JPWO2006112199A1 - Magnesium compound sol, method for producing the same, and method for producing ceramic raw material using the same - Google Patents

Magnesium compound sol, method for producing the same, and method for producing ceramic raw material using the same Download PDF

Info

Publication number
JPWO2006112199A1
JPWO2006112199A1 JP2007521128A JP2007521128A JPWO2006112199A1 JP WO2006112199 A1 JPWO2006112199 A1 JP WO2006112199A1 JP 2007521128 A JP2007521128 A JP 2007521128A JP 2007521128 A JP2007521128 A JP 2007521128A JP WO2006112199 A1 JPWO2006112199 A1 JP WO2006112199A1
Authority
JP
Japan
Prior art keywords
magnesium
magnesium compound
aqueous solvent
sol
compound sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007521128A
Other languages
Japanese (ja)
Other versions
JP4530041B2 (en
Inventor
長谷川 貴志
貴志 長谷川
西山 俊樹
俊樹 西山
泰也 中村
泰也 中村
昌造 児島
昌造 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2006112199A1 publication Critical patent/JPWO2006112199A1/en
Application granted granted Critical
Publication of JP4530041B2 publication Critical patent/JP4530041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate

Abstract

マグネシウム化合物をセラミック粉末中に均一に分散させるのに好適な水系溶媒マグネシウム化合物ゾルを提供する。カルボニル基を有するカルボン酸の配位したマグネシウムミセル粒子が水系溶媒中に分散したマグネシウム化合物ゾルを製造する際に、水系溶媒中にて、マグネシウムイオンと、クエン酸、コハク酸およびEDTAから選ばれるカルボン酸とを、カルボニル基のマグネシウムに対するモル比が1.2以上2以下となるよう反応させ、安定したマグネシウムミセル粒子を得る。An aqueous solvent magnesium compound sol suitable for uniformly dispersing a magnesium compound in a ceramic powder is provided. When producing a magnesium compound sol in which magnesium micelle particles coordinated with a carboxylic acid having a carbonyl group are dispersed in an aqueous solvent, a magnesium ion and a carboxylic acid selected from citric acid, succinic acid and EDTA are added in the aqueous solvent. Stable magnesium micelle particles are obtained by reacting an acid with a molar ratio of carbonyl group to magnesium of 1.2 or more and 2 or less.

Description

本発明は、水系溶媒を用いたマグネシウム化合物ゾルおよびその製造方法、ならびにセラミック原料の製造方法に関する。   The present invention relates to a magnesium compound sol using an aqueous solvent, a method for producing the same, and a method for producing a ceramic raw material.

従来より、積層コンデンサを構成する高誘電率系誘電体材料として、BaTiO3系セラミックが広く用いられてきた。そして、誘電率の温度特性の調整、信頼性の向上または焼結性の向上などを目的として、種々の副成分が添加されることが通例であった。Conventionally, BaTiO 3 ceramic has been widely used as a high dielectric constant dielectric material constituting a multilayer capacitor. In general, various subcomponents are added for the purpose of adjusting temperature characteristics of dielectric constant, improving reliability, or improving sinterability.

積層コンデンサは、その小型化および大容量化の必要性から年々薄層化が進み、近年では一層当たりの厚さが数μm以下のものもある。そのような薄層化の進んだ積層コンデンサでは副成分の分散性向上が従来にも増して要求される。そのためにはマグネシウムをはじめとする副成分の微粒化が必要となる。   Multilayer capacitors have become thinner year by year due to the need for smaller size and larger capacity, and in recent years, the thickness per layer is several μm or less. In such a multilayer capacitor which has been made thinner, an improvement in the dispersibility of subcomponents is required more than ever. For that purpose, it is necessary to atomize subcomponents including magnesium.

微粒化された副成分とBaTiO3などの主成分とを均一に混合するためには副成分の微粒子が凝集することを防がねばならず、そのためにはBaTiO3などの主成分と混合する前に副成分がゾル(コロイド溶液)として存在することが望ましい。また、ゾルの溶媒は水系であることが望ましい。仮に、有機系溶媒の場合は、防爆装置を設置する必要があり、製造コストが高くなるため望ましくない。In order to uniformly mix the atomized subcomponent and the main component such as BaTiO 3, it is necessary to prevent the fine particles of the subcomponent from aggregating. For this purpose, before mixing with the main component such as BaTiO 3 It is desirable that the secondary component is present as a sol (colloidal solution). The solvent of the sol is preferably an aqueous system. Temporarily, in the case of an organic solvent, it is necessary to install an explosion-proof device, which is undesirable because the manufacturing cost increases.

副成分の代表的な例としてはマグネシウムが挙げられる。例えば特許文献1では、水系溶媒を用いるマグネシウム化合物ゾルを製造する方法が提案されている。この製造方法では、酢酸マグネシウム四水和物に脱水処理を施した酢酸マグネシウムまたは無水酢酸マグネシウムを水に分散させることにより、安定なコロイド粒子が得られるとされている。
特開平9−312132号公報
A typical example of the accessory component is magnesium. For example, Patent Document 1 proposes a method for producing a magnesium compound sol using an aqueous solvent. In this production method, it is said that stable colloidal particles can be obtained by dispersing magnesium acetate or anhydrous magnesium acetate obtained by subjecting magnesium acetate tetrahydrate to dehydration treatment in water.
JP-A-9-312132

