JPWO2006051825A1 - Method for producing noble metal particulate carrier - Google Patents

Method for producing noble metal particulate carrier Download PDF

Info

Publication number
JPWO2006051825A1
JPWO2006051825A1 JP2006544926A JP2006544926A JPWO2006051825A1 JP WO2006051825 A1 JPWO2006051825 A1 JP WO2006051825A1 JP 2006544926 A JP2006544926 A JP 2006544926A JP 2006544926 A JP2006544926 A JP 2006544926A JP WO2006051825 A1 JPWO2006051825 A1 JP WO2006051825A1
Authority
JP
Japan
Prior art keywords
noble metal
metal fine
fine particles
substrate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006544926A
Other languages
Japanese (ja)
Other versions
JP5001010B2 (en
Inventor
良平 小川
良平 小川
宮下 聖
聖 宮下
昌道 毛塚
昌道 毛塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2006544926A priority Critical patent/JP5001010B2/en
Publication of JPWO2006051825A1 publication Critical patent/JPWO2006051825A1/en
Application granted granted Critical
Publication of JP5001010B2 publication Critical patent/JP5001010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/23
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J35/393
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

本発明の貴金属微粒子担持体の製造方法は、貴金属微粒子をコロイドとして含むコロイド溶液を調製する工程と、そのコロイド溶液を用いて基体に貴金属微粒子を担持させる工程とを含む。基体に貴金属微粒子を担持させる工程において、コロイド溶液と基体とを接触させた状態で、コロイド溶液に電圧を印加する。The method for producing a noble metal fine particle carrier of the present invention includes a step of preparing a colloid solution containing noble metal fine particles as a colloid, and a step of supporting the noble metal fine particles on a substrate using the colloid solution. In the step of supporting the noble metal fine particles on the substrate, a voltage is applied to the colloid solution while the colloid solution and the substrate are in contact with each other.

Description

本発明は、貴金属微粒子を基体に担持させた貴金属微粒子担持体の製造方法に関する。   The present invention relates to a method for producing a noble metal fine particle carrier having noble metal fine particles supported on a substrate.

貴金属は、炭素系材料、セラミックス、金属酸化物系材料、金属系材料などの様々な基体に担持させることにより、触媒として利用されている。例えば、多孔質基体に貴金属を担持させることによって、自動車の排気ガスの浄化用触媒に利用されている。また、光触媒材料へ貴金属を担持させることによって、光触媒材料の高活性化を目的とする光触媒助触媒もある。   Noble metals are utilized as catalysts by being supported on various substrates such as carbon-based materials, ceramics, metal oxide-based materials, metal-based materials and the like. For example, by supporting a noble metal on a porous substrate, it is used as a catalyst for purifying exhaust gas of automobiles. There is also a photocatalyst co-catalyst aimed at increasing the activity of the photocatalyst material by supporting a noble metal on the photocatalyst material.

また、燃料電池分野においては、炭素系材料に貴金属を担持させてなる電極触媒がある。無機酸化物基体に貴金属を担持させてなる改質触媒は、炭化水素化合物を改質して、水素を発生させるために用いられる。   In the fuel cell field, there is an electrode catalyst in which a noble metal is supported on a carbon-based material. A reforming catalyst in which a noble metal is supported on an inorganic oxide substrate is used for reforming a hydrocarbon compound to generate hydrogen.

貴金属を基体に担持する方法としては、以下に示す技術が挙げられる。   Examples of the method for supporting the noble metal on the substrate include the following techniques.

一つは、特開平9−47659号公報や特開2003−320249号公報に開示されているように、貴金属イオンを基体表面で還元し、直接担持させる方法である。この方法は、貴金属塩や貴金属錯体を含む溶液に基体を接触させ、その後還元剤を添加することにより貴金属イオンを還元しながら、基体表面に貴金属微粒子を直接析出させる方法である。還元剤添加以外にも、特開2000−157874号公報に開示されているように、還元性ガスによる加熱還元や紫外光照射による還元方法などがある。   One is a method in which noble metal ions are reduced and supported directly on the surface of the substrate as disclosed in JP-A-9-47659 and JP-A-2003-320249. In this method, the substrate is brought into contact with a solution containing a noble metal salt or a noble metal complex, and then noble metal particles are directly deposited on the surface of the substrate while reducing the noble metal ions by adding a reducing agent. In addition to the addition of a reducing agent, as disclosed in JP-A No. 2000-157874, there are a heat reduction with a reducing gas and a reduction method by ultraviolet light irradiation.

他の一つは、あらかじめ貴金属微粒子を調製し、その後基体に定着させる方法である。具体的には、本発明者らにより特開2004−100040号公報にて開示したように、貴金属微粒子をコロイドとして含むコロイド溶液と基体とを接触させて、基体表面に貴金属微粒子を自然吸着させる方法である。また、特開2002−305001号公報にて開示されているように、コロイド溶液のpHを変化させることにより貴金属微粒子の基体への吸着を促進させる方法がある。   The other is a method in which noble metal fine particles are prepared in advance and then fixed to a substrate. Specifically, as disclosed in Japanese Patent Application Laid-Open No. 2004-100040 by the present inventors, a method in which a colloid solution containing noble metal fine particles as a colloid is brought into contact with the substrate to naturally adsorb the noble metal fine particles on the surface of the substrate. It is. Further, as disclosed in Japanese Patent Application Laid-Open No. 2002-305001, there is a method of promoting adsorption of noble metal fine particles to a substrate by changing the pH of a colloid solution.

上述のように、基体表面で貴金属イオンを直接還元する方法においては、貴金属微粒子の粒径や分散性を制御しにくい。そのため、貴金属微粒子が基体表面で大きく成長したり、膜状に成長したりして、期待するほどの触媒能を得られない場合がある。また、担持体表面にアミノ基やニトロ基、塩素イオンなどの不純物が残留しやすいという問題もある。   As described above, in the method of directly reducing noble metal ions on the substrate surface, it is difficult to control the particle size and dispersibility of the noble metal fine particles. For this reason, noble metal fine particles grow greatly on the surface of the substrate or grow in a film shape, so that the expected catalytic ability may not be obtained. Another problem is that impurities such as amino groups, nitro groups, and chlorine ions tend to remain on the surface of the support.

一方、コロイドである貴金属微粒子を基体に自然吸着させる方法においては、貴金属微粒子の基体への担持量を増加させるために、コロイド溶液の濃度を高くする必要がある。しかし、貴金属微粒子は分散力が低いため、貴金属コロイド溶液の高濃度化は困難な場合が多い。   On the other hand, in the method in which the colloidal noble metal fine particles are naturally adsorbed on the substrate, it is necessary to increase the concentration of the colloid solution in order to increase the amount of the noble metal fine particles supported on the substrate. However, since the precious metal fine particles have low dispersion power, it is often difficult to increase the concentration of the precious metal colloid solution.

確かに、特開2002−305001号公報に開示されているように、貴金属微粒子の表面を保護コロイドで被覆することにより、貴金属微粒子の分散安定性を向上させ、コロイド溶液の高濃度化を図るという技術もある。しかし、保護コロイド付き貴金属微粒子は、保護コロイドによりその反応表面が減少するため、触媒能が低下するという欠点がある。保護コロイド付き貴金属微粒子を基体に担持させた後で熱処理を行い、保護コロイドを除去するという策もあるが、工程数の増加が不可避であるとともに、そのような策によってもなお、保護コロイドの残渣を完全に除去することは困難である。   Certainly, as disclosed in Japanese Patent Application Laid-Open No. 2002-305001, the surface of the noble metal fine particles is coated with a protective colloid, thereby improving the dispersion stability of the noble metal fine particles and increasing the concentration of the colloid solution. There is also technology. However, the noble metal fine particles with protective colloid have a drawback that the catalytic ability is lowered because the reaction surface is reduced by the protective colloid. Although there is a measure to remove the protective colloid by carrying out a heat treatment after supporting the noble metal fine particles with protective colloid on the substrate, the increase in the number of steps is unavoidable. Is difficult to remove completely.

