder mainly composed of vinyl acetate in an alcohol solvent and dried is used.
The separator 13 contains at least one chloride of In chloride (InCl 3 ) and Bi chloride (BiCl 3 ), and the total content of In and Bi in the chloride contained in the separator 13 is a paste. The amount is preferably 0.01 to 1.0 part by weight per 100 parts by weight of the dry solid component in the material. In this case, the corrosion resistance of the zinc plate is improved and the storage characteristics are improved.

セパレータ13中のInおよびBiの含有量の合計が、糊材中の乾燥固形成分100重量部当たり0.01重量部未満であると、InまたはBiによる効果が不十分となる。一方、セパレータ13中のInおよびBiの含有量の合計が、糊材中の乾燥固形成分100重量部当たり1.0重量部を超えると、高率放電性能が低下する。   When the total content of In and Bi in the separator 13 is less than 0.01 parts by weight per 100 parts by weight of the dry solid component in the paste material, the effect of In or Bi becomes insufficient. On the other hand, when the total content of In and Bi in the separator 13 exceeds 1.0 part by weight per 100 parts by weight of the dry solid component in the paste material, the high rate discharge performance is deteriorated.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限定されない。
《実施例1〜4および比較例1〜6》
図1に示す素電池を以下のように作製した。
亜鉛−炭素結合極板16における亜鉛板11の片面に形成された炭素膜15と、ポリ塩化ビニルからなるカップ状の熱収縮性樹脂チューブ12の内底面とを、塩化ビニル−酢酸ビニル共重合体を主成分とした接着剤17により接着し、亜鉛−炭素結合極板16と熱収縮性樹脂チューブ12とからなる図2に示す素電池ケースを得た。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
<< Examples 1-4 and Comparative Examples 1-6 >>
The unit cell shown in FIG. 1 was produced as follows.
A vinyl chloride-vinyl acetate copolymer comprising a carbon film 15 formed on one side of a zinc plate 11 in a zinc-carbon bond electrode plate 16 and an inner bottom surface of a cup-shaped heat-shrinkable resin tube 12 made of polyvinyl chloride. Was bonded with an adhesive 17 containing as a main component, to obtain a unit cell case shown in FIG. 2 composed of a zinc-carbon bond electrode plate 16 and a heat-shrinkable resin tube 12.

この素電池ケース内に、カップ状のセパレータ13を配置した後、セパレータ13に電解液を注液した。セパレータ13には、クラフト紙に、架橋デンプンと酢酸ビニルを主とする結着剤とをアルコール系溶媒に溶かした糊材を塗布し乾燥させたものを用いた。電解液には、30重量%の塩化亜鉛および1重量%の塩化アンモニウムを含む水溶液を用いた。そして、正極合剤14をセパレータ13の内側に挿入した後、樹脂チューブ12を熱収縮させて、素電池7を作製した。正極合剤14には、二酸化マンガンと、アセチレンブラックと、上記と同じ電解液とを重量比4.5:1:2.5の割合で混練し、ペレット状に成形したものを用いた。   After the cup-shaped separator 13 was disposed in the unit cell case, an electrolytic solution was injected into the separator 13. The separator 13 was a kraft paper coated with a paste obtained by dissolving a cross-linked starch and a binder mainly composed of vinyl acetate in an alcohol solvent and dried. As the electrolytic solution, an aqueous solution containing 30% by weight of zinc chloride and 1% by weight of ammonium chloride was used. And after inserting the positive mix 14 inside the separator 13, the resin tube 12 was heat-shrinked and the unit cell 7 was produced. As the positive electrode mixture 14, manganese dioxide, acetylene black, and the same electrolytic solution as described above were kneaded at a weight ratio of 4.5: 1: 2.5 and formed into a pellet shape.