しかしながら、特許文献1に記載のマグネシウム化合物ゾルの製造方法では、酢酸マグネシウム四水和物に脱水処理を施さねばならず、その工程が煩雑となる。また、マグネシウムの供給源が酢酸マグネシウム化合物に限られるため、素材選定に制約が加わる。さらに、特許文献1のマグネシウム化合物ゾルをBaTiO3系セラミック原料の副成分として用いる場合、希土類化合物ゾル等の他の副成分ゾルと共存させると、凝集やゲル化などの不具合が生じる恐れがある。However, in the method for producing a magnesium compound sol described in Patent Document 1, magnesium acetate tetrahydrate must be dehydrated, and the process becomes complicated. Moreover, since the supply source of magnesium is limited to a magnesium acetate compound, restrictions are imposed on the selection of materials. Furthermore, when the magnesium compound sol of Patent Document 1 is used as a subcomponent of a BaTiO 3 ceramic material, if it coexists with other subcomponent sol such as a rare earth compound sol, problems such as aggregation and gelation may occur.

本発明は、前述のような事情に鑑みなされたものであって、その目的は、種々の金属化合物ゾルと併用しても水系溶媒中での安定度が高いマグネシウム化合物ゾルを提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a magnesium compound sol having high stability in an aqueous solvent even when used in combination with various metal compound sols. .

また、本発明の他の目的は、マグネシウム供給源の種類の制約を受けず、また脱水工程等の煩雑な工程を経ずに水系溶媒中での安定度が高いマグネシウム化合物ゾルを簡便に製造することができるマグネシウム化合物ゾルの製造方法を提供することにある。   Another object of the present invention is to easily produce a magnesium compound sol having high stability in an aqueous solvent without being restricted by the type of magnesium supply source and without going through complicated steps such as a dehydration step. An object of the present invention is to provide a method for producing a magnesium compound sol that can be used.

さらに、本発明の他の目的は、本発明のマグネシウム化合物ゾルを副成分として混合したセラミック原料を製造することができるセラミック原料の製造方法を提供することにある。   Furthermore, the other object of this invention is to provide the manufacturing method of the ceramic raw material which can manufacture the ceramic raw material which mixed the magnesium compound sol of this invention as a subcomponent.

本発明の請求項1に記載のマグネシウム化合物ゾルは、カルボニル基を有するカルボン酸の配位したマグネシウムミセル粒子が水系溶媒中に分散したマグネシウム化合物ゾルであって、前記カルボン酸は、クエン酸、コハク酸およびEDTAから選ばれる少なくとも一種であり、かつ前記カルボニル基の前記マグネシウムに対するモル比が、1.2以上2以下であることを特徴とするものである。   The magnesium compound sol according to claim 1 of the present invention is a magnesium compound sol in which magnesium micelle particles coordinated with a carboxylic acid having a carbonyl group are dispersed in an aqueous solvent, and the carboxylic acid contains citric acid, succinic acid, and succinic acid. It is at least one selected from acids and EDTA, and the molar ratio of the carbonyl group to the magnesium is 1.2 or more and 2 or less.

また、本発明の請求項2に記載のマグネシウム化合物ゾルは、請求項1に記載の発明において、前記水系溶媒のpHが4以上11以下であることを特徴とするものである。   The magnesium compound sol according to claim 2 of the present invention is characterized in that, in the invention according to claim 1, the pH of the aqueous solvent is 4 or more and 11 or less.

また、本発明の請求項3に記載のマグネシウム化合物ゾルは、請求項1に記載の発明において、前記水系溶媒のpHが8以上11以下であることを特徴とするものである。   The magnesium compound sol according to claim 3 of the present invention is characterized in that, in the invention according to claim 1, the pH of the aqueous solvent is 8 or more and 11 or less.

また、本発明の請求項4に記載のマグネシウム化合物ゾルの製造方法は、請求項1〜請求項3のいずれか1項に記載のマグネシウム化合物ゾルを製造する方法であって、マグネシウムイオンまたはマグネシウム化合物粒子の分散した水系溶媒を用意する工程と、前記水系溶媒に、カルボン酸または前記カルボン酸の塩を投入し、前記マグネシウムイオンまたはマグネシウム化合物粒子と反応させる工程とを備えることを特徴とするものである。   Moreover, the manufacturing method of the magnesium compound sol of Claim 4 of this invention is a method of manufacturing the magnesium compound sol of any one of Claims 1-3, Comprising: A magnesium ion or a magnesium compound A step of preparing an aqueous solvent in which particles are dispersed, and a step of adding a carboxylic acid or a salt of the carboxylic acid to the aqueous solvent and reacting with the magnesium ions or the magnesium compound particles. is there.

また、本発明の請求項5に記載のマグネシウム化合物ゾルの製造方法は、請求項4に記載の発明において、塩基性物質を前記水系溶媒に溶解させることにより、前記水系溶媒のpHを調整する工程を含むことを特徴とするものである。   Moreover, the manufacturing method of the magnesium compound sol of Claim 5 of this invention is the process of adjusting the pH of the said aqueous solvent by dissolving a basic substance in the said aqueous solvent in the invention of Claim 4. It is characterized by including.

また、本発明の請求項6に記載のセラミック原料の製造方法は、セラミック粉体に対し、請求項1〜請求項3のいずれか1項に記載のマグネシウム化合物ゾルを副成分として混合することを特徴とするものである。   Moreover, the manufacturing method of the ceramic raw material of Claim 6 of this invention mix | blends the magnesium compound sol of any one of Claims 1-3 as a subcomponent with respect to ceramic powder. It is a feature.