また、コロイド溶液のpHを制御して貴金属微粒子の担持を促進させるには、塩酸などを加える必要があるため、担持体に不純物が残留してしまう、という欠点がある。   Further, in order to promote the loading of the noble metal fine particles by controlling the pH of the colloidal solution, it is necessary to add hydrochloric acid or the like, so that there is a disadvantage that impurities remain on the carrier.

本発明の目的は、貴金属微粒子を基体に効率よく担持させることが可能となる、貴金属微粒子担持体の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a noble metal fine particle carrier capable of efficiently carrying the noble metal fine particles on a substrate.

すなわち、本発明は、貴金属微粒子をコロイドとして含むコロイド溶液と基体とを接触させた状態で、コロイド溶液に電圧を印加しながら貴金属微粒子を基体に担持させる、貴金属微粒子担持体の製造方法を提供する。   That is, the present invention provides a method for producing a noble metal fine particle carrier, in which a noble metal fine particle is supported on a substrate while a voltage is applied to the colloid solution while the substrate is in contact with a colloidal solution containing the noble metal fine particles as a colloid. .

上記本発明によれば、コロイド溶液に電圧を印加するという操作を追加することにより、コロイド溶液に電圧を印加しない場合に比して、基体への貴金属微粒子の担持量が大幅に増大する。したがって、貴金属微粒子を保護コロイドで被覆してコロイド溶液を高濃度化することが必須でなくなる。保護コロイド付き貴金属微粒子を使用しない場合には、熱処理等により保護コロイドを除去する工程を行う必要がないうえ、得られる担持体に保護コロイドの残渣等が残らないので、貴金属本来の高い触媒能を期待できる。ただし、保護コロイド付き貴金属微粒子を本発明の製造方法で用いることも可能である。   According to the present invention, by adding the operation of applying a voltage to the colloidal solution, the amount of noble metal fine particles supported on the substrate is greatly increased as compared with the case where no voltage is applied to the colloidal solution. Accordingly, it is not essential to increase the concentration of the colloidal solution by coating the noble metal fine particles with the protective colloid. When no precious metal particles with protective colloids are not used, there is no need to perform a step of removing the protective colloids by heat treatment, etc. I can expect. However, precious metal fine particles with protective colloid can also be used in the production method of the present invention.

保護コロイドとは、広義には疎水性コロイドの電解質に対する安定性を増すために加える親水コロイドを指す。しかし、本明細書において、保護コロイドとは、有機高分子の親水コロイドの意味で用いるものとする。上述した特開2002−305001号公報においても、ポリビニルピロリドン、ポリビニルスルホン酸などが保護高分子として用いられている。   The protective colloid refers to a hydrocolloid added to increase the stability of the hydrophobic colloid to the electrolyte in a broad sense. However, in the present specification, the protective colloid is used in the sense of an organic polymer hydrocolloid. Also in the above-mentioned Japanese Patent Application Laid-Open No. 2002-305001, polyvinyl pyrrolidone, polyvinyl sulfonic acid and the like are used as protective polymers.

また、コロイド溶液を予め調製しておき、そのコロイド溶液に基体を接触させて貴金属微粒子を担持させるので、貴金属微粒子が基体表面で大きく成長するといった現象も起こらず、粒径や分散性を制御しやすい。つまり、貴金属微粒子を粒径数nm〜数十nmといったナノサイズの状態で基体表面に均一に分布させることができ、このことが触媒能向上に寄与する。また、貴金属微粒子を基体に担持させるのに必要な時間を、自然吸着に比して大幅に短縮することができるので、生産性の向上を期待できる。また、コロイド溶液に含まれる貴金属量に対する、基体に担持された貴金属量の比率を高めることができるので、原料コストの低減に資する。   In addition, since a colloid solution is prepared in advance and the substrate is brought into contact with the colloid solution to support the noble metal particles, the phenomenon that the noble metal particles grow greatly on the substrate surface does not occur, and the particle size and dispersibility are controlled. Cheap. That is, the noble metal fine particles can be uniformly distributed on the substrate surface in a nano-sized state with a particle size of several nanometers to several tens of nanometers, which contributes to an improvement in catalytic performance. Further, since the time required for supporting the noble metal fine particles on the substrate can be greatly shortened as compared with natural adsorption, an improvement in productivity can be expected. Further, since the ratio of the amount of noble metal supported on the substrate to the amount of noble metal contained in the colloidal solution can be increased, it contributes to the reduction of raw material costs.

ところで、コロイド溶液に電圧を印加することによって、貴金属微粒子の担持量が増大したり、担持工程の所要時間を短縮できたりする理由は必ずしも明らかではないが、本発明者らは次のように考えている。すなわち、コロイド溶液中に電界を発生させることに起因して、何らかの電気的作用が基体と貴金属微粒子との間に働いて両者の衝突確率が高まり、この結果として貴金属微粒子の基体への担持量が増大するとともに、担持工程が短時間で完了するようになる。ただし、基体および貴金属微粒子はいずれも電気的に中性であり、貴金属微粒子は、ファンデルワールス力によって基体に担持されていると考えられる。   By the way, although the reason why the amount of noble metal particles supported can be increased or the time required for the supporting process can be shortened by applying a voltage to the colloidal solution is not necessarily clear, the present inventors consider as follows. ing. That is, due to the generation of an electric field in the colloidal solution, some electrical action works between the substrate and the noble metal fine particles, increasing the collision probability between the two, and as a result, the amount of noble metal fine particles supported on the substrate is increased. As it increases, the loading process is completed in a short time. However, it is considered that both the base and the noble metal fine particles are electrically neutral, and the noble metal fine particles are supported on the base by van der Waals force.

図1は、本発明による貴金属微粒子担持体の製造方法の一例を説明する模式図である。FIG. 1 is a schematic diagram for explaining an example of a method for producing a noble metal fine particle carrier according to the present invention. 図2は、本発明による貴金属微粒子担持体の製造方法の別例を説明する模式図である。FIG. 2 is a schematic view for explaining another example of the method for producing a noble metal fine particle carrier according to the present invention. 図3Aは、本発明による貴金属微粒子担持体を説明する断面模式図である。FIG. 3A is a schematic cross-sectional view illustrating a noble metal fine particle carrier according to the present invention. 図3Bは、本発明による貴金属微粒子担持体の他の例を説明する断面模式図である。FIG. 3B is a schematic cross-sectional view illustrating another example of the noble metal fine particle carrier according to the present invention.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(基体について)
貴金属微粒子を担持させる基体には、炭素系材料、セラミックス、金属酸化物系材料および金属系材料からなる群より選ばれる1種の無機材料で構成されたものを用いることができる。無機材料からなる基体は、例えば、粉末(無機粉末)または適切な支持体上に形成された膜(無機膜)の形態で使用することができる。
(About the substrate)
As the substrate for supporting the noble metal fine particles, a substrate made of one inorganic material selected from the group consisting of carbon materials, ceramics, metal oxide materials and metal materials can be used. The substrate made of an inorganic material can be used in the form of, for example, a powder (inorganic powder) or a film (inorganic film) formed on a suitable support.

炭素系材料で代表的なのは、導電性カーボンである。例えば、カーボンブラック等の導電性カーボン粉末に貴金属微粒子を担持させてなる担持体は、燃料電池の電極用触媒として注目を浴びている。セラミックスとしては、多孔質セラミックスを例示することができる。例えば、多孔質アルミナセラミックスに貴金属微粒子を担持させてなる担持体は、自動車の排気ガスの浄化用触媒として利用される。金属酸化物系材料としては、酸化チタンを例示することができる。酸化チタンは、それ自体で光触媒として用いられるものであるが、貴金属微粒子を担持させることによって触媒活性を高めることができる。また、スパッタ法やCVD法等の公知の成膜方法により、基板上に形成した酸化チタン薄膜に貴金属微粒子を担持させる際に、本発明の方法を採用することができる。また、金属系材料の場合には、金属粉末のように、それ自身を電極とすることが困難な形態に本発明が有用である。   A typical carbon-based material is conductive carbon. For example, a support formed by supporting noble metal fine particles on a conductive carbon powder such as carbon black is attracting attention as a catalyst for an electrode of a fuel cell. Examples of ceramics include porous ceramics. For example, a support formed by supporting noble metal fine particles on porous alumina ceramics is used as a catalyst for purifying exhaust gas of automobiles. An example of the metal oxide material is titanium oxide. Titanium oxide is used as a photocatalyst by itself, but the catalytic activity can be enhanced by supporting noble metal fine particles. In addition, when the noble metal fine particles are supported on the titanium oxide thin film formed on the substrate by a known film forming method such as sputtering or CVD, the method of the present invention can be employed. In the case of a metal-based material, the present invention is useful in a form where it is difficult to use the electrode itself as a metal powder.