次に、図3に示すマンガン乾電池を以下のように組み立てた。
6個の素電池7を、正極合剤を上にして積み重ね、さらに最上層の素電池7の上面に正極集電板5を配置して電池群を構成した。この電池群にポリ塩化ビニルからなる熱収縮性樹脂チューブ4を被せ、熱収縮性樹脂チューブ4を熱収縮させてその上下端縁を電池群の上下端縁部に密着させた。
Next, the manganese dry battery shown in FIG. 3 was assembled as follows.
Six unit cells 7 were stacked with the positive electrode mixture facing upward, and the positive electrode current collector plate 5 was further arranged on the upper surface of the uppermost unit cell 7 to constitute a battery group. The battery group was covered with a heat-shrinkable resin tube 4 made of polyvinyl chloride, and the heat-shrinkable resin tube 4 was heat-shrinked so that the upper and lower ends thereof were brought into close contact with the upper and lower ends of the battery group.

この電池群を端子板3と底板9とを組み合わせた組立端子板とともに外装缶10に挿入した。外装缶10の上下端縁を屈曲して端子板3および底板9を締め付けた。端子板3に設けられた正極端子1と連結する正極リード6を正極集電板5と接触させた。また、最下層の素電池7の負極から電池群の側面に沿って正極集電板5の上面まで連なる負極リード8を、端子板3に設けられた負極端子2と接触させた。   This battery group was inserted into the outer can 10 together with an assembled terminal board in which the terminal board 3 and the bottom board 9 were combined. The upper and lower edges of the outer can 10 were bent to tighten the terminal plate 3 and the bottom plate 9. The positive electrode lead 6 connected to the positive electrode terminal 1 provided on the terminal plate 3 was brought into contact with the positive electrode current collector plate 5. Moreover, the negative electrode lead 8 connected from the negative electrode of the lowermost unit cell 7 to the upper surface of the positive electrode current collector plate 5 along the side surface of the battery group was brought into contact with the negative electrode terminal 2 provided on the terminal plate 3.

上記の積層形マンガン乾電池の作製において、亜鉛板が亜鉛100重量部当たり表1に示す量のPbやInを含むように、純度が99.99重量%の亜鉛地金を溶解し、これに所定量のPbおよびInを添加して亜鉛合金を得た。この亜鉛合金を用いて、冷間圧延により厚さ0.34mmの亜鉛板を作製した。
また、比較としてPbのみを含む場合(比較例1〜3)、ならびにPbおよびInを含まない場合(比較例4)についても、上記と同様に亜鉛板を作製した。
In the production of the above-mentioned laminated manganese dry battery, a zinc metal having a purity of 99.99% by weight was dissolved so that the zinc plate contained Pb and In in amounts shown in Table 1 per 100 parts by weight of zinc. A certain amount of Pb and In were added to obtain a zinc alloy. Using this zinc alloy, a zinc plate having a thickness of 0.34 mm was produced by cold rolling.
Moreover, the zinc plate was produced similarly to the above also about the case where only Pb is included as a comparison (Comparative Examples 1 to 3) and the case where Pb and In are not included (Comparative Example 4).

Figure 2007004632
Figure 2007004632

[評価]
(1)亜鉛板の機械的強度の測定
上記で得られた亜鉛板について、JIS Z 2244のビッカース硬さ試験法に基づいてビッカース硬度を測定した。
(2)電池作製時における開路電圧不良の発生率
各電池を1000個ずつ作製し、開路電圧不良を発生した電池の割合を調べた。このとき、各電池の開路電圧分布において、開路電圧が最頻値より−50mV以下であった電池について、開路電圧不良が発生したと判断した。
[Evaluation]
(1) Measurement of mechanical strength of zinc plate Vickers hardness of the zinc plate obtained above was measured based on the Vickers hardness test method of JIS Z 2244.
(2) Incidence rate of open circuit voltage failure during battery fabrication Each battery was fabricated in 1000 pieces, and the percentage of batteries that had open circuit voltage failure was examined. At this time, in the open circuit voltage distribution of each battery, it was determined that an open circuit voltage failure occurred for the battery whose open circuit voltage was −50 mV or less from the mode value.

