JPWO2006035891A1 - Isonitrile compounds and underwater biofouling agents - Google Patents

Isonitrile compounds and underwater biofouling agents Download PDF

Info

Publication number
JPWO2006035891A1
JPWO2006035891A1 JP2006537815A JP2006537815A JPWO2006035891A1 JP WO2006035891 A1 JPWO2006035891 A1 JP WO2006035891A1 JP 2006537815 A JP2006537815 A JP 2006537815A JP 2006537815 A JP2006537815 A JP 2006537815A JP WO2006035891 A1 JPWO2006035891 A1 JP WO2006035891A1
Authority
JP
Japan
Prior art keywords
group
organic
isocyano
added
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006537815A
Other languages
Japanese (ja)
Other versions
JP4933261B2 (en
Inventor
克和 北野
克和 北野
靖行 野方
靖行 野方
勇 坂口
勇 坂口
万蔵 塩野
万蔵 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Central Research Institute of Electric Power Industry
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY, Central Research Institute of Electric Power Industry filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2006537815A priority Critical patent/JP4933261B2/en
Publication of JPWO2006035891A1 publication Critical patent/JPWO2006035891A1/en
Application granted granted Critical
Publication of JP4933261B2 publication Critical patent/JP4933261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/11Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same saturated acyclic carbon skeleton
    • C07C255/12Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same saturated acyclic carbon skeleton containing cyano groups and hydroxy groups bound to the carbon skeleton
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C291/00Compounds containing carbon and nitrogen and having functional groups not covered by groups C07C201/00 - C07C281/00
    • C07C291/10Isocyanides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/64Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms
    • C07C309/67Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/72Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/73Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/26Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C317/28Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to acyclic carbon atoms of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/24Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/25Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1625Non-macromolecular compounds organic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Indole Compounds (AREA)

Abstract

一般式(1):〔式中、R1はCH2X基(Xは水酸基、ハロゲン原子、イソシアノ基、アミノ基、置換アミノ基または置換基を有していてもよい、アルコキシ基、アルケニルオキシ基、アシルオキシル基、有機スルホニルオキシ基、有機スルフェニル基、有機スルフィニル基、有機スルホニル基、アミド基もしくはイミド基を示す)またはCOOR4基(R4は置換基を有していてもよい、アルキル基、アルケニル基またはアラルキル基を示す)を示し、各R2およびR3はそれぞれ独立してアルキル基を示す〕で表されるイソニトリル化合物および該イソニトリル化合物を含有する水中付着生物防汚剤。General formula (1): [wherein R1 is a CH2X group (X is a hydroxyl group, a halogen atom, an isocyano group, an amino group, a substituted amino group, or an optionally substituted alkoxy group, an alkenyloxy group, an acyloxy group. Group, organic sulfonyloxy group, organic sulfenyl group, organic sulfinyl group, organic sulfonyl group, amide group or imide group) or COOR4 group (R4 may have a substituent, alkyl group, alkenyl group) Or an aralkyl group, and each R2 and R3 independently represents an alkyl group], and an underwater-fouling biofouling agent containing the isonitrile compound.

Description

本発明は、水中付着生物に対する忌避効果を有するイソニトリル化合物および該イソニトリル化合物を有効成分として含有する水中付着生物防汚剤に関する。  The present invention relates to an isonitrile compound having a repelling effect on aquatic organisms and an aquatic organism antifouling agent containing the isonitrile compound as an active ingredient.

海洋生物の中でも、汚損生物として知られているフジツボ類、イガイ類、ヒドロ虫類、コケムシ類などの水中付着生物は、船底、養殖用漁網、定置網、ブイなどの漁業関係施設;海底油田リグなどの海中構築物;火力発電所などの臨海工場の冷却水取水路や熱交換器冷却水配管;水族館、栽培漁業センターなどの海水取水施設などに付着して、船舶の走行抵抗の増大、網目の目詰まりによる作業性の悪化、特に養殖用漁網の目詰まりの場合は海水の流通悪化による養殖魚の成長抑制、ブイの沈下、海水の抵抗増大による海底油田リグ強度の低下、臨海工場の冷却水路の閉塞により冷却水不足となり発電所の出力が低下するなど、多大の被害を与えている。  Among marine life, underwater organisms such as barnacles, mussels, hydro-insects, bryozoans, etc., known as fouling organisms, are fishery-related facilities such as ship bottoms, aquaculture nets, stationary nets, and buoys; subsea oil field rigs, etc. Underwater structures; cooling water intake channels and heat exchanger cooling water pipes of coastal factories such as thermal power plants; adhering to seawater intake facilities such as aquariums and cultivation fisheries centers, increasing ship running resistance, mesh Deterioration of workability due to clogging, especially in the case of clogging of aquaculture fishing nets, suppression of growth of cultured fish due to deterioration of seawater circulation, buoy subsidence, decrease in seabed oil field rig strength due to increased seawater resistance, blockage of cooling water channels in coastal factories As a result, the cooling water is insufficient and the output of the power plant is reduced.