また、本発明の請求項7に記載のセラミック原料の製造方法は、請求項6に記載の発明において、前記副成分が、マグネシウム以外の金属元素を主成分とするゾルを含むことを特徴とするものである。   Moreover, the manufacturing method of the ceramic raw material according to claim 7 of the present invention is characterized in that, in the invention according to claim 6, the subcomponent includes a sol containing a metal element other than magnesium as a main component. Is.

本発明によれば、セラミック粉体に対して種々の金属化合物ゾルと併用しても水系溶媒中での安定度が高いマグネシウム化合物ゾルを提供することができる。   According to the present invention, a magnesium compound sol having high stability in an aqueous solvent can be provided even when used in combination with various metal compound sols for ceramic powder.

また、本発明のマグネシウム化合物ゾルの製造方法によれば、マグネシウム供給源の種類の制約を受けず、また脱水工程等の煩雑な工程を経ずに水系溶媒中での安定度が高いマグネシウム化合物ゾルを簡便に得ることができる。   In addition, according to the method for producing a magnesium compound sol of the present invention, the magnesium compound sol has high stability in an aqueous solvent without being restricted by the type of magnesium supply source and without going through complicated steps such as a dehydration step. Can be easily obtained.

さらに、本発明のセラミック原料の製造方法によれば、本発明の水系溶媒マグネシウム化合物ゾルを副成分として混合させたセラミック原料を製造することができる。   Furthermore, according to the method for producing a ceramic raw material of the present invention, a ceramic raw material in which the aqueous solvent magnesium compound sol of the present invention is mixed as an auxiliary component can be produced.

本発明のマグネシウム化合物ゾルは、水系の溶媒と、その中に分散しているマグネシウムミセル粒子を含むものである。このマグネシウムミセル粒子は、カルボニル基を有するカルボン酸が、マグネシウムに配位して錯体を形成し、その錯体が集合することにより形成される。   The magnesium compound sol of the present invention includes an aqueous solvent and magnesium micelle particles dispersed therein. The magnesium micelle particles are formed by carboxylic acid having a carbonyl group coordinated with magnesium to form a complex, and the complex is assembled.

ここで、水系の溶媒とは、その溶媒の主成分が水であり、有機系の溶媒でないということを意味する。ただし、水系溶媒中に、エタノール等の水溶性有機化合物が少量溶解しているものも本発明の水系溶媒に含まれる。ここでいう少量とは、防爆設備などが必要とならない程度の量をいう。   Here, the aqueous solvent means that the main component of the solvent is water and not an organic solvent. However, the water-based solvent of the present invention includes those in which a small amount of a water-soluble organic compound such as ethanol is dissolved in the water-based solvent. The small amount here means an amount that does not require explosion-proof equipment.

マグネシウムミセル粒子が水系溶媒中に安定なコロイド粒子として存在するためには、マグネシウムに配位させるカルボン酸の種類や量が重要になってくる。仮に、安定なコロイド粒子の状態でいられなくなったときは、水系溶媒中に溶解したり、逆にゲル化したり、沈殿を生じたりする。   In order for magnesium micelle particles to exist as stable colloidal particles in an aqueous solvent, the type and amount of carboxylic acid coordinated with magnesium are important. If the colloidal particles cannot be in a stable state, they are dissolved in an aqueous solvent, or gelled or precipitated.

マグネシウムに配位させるカルボン酸は、カルボニル基を有し、マグネシウムへの配位によってマグネシウムミセル粒子を生成できるものであれば特に制限されない。マグネシウムに配位するカルボン酸としては、クエン酸、コハク酸及びEDTAから選ばれる少なくとも一種が用いられる。   The carboxylic acid coordinated to magnesium is not particularly limited as long as it has a carbonyl group and can produce magnesium micelle particles by coordination to magnesium. As the carboxylic acid coordinated with magnesium, at least one selected from citric acid, succinic acid and EDTA is used.

マグネシウムミセル粒子が生成するにはマグネシウムに対するカルボン酸の量が重要であることは前述のとおりである。そこで、カルボン酸としてクエン酸、コハク酸、EDTAを用いた場合における、マグネシウムに対するカルボン酸の量について説明する。マグネシウムミセル粒子の安定度に寄与するのはマグネシウムに対するカルボニル基のモル比(カルボニル基/マグネシウム)であり、そのモル比は1.2以上2以下である。例えばカルボン酸としてクエン酸を用いる場合には、クエン酸は1分子につき3つのカルボニル基を有するため、マグネシウム1モルに対しクエン酸を0.4〜0.666モル反応させれば良いことになる。   As described above, the amount of carboxylic acid relative to magnesium is important for the production of magnesium micelle particles. Thus, the amount of carboxylic acid relative to magnesium when citric acid, succinic acid, or EDTA is used as the carboxylic acid will be described. It is the molar ratio of the carbonyl group to magnesium (carbonyl group / magnesium) that contributes to the stability of the magnesium micelle particles, and the molar ratio is 1.2 or more and 2 or less. For example, when citric acid is used as the carboxylic acid, since citric acid has three carbonyl groups per molecule, 0.4 to 0.666 mol of citric acid may be reacted with 1 mol of magnesium. .