(3)製造直後(初度)の電池の高率放電特性の評価
製造直後の各電池を180Ωの負荷で放電(終止電圧:5.4V)させて、このときの放電時間を測定した。
(4)電池の保存特性の評価
製造直後の各電池を45℃環境下で3ヶ月間保存した。そして、保存後の各電池を上記(3)と同様の条件で放電させて、このときの放電時間を調べた。
上記の評価結果を表2に示す。
(3) Evaluation of high rate discharge characteristics of batteries immediately after production (first time) Each battery immediately after production was discharged with a load of 180Ω (end voltage: 5.4 V), and the discharge time at this time was measured.
(4) Evaluation of storage characteristics of batteries Each battery immediately after production was stored in a 45 ° C environment for 3 months. And each battery after a preservation | save was discharged on the conditions similar to said (3), and the discharge time at this time was investigated.
The evaluation results are shown in Table 2.

Figure 2007004632
Figure 2007004632

比較例1〜4より、亜鉛板中のPb含有量が少ないほど、亜鉛板の耐食性が低下し、保存特性が悪くなった。また、ビッカース硬度が45Hv未満であるため、電池作製時に開路電圧不良を発生した電池がみられた。   From Comparative Examples 1 to 4, as the Pb content in the zinc plate was smaller, the corrosion resistance of the zinc plate was lowered and the storage characteristics were deteriorated. Moreover, since Vickers hardness was less than 45 Hv, the battery which generate | occur | produced the open circuit voltage defect at the time of battery preparation was seen.

これに対して、In含有量が亜鉛100重量部当たり0.001〜0.01重量部のとき、亜鉛板の耐食性が改善され、保存特性が改善された。また、ビッカース硬度が45Hv以上となり、電池作製時に亜鉛板が変形しないため、開路電圧不良の発生が見られなかった。In含有量が亜鉛100重量部当たり0.0005重量部である比較例5では、ビッカース硬度が45Hv未満となり、電池作製時に開路電圧不良を発生した電池が見られた。一方、In含有量が亜鉛100重量部当たり0.02重量部の比較例6では、亜鉛板作製時に亜鉛板にクラックが発生し、負極として用いることができなかった。   On the other hand, when the In content was 0.001 to 0.01 parts by weight per 100 parts by weight of zinc, the corrosion resistance of the zinc plate was improved, and the storage characteristics were improved. In addition, since the Vickers hardness was 45 Hv or more and the zinc plate was not deformed during battery production, no open circuit voltage failure was observed. In Comparative Example 5 in which the In content was 0.0005 parts by weight per 100 parts by weight of zinc, a battery having a Vickers hardness of less than 45 Hv and causing an open circuit voltage failure when the battery was produced was seen. On the other hand, in Comparative Example 6 in which the In content was 0.02 parts by weight per 100 parts by weight of zinc, cracks occurred in the zinc plate during the production of the zinc plate, and it could not be used as the negative electrode.

《実施例5〜18》
セパレータが、糊材の乾燥固形成分100重量部当たり表3に示す量のInまたはBiを含むように、セパレータの糊材にInCl3またはBiCl3を添加した。これ以外は、実施例2と同様の方法により積層形マンガン乾電池を作製し、上記と同様に評価した。これらの評価結果を表4に示す。
<< Examples 5 to 18 >>
InCl 3 or BiCl 3 was added to the separator paste so that the separator contained the amount of In or Bi shown in Table 3 per 100 parts by weight of the dry solid component of the paste. Except for this, a stacked manganese dry battery was produced in the same manner as in Example 2 and evaluated in the same manner as described above. These evaluation results are shown in Table 4.

Figure 2007004632
Figure 2007004632

Figure 2007004632
Figure 2007004632

InまたはBiの含有量が糊材の乾燥固形成分100重量部当たり0.01〜1重量部のとき、電池の保存特性が向上した。   When the content of In or Bi was 0.01 to 1 part by weight per 100 parts by weight of the dry solid component of the paste material, the storage characteristics of the battery were improved.

《実施例19〜30》
セパレータが、糊材の乾燥固形成分100重量部当たり表5に示す割合でInおよびBiを含むように、セパレータの糊材にInCl3およびBiCl3を添加した。これ以外は、実施例2と同様の方法により積層形マンガン乾電池を作製し、上記と同様に評価した。これらの評価結果を表6に示す。
<< Examples 19 to 30 >>
InCl 3 and BiCl 3 were added to the separator paste so that the separator contained In and Bi at a rate shown in Table 5 per 100 parts by weight of the dry solid component of the paste. Except for this, a stacked manganese dry battery was produced in the same manner as in Example 2 and evaluated in the same manner as described above. These evaluation results are shown in Table 6.