従来、これらの水中付着生物の防除には、トリブチルスズオキシドなどの有機スズ化合物や、亜酸化銅、硫化銅などの銅化合物(例えば、非特許文献1参照)などの重金属を含む防汚剤が用いられている。かかる有機スズ化合物は、優れた防汚効果を有するため、船底塗料として広く用いられてきたが、使用量が増大するにつれて巻貝の不妊化などの海洋生物に対する悪影響を及ぼすことがわかってきた。そのため、わが国では、有機スズ化合物を含む防汚剤は、製造禁止および使用禁止となり、世界的にも使用を禁止する方向で協議が進められている。また、銅化合物、特に亜酸化銅が多量に使用されてきたヨットハーバーなどの場所では、海底への亜酸化銅の蓄積により、海洋生物に悪影響を及ぼす恐れがある程度の濃度に達している例が報告されている。  Conventionally, antifouling agents containing heavy metals such as organotin compounds such as tributyltin oxide and copper compounds such as cuprous oxide and copper sulfide (for example, see Non-Patent Document 1) have been used for the control of these underwater organisms. It has been. Such organotin compounds have been widely used as ship bottom paints because they have an excellent antifouling effect, but have been found to have adverse effects on marine organisms such as sterilization of snails as the amount used increases. For this reason, in Japan, antifouling agents containing organotin compounds have been banned from production and use, and discussions are ongoing in the direction of banning use worldwide. Also, in places such as yacht harbor where copper compounds, particularly cuprous oxide, have been used in large quantities, there is an example where the concentration of cuprous oxide on the sea floor has reached a certain level that could adversely affect marine life. It has been reported.

そこで、現在、経済的であり、かつ無害・無公害の付着生物対策技術の開発が緊急な課題となっており、その中で天然の生体間作用物質(フェロモンやアレロケミカルなどの他個体に影響を及ぼす生体物質)を利用して付着を抑制する方法(例えば、非特許文献2参照)や、それらをリードとしてより性能の優れた合成誘導体を利用して付着を抑制する方法(例えば、特許文献1参照)などが提案されている。  Therefore, the development of technology that is economical, harmless and non-polluting organisms is currently an urgent issue. Among them, natural biological substances (such as pheromones and allelochemicals) A method of suppressing adhesion using a biological substance that has an effect (for example, see Non-Patent Document 2), or a method of suppressing adhesion using a synthetic derivative with better performance using them as a lead (for example, a patent) Document 1) has been proposed.

特開2002−370907号公報JP 2002-370907 A Chem.Rev.2003年、第103号、p.3431−3448Chem. Rev. 2003, No. 103, p. 3431-3448 「電力中央研究所報告 天然由来の付着忌避活性物質に関する文献調査 調査報告:U99024」、平成11年12月、(財)電力中央研究所"Report of the Central Research Institute of Electric Power Research literature on natural repellent active substances: Research report: U99024", December 1999, Central Research Institute of Electric Power

しかしながら、非特許文献2に記載の方法は、実用化するには未だコスト面で課題を有している。また、特許文献1に記載の方法は、合成誘導体の製造工程に高価な有機金属化合物を使用するなどのコスト面における課題を有しており、さらなる改良の余地がある。  However, the method described in Non-Patent Document 2 still has a problem in terms of cost for practical use. Further, the method described in Patent Document 1 has a problem in cost such as using an expensive organometallic compound in the production process of the synthetic derivative, and there is room for further improvement.

しかして、本発明の目的は、前記課題を解決し、魚介類および人体に安全性が高く、かつ低コストで容易に製造可能な水中付着生物防汚剤を提供することにある。  Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide an underwater biofouling antifouling agent that is highly safe for fish and shellfish and the human body and can be easily manufactured at low cost.