前記モル比が1.2未満になると、マグネシウムミセル粒子の溶解度が低下し、ゲル化し、あるいは沈殿を生じる。また、モル比が2.0を超えると、マグネシウムミセル粒子が小さくなりすぎ、水系溶媒に溶解してしまい、ゾルを得られない恐れがある。マグネシウム化合物ゾルの安定度をさらに向上させる場合は、マグネシウムに対するカルボニル基のモル比を1.5以上1.8以下にすることが好ましい。   When the molar ratio is less than 1.2, the solubility of the magnesium micelle particles decreases, causing gelation or precipitation. On the other hand, when the molar ratio exceeds 2.0, the magnesium micelle particles become too small and are dissolved in an aqueous solvent, so that a sol may not be obtained. In order to further improve the stability of the magnesium compound sol, the molar ratio of the carbonyl group to magnesium is preferably 1.5 or more and 1.8 or less.

また、前記マグネシウムミセル粒子が水系溶媒中で安定であるためには、水系溶媒のpHは、4以上11以下であることが好ましい。pHが4未満になると、マグネシウム化合物が水系溶媒に溶解しやすくなり、安定したマグネシウムミセル粒子が生成せず、ゾルとならない。またpHが11を超えると、マグネシウム化合物が沈殿を起こし、これも安定したマグネシウムミセル粒子が生成せず、ゾルとならない。   In order for the magnesium micelle particles to be stable in the aqueous solvent, the pH of the aqueous solvent is preferably 4 or more and 11 or less. When the pH is less than 4, the magnesium compound is easily dissolved in an aqueous solvent, and stable magnesium micelle particles are not generated and a sol is not formed. Moreover, when pH exceeds 11, a magnesium compound raise | generates precipitation, and this also does not produce | generate stable magnesium micelle particle | grains and does not become sol.

本発明のマグネシウム化合物ゾルを、例えばチタン酸バリウム系化合物を主成分とする誘電体セラミック原料等のセラミック原料の副成分として用いる場合には、水系溶媒のpHは、8以上11以下であることが好ましい。pHが8未満になると、チタン酸バリウム系化合物が水に溶出しやすいからである。   When the magnesium compound sol of the present invention is used as a subcomponent of a ceramic raw material such as a dielectric ceramic raw material containing, for example, a barium titanate compound as a main component, the pH of the aqueous solvent is 8 or more and 11 or less. preferable. This is because when the pH is less than 8, the barium titanate compound is likely to be eluted in water.

なお、本発明のマグネシウム化合物ゾルには、本発明の目的を妨げない限り、他のイオン等が混入していても良い。例えば、マグネシウムの供給源となるマグネシウム化合物として酢酸マグネシウムを用いた場合、水系溶媒中には相当量の酢酸イオンが存在しており、またマグネシウムミセル粒子中にも微量の酢酸が配位していることがある。しかし、これは本発明のマグネシウム化合物ゾルの安定性に悪影響を及ぼすものではない。また、微量な他の金属成分等の不純物についても、本発明の目的を妨げない限り混入していても良い。   The magnesium compound sol of the present invention may contain other ions or the like as long as the object of the present invention is not hindered. For example, when magnesium acetate is used as a magnesium compound as a magnesium supply source, a considerable amount of acetate ion is present in the aqueous solvent, and a trace amount of acetic acid is also coordinated in the magnesium micelle particles. Sometimes. However, this does not adversely affect the stability of the magnesium compound sol of the present invention. Further, a small amount of impurities such as other metal components may be mixed as long as the object of the present invention is not hindered.

次いで、本発明のマグネシウム化合物ゾルの製造方法について説明する。   Subsequently, the manufacturing method of the magnesium compound sol of this invention is demonstrated.

本発明のマグネシウム化合物ゾルの製造方法は、マグネシウムイオンまたはマグネシウム化合物粒子の分散した水系溶媒を用意する第1の工程と、前記水系溶媒に、カルボン酸または前記カルボン酸の塩を投入し、前記マグネシウムイオンまたはマグネシウム化合物粒子と反応させる第2の工程とを備えている。   In the method for producing a magnesium compound sol of the present invention, a first step of preparing an aqueous solvent in which magnesium ions or magnesium compound particles are dispersed, a carboxylic acid or a salt of the carboxylic acid is added to the aqueous solvent, and the magnesium A second step of reacting with the ion or magnesium compound particles.

第1の工程では、まず、マグネシウム供給源となるマグネシウム化合物を水系溶媒に溶解させ、マグネシウムイオンを含む水系溶媒を得る。このとき、マグネシウム化合物の種類は、前記カルボン酸の配位したマグネシウムミセル粒子が安定したコロイド粒子を生成するものであれば、特に限られるものではない。また、カルボン酸を配位させる前のマグネシウム化合物単体の水への溶解度は問題とはならない。例としては、水への溶解度の高い酢酸マグネシウム(水和物を含んでもよい)が好ましい。一方、酸化マグネシウムは溶解時における発熱が大きく、場合によっては製造工程が煩雑になる恐れもあるが、生成したマグネシウム化合物ゾルの安定性に悪影響を及ぼすものではない。水系溶媒に溶解しにくいマグネシウム化合物、例えば水酸化マグネシウム等を用いる場合は、水酸化マグネシウム粒子を水中に分散させ、これを水系溶媒としても良い。   In the first step, first, a magnesium compound serving as a magnesium supply source is dissolved in an aqueous solvent to obtain an aqueous solvent containing magnesium ions. At this time, the kind of magnesium compound is not particularly limited as long as the magnesium micelle particles coordinated with the carboxylic acid generate stable colloidal particles. Moreover, the solubility of the magnesium compound in water before the coordination of the carboxylic acid is not a problem. As an example, magnesium acetate (which may include a hydrate) having high solubility in water is preferable. On the other hand, magnesium oxide generates a large amount of heat when dissolved, and in some cases the manufacturing process may be complicated, but it does not adversely affect the stability of the produced magnesium compound sol. When a magnesium compound that is difficult to dissolve in an aqueous solvent, such as magnesium hydroxide, is used, the magnesium hydroxide particles may be dispersed in water and used as the aqueous solvent.