貴金属微粒子を担持させる基体の他の例は、ガラスである。ガラスは、ビーズ、粉末または繊維の形態で用いることができる。ガラス製の基体に貴金属微粒子を担持させてなる担持体は、廃水中に含有される有害物質の分解処理のための触媒、空気清浄用の触媒といった用途がある。   Another example of the substrate for supporting the noble metal fine particles is glass. Glass can be used in the form of beads, powder or fibers. A support formed by supporting precious metal fine particles on a glass substrate has uses such as a catalyst for decomposing a harmful substance contained in wastewater and a catalyst for air cleaning.

また、貴金属微粒子を担持させる基体は、高分子材料にて構成されていてもよい。そのような高分子材料としては、アニオン交換樹脂を例示することができる。アニオン交換樹脂は、表面に正電荷を有する官能基が定着されており、負電荷を有する貴金属コロイドが担持されやすいという特徴を有する。   Further, the substrate on which the noble metal fine particles are supported may be made of a polymer material. An example of such a polymer material is an anion exchange resin. An anion exchange resin has a feature that a functional group having a positive charge is fixed on the surface, and a noble metal colloid having a negative charge is easily supported.

(貴金属微粒子について)
基体に担持させる貴金属微粒子としては、金、銀、白金、パラジウム、イリジウム、ルテニウム、レニウム、オスミウムおよびロジウムからなる群より選ばれる1種を主成分として含むものを例示できる。貴金属微粒子は、実質的に貴金属だけで構成されていることが望ましい。また、上記群より選ばれる2種以上の貴金属の合金または混合物よりなる微粒子を基体に担持させることができる。また、第一の貴金属微粒子(例えば白金微粒子)と、第二の貴金属微粒子(例えば金微粒子)とを同一の基体に担持させることも可能である。触媒能の高さを重視する場合には、実質的に白金からなる貴金属微粒子の単独使用が推奨される。
(Precious metal fine particles)
Examples of the noble metal fine particles supported on the substrate include those containing as a main component one selected from the group consisting of gold, silver, platinum, palladium, iridium, ruthenium, rhenium, osmium and rhodium. It is desirable that the noble metal fine particles are substantially composed of only the noble metal. Further, fine particles made of an alloy or mixture of two or more kinds of noble metals selected from the above group can be supported on the substrate. It is also possible to support the first noble metal fine particles (for example, platinum fine particles) and the second noble metal fine particles (for example, gold fine particles) on the same substrate. When importance is attached to high catalytic ability, it is recommended to use noble metal particles consisting essentially of platinum alone.

なお、“主成分として含む”とは、質量%にて最も多く含む成分を意味する。“実質的に”とは、不可避的に混入する不純物質および工業的に除去することが困難な不純物質は含んでいてもよいことを意味する。   “Contained as a main component” means a component that is contained most in mass%. “Substantially” means that impurities that are inevitably mixed in and impurities that are difficult to remove industrially may be included.

貴金属微粒子は、保護コロイドで表面が被覆されていてもよいし、保護コロイドを有さないものであってもよい。保護コロイドは、例えば、ポリビニルアルコールやポリビニルピロリドンなどの高分子化合物である。コロイド溶液を調製する際、これらの高分子化合物を溶解させた溶媒を用いることにより、保護コロイド付き貴金属微粒子を形成できる。   The noble metal fine particles may have a surface coated with a protective colloid, or may have no protective colloid. The protective colloid is, for example, a polymer compound such as polyvinyl alcohol or polyvinyl pyrrolidone. When preparing a colloidal solution, noble metal fine particles with protective colloid can be formed by using a solvent in which these polymer compounds are dissolved.

貴金属微粒子は、保護コロイドで被覆されていると、溶媒中における分散安定性が向上するので、その濃度の増加が可能となる。ただし、保護コロイドにより触媒活性が低下するので、基体に担持させた後に、保護コロイドを除去する熱処理を実施する必要がある。   When the noble metal fine particles are coated with the protective colloid, the dispersion stability in the solvent is improved, so that the concentration can be increased. However, since the catalytic activity is lowered by the protective colloid, it is necessary to carry out a heat treatment for removing the protective colloid after it is supported on the substrate.

一方、保護コロイドに覆われていない貴金属微粒子は、高い触媒能を有している反面、溶媒中における分散安定性が低く、濃度が上昇すると、凝集沈殿を起こしやすいという弱点がある。しかしながら、本発明の方法によれば、比較的低濃度のコロイド溶液を用いたとしても、十分な担持量を達成できる。保護コロイドを除去する工程が不要になる点を考慮すると、本発明では、表面に保護コロイドを有さない貴金属微粒子を基体に担持させることが望ましい。   On the other hand, the precious metal fine particles not covered with the protective colloid have high catalytic ability, but have a weak point that the dispersion stability in the solvent is low, and the aggregation is likely to occur when the concentration is increased. However, according to the method of the present invention, a sufficient loading amount can be achieved even when a relatively low concentration colloidal solution is used. In consideration of the point that the step of removing the protective colloid is unnecessary, in the present invention, it is desirable that noble metal fine particles having no protective colloid on the surface are supported on the substrate.

また、実質的に保護コロイドを表面に有さない貴金属微粒子を用いれば、貴金属微粒子表面には、その貴金属微粒子を形成する際に使用した還元剤(例えばクエン酸類)のみが存在することになる。したがって、貴金属微粒子表面には、アミノ基やニトロ基、塩素イオンが存在しない。このため、貴金属微粒子が高活性に保たれる。   If noble metal fine particles having substantially no protective colloid on the surface are used, only the reducing agent (for example, citric acid) used when forming the noble metal fine particles is present on the surface of the noble metal fine particles. Therefore, no amino group, nitro group, or chlorine ion is present on the surface of the noble metal fine particles. For this reason, the noble metal fine particles are kept highly active.

(コロイド溶液の調製について)
貴金属微粒子をコロイドとして含むコロイド溶液は、貴金属源を適切な溶媒に溶解させた予備溶液に還元剤を加えて原料溶液とし、この原料溶液を煮沸しながら撹拌することによって調製することができる(コロイド溶液調製工程)。煮沸により溶存酸素を原料溶液から除去しながら還元反応を進行させるのは、溶存酸素が還元反応を阻害するためである。また、煮沸により、凝集が起こりにくくなる。
(About preparation of colloidal solution)
A colloid solution containing noble metal fine particles as a colloid can be prepared by adding a reducing agent to a preliminary solution in which a noble metal source is dissolved in an appropriate solvent to prepare a raw material solution, and stirring this raw material solution while boiling (colloid). Solution preparation step). The reason why the reduction reaction proceeds while removing dissolved oxygen from the raw material solution by boiling is because dissolved oxygen inhibits the reduction reaction. Moreover, aggregation becomes difficult to occur by boiling.