本発明は、
[1]一般式(1):
The present invention
[1] General formula (1):

Figure 2006035891
Figure 2006035891

〔式中、RはCHX基(Xは水酸基、ハロゲン原子、イソシアノ基、アミノ基、置換アミノ基または置換基を有していてもよい、アルコキシ基、アルケニルオキシ基、アシルオキシル基、有機スルホニルオキシ基、有機スルフェニル基、有機スルフィニル基、有機スルホニル基、アミド基もしくはイミド基を示す)またはCOOR基(Rは置換基を有していてもよい、アルキル基、アルケニル基またはアラルキル基を示す)を示し、各RおよびRはそれぞれ独立してアルキル基を示す〕
で表されるイソニトリル化合物(以下、「イソニトリル化合物(1)」という)、および
[2]前記イソニトリル化合物(1)を含有する水中付着生物防汚剤(以下、「防汚剤(2)」という)
に関する。
[Wherein, R 1 represents a CH 2 X group (X represents a hydroxyl group, a halogen atom, an isocyano group, an amino group, a substituted amino group, or an optionally substituted alkoxy group, alkenyloxy group, acyloxyl group, An organic sulfonyloxy group, an organic sulfenyl group, an organic sulfinyl group, an organic sulfonyl group, an amide group or an imide group) or a COOR 4 group (R 4 may have an substituent, an alkyl group, an alkenyl group, or Each of R 2 and R 3 independently represents an alkyl group]
And an underwater antifouling agent (hereinafter referred to as “antifouling agent (2)”) containing the isonitrile compound (1). )
About.

本発明の防汚剤(2)は、水中付着生物に対する忌避効果に優れると同時に海洋生物への安全性が高いため、環境保全の観点からも極めて高い価値を有し、また安価な原料から容易に製造することができるため、低コストで提供することが可能である。  The antifouling agent (2) of the present invention has an excellent repellent effect on organisms attached to the water and at the same time has a high safety against marine organisms, so it has extremely high value from the viewpoint of environmental conservation and can be easily obtained from inexpensive raw materials. Therefore, it can be provided at low cost.

合成例2〜4で得られたイソニトリル化合物(1)(CT−1〜CT−3)の濃度とフジツボ幼生の付着率およびフジツボ幼生の死亡率との関係を示す図である。It is a figure which shows the relationship between the density | concentration of the isonitrile compound (1) (CT-1 to CT-3) obtained by the synthesis examples 2-4, the adhesion rate of a barnacle larva, and the mortality of a barnacle larva. 合成例5〜8で得られたイソニトリル化合物(1)(CT−4〜CT−7)の濃度とフジツボ幼生の付着率およびフジツボ幼生の死亡率との関係を示す図である。It is a figure which shows the relationship between the density | concentration of the isonitrile compound (1) (CT-4-CT-7) obtained by the synthesis examples 5-8, the adhesion rate of a barnacle larva, and the mortality of a barnacle larva. 合成例9〜11で得られたイソニトリル化合物(1)(CT−8〜CT−10)の濃度とフジツボ幼生の付着率およびフジツボ幼生の死亡率との関係を示す図である。It is a figure which shows the relationship between the density | concentration of the isonitrile compound (1) (CT-8-CT-10) obtained by the synthesis examples 9-11, the adhesion rate of a barnacle larva, and the mortality of a barnacle larva. 合成例12〜14で得られたイソニトリル化合物(1)(CT−11〜CT−14)の濃度とフジツボ幼生の付着率およびフジツボ幼生の死亡率との関係を示す図である。It is a figure which shows the relationship between the density | concentration of the isonitrile compound (1) (CT-11-CT-14) obtained by the synthesis examples 12-14, the adhesion rate of a barnacle larva, and the mortality of a barnacle larva. 合成例15〜18で得られたイソニトリル化合物(1)(CT−15〜CT−18)の濃度とフジツボ幼生の付着率およびフジツボ幼生の死亡率との関係を示す図である。It is a figure which shows the relationship between the density | concentration of the isonitrile compound (1) (CT-15-CT-18) obtained by the synthesis examples 15-18, the adhesion rate of a barnacle larva, and the mortality of a barnacle larva. 合成例19〜22で得られたイソニトリル化合物(1)(CT−19〜CT−22)の濃度とフジツボ幼生の付着率およびフジツボ幼生の死亡率との関係を示す図である。It is a figure which shows the relationship between the density | concentration of the isonitrile compound (1) (CT-19-CT-22) obtained by the synthesis examples 19-22, the adhesion rate of a barnacle larva, and the mortality of a barnacle larva. 合成例23で得られたイソニトリル化合物(1)(CT−23)の濃度とフジツボ幼生の付着率およびフジツボ幼生の死亡率との関係を示す図である。It is a figure which shows the relationship between the density | concentration of the isonitrile compound (1) (CT-23) obtained by the synthesis example 23, the adhesion rate of a barnacle larva, and the mortality of a barnacle larva. 比較例における硫酸銅の濃度とフジツボ幼生の付着率およびフジツボ幼生の死亡率との関係を示す図である。It is a figure which shows the relationship between the density | concentration of the copper sulfate in a comparative example, the adhesion rate of a barnacle larva, and the mortality of a barnacle larva.