また、第2の工程では、第1の工程で用意したマグネシウムイオンまたはマグネシウム化合物粒子を分散させた水系溶媒に対し、所定のカルボン酸またはカルボン酸塩を投入し、この水系溶媒をよく攪拌しながら、マグネシウムイオンまたはマグネシウム化合物粒子とカルボン酸を反応させる。攪拌時の温度は室温でも良いが、加熱を行うと反応の速度が速くなる。この反応により、マグネシウムにカルボン酸の配位したマグネシウムミセル粒子が生成する。このマグネシウムミセル粒子が安定なコロイド粒子の状態となることで、安定したマグネシウム化合物ゾルが生成する。   In the second step, a predetermined carboxylic acid or carboxylate is added to the aqueous solvent in which the magnesium ions or magnesium compound particles prepared in the first step are dispersed, and the aqueous solvent is stirred well. Then, magnesium ions or magnesium compound particles are reacted with carboxylic acid. Although the temperature at the time of stirring may be room temperature, the rate of reaction increases when heating is performed. By this reaction, magnesium micelle particles in which carboxylic acid is coordinated to magnesium are produced. The magnesium micelle particles become stable colloidal particles, so that a stable magnesium compound sol is generated.

また、前述のカルボン酸またはカルボン酸塩の添加により、水系溶媒のpHが低くなることがある。この場合、水酸化ナトリウム、水酸化カリウム、アミン系化合物、アンモニア系化合物等の塩基性物質をpH調整剤として加え、pHを適正な値に調整することができる。   Moreover, the pH of an aqueous solvent may become low by addition of the above-mentioned carboxylic acid or carboxylate. In this case, a basic substance such as sodium hydroxide, potassium hydroxide, an amine compound, or an ammonia compound can be added as a pH adjuster to adjust the pH to an appropriate value.

次いで、本発明のセラミック原料の製造方法について説明する。本発明では、セラミック粉体に対して前記マグネシウム化合物ゾルを副成分として混合させる。セラミック粉体としては誘電体セラミックが好ましく、誘電体セラミックの主成分としては例えばチタン酸バリウム系化合物が好ましい。   Subsequently, the manufacturing method of the ceramic raw material of this invention is demonstrated. In the present invention, the magnesium compound sol is mixed as a subcomponent with respect to the ceramic powder. The ceramic powder is preferably a dielectric ceramic, and the main component of the dielectric ceramic is preferably, for example, a barium titanate compound.

マグネシウム化合物ゾルを混合させる方法としては、マグネシウム化合物粒子を均一に分散させることができれば、特に制限されるものではない。例えば、セラミック粉体と純水を混合したスラリーを用意し、そのスラリーを容器中で攪拌しながら、本発明のマグネシウム化合物ゾルを滴下する方法が好ましい。   The method of mixing the magnesium compound sol is not particularly limited as long as the magnesium compound particles can be uniformly dispersed. For example, it is preferable to prepare a slurry in which ceramic powder and pure water are mixed, and drop the magnesium compound sol of the present invention while stirring the slurry in a container.

前記セラミック原料の副成分として、本発明のマグネシウム化合物ゾルの他に、他の金属元素、例えば希土類元素化合物のゾルを添加していても良い。本発明のマグネシウム化合物ゾルは、同時に他の金属元素のゾルと共存しても、その安定性が損なわれないものである。   As a subcomponent of the ceramic raw material, in addition to the magnesium compound sol of the present invention, a sol of another metal element such as a rare earth element compound may be added. Even if the magnesium compound sol of the present invention coexists with a sol of another metal element at the same time, its stability is not impaired.

次に、本発明をより具体的な実施例に基づき説明する。なお、本発明の範囲内における実施可能な形態であれば、以下で説明する本実施例のみに制限されるものではないことは云うまでもない。   Next, the present invention will be described based on more specific examples. Needless to say, the present invention is not limited to this embodiment described below as long as it can be implemented within the scope of the present invention.

実施例1
本実施例では、カルボン酸の種類およびマグネシウムに対するカルボニル基のモル比の影響について調べた。即ち、マグネシウム化合物ゾルの原料として、所定量の酢酸マグネシウム(水和物を含む)、塩化マグネシウム、硝酸マグネシウムの粉末を用意し、水に溶解させた。また、水酸化マグネシウムの粉末を水に投入、攪拌し、水酸化マグネシウム粒子を水に分散させた。これに対し、表1に示す所定のカルボン酸またはカルボン酸塩を、マグネシウムに対するモル比が表1に示す値になるよう、攪拌しながら投入し、さらに所定量のモノエタノールアミンをpHが9.5となるよう添加して攪拌した。得られた生成物の状態と、その平均粒子径を日本ルフト社製DT1200により測定し、その結果を表1に示した。また、それぞれの試料において、別途、マグネシウムとカルボン酸のモル比が1:1となるよう反応させたときの溶解度を求め、その結果を表1に示した。なお、表1において、*印を附した試料は、本発明の範囲外のものである。
Example 1
In this example, the effect of the type of carboxylic acid and the molar ratio of the carbonyl group to magnesium was examined. That is, as a raw material for the magnesium compound sol, a predetermined amount of magnesium acetate (including hydrate), magnesium chloride, and magnesium nitrate powder was prepared and dissolved in water. In addition, magnesium hydroxide powder was put into water and stirred to disperse the magnesium hydroxide particles in water. On the other hand, the predetermined carboxylic acid or carboxylate shown in Table 1 was added while stirring so that the molar ratio with respect to magnesium was the value shown in Table 1, and a predetermined amount of monoethanolamine was added at a pH of 9. Was added and stirred. The state of the obtained product and its average particle diameter were measured by DT1200 manufactured by Nippon Luft Co., Ltd., and the results are shown in Table 1. Further, in each sample, the solubility was separately determined when the molar ratio of magnesium and carboxylic acid was 1: 1, and the results are shown in Table 1. In Table 1, the samples marked with * are outside the scope of the present invention.