還元剤としては、アルコール類、クエン酸類、カルボン酸類、ケトン類、エーテル類、アルデヒド類、エステル類が挙げられる。アルコール類としては、メタノールやエタノールを、クエン酸類としては、クエン酸やクエン酸ナトリウムを、カルボン酸としては、酢酸やフマル酸を挙げることができる。これらの2種以上を併用してもよい。粒径の小さい貴金属微粒子を生成するには、クエン酸ナトリウムなどのクエン酸類の使用が推奨される。また、還元剤としてクエン酸類を用いると、保護コロイドを有さない貴金属微粒子を比較的高濃度に含むコロイド溶液を調製することができる。   Examples of the reducing agent include alcohols, citric acids, carboxylic acids, ketones, ethers, aldehydes, and esters. Examples of alcohols include methanol and ethanol, examples of citric acids include citric acid and sodium citrate, and examples of carboxylic acids include acetic acid and fumaric acid. Two or more of these may be used in combination. The use of citric acids such as sodium citrate is recommended to produce noble metal particles with a small particle size. Further, when citric acids are used as the reducing agent, a colloid solution containing a relatively high concentration of noble metal fine particles having no protective colloid can be prepared.

貴金属源としては、貴金属の塩化物、硝酸塩または硫酸塩のような貴金属塩、もしくは貴金属錯体を使用することができる。2種以上の貴金属源を併用すると、合金の貴金属微粒子をコロイドとして含むコロイド溶液を調製できる。また、貴金属塩として白金塩を用いた場合は、粒径が数nmと小さい貴金属微粒子を形成できるので好適である。   As the noble metal source, a noble metal salt such as a noble metal chloride, nitrate or sulfate, or a noble metal complex can be used. When two or more kinds of noble metal sources are used in combination, a colloidal solution containing noble metal fine particles of the alloy as a colloid can be prepared. Further, when a platinum salt is used as the noble metal salt, it is preferable because noble metal fine particles having a particle diameter as small as several nm can be formed.

コロイド溶液の調製に使用する溶媒としては、貴金属源および還元剤を溶解可能なものであればよく、例えば、水、アルコール類を示すことができる。アルコール類としてはメタノールやエタノールを例示することができる。特に水が好ましい。   The solvent used for preparing the colloidal solution may be any solvent that can dissolve the noble metal source and the reducing agent, and examples thereof include water and alcohols. Examples of alcohols include methanol and ethanol. Water is particularly preferable.

(貴金属微粒子の基体への担持について)
コロイド溶液の調製後、そのコロイド溶液に基体を接触させる。粉末や繊維の形態を有する基体であれば、適量を秤量してコロイド溶液に混入させる。基体が膜の形態を有する場合には、その膜が形成されている支持体をコロイド溶液に浸漬する。そして、コロイド溶液に電圧を印加しながら十分に撹拌し、コロイドとしての貴金属微粒子を基体に担持させる(担持工程)。
(Supporting precious metal particles on the substrate)
After preparing the colloidal solution, the substrate is brought into contact with the colloidal solution. If the substrate has a powder or fiber form, an appropriate amount is weighed and mixed into the colloidal solution. When the substrate has the form of a film, the support on which the film is formed is immersed in the colloidal solution. Then, the colloid solution is sufficiently agitated while applying a voltage to support the noble metal fine particles as a colloid on the substrate (supporting step).

コロイド溶液に電圧を印加するための電極の材料は、電気を通すものであればよく、ステンレス、アルミニウムまたはカーボンなどを使用することができる。電極の面積や電極間距離は基体の大きさや、使用するコロイド溶液の量に応じて調整するとよい。コロイド溶液を撹拌したときに乱流が発生しやすく、十分な撹拌効果が得られるようになるという点において、板状の電極を用いることが望ましい。印加する電圧は、直流と交流とのいずれでもよい。波形についても特に限定はなく、例えば、直流成分または交流成分にパルス成分が含まれていてもよい。なお、印加する電圧があまり高すぎると、作業安全上好ましくなく、100V以下が望ましい。   The electrode material for applying a voltage to the colloidal solution may be any material that conducts electricity, and stainless steel, aluminum, carbon, or the like can be used. The area of the electrodes and the distance between the electrodes may be adjusted according to the size of the substrate and the amount of colloidal solution used. It is desirable to use a plate-like electrode in that a turbulent flow is likely to occur when the colloidal solution is stirred, and a sufficient stirring effect can be obtained. The applied voltage may be either direct current or alternating current. There is no particular limitation on the waveform, and for example, a pulse component may be included in the DC component or the AC component. Note that if the applied voltage is too high, it is not preferable in terms of work safety, and is preferably 100 V or less.

コロイド溶液に電圧を印加するための電極の配置は、基体が粉末である場合には、特に問題とならず、コロイド溶液を収容する容器内に陽極および陰極からなる電極対を配置するだけでよい。一方、支持体上に形成した膜のような基体を用い、かつコロイド溶液に直流電圧を印加する場合には、電極と基体との位置関係に注意が必要である。具体的には、コロイド溶液中に配置した陽極と陰極の間に基体を配置し、基体の姿勢を一定に保ったままコロイド溶液に直流電圧を印加しながら撹拌を行う。このようにすれば、基体の特定領域に選択的に貴金属微粒子を担持させることが可能である。つまり、膜が形成されている面に選択的に貴金属微粒子を担持させることができる。   The arrangement of the electrodes for applying a voltage to the colloidal solution is not particularly problematic when the substrate is a powder, and it is only necessary to arrange an electrode pair consisting of an anode and a cathode in a container containing the colloidal solution. . On the other hand, when a substrate such as a film formed on a support is used and a DC voltage is applied to the colloidal solution, attention must be paid to the positional relationship between the electrode and the substrate. Specifically, a substrate is disposed between an anode and a cathode disposed in the colloid solution, and stirring is performed while applying a DC voltage to the colloid solution while keeping the posture of the substrate constant. In this way, it is possible to selectively carry the noble metal fine particles on a specific region of the substrate. That is, the noble metal fine particles can be selectively supported on the surface on which the film is formed.

例えば、図2に示すように、板状の支持体12の一方の主面上に形成した膜11(例えば酸化チタン膜)に貴金属微粒子を担持させる場合には、膜11が陰極5bの方向を向くように、陽極5aと陰極5bとの間に膜付き支持体13を配置する。そして、膜付き支持体13の位置を固定した状態で、直流電圧をコロイド溶液21に印加するとともに、マグネティックスターラー7でコロイド溶液21を撹拌する。このようにすれば、貴金属微粒子が膜11上に選択的に担持され、膜11が形成されていない支持体12の裏面には、貴金属微粒子がほとんど担持されない。   For example, as shown in FIG. 2, in the case where noble metal fine particles are supported on a film 11 (for example, a titanium oxide film) formed on one main surface of a plate-like support 12, the film 11 is oriented in the direction of the cathode 5b. A support 13 with a film is arranged between the anode 5a and the cathode 5b so as to face. Then, with the position of the support 13 with the film fixed, a DC voltage is applied to the colloidal solution 21 and the colloidal solution 21 is stirred by the magnetic stirrer 7. In this way, the noble metal fine particles are selectively carried on the film 11, and the noble metal fine particles are hardly carried on the back surface of the support 12 on which the film 11 is not formed.

また、コロイド溶液に交流電圧を印加する場合、電極5a,5b間に基体を配置すれば、基体の全体に均一に貴金属微粒子を担持させることが可能である。交流電圧の周波数は、例えば、数十Hz〜数百Hzの範囲で調節すればよい。また、直流電圧を印加する場合であっても、電極5a,5bと基体との位置関係を変化させながら、貴金属微粒子を基体に担持させるようにすれば、交流電圧を印加する場合と同様の効果を得ることができる。   Further, when an alternating voltage is applied to the colloidal solution, noble metal fine particles can be uniformly supported on the entire substrate by disposing the substrate between the electrodes 5a and 5b. What is necessary is just to adjust the frequency of an alternating voltage in the range of several dozen Hz-several hundred Hz, for example. Even when a DC voltage is applied, the same effect as when an AC voltage is applied can be obtained by supporting the noble metal fine particles on the substrate while changing the positional relationship between the electrodes 5a and 5b and the substrate. Can be obtained.

貴金属微粒子をコロイドとして含むコロイド溶液を以下のようにして調製した。   A colloid solution containing precious metal fine particles as a colloid was prepared as follows.