一般式(1)において、RはCHX基(Xは水酸基、ハロゲン原子、イソシアノ基、アミノ基、置換アミノ基または置換基を有していてもよい、アルコキシ基、アルケニルオキシ基、アシルオキシル基、有機スルホニルオキシ基、有機スルフェニル基、有機スルフィニル基、有機スルホニル基、アミド基もしくはイミド基を示す)またはCOOR基(Rは置換基を有していてもよい、アルキル基、アルケニル基またはアラルキル基を示す)を示す。In the general formula (1), R 1 is a CH 2 X group (X is a hydroxyl group, a halogen atom, an isocyano group, an amino group, a substituted amino group, or an optionally substituted alkoxy group, alkenyloxy group, acyloxy group. Group, an organic sulfonyloxy group, an organic sulfenyl group, an organic sulfinyl group, an organic sulfonyl group, an amide group or an imide group) or a COOR 4 group (R 4 is an alkyl group which may have a substituent, An alkenyl group or an aralkyl group).

Xが示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子またはヨウ素原子が挙げられる。  Examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.

Xが示す置換アミノ基としては、例えば、メチルアミノ基、エチルアミノ基,フェニルアミノ基、ジメチルアミノ基、ジエチルアミノ基、フェニルメチルアミノ基、ピロリジニル基、ピペリジニル基、モルフォリノ基、ピペラジニル基などが挙げられる。  Examples of the substituted amino group represented by X include a methylamino group, an ethylamino group, a phenylamino group, a dimethylamino group, a diethylamino group, a phenylmethylamino group, a pyrrolidinyl group, a piperidinyl group, a morpholino group, and a piperazinyl group. .

Xが示すアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基、オクタデシルオキシ基などの、好ましくは炭素数1〜18のアルコキシ基が挙げられる。  As the alkoxy group represented by X, for example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a hexyloxy group, an octyloxy group, a dodecyloxy group, an octadecyloxy group, and the like, preferably an alkoxy group having 1 to 18 carbon atoms Is mentioned.

Xが示すアルケニルオキシ基としては、例えば、アリルオキシ基、ブテニルオキシ基、オクテニルオキシ基などの、好ましくは炭素数2〜8のアルケニルオキシ基が挙げられる。  Examples of the alkenyloxy group represented by X include alkenyloxy groups having preferably 2 to 8 carbon atoms, such as allyloxy group, butenyloxy group, octenyloxy group and the like.

Xが示すアシルオキシル基としては、例えば、アセトキシ基、プロパノイルオキシ基、オクテノイルオキシ基、ベンゾイルオキシ基、アクリロイルオキシ基、メタクリロイルオキシ基などの、好ましくは炭素数1〜8のアシルオキシル基が挙げられる。  Examples of the acyloxyl group represented by X include an acetoxy group, a propanoyloxy group, an octenoyloxy group, a benzoyloxy group, an acryloyloxy group, and a methacryloyloxy group, preferably an acyloxyl group having 1 to 8 carbon atoms. Can be mentioned.

Xが示す有機スルホニルオキシ基としては、例えば、メタンスルホニルオキシ基、ベンゼンスルホニルオキシ基、p−トルエンスルホニルオキシ基などが挙げられる。  Examples of the organic sulfonyloxy group represented by X include a methanesulfonyloxy group, a benzenesulfonyloxy group, and a p-toluenesulfonyloxy group.