表2に示す結果によれば、試料番号1〜12の試料は、カルボン酸にクエン酸、コハク酸、EDTAまたはそれらの塩を用い、マグネシウムに対するカルボニル基のモル比が1.2以上2以下となるよう反応させた試料であるため、安定したマグネシウム化合物ゾルが得られた。   According to the results shown in Table 2, the samples Nos. 1 to 12 use citric acid, succinic acid, EDTA or a salt thereof as the carboxylic acid, and the molar ratio of carbonyl group to magnesium is 1.2 or more and 2 or less. A stable magnesium compound sol was obtained because the sample was allowed to react.

しかしながら、試料番号13、14は、カルボン酸として酒石酸および酒石酸塩を用いた試料であるが、酒石酸および酒石酸塩が本発明に用いられるカルボン酸でないため、マグネシウムに酒石酸が配位したマグネシウムミセルの溶解度が低く、マグネシウムミセル粒子が白色のゲル状となり、ゾルが得られなかった。   However, Sample Nos. 13 and 14 are samples using tartaric acid and tartrate as carboxylic acids, but since tartaric acid and tartrate are not carboxylic acids used in the present invention, the solubility of magnesium micelles in which tartaric acid is coordinated to magnesium. The magnesium micelle particles became a white gel, and a sol could not be obtained.

試料番号15、16は、カルボン酸としてそれぞれ乳酸および蓚酸を用いた試料であるが、乳酸および蓚酸がいずれも本発明に用いられるカルボン酸でないため、乳酸および蓚酸がマグネシウムに十分に配位せず、水酸化マグネシウムの沈殿が生じ、ゾルが得られなかった。   Sample Nos. 15 and 16 are samples using lactic acid and oxalic acid as carboxylic acids, respectively. However, since lactic acid and oxalic acid are not carboxylic acids used in the present invention, lactic acid and oxalic acid are not sufficiently coordinated with magnesium. As a result, precipitation of magnesium hydroxide occurred and no sol was obtained.

試料番号17は、カルボン酸としてクエン酸を用いた試料であるが、マグネシウムに対するカルボニル基のモル比が0.6と小さかったため、マグネシウムミセル粒子の溶解度が低く白色のゲル状となり、ゾルが得られなかった。   Sample No. 17 is a sample using citric acid as a carboxylic acid. However, since the molar ratio of the carbonyl group to magnesium was as small as 0.6, the solubility of magnesium micelle particles was low and a white gel was formed, and a sol was obtained. There wasn't.

試料番号18、19は、カルボン酸としてそれぞれクエン酸を用いた試料であるが、マグネシウムに対するカルボニル基のモル比がそれぞれ2より大きかったため、マグネシウムミセル粒子が生成されず溶液状となり、ゾルが得られなかった。   Sample Nos. 18 and 19 are samples using citric acid as the carboxylic acid, but the molar ratio of the carbonyl group to magnesium was larger than 2, so that the magnesium micelle particles were not generated and became a solution, and a sol was obtained. There wasn't.

Figure 2006112199
Figure 2006112199

実施例2
本実施例では、クエン酸またはコハク酸を用いるときの水系溶媒のpHの影響について調べた。即ち、酢酸マグネシウム(水和物を含む)の粉末を用意し、水に溶解させた。これに表2に示すカルボン酸を、マグネシウム1モルに対するカルボニル基のモル比が表2に示す値になるよう攪拌しながら投入し、さらに水系溶媒のpH調整剤として表2に示す塩基性物質を、表2に示すpHになるよう添加して攪拌した。得られた生成物の状態と、その平均粒子径を表2に示した。なお、表1において、*印を附した試料は、本発明の範囲外のものである。
Example 2
In this example, the influence of the pH of the aqueous solvent when citric acid or succinic acid was used was examined. Specifically, magnesium acetate (including hydrate) powder was prepared and dissolved in water. The carboxylic acid shown in Table 2 was added while stirring so that the molar ratio of the carbonyl group to 1 mol of magnesium was the value shown in Table 2, and the basic substance shown in Table 2 was used as a pH adjuster for the aqueous solvent. The mixture was added to the pH shown in Table 2 and stirred. The state of the obtained product and the average particle diameter are shown in Table 2. In Table 1, the samples marked with * are outside the scope of the present invention.