Figure 2007004632
Figure 2007004632

Figure 2007004632
Figure 2007004632

InおよびBiを合計した含有量が糊材の乾燥固形成分100重量部当たり0.01〜1重量%のとき、さらに保存特性が向上した。   When the total content of In and Bi was 0.01 to 1% by weight per 100 parts by weight of the dry solid component of the paste material, the storage characteristics were further improved.

《実施例31〜36》
鉛を無添加とし、亜鉛100重量部当たりInを0.0025重量部を添加した以外は、実施例1と同様の方法により負極亜鉛板を作製した。そして、セパレータが、糊材の乾燥固形成分100重量部当たり表7に示す量のInまたはBiを含むように、セパレータの糊材にInCl3またはBiCl3を添加した。これ以外は、実施例2と同様の方法により積層形マンガン乾電池を作製し、上記と同様に評価した。これらの評価結果を表8に示す。
<< Examples 31-36 >>
A negative electrode zinc plate was produced in the same manner as in Example 1 except that lead was not added and 0.0025 part by weight of In was added per 100 parts by weight of zinc. Then, InCl 3 or BiCl 3 was added to the separator paste so that the separator contained the amount of In or Bi shown in Table 7 per 100 parts by weight of the dry solid component of the paste. Except for this, a stacked manganese dry battery was produced in the same manner as in Example 2 and evaluated in the same manner as described above. These evaluation results are shown in Table 8.

Figure 2007004632
Figure 2007004632

Figure 2007004632
Figure 2007004632

鉛を無添加とした場合でも、亜鉛板にInを添加し、セパレータにInやBiを含めることにより、電池作製時の開路電圧不良の発生が抑制され、かつ優れた高率放電特性および保存特性が得られた。   Even when lead is not added, by adding In to the zinc plate and including In or Bi in the separator, the occurrence of open circuit voltage failure during battery fabrication is suppressed, and excellent high rate discharge characteristics and storage characteristics was gotten.

本発明の積層形マンガン乾電池は、優れた高率放電特性および保存特性を有し、情報機器やポータブル機器等の電子機器の電源として好適に用いられる。   The multilayer manganese dry battery of the present invention has excellent high rate discharge characteristics and storage characteristics, and is suitably used as a power source for electronic equipment such as information equipment and portable equipment.

本発明の積層形マンガン乾電池における素電池の縦断面図である。It is a longitudinal cross-sectional view of the unit cell in the laminated manganese dry battery of this invention. 本発明の積層形マンガン乾電池における素電池ケースの縦断面図である。It is a longitudinal cross-sectional view of the unit cell case in the multilayer manganese dry battery of this invention. 本発明の積層形マンガン乾電池の一部を断面とした正面図である。It is the front view which made a section of a lamination type manganese dry battery of the present invention a section.

Claims (3)

底面中央部に穴を有するカップ状の熱収縮性樹脂チューブ、および前記熱収縮性樹脂チューブの底面内側に配され、片面に炭素膜を有する負極亜鉛板からなる素電池ケースと、
前記素電池ケースの内側に配された、糊材を塗布した紙からなるセパレータと、
前記セパレータを介して前記素電池ケース内に収納された正極合剤と、からなる素電池の複数個を含む積層形マンガン乾電池であって、
前記亜鉛板のビッカース硬度が45〜55Hvであることを特徴とする積層形マンガン乾電池。
A cup-shaped heat-shrinkable resin tube having a hole in the center of the bottom surface, and a unit cell case made of a negative electrode zinc plate disposed on the bottom surface inside the heat-shrinkable resin tube and having a carbon film on one side;
A separator made of paper coated with a paste material disposed inside the unit cell case;
A laminated manganese dry battery including a plurality of unit cells, and a positive electrode mixture housed in the unit cell case via the separator,
The laminated manganese dry battery, wherein the zinc plate has a Vickers hardness of 45 to 55 Hv.
前記亜鉛板が、亜鉛100重量部当たり0.03重量部以下のPbおよび0.001〜0.01重量部のInを含む亜鉛合金からなる請求項1記載の積層形マンガン乾電池。  The multilayer manganese dry battery according to claim 1, wherein the zinc plate is made of a zinc alloy containing 0.03 parts by weight or less of Pb and 0.001 to 0.01 parts by weight of In per 100 parts by weight of zinc. 前記セパレータが、In塩化物およびBi塩化物のうち少なくとも一方の塩化物を含み、
前記セパレータ中に含まれる前記塩化物におけるInおよびBiの含有量の合計が、前記糊材中の乾燥固形成分100重量部当たり0.01〜1.0重量部である請求項1記載の積層形マンガン乾電池。
The separator contains at least one of In chloride and Bi chloride;
The laminated form according to claim 1, wherein the total content of In and Bi in the chloride contained in the separator is 0.01 to 1.0 part by weight per 100 parts by weight of the dry solid component in the paste material. Manganese dry battery.
JP2006554366A 2005-07-04 2006-07-04 Stacked manganese battery Withdrawn JPWO2007004632A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005195326 2005-07-04
JP2005195326 2005-07-04
PCT/JP2006/313278 WO2007004632A1 (en) 2005-07-04 2006-07-04 Layered manganese dry cell battery