Xが示す有機スルフェニル基としては、例えば、メタンスルフェニル基、エタンスルフェニル基、オクタンスルフェニル基、ベンゼンスルフェニル基などが挙げられる。  Examples of the organic sulfenyl group represented by X include a methanesulfenyl group, an ethanesulfenyl group, an octanesulphenyl group, and a benzenesulfenyl group.

Xが示す有機スルフィニル基としては、例えば、メタンスルフィニル基、オクタンスルフィニル基、ベンゼンスルフィニル基、p−トルエンスルフィニル基などが挙げられる。  Examples of the organic sulfinyl group represented by X include a methanesulfinyl group, an octanesulphinyl group, a benzenesulfinyl group, and a p-toluenesulfinyl group.

Xが示す有機スルホニル基としては、例えば、メタンスルホニル基、オクタンスルホニル基、ベンゼンスルホニル基、p−トルエンスルホニル基などが挙げられる。  Examples of the organic sulfonyl group represented by X include a methanesulfonyl group, an octanesulfonyl group, a benzenesulfonyl group, and a p-toluenesulfonyl group.

Xが示すアミド基としては、例えば、ホルムアミド基、アセトアミド基、ベンズアミド基などが挙げられる。  Examples of the amide group represented by X include a formamide group, an acetamide group, a benzamide group, and the like.

Xが示すイミド基としては、例えば、フタルイミド基などが挙げられる。  Examples of the imide group represented by X include a phthalimide group.

前記Xが示すアルコキシ基、アルケニルオキシ基、アシルオキシル基、有機スルホニルオキシ基、有機スルフェニル基、有機スルフィニル基、有機スルホニル基、アミド基およびイミド基は、それぞれ置換基を有していてもよい。かかる置換基としては、例えば、水酸基;メチル基、エチル基、プロピル基、ブチル基などの好ましくは炭素数1〜4のアルキル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;イソシアノ基などが挙げられる。  The alkoxy group, alkenyloxy group, acyloxyl group, organic sulfonyloxy group, organic sulfenyl group, organic sulfinyl group, organic sulfonyl group, amide group, and imide group represented by X may each have a substituent. . Examples of the substituent include, for example, a hydroxyl group; an alkyl group having preferably 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; An isocyano group etc. are mentioned.

また、COOR基において、Rが示すアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などの好ましくは炭素数1〜8のアルキル基が挙げられる。In the COOR 4 group, as the alkyl group represented by R 4 , for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, etc. Of the alkyl group.

が示すアルケニル基としては、例えば、アリル基、プレニル基、オクテニル基などの好ましくは炭素数2〜8のアルケニル基が挙げられる。Examples of the alkenyl group represented by R 4 include preferably alkenyl groups having 2 to 8 carbon atoms such as an allyl group, a prenyl group, and an octenyl group.

が示すアラルキル基としては、例えば、ベンジル基、フェネチル基、ナフチルメチル基などが挙げられる。Examples of the aralkyl group represented by R 4 include a benzyl group, a phenethyl group, and a naphthylmethyl group.

前記Rが有していてもよい置換基としては、例えば、水酸基;メチル基、エチル基、プロピル基、ブチル基などの好ましくは炭素数1〜4のアルキル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;イソシアノ基などが挙げられる。Examples of the substituent that R 4 may have include, for example, a hydroxyl group; an alkyl group having preferably 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group; a fluorine atom, a chlorine atom, and bromine A halogen atom such as an atom or iodine atom; an isocyano group;

一般式(1)において、各RおよびRは、それぞれ独立してアルキル基を示す。前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基などの、好ましくは炭素数1〜4のアルキル基などが挙げられる。In General formula (1), each R < 2 > and R < 3 > shows an alkyl group each independently. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group, preferably an alkyl group having 1 to 4 carbon atoms.