表2に示す結果によれば、試料番号22〜28、および試料番号31〜37の試料は、水系溶媒の塩基性物質でpHを本発明の範囲内である4〜11に調整した試料であるため、安定したマグネシウム化合物ゾルが得られた。   According to the results shown in Table 2, Sample Nos. 22 to 28 and Sample Nos. 31 to 37 are samples in which the pH is adjusted to 4 to 11 within the scope of the present invention with a basic substance of an aqueous solvent. Therefore, a stable magnesium compound sol was obtained.

これに対して、試料番号21、30の試料は、pHが4より低い試料であるため、マグネシウムミセル粒子が生成されず溶液状となり、ゾルが得られなかった。   On the other hand, samples Nos. 21 and 30 were samples having a pH lower than 4, so that magnesium micelle particles were not generated and became a solution, and a sol was not obtained.

試料番号29の試料は、pHが11より高い試料であるため、水酸化マグネシウムの沈殿が生じ、ゾルが得られなかった。   Since the sample of sample number 29 was a sample having a pH higher than 11, precipitation of magnesium hydroxide occurred and no sol was obtained.

Figure 2006112199
Figure 2006112199

実施例3
本実施例では、本発明のマグネシウム化合物ゾルと他の金属化合物ゾルを副成分としてセラミック原料を製造した。即ち、セラミック粉体としてチタン酸バリウムの粉体を用意し、これをボールミルにより水と混合し、チタン酸バリウム粉体を含むスラリーを得た。次に、本発明の実施例1の試料番号1のマグネシウム化合物ゾルを用意した。また、マグネシウム以外の金属元素を主成分とする金属化合物ゾルとして、ホルミウムにクエン酸の配位したホルミウムミセル粒子が水中に分散した、ホルミウム化合物ゾルを用意した。
Example 3
In this example, a ceramic raw material was produced using the magnesium compound sol of the present invention and another metal compound sol as subcomponents. That is, a barium titanate powder was prepared as a ceramic powder and mixed with water by a ball mill to obtain a slurry containing the barium titanate powder. Next, a magnesium compound sol of sample number 1 of Example 1 of the present invention was prepared. In addition, a holmium compound sol in which holmium micelle particles in which citric acid is coordinated to holmium is dispersed in water is prepared as a metal compound sol containing a metal element other than magnesium as a main component.

前記スラリーを攪拌しながら、前記スラリー中にマグネシウム化合物ゾルとホルミウム化合物ゾルを滴下した。このとき、滴下量はチタン酸バリウム100モルに対しマグネシウムが2モル、ホルミウムが1モルとなるよう制御した。十分に攪拌した結果、マグネシウム化合物ゾルとホルミウム化合物ゾルはスラリー中に十分に分散し、凝集やゲル化などの不具合は生じなかった。このスラリーを乾燥し、マグネシウムとホルミウムが十分に分散したチタン酸バリウムの粉体、すなわち誘電体セラミックの原料を得た。   While stirring the slurry, a magnesium compound sol and a holmium compound sol were dropped into the slurry. At this time, the amount of dripping was controlled so that 2 mol of magnesium and 1 mol of holmium would be 100 mol of barium titanate. As a result of sufficient stirring, the magnesium compound sol and the holmium compound sol were sufficiently dispersed in the slurry, and problems such as aggregation and gelation did not occur. This slurry was dried to obtain a barium titanate powder in which magnesium and holmium were sufficiently dispersed, ie, a dielectric ceramic material.

Claims (7)

カルボニル基を有するカルボン酸の配位したマグネシウムミセル粒子が水系溶媒中に分散したマグネシウム化合物ゾルであって、
前記カルボン酸は、クエン酸、コハク酸およびEDTAから選ばれる少なくとも一種であり、かつ前記カルボニル基の前記マグネシウムに対するモル比が、1.2以上2以下であることを特徴とするマグネシウム化合物ゾル。
A magnesium compound sol in which magnesium micelle particles coordinated with a carboxylic acid having a carbonyl group are dispersed in an aqueous solvent,
The magnesium compound sol, wherein the carboxylic acid is at least one selected from citric acid, succinic acid and EDTA, and a molar ratio of the carbonyl group to the magnesium is 1.2 or more and 2 or less.
前記水系溶媒のpHが4以上11以下であることを特徴とする請求項1に記載のマグネシウム化合物ゾル。   The magnesium compound sol according to claim 1, wherein the pH of the aqueous solvent is 4 or more and 11 or less. 前記水系溶媒のpHが8以上11以下であることを特徴とする請求項1に記載のマグネシウム化合物ゾル。   The magnesium compound sol according to claim 1, wherein the pH of the aqueous solvent is 8 or more and 11 or less. 請求項1〜請求項3のいずれか1項に記載のマグネシウム化合物ゾルを製造する方法であって、マグネシウムイオンまたはマグネシウム化合物粒子の分散した水系溶媒を用意する工程と、前記水系溶媒に、カルボン酸または前記カルボン酸の塩を投入し、前記マグネシウムイオンまたはマグネシウム化合物粒子と反応させる工程とを備えることを特徴とするマグネシウム化合物ゾルの製造方法。   A method for producing a magnesium compound sol according to any one of claims 1 to 3, wherein a step of preparing an aqueous solvent in which magnesium ions or magnesium compound particles are dispersed, and a carboxylic acid in the aqueous solvent. Alternatively, a method for producing a magnesium compound sol, comprising: adding a salt of the carboxylic acid to react with the magnesium ion or the magnesium compound particles. 塩基性物質を前記水系溶媒に溶解させることにより、前記水系溶媒のpHを調整する工程を含むことを特徴とする請求項4に記載のマグネシウム化合物ゾルの製造方法。   The method for producing a magnesium compound sol according to claim 4, comprising a step of adjusting the pH of the aqueous solvent by dissolving a basic substance in the aqueous solvent. セラミック粉体に対し、請求項1〜請求項3のいずれか1項に記載のマグネシウム化合物ゾルを副成分として混合することを特徴とするセラミック原料の製造方法。   The manufacturing method of the ceramic raw material characterized by mixing the magnesium compound sol of any one of Claims 1-3 with a ceramic powder as a subcomponent. 前記副成分が、マグネシウム以外の金属元素を主成分とするゾルを含むことを特徴とする請求項6のセラミック原料の製造方法。   The method for producing a ceramic raw material according to claim 6, wherein the subcomponent includes a sol containing a metal element other than magnesium as a main component.
JP2007521128A 2005-03-30 2006-03-09 Magnesium compound sol, method for producing the same, and method for producing ceramic raw material using the same Active JP4530041B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005098923 2005-03-30
JP2005098923 2005-03-30
PCT/JP2006/304591 WO2006112199A1 (en) 2005-03-30 2006-03-09 Magnesium compound sol, method for producing same, and method for producing ceramic material using same