Publications (1)

Publication Number Publication Date
JPWO2007004632A1 true JPWO2007004632A1 (en) 2009-01-29

Family

ID=37604493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006554366A Withdrawn JPWO2007004632A1 (en) 2005-07-04 2006-07-04 Stacked manganese battery

Country Status (3)

Country Link
JP (1) JPWO2007004632A1 (en)
CN (1) CN101080833A (en)
WO (1) WO2007004632A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073502A (en) * 2005-08-09 2007-03-22 Matsushita Electric Ind Co Ltd Manganese dry battery
CN102347469B (en) * 2010-07-29 2013-12-11 宁波光华电池有限公司 Sheet zinc anode, preparation method thereof and laminated zinc-manganese battery using sheet zinc anode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325771A (en) * 1993-05-14 1994-11-25 Toshiba Battery Co Ltd Manganese dry cell
JP2918469B2 (en) * 1994-04-27 1999-07-12 富士電気化学株式会社 Battery negative electrode zinc can and method of manufacturing the same
JP2918446B2 (en) * 1994-04-27 1999-07-12 富士電気化学株式会社 Battery negative electrode zinc can
JP2001028269A (en) * 1999-07-13 2001-01-30 Matsushita Electric Ind Co Ltd Layered manganese dry battery
JP2002203572A (en) * 2000-12-28 2002-07-19 Matsushita Electric Ind Co Ltd Manufacturing method of layer-built dry cell

Also Published As

Publication number Publication date
CN101080833A (en) 2007-11-28
WO2007004632A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US7629077B2 (en) Pouch cell construction
WO2011025057A1 (en) Composite capacitor negative electrode plate for lead acid storage battery, and lead acid storage battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP2008243606A (en) Lead acid storage battery
JP5138391B2 (en) Control valve type lead acid battery
US20230178712A1 (en) Lead Alloy, Positive Electrode for Lead Storage Battery, Lead Storage Battery, and Power Storage System
TWI254478B (en) Lead-acid battery
US5595836A (en) Manganese dry battery
JPWO2007004632A1 (en) Stacked manganese battery
JP5359193B2 (en) Lead acid battery
JP2004158433A (en) Base plate for lead storage battery, and lead storage battery using the same
WO2001004976A1 (en) Positive plate current collector for lead storage battery and lead storage battery comprising the same
JP4904686B2 (en) Lead acid battery
JP2006140033A (en) Lead storage battery
JP4942116B2 (en) Electric double layer capacitor
JP2007265714A (en) Lead-acid storage battery
EP2551944A2 (en) Lead-acid battery
JP5044888B2 (en) Liquid lead-acid battery
JP3651852B2 (en) Manganese battery
JP4678117B2 (en) Lead acid battery
JP5223327B2 (en) Lead acid battery
US20090176152A1 (en) Manganese dry battery
WO2006001269A1 (en) Manganese dry cell
JP4503358B2 (en) Lead acid battery
JP2005310688A (en) Control valve type lead storage battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110519