本発明のイソニトリル化合物(1)の代表例としては、7−イソシアノ−3,7−ジメチル−1−オクタノール、酢酸7−イソシアノ−3,7−ジメチルオクチル、安息香酸7−イソシアノ−3,7−ジメチルオクチル、1−クロロ−7−イソシアノ−3,7−ジメチルオクタン、p−トルエンスルホン酸7−イソシアノ−3,7−ジメチルオクチル、8−(7−イソシアノ−3,7−ジメチルオクチルオキシ)−1−オクテン、7−イソシアノ−3,7−ジメチルオクタン酸7−オクテニル、7−オクテン酸7−イソシアノ−3,7−ジメチルオクチル、1−ブロモ−7−イソシアノ−3,7−ジメチルオクタン、1−ヨード−7−イソシアノ−3,7−ジメチルオクタン、1−フルオロ−7−イソシアノ−3,7−ジメチルオクタン、7−イソシアノ−1−メトキシ−3,7−ジメチルオクタン、ジ(7−イソシアノ−3,7−ジメチルオクチル)エーテル、(7−イソシアノ−3,7−ジメチルオクチル)(3,7−ジメチル−6−オクテニル)エーテル、ジ(7−イソシアノ−3,7−ジメチルオクチル)スルフィド、ジ(7−イソシアノ−3,7−ジメチルオクチル)スルホキシド、ジ(7−イソシアノ−3,7−ジメチルオクチル)スルホン、N−(7−イソシアノ−3,7−ジメチルオクチル)フタルイミド、N−(7−イソシアノ−3,7−ジメチルオクチル)ホルムアミド、1,7−ジイソシアノ−3,7−ジメチルオクタン、7−イソシアノ−3,7−ジメチルオクチルアミン、N−(7−イソシアノ−3,7−ジメチルオクチル)アセトアミド、1,7−ジイソシアノ−3,7−ジメチルオクタン、7−イソシアノ−3,7−ジメチルオクチルアミン、N−(7−イソシアノ−3,7−ジメチルオクチル)アセトアミド、アクリル酸7−イソシアノ−3,7−ジメチルオクチル、メタクリル酸7−イソシアノ−3,7−ジメチルオクチルなどが挙げられる。  Representative examples of the isonitrile compound (1) of the present invention include 7-isocyano-3,7-dimethyl-1-octanol, 7-isocyano-3,7-dimethyloctyl acetate, and 7-isocyano-3,7-benzoic acid. Dimethyloctyl, 1-chloro-7-isocyano-3,7-dimethyloctane, p-toluenesulfonic acid 7-isocyano-3,7-dimethyloctyl, 8- (7-isocyano-3,7-dimethyloctyloxy)- 1-octene, 7-isocyano-3,7-dimethyloctanoic acid 7-octenyl, 7-octenoic acid 7-isocyano-3,7-dimethyloctyl, 1-bromo-7-isocyano-3,7-dimethyloctane, 1 -Iodo-7-isocyano-3,7-dimethyloctane, 1-fluoro-7-isocyano-3,7-dimethyloctane, 7 Isocyano-1-methoxy-3,7-dimethyloctane, di (7-isocyano-3,7-dimethyloctyl) ether, (7-isocyano-3,7-dimethyloctyl) (3,7-dimethyl-6-octenyl) ) Ether, di (7-isocyano-3,7-dimethyloctyl) sulfide, di (7-isocyano-3,7-dimethyloctyl) sulfoxide, di (7-isocyano-3,7-dimethyloctyl) sulfone, N-- (7-isocyano-3,7-dimethyloctyl) phthalimide, N- (7-isocyano-3,7-dimethyloctyl) formamide, 1,7-diisocyano-3,7-dimethyloctane, 7-isocyano-3,7 -Dimethyloctylamine, N- (7-isocyano-3,7-dimethyloctyl) acetamide, 1,7-di Socyano-3,7-dimethyloctane, 7-isocyano-3,7-dimethyloctylamine, N- (7-isocyano-3,7-dimethyloctyl) acetamide, 7-isocyano-3,7-dimethyloctyl acrylate, Examples include 7-isocyano-3,7-dimethyloctyl methacrylate.

イソニトリル化合物(1)の製造方法に特に制限はない。イソニトリル化合物(1)のXが水酸基の化合物は、例えば、ルイス酸の存在下でシトロネロール(またはシトロネロールを硫酸などの酸触媒で水和した化合物)とトリメチルシリルシアニドなどのイソシアノ化剤とを常温常圧下で反応させることにより得ることができる。かかるルイス酸としては、例えば、臭化亜鉛、塩化亜鉛、ヨウ化亜鉛、トリフルオロメタンスルホン酸銀、過塩素酸銀、テトラフルオロホウ酸銀などが挙げられる。なお、シトロネロールは天然抽出物の精留またはシトラールやゲラニオールの水素添加などによって容易に低コストで入手することができる。  There is no restriction | limiting in particular in the manufacturing method of an isonitrile compound (1). In the isonitrile compound (1), a compound in which X is a hydroxyl group is obtained by, for example, reacting citronellol (or a compound obtained by hydrating citronellol with an acid catalyst such as sulfuric acid) in the presence of a Lewis acid and an isocyanating agent such as trimethylsilyl cyanide at room temperature. It can be obtained by reacting under pressure. Examples of the Lewis acid include zinc bromide, zinc chloride, zinc iodide, silver trifluoromethanesulfonate, silver perchlorate, and silver tetrafluoroborate. Citronellol can be easily obtained at low cost by rectification of a natural extract or hydrogenation of citral or geraniol.