Publications (2)

Publication Number Publication Date
JPWO2006112199A1 true JPWO2006112199A1 (en) 2008-12-04
JP4530041B2 JP4530041B2 (en) 2010-08-25

Family

ID=37114933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007521128A Active JP4530041B2 (en) 2005-03-30 2006-03-09 Magnesium compound sol, method for producing the same, and method for producing ceramic raw material using the same

Country Status (5)

Country Link
JP (1) JP4530041B2 (en)
KR (1) KR100880534B1 (en)
CN (1) CN1989072B (en)
TW (1) TW200706495A (en)
WO (1) WO2006112199A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983118B1 (en) * 2007-12-07 2010-09-17 삼성전기주식회사 Manufacturing methods of magnesium oxide nanoparticle and magmesium oxide nanosol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153557A (en) * 1989-11-13 1991-07-01 Sakai Chem Ind Co Ltd Production of source powder of lead perovskite structure ceramics
JPH0891829A (en) * 1994-07-21 1996-04-09 Vbc Srl Refining method for magnesium hydroxide
JPH09310033A (en) * 1996-05-23 1997-12-02 Dainippon Printing Co Ltd Sol solution and membrane formation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153557B2 (en) * 1991-02-01 2001-04-09 株式会社ハイタッチ双葉 Width adjuster for hanging shelf
JP3319314B2 (en) * 1996-11-20 2002-08-26 株式会社村田製作所 Barium titanate-based semiconductor porcelain composition
IL140454A0 (en) * 1998-06-23 2002-02-10 Cabot Corp Barium titanate dispersions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153557A (en) * 1989-11-13 1991-07-01 Sakai Chem Ind Co Ltd Production of source powder of lead perovskite structure ceramics
JPH0891829A (en) * 1994-07-21 1996-04-09 Vbc Srl Refining method for magnesium hydroxide
JPH09310033A (en) * 1996-05-23 1997-12-02 Dainippon Printing Co Ltd Sol solution and membrane formation

Also Published As

Publication number Publication date
CN1989072B (en) 2010-05-19
KR100880534B1 (en) 2009-01-28
WO2006112199A1 (en) 2006-10-26
JP4530041B2 (en) 2010-08-25
TW200706495A (en) 2007-02-16
KR20070088497A (en) 2007-08-29
TWI315719B (en) 2009-10-11
CN1989072A (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP6987750B2 (en) Structured zirconium solution
EP2055676A2 (en) Barium carbonate particle powder, production method thereof, and production method of perovskite barium titanate
JP6189740B2 (en) Method for producing silver particles
US8618005B2 (en) Glass powder and method of manufacturing the same
TWI552868B (en) Strontium carbonate fine powder and its manufacturing method
US8592491B2 (en) Water-based rare earth metal compound sol, manufacturing method thereof, and method for manufacturing ceramic powder using the same
JP4530041B2 (en) Magnesium compound sol, method for producing the same, and method for producing ceramic raw material using the same
US20180264555A1 (en) Process for producing noble-metal powder
KR20160088919A (en) Method for producing silver particles, and silver particles produced by said method
KR101539851B1 (en) Perovskite powder, manufacturing method thereof and paste composition for internal electrode comprising the same
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
CN112591801A (en) Preparation method of Z-shaped hexaferrite ultrafine powder
TWI490347B (en) Method of manufacturing silver particles
JP6407850B2 (en) Method for producing platinum powder
JP2017106088A (en) Method for producing copper powder and method for producing conductive paste using the same
JPH07277710A (en) Production of perovskite-type multiple oxide powder
JP6954501B1 (en) Method for producing perovskite-type compound and perovskite-type compound
JP2007099614A (en) Strontium carbonate fine powder
KR20170124173A (en) Synthesis method of oxide powder with perovskite structure and oxide powder formed by the synthesis method
JP2021088756A (en) Production method of copper particle
JP2022062686A (en) Aminopolycarboxylic acid complex powder, additive and method for producing ceramic powder
JP2021063254A (en) Nickel particle and method for producing the same
JP2018043925A (en) Ruthenium-containing perovskite compound, thick film resistor paste, thick film resistor and methods for producing them
CN107697947A (en) A kind of method that low-temperature burning prepares barium titanate superfine powder
JPH05286714A (en) Production of particles of oxide of rare earth element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Ref document number: 4530041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3