まず、イオン交換および限外濾過した純水を、沸騰および還流させ、溶存酸素を除去した。次に、貴金属塩として、白金の塩化物であるヘキサクロロ白金酸6水和物にこの純水を加えて、ヘキサクロロ白金酸水溶液を調製した。また、クエン酸ナトリウムを上述の純水を加えて、クエン酸ナトリウム水溶液を調製した。   First, ion-exchanged and ultrafiltered pure water was boiled and refluxed to remove dissolved oxygen. Next, as a noble metal salt, this pure water was added to hexachloroplatinic acid hexahydrate, which is a chloride of platinum, to prepare an aqueous hexachloroplatinic acid solution. Moreover, the above-mentioned pure water was added to sodium citrate to prepare a sodium citrate aqueous solution.

続いて、煮沸還流して溶存酸素を除去した純水に、ヘキサクロロ白金酸水溶液を投入した後、煮沸還流を30分間行い、さらにクエン酸ナトリウム水溶液を投入した。投入後、煮沸還流を継続し、白金の還元反応を進行させた。還元反応開始から2時間後に反応を止めて、反応溶液を室温にまで急冷した。   Subsequently, a hexachloroplatinic acid aqueous solution was added to pure water that had been boiled and refluxed to remove dissolved oxygen, and then boiled and refluxed for 30 minutes, and a sodium citrate aqueous solution was further added. After the addition, boiling reflux was continued to promote the platinum reduction reaction. The reaction was stopped 2 hours after the start of the reduction reaction, and the reaction solution was rapidly cooled to room temperature.

冷却した反応溶液をイオン交換樹脂MB−1(オルガノ株式会社製)を詰めたカラムに通し、反応溶液中に残留する金属イオンおよび還元剤を取り除いて、安定な白金コロイド溶液を得た。ここで、白金とクエン酸ナトリウムとのモル比を適宜変更して、コロイド溶液No.1〜5とした(表1参照)。なお、コロイド溶液No.4とNo.5は、上述した白金の還元反応を2段階で行い、微粒子(コロイド)の粒径を大きくしたものである。   The cooled reaction solution was passed through a column packed with ion exchange resin MB-1 (manufactured by Organo Corporation), and metal ions and reducing agent remaining in the reaction solution were removed to obtain a stable platinum colloid solution. Here, the molar ratio of platinum and sodium citrate was changed as appropriate, so that the colloid solution No. 1 to 5 (see Table 1). The colloid solution No. 4 and no. No. 5 performs the platinum reduction reaction described above in two stages to increase the particle size of the fine particles (colloid).

得られたコロイド溶液にコロイドとして含まれる白金微粒子は、透過電子顕微鏡(TEM)による観察にて粒径の測定を行った。具体的には、コロイド溶液の適量をシートに滴下および乾燥させて粒径測定用試料とし、この粒径測定用試料についてTEM観察を行った。TEM像に現れた白金微粒子の粒径を見積もり、平均粒径を導出した。その結果、平均粒径は、1.1〜5.5nmの範囲であった。また、白金微粒子の80%以上が、平均粒径の±30%範囲内に分布しており、粒径が揃っていることも確認した。表1には、各コロイド溶液における平均粒径と、平均粒径の±30%範囲内に分布している存在割合(%)を示した。   The platinum fine particles contained as a colloid in the obtained colloid solution were measured for particle diameter by observation with a transmission electron microscope (TEM). Specifically, an appropriate amount of the colloidal solution was dropped on a sheet and dried to prepare a particle size measurement sample, and the particle size measurement sample was observed by TEM. The particle diameter of platinum fine particles appearing in the TEM image was estimated, and the average particle diameter was derived. As a result, the average particle size was in the range of 1.1 to 5.5 nm. Further, it was confirmed that 80% or more of the platinum fine particles were distributed within a range of ± 30% of the average particle diameter, and the particle diameters were uniform. Table 1 shows the average particle diameter in each colloid solution and the abundance ratio (%) distributed within a range of ± 30% of the average particle diameter.

Figure 2006051825
Figure 2006051825

このようにして得た貴金属微粒子は、その粒径が揃っている、という特徴を有している。このように、粒径の揃った貴金属微粒子をコロイドとして含むコロイド溶液を用いれば、基体表面における貴金属微粒子の分布を均一にしやすい。   The noble metal fine particles obtained in this way are characterized by their uniform particle sizes. Thus, if a colloidal solution containing noble metal fine particles having a uniform particle size as a colloid is used, the distribution of the noble metal fine particles on the substrate surface can be easily made uniform.

さらに、白金の塩化物に代えて、金の塩化物である塩化金酸を用い、同様にして安定なコロイド溶液を得た。このコロイド溶液にコロイドとして含まれる金微粒子について、白金の場合と同様の測定を行って粒径の分布を測定した。その結果を表2に示す。   Furthermore, instead of platinum chloride, chloroauric acid, which is a gold chloride, was used to obtain a stable colloidal solution in the same manner. With respect to the gold fine particles contained as a colloid in this colloid solution, the same measurement as in the case of platinum was performed to measure the particle size distribution. The results are shown in Table 2.

Figure 2006051825
Figure 2006051825

以上より、金微粒子でも、その80%以上が、平均粒径の±30%範囲内に分布しており、粒径が揃っていることを確認した。また、白金微粒子および金微粒子のいずれについても、還元剤の使用量によって多少のバラつきが生じたが、平均粒径は100nm以下であった。   From the above, it was confirmed that 80% or more of the gold fine particles were distributed within a range of ± 30% of the average particle size, and the particle size was uniform. Moreover, although both the platinum fine particles and the gold fine particles varied somewhat depending on the amount of the reducing agent used, the average particle size was 100 nm or less.

(基体の予備検討)
本発明の方法を適用可能な基体について、予備的な検討を行った。
上述した白金コロイド溶液(No.1)をビーカーに入れ、マグネティックスターラーと回転子で撹拌しながら、直流電源により、2つの電極5a,5b間に直流電圧を印加し、白金微粒子を各種基体に担持させた。なお、電極5a,5bはともにステンレス鋼板であり、電極面積5cm、電極間距離1.5cmとした。
(Preliminary examination of substrate)
Preliminary studies were made on substrates to which the method of the present invention can be applied.
The platinum colloid solution (No. 1) described above is put in a beaker, and a DC voltage is applied between the two electrodes 5a and 5b by a DC power source while stirring with a magnetic stirrer and a rotor, thereby supporting platinum fine particles on various substrates. I let you. The electrodes 5a and 5b are both stainless steel plates, and have an electrode area of 5 cm 2 and an interelectrode distance of 1.5 cm.

その結果、ガラスビーズ(多孔質体)、ガラスビーズ(細孔なし)、ガラス粉末、ガラス繊維、カーボン粉末、酸化チタン粉末およびアニオン交換樹脂に白金微粒子を担持可能であることを確認した。   As a result, it was confirmed that platinum fine particles can be supported on glass beads (porous body), glass beads (no pores), glass powder, glass fiber, carbon powder, titanium oxide powder and anion exchange resin.

(実施例1)
実施例1は、貴金属として白金を、基体として酸化チタン粉末を用いた例である。図1を参照して説明する。
(Example 1)
Example 1 is an example using platinum as a noble metal and titanium oxide powder as a substrate. A description will be given with reference to FIG.

まず、上述のように調製したコロイド溶液No.3を煮沸して濃縮した濃縮コロイド溶液(白金濃度1500mg/L)100mLと、酸化チタン粉末(粒径:約7nm、ST−01、石原産業製)1000mgとを、容器4(200mLビーカー)中にて混合し、混合溶液22を得た。このとき混合溶液22は黒色に懸濁していた。この混合溶液22をマグネティックスターラー7と回転子6で撹拌しながら、直流電源3により、2つの電極5a,5b間に50Vの直流電圧を2時間印加し、白金微粒子を酸化チタン粉末に担持させる担持工程を実施した。2つの電極5a,5bはともにステンレス鋼板であり、電極面積は5cm2、電極間距離は1.5cmとした。First, colloidal solution No. 1 prepared as described above. Concentrated colloidal solution (platinum concentration 1500 mg / L) 100 mL boiled 3 and 1000 mg of titanium oxide powder (particle size: about 7 nm, ST-01, manufactured by Ishihara Sangyo) in container 4 (200 mL beaker) And mixed to obtain a mixed solution 22. At this time, the mixed solution 22 was suspended in black. While this mixed solution 22 is being stirred by the magnetic stirrer 7 and the rotor 6, a direct current power source 3 applies a direct current voltage of 50 V between the two electrodes 5a and 5b for 2 hours to carry platinum fine particles on the titanium oxide powder. The process was carried out. The two electrodes 5a and 5b are both stainless steel plates, the electrode area is 5 cm 2 , and the distance between the electrodes is 1.5 cm.