また、その他のイソニトリル化合物(1)は、上記方法により得られる7−イソシアノ−3,7−ジメチルオクタノールの水酸基を、必要に応じ、さらに常法により各種官能基に変換することにより容易に製造することができる。より具体的には、(i)7−イソシアノ−3,7−ジメチルオクタノールを、例えば、酸ハロゲン化物や酸無水物などのアシル化剤と反応させることにより、7−イソシアノ−3,7−ジメチルオクタノールの水酸基をアシルオキシル基に変換することができ、(ii)有機スルホニルハライドなどの有機スルホニル化剤と反応させることにより、7−イソシアノ−3,7−ジメチルオクタノールの水酸基を有機スルホニルオキシ基に変換することができ、また、(iii)塩化チオニル、オキシ塩化リン、三臭化リンなどのハロゲン化剤と反応させるか、または7−イソシアノ−3,7−ジメチルオクチル有機スルホナートを得、次いでフッ化カリウムなどのハロゲン化剤とさせることにより、7−イソシアノ−3,7−ジメチルオクタノールの水酸基をハロゲン原子に変換することができる。  Further, the other isonitrile compound (1) is easily produced by converting the hydroxyl group of 7-isocyano-3,7-dimethyloctanol obtained by the above method into various functional groups by a conventional method as necessary. be able to. More specifically, (i) 7-isocyano-3,7-dimethyloctanol is reacted with an acylating agent such as an acid halide or acid anhydride, for example. The hydroxyl group of octanol can be converted to an acyloxyl group, and (ii) the hydroxyl group of 7-isocyano-3,7-dimethyloctanol is converted to an organic sulfonyloxy group by reacting with an organic sulfonylating agent such as an organic sulfonyl halide. And (iii) reacting with a halogenating agent such as thionyl chloride, phosphorus oxychloride, phosphorus tribromide or the like to obtain 7-isocyano-3,7-dimethyloctyl organic sulfonate, 7-isocyano-3,7-dimethyloctano by using a halogenating agent such as potassium halide Le hydroxyl groups can be converted into a halogen atom.

本発明の防汚剤(2)は、単一のイソニトリル化合物(1)を含有するものであってもよいし、2種以上のイソニトリル化合物(1)を含有したものであってもよい。また、本発明の効果を損なわない範囲内であれば、他の防汚剤を含有していてもよい。  The antifouling agent (2) of the present invention may contain a single isonitrile compound (1) or may contain two or more isonitrile compounds (1). Moreover, if it is in the range which does not impair the effect of this invention, you may contain another antifouling agent.

防汚剤(2)の使用形態には特に制限がない。例えば、[A]イソニトリル化合物(1)を塗料(具体的には、塗膜形成剤、可塑剤、乾燥剤、流れ止剤、調整剤、顔料、溶剤などの混合物)に含有させたり、[B]イソニトリル化合物(1)を溶媒に溶解させて溶液にしたり、[C]イソニトリル化合物(1)を乳化剤で乳化させて乳液にしたり、あるいは[D]イソニトリル化合物(1)をカプセル剤に内包して使用することができるほか、イソニトリル化合物(1)をそのままの状態で使用することもできる。  There is no restriction | limiting in particular in the usage form of antifouling agent (2). For example, [A] isonitrile compound (1) is contained in a paint (specifically, a mixture of a film-forming agent, a plasticizer, a desiccant, a flow inhibitor, a regulator, a pigment, a solvent, etc.) The isonitrile compound (1) is dissolved in a solvent to form a solution, the [C] isonitrile compound (1) is emulsified with an emulsifier to form an emulsion, or the [D] isonitrile compound (1) is encapsulated in a capsule. In addition to being usable, the isonitrile compound (1) can be used as it is.