上記の担持工程終了後、混合溶液はその上部が透明になっており、白金微粒子が酸化チタン粉末に吸着担持され、ビーカー底部に沈殿していた。   After completion of the above supporting step, the upper part of the mixed solution was transparent, and the platinum fine particles were adsorbed and supported on the titanium oxide powder, and precipitated at the bottom of the beaker.

この白金微粒子が担持された酸化チタン粉末を取り出し、乾燥後にプラズマ発光(ICP)分析を実施した。この場合のICP分析は、白金微粒子を担持した酸化チタン粉末を王水で溶解後、霧化させ、元素の発光波長と発光強度より元素の同定および定量を行った。定量値から、酸化チタン粉末に担持された白金の質量(白金担持量)を算出した。これより、酸化チタン粉末に担持された白金微粒子の担持率を算出したところ、12.3質量%であった。ここで、この担持率は次式(数1)のように定義した。   The titanium oxide powder carrying the platinum fine particles was taken out, dried and subjected to plasma emission (ICP) analysis. In the ICP analysis in this case, titanium oxide powder carrying platinum fine particles was dissolved in aqua regia and atomized, and the element was identified and quantified from the emission wavelength and emission intensity of the element. From the quantitative value, the mass of platinum supported on the titanium oxide powder (platinum supported amount) was calculated. From this, the loading rate of the platinum fine particles carried on the titanium oxide powder was calculated to be 12.3% by mass. Here, this loading rate was defined as the following equation (Equation 1).

(数1)
白金微粒子担持率(%)=[白金担持量/(酸化チタン量+白金担持量)]×100
(Equation 1)
Platinum fine particle supporting rate (%) = [platinum supporting amount / (titanium oxide amount + platinum supporting amount)] × 100

また、混合溶液に含まれる白金の質量(ICP分析によって定量)と、酸化チタン粉末に担持された白金の質量との比を求めたところ、約95質量%であった。   Further, the ratio of the mass of platinum contained in the mixed solution (determined by ICP analysis) to the mass of platinum supported on the titanium oxide powder was determined to be about 95% by mass.

この結果から、電圧を印加することにより、混合溶液中の白金微粒子のほとんどが、酸化チタン粉末に担持された、と判断できる。   From this result, it can be determined that by applying a voltage, most of the platinum fine particles in the mixed solution were supported on the titanium oxide powder.

(比較例1)
実施例1と同じ実験条件で、電圧印加のみを実施しなかった場合、撹拌2時間後も混合溶液は黒色に懸濁したままであった。これは、白金微粒子が分散した状態を維持し、酸化チタン粉末への吸着担持が不十分であったことを示している。この白金微粒子が担持された酸化チタン粉末を乾燥後、実施例1と同様にICP分析を実施したところ、白金微粒子の担持率は1.2質量%であった。
(Comparative Example 1)
When only voltage application was not performed under the same experimental conditions as in Example 1, the mixed solution remained suspended in black even after 2 hours of stirring. This indicates that the state in which the platinum fine particles are dispersed is maintained, and the adsorption / support on the titanium oxide powder is insufficient. The titanium oxide powder carrying the platinum fine particles was dried and then subjected to ICP analysis in the same manner as in Example 1. As a result, the platinum fine particle carrying rate was 1.2% by mass.

実施例1と比較例1の結果より、混合溶液(酸化チタン粉末を混合した白金コロイド溶液)に電圧を印加することにより、白金微粒子の担持率を10倍以上増加させることが可能であった。   From the results of Example 1 and Comparative Example 1, it was possible to increase the support ratio of platinum fine particles by 10 times or more by applying a voltage to the mixed solution (platinum colloid solution mixed with titanium oxide powder).

(実施例2)
実施例2は、実施例1と白金濃度を変更し、基体としてカーボン粉末を用いた例である。まず、表1に示すコロイド溶液No.1(白金濃度135mg/L)150mLと、カーボン粉末(粒径:約30nm、Vulcan XC-72R、キャボット製)76.5mgとを容器(200mLビーカー)内で混合し混合溶液を得た。このとき混合溶液は黒色に懸濁していた。この混合溶液をスターラーで撹拌しながら、直流電源3により、2つの電極5a,5b間に50Vの直流電圧を3時間印加し、白金微粒子をカーボン粉末に担持させた。実験条件は上述の実施例1と同様である。その結果、上述の実施例1と同様に、電圧を印加した後は、混合溶液の上部が透明になり、白金微粒子がカーボン粉末に吸着担持され、ビーカー底部に沈殿していた。
(Example 2)
Example 2 is an example in which the platinum concentration was changed from that of Example 1 and carbon powder was used as the substrate. First, the colloid solution No. 1 shown in Table 1 was used. 150 mL of 1 (platinum concentration 135 mg / L) and 76.5 mg of carbon powder (particle size: about 30 nm, Vulcan XC-72R, manufactured by Cabot) were mixed in a container (200 mL beaker) to obtain a mixed solution. At this time, the mixed solution was suspended in black. While stirring this mixed solution with a stirrer, a DC voltage of 50 V was applied between the two electrodes 5a and 5b by the DC power source 3 for 3 hours to support the platinum fine particles on the carbon powder. The experimental conditions are the same as in Example 1 above. As a result, similarly to Example 1 described above, after the voltage was applied, the upper part of the mixed solution became transparent, and the platinum fine particles were adsorbed and supported on the carbon powder and precipitated at the bottom of the beaker.

(比較例2)
実施例2と同じ実験条件で、混合溶液に電圧印加しなかった場合である。撹拌を3時間行った後も、混合溶液は黒色に懸濁したままであった。これは、カーボン粉末への白金微粒子の吸着担持が不十分であり、白金微粒子が混合溶液中で分散した状態を維持していることを示している。
(Comparative Example 2)
This is a case where no voltage was applied to the mixed solution under the same experimental conditions as in Example 2. Even after stirring for 3 hours, the mixed solution remained suspended in black. This indicates that the adsorption of platinum fine particles on the carbon powder is insufficient, and the platinum fine particles are maintained in a dispersed state in the mixed solution.

(実施例3)
実施例3は、基体として膜を用いた例である。図2を用いて説明する。
実施例2で用いたコロイド溶液No.1(白金濃度135mg/L)200mLを、容器(ビーカー)に入れ、図2で説明したように、コロイド溶液に面積25cm2のガラス基板上に作製した酸化チタン膜を浸漬させ、この酸化チタン膜付きガラス基板が2つの電極5a,5b間に位置するように配置した。このコロイド溶液をマグネティックスターラー7と回転子6で撹拌しながら、直流電源3により電極5a,5b間に直流電圧50Vを1時間印加し、白金微粒子を酸化チタン膜に担持させた。この際、撹拌速度は酸化チタン膜付きガラス基板が倒れない程度に設定した。その他の条件は、上述の実施例1と同様である。
(Example 3)
Example 3 is an example using a film as a substrate. This will be described with reference to FIG.
The colloidal solution No. used in Example 2 200 mL of 1 (platinum concentration 135 mg / L) is put in a container (beaker), and the titanium oxide film produced on the glass substrate having an area of 25 cm 2 is immersed in the colloid solution as described in FIG. The attached glass substrate was disposed so as to be positioned between the two electrodes 5a and 5b. While stirring this colloidal solution with the magnetic stirrer 7 and the rotor 6, a DC voltage 50V was applied between the electrodes 5a and 5b for 1 hour by the DC power source 3 to support the platinum fine particles on the titanium oxide film. At this time, the stirring speed was set to such an extent that the glass substrate with the titanium oxide film did not fall down. Other conditions are the same as in the first embodiment.

(比較例3)
実施例3と同じ実験条件で、コロイド溶液に電圧を印加せず、酸化チタン膜付きガラス基板の浸漬のみを行った。1時間浸漬した後、酸化チタン膜表面を超純水で軽くすすいで、白金微粒子を担持させた酸化チタン膜を得た。
(Comparative Example 3)
Under the same experimental conditions as in Example 3, no voltage was applied to the colloidal solution, and only the glass substrate with a titanium oxide film was immersed. After immersion for 1 hour, the surface of the titanium oxide film was rinsed lightly with ultrapure water to obtain a titanium oxide film carrying platinum fine particles.

実施例3と比較例3との比較のために、これら2つの白金微粒子担持体を、過酸化水素水に浸すことにより、白金微粒子の担持状況を調べた。膜表面に白金微粒子が担持されている場合、白金の触媒能により過酸化水素水が水と酸素に分解され、膜表面から酸素の泡が発生するはずである。   For comparison between Example 3 and Comparative Example 3, the support state of platinum fine particles was examined by immersing these two platinum fine particle carriers in hydrogen peroxide water. When platinum fine particles are supported on the film surface, the hydrogen peroxide solution should be decomposed into water and oxygen by the catalytic ability of platinum, and oxygen bubbles should be generated from the film surface.

実施例3と比較例3との酸化チタン膜を比較したところ、比較例3に比べ実施例3の膜表面からは、多量の酸素気泡が確認された。すなわち、コロイド溶液に電圧を印加することにより、白金微粒子の担持量が増加した。   When the titanium oxide films of Example 3 and Comparative Example 3 were compared, a large amount of oxygen bubbles were confirmed from the film surface of Example 3 as compared to Comparative Example 3. That is, the amount of platinum fine particles supported was increased by applying a voltage to the colloidal solution.

(実施例4)
実施例4は、粒子状のアニオン交換樹脂を基体として用いた例である。まず、表1のコロイド溶液No.1を煮沸および濃縮して、白金濃度350mg/Lとしたコロイド溶液250mLと、アニオン交換樹脂(オルガノ社製、アンバーライトIRA400J CL)100gとを混合して混合溶液を得た。この混合溶液をスターラーで撹拌しながら、直流電源により50Vの直流電圧を5時間印加し、白金微粒子をアニオン交換樹脂に担持させた。2つの電極5a,5bはステンレス鋼板であり、電極面積は5cm2、電極間距離は3cmとした。担持工程終了後、アニオン交換樹脂を取り出し、純水で洗浄した後、50℃で乾燥して、白金微粒子をアニオン交換樹脂に担持させてなる担持体を得た。
Example 4
Example 4 is an example using a particulate anion exchange resin as a substrate. First, the colloid solution No. 1 in Table 1 was used. 1 was boiled and concentrated to obtain a mixed solution by mixing 250 mL of a colloid solution having a platinum concentration of 350 mg / L and 100 g of an anion exchange resin (Amberlite IRA400J CL, manufactured by Organo). While stirring this mixed solution with a stirrer, a DC voltage of 50 V was applied for 5 hours from a DC power source, and platinum fine particles were supported on the anion exchange resin. The two electrodes 5a and 5b were stainless steel plates, the electrode area was 5 cm 2 , and the distance between the electrodes was 3 cm. After completion of the supporting step, the anion exchange resin was taken out, washed with pure water, and then dried at 50 ° C. to obtain a support in which platinum fine particles were supported on the anion exchange resin.

(比較例4)
実施例4と同じ実験条件で、混合溶液に電圧を印加せず、撹拌のみで担持工程を実施した。担持工程終了後、実施例4と同様の洗浄および乾燥処理を実施し、担持体を得た。
(Comparative Example 4)
Under the same experimental conditions as in Example 4, no voltage was applied to the mixed solution, and the supporting step was performed only by stirring. After the supporting step, the same cleaning and drying treatment as in Example 4 was performed to obtain a supporting body.

[過酸化水素(H22)分解特性による活性比較]
上記のようにして作製した実施例4および比較例4の白金微粒子担持体について、H22の分解特性により活性を比較した。
[Activity comparison by hydrogen peroxide (H 2 O 2 ) decomposition characteristics]
The platinum fine particle carriers of Example 4 and Comparative Example 4 produced as described above were compared in activity based on the decomposition characteristics of H 2 O 2 .

濃度30質量%の過酸化水素水15mLを三角フラスコに入れた後、温度50℃の湯浴中で5分間保持した。続いて、50mgの白金微粒子担持体を三角フラスコに入れ、素早くゴム栓をした。三角フラスコには、ゴム栓およびガラス管を介して流量計が接続してある。白金微粒子担持体を三角フラスコに投入した時点を基準として、発生酸素量を15秒毎に3分経過するまで時系列で測定した。そして、最も発生量の多い時間帯を3点選び出して合計し(合計45秒)、この合計発生量から単位時間あたりの酸素発生量(mL/分)を算出した。単位時間あたりの酸素発生量(mL/分)をH22分解特性として表3に示す。After putting 15 mL of hydrogen peroxide solution having a concentration of 30% by mass into an Erlenmeyer flask, it was kept in a hot water bath at a temperature of 50 ° C. for 5 minutes. Subsequently, 50 mg of platinum fine particle support was placed in an Erlenmeyer flask and quickly plugged with a rubber stopper. A flow meter is connected to the Erlenmeyer flask via a rubber stopper and a glass tube. Using the time when the platinum fine particle support was put into the Erlenmeyer flask as a reference, the amount of generated oxygen was measured in chronological order until 15 minutes passed every 15 seconds. Then, three points with the highest generation amount were selected and totaled (total 45 seconds), and the oxygen generation amount (mL / min) per unit time was calculated from the total generation amount. Table 3 shows the oxygen generation amount (mL / min) per unit time as H 2 O 2 decomposition characteristics.

Figure 2006051825
Figure 2006051825

実施例4の白金微粒子担持体は、比較例4の白金微粒子担持体よりも格段に優れたH22分解特性を有していることが分かった。これは、担持工程実施時に混合溶液に電圧を印加することにより、基体への白金微粒子の担持が促進され、白金微粒子の基体への担持量が増大したためといえる。It was found that the platinum fine particle support of Example 4 had H 2 O 2 decomposition characteristics far superior to the platinum fine particle support of Comparative Example 4. This can be said to be because the application of a voltage to the mixed solution during the carrying step promotes the carrying of platinum fine particles on the substrate and the amount of platinum fine particles carried on the substrate increases.

本発明により、図3Aに示したように、粉末基体10上に多数の貴金属微粒子2を担持させた貴金属微粒子担持体1や、図3Bに示したように、膜状基体11上に多数の貴金属微粒子2を担持させた貴金属微粒子担持体1’を得ることができる。なお、図3A,図3Bはいずれも、貴金属微粒子担持体1,1’における断面の様子を表している。   According to the present invention, as shown in FIG. 3A, a noble metal fine particle carrier 1 in which a large number of noble metal fine particles 2 are supported on a powder substrate 10, or a large number of noble metals on a film-like substrate 11 as shown in FIG. 3B. A noble metal fine particle carrier 1 ′ carrying fine particles 2 can be obtained. FIGS. 3A and 3B both show cross-sectional views of the noble metal fine particle carrier 1, 1 '.

Claims (12)

貴金属微粒子をコロイドとして含むコロイド溶液と基体とを接触させた状態で、前記コロイド溶液に電圧を印加しながら前記貴金属微粒子を前記基体に担持させる、貴金属微粒子担持体の製造方法。   A method for producing a noble metal fine particle carrier, wherein the noble metal fine particles are supported on the substrate while applying a voltage to the colloid solution in a state where the colloid solution containing the noble metal fine particles as a colloid is in contact with the substrate. 前記基体が、粉末または膜の形態を有する無機材料からなる、請求項1に記載の貴金属微粒子担持体の製造方法。   The method for producing a noble metal fine particle carrier according to claim 1, wherein the substrate is made of an inorganic material having a powder or film form. 前記無機材料が、カーボンまたは酸化チタンである、請求項2に記載の貴金属微粒子担持体の製造方法。   The method for producing a noble metal fine particle carrier according to claim 2, wherein the inorganic material is carbon or titanium oxide. 前記基体が、ビーズ、粉末または繊維の形態を有するガラスからなる、請求項1に記載の貴金属微粒子担持体の製造方法。   The method for producing a noble metal fine particle carrier according to claim 1, wherein the substrate is made of glass having a form of beads, powder or fibers. 前記基体が、高分子材料からなる、請求項1に記載の貴金属微粒子担持体の製造方法。   The method for producing a noble metal fine particle carrier according to claim 1, wherein the substrate is made of a polymer material. 前記高分子材料が、アニオン交換樹脂である、請求項5に記載の貴金属微粒子担持体の製造方法。   The method for producing a noble metal fine particle carrier according to claim 5, wherein the polymer material is an anion exchange resin. 前記貴金属微粒子が、金、銀、白金、パラジウム、イリジウム、ルテニウム、レニウム、オスミウムおよびロジウムからなる群より選ばれる1種を主成分として含む、請求項1に記載の貴金属微粒子担持体の製造方法。   2. The method for producing a noble metal fine particle carrier according to claim 1, wherein the noble metal fine particle contains, as a main component, one selected from the group consisting of gold, silver, platinum, palladium, iridium, ruthenium, rhenium, osmium and rhodium. 前記貴金属微粒子が、実質的に白金からなり、表面に保護コロイドを有さない、請求項1に記載の貴金属微粒子担持体の製造方法。   The method for producing a noble metal fine particle carrier according to claim 1, wherein the noble metal fine particles are substantially made of platinum and have no protective colloid on the surface. 貴金属源および還元剤を含む原料溶液から前記コロイド溶液を調製する、請求項1に記載の貴金属微粒子担持体の製造方法。   The method for producing a noble metal fine particle carrier according to claim 1, wherein the colloidal solution is prepared from a raw material solution containing a noble metal source and a reducing agent. 前記コロイド溶液に含まれる前記貴金属微粒子の平均粒径が100nm以下である、請求項9に記載の貴金属微粒子担持体の製造方法。   The method for producing a noble metal fine particle carrier according to claim 9, wherein an average particle diameter of the noble metal fine particles contained in the colloidal solution is 100 nm or less. 前記コロイド溶液に含まれる前記貴金属微粒子の80%以上が平均粒径から±30%の範囲内に分布している、請求項10に記載の貴金属微粒子担持体の製造方法。   The method for producing a noble metal fine particle carrier according to claim 10, wherein 80% or more of the noble metal fine particles contained in the colloidal solution are distributed within a range of ± 30% from an average particle diameter. 前記コロイド溶液中に配置した陽極と陰極の間に前記基体の位置を固定し、前記コロイド溶液に直流電圧を印加する、請求項1に記載の貴金属微粒子の製造方法。   The method for producing noble metal fine particles according to claim 1, wherein a position of the substrate is fixed between an anode and a cathode disposed in the colloid solution, and a DC voltage is applied to the colloid solution.
JP2006544926A 2004-11-09 2005-11-09 Method for producing noble metal particulate carrier Active JP5001010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006544926A JP5001010B2 (en) 2004-11-09 2005-11-09 Method for producing noble metal particulate carrier

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004324491 2004-11-09
JP2004324491 2004-11-09
PCT/JP2005/020554 WO2006051825A1 (en) 2004-11-09 2005-11-09 Method for producing noble metal-loaded body
JP2006544926A JP5001010B2 (en) 2004-11-09 2005-11-09 Method for producing noble metal particulate carrier

Publications (2)

Publication Number Publication Date
JPWO2006051825A1 true JPWO2006051825A1 (en) 2008-05-29
JP5001010B2 JP5001010B2 (en) 2012-08-15

Family

ID=36336502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006544926A Active JP5001010B2 (en) 2004-11-09 2005-11-09 Method for producing noble metal particulate carrier

Country Status (2)

Country Link
JP (1) JP5001010B2 (en)
WO (1) WO2006051825A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862158B2 (en) * 2006-08-31 2012-01-25 国立大学法人静岡大学 Film forming apparatus and film forming method
JP4786498B2 (en) * 2006-10-23 2011-10-05 日揮触媒化成株式会社 Catalyst production method
WO2009014165A1 (en) * 2007-07-24 2009-01-29 Nippon Sheet Glass Company, Limited Method of concentrating colloid dispersion liquid
JP5479725B2 (en) * 2008-12-24 2014-04-23 株式会社新光化学工業所 Metal nanoparticle colloid, Metal nanoparticle, Multi-component metal nano-particle colloid, Multi-component metal nano-particle, Metal nano-particle colloid production method, Metal nano-particle production method, Multi-component metal nano-particle colloid production method and Multi-component metal nano-particle production Method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042825A (en) * 2000-05-18 2002-02-08 Matsushita Electric Ind Co Ltd Fuel cell electrode catalyst, its manufacturing method, and fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185995A (en) * 2002-12-03 2004-07-02 Nippon Sheet Glass Co Ltd Fuel cell anode, its manufacturing method and fuel cell
JP2005199267A (en) * 2003-12-15 2005-07-28 Nippon Sheet Glass Co Ltd Metal carrier and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042825A (en) * 2000-05-18 2002-02-08 Matsushita Electric Ind Co Ltd Fuel cell electrode catalyst, its manufacturing method, and fuel cell

Also Published As

Publication number Publication date
WO2006051825A1 (en) 2006-05-18
JP5001010B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4564263B2 (en) Ultrafine metal particle-containing photocatalyst and method for producing the same
CN105431230B (en) Method for forming noble metal nanoparticles on a support
CN105457629A (en) Load type nano precious metal catalyst and preparation method and application thereof
Wang et al. Synthesis of Pt and Pd nanosheaths on multi-walled carbon nanotubes as potential electrocatalysts of low temperature fuel cells
JP6653875B2 (en) Method for producing platinum catalyst and fuel cell using the same
Ye et al. Synthesis of chestnut-bur-like palladium nanostructures and their enhanced electrocatalytic activities for ethanol oxidation
JP6116000B2 (en) Method for producing platinum core-shell catalyst and fuel cell using the same
JP2011212666A (en) Platinum core-shell catalyst manufacturing method, and fuel cell using catalyst
JP2005199267A (en) Metal carrier and method for manufacturing the same
WO2008093243A2 (en) Supported platinum and palladium catalysts and preparation method thereof
JP2008251413A (en) Manufacturing method of metal-oxide carrying carbon
JP2006228450A (en) Platinum-carbon complex made by having sponge-like platinum nano sheet carried by carbon, and its manufacturing method
Kang et al. Au@ Pd nanostructures with tunable morphologies and sizes and their enhanced electrocatalytic activity
JP5001010B2 (en) Method for producing noble metal particulate carrier
JPH11100695A (en) Production of titanium material having photocatalytic activity
WO2004098819A1 (en) Three-element metal colloid having three-layer core/shell structure and method for preparing such three-element metal colloid
WO2005056222A1 (en) Metal nanocolloidal liquid, method for producing metal support and metal support
KR101237449B1 (en) A method for preparing Pt thin film using electrospray deposition and Pt thin film formed by the method
Zhao et al. Ordered SiO 2 cavity promoted formation of gold single crystal nanoparticles towards an efficient electrocatalytic application
Chu et al. Synthesis of Truncated‐Octahedral Pt–Pd Nanocrystals Supported on Carbon Black as a Highly Efficient Catalyst for Methanol Oxidation
JP6403046B2 (en) Method for producing catalyst for fuel cell, catalyst using the same and fuel cell
JP2006346571A (en) Method for manufacturing platinum catalyst for fuel cell
JP2005193182A (en) Catalyst and its production method
US20120100985A1 (en) Process for the preparation of a photocatalyst
WO2016143784A1 (en) Method for manufacturing platinum catalyst, and fuel cell using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Ref document number: 5001010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250