[A]イソニトリル化合物(1)を塗料に含有させて使用する場合、例えば、イソニトリル化合物(1)を塗料に含有させて防汚塗料を調製し、該防汚塗料を船底、水中構築物、冷却用取水路などに塗布することにより、有害付着生物を忌避することができる。  [A] When the isonitrile compound (1) is used in a paint, for example, the isonitrile compound (1) is contained in the paint to prepare an antifouling paint, and the antifouling paint is used for the ship bottom, underwater structure, and cooling. By applying to intake channels, harmful organisms can be avoided.

前記塗料の1成分である塗膜形成剤としては、例えば、フタル酸樹脂、ビニル樹脂、アクリル樹脂、エポキシ樹脂、ポリウレタンなどの合成樹脂;松ヤニ、コーパルガムなどの天然樹脂;亜麻仁油、大豆油などの植物油;いわし油などの動物油などが挙げられる。また、可塑剤としては、例えば、塩素化パラフィン、ジオクチルフタレートなどが挙げられる。乾燥剤としては、例えば、ナフテン酸コバルト、ナフテン酸マンガンなどが挙げられる。流れ止剤としては、例えば、有機ベントナイト、ステアリン酸亜鉛、EGワックスなどが挙げられる。調整剤としては、例えば、皮はり防止剤、色分かれ防止剤、泡防止剤などが挙げられる。顔料としては、例えば、着色顔料;炭酸カルシウム、タルク、シリカ粉などの体質顔料;亜酸化銅、有機防汚剤などの特殊顔料などが挙げられる。溶剤としては、例えば、トルエン、キシレン、クメンなどの芳香族炭化水素;酢酸エチル、酢酸ブチルなどのエステル;メチルイソブチルケトン、ジイソプロピルケトンなどのケトン;メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノールなどのアルコール;水などが挙げられる。  Examples of the film forming agent that is one component of the paint include synthetic resins such as phthalic acid resin, vinyl resin, acrylic resin, epoxy resin and polyurethane; natural resins such as pine ani, copal gum; flaxseed oil and soybean oil. Vegetable oils; animal oils such as sardine oil. Examples of the plasticizer include chlorinated paraffin and dioctyl phthalate. Examples of the desiccant include cobalt naphthenate and manganese naphthenate. Examples of the flow preventive agent include organic bentonite, zinc stearate, and EG wax. Examples of the adjusting agent include an anti-skinning agent, a color separation preventing agent, and an antifoaming agent. Examples of the pigment include coloring pigments; extender pigments such as calcium carbonate, talc, and silica powder; special pigments such as cuprous oxide and organic antifouling agents. Examples of the solvent include aromatic hydrocarbons such as toluene, xylene and cumene; esters such as ethyl acetate and butyl acetate; ketones such as methyl isobutyl ketone and diisopropyl ketone; methanol, ethanol, n-propanol, isopropanol and n-butanol. Alcohols such as; water etc.

イソニトリル化合物(1)を塗料に含有させて使用する場合、イソニトリル化合物(1)の使用量は、塗料全体に対して、好ましくは0.1〜50質量%、より好ましくは0.5〜30質量%である。その他の塗料中の成分量には特に制限がなく、その用途に合わせて適宜決めればよい。  When the isonitrile compound (1) is used in a paint, the amount of the isonitrile compound (1) is preferably 0.1 to 50% by weight, more preferably 0.5 to 30% by weight based on the whole paint. %. There is no restriction | limiting in particular in the amount of components in other coating materials, What is necessary is just to determine suitably according to the use.

[B]イソニトリル化合物(1)を溶媒に溶解させて溶液にして使用する場合、例えば、塗膜形成剤および必要に応じて添加剤と共に溶媒に溶解させた後、得られた溶液を養殖漁網、定置漁網などの魚網や水中土木材などに塗布または浸透させることにより、有害付着生物を忌避することができる。かかる溶媒としては、前述した溶剤と同じものを使用することができる。塗膜形成剤としては、前記塗膜形成剤と同様のものが挙げられる。添加剤としては、前記可塑剤、乾燥剤および調整剤と同様のものなどが挙げられる。  [B] When the isonitrile compound (1) is dissolved in a solvent and used as a solution, for example, after being dissolved in a solvent together with a film-forming agent and, if necessary, an additive, By attaching or penetrating fish nets such as stationary fishing nets and underwater earth and lumber, harmful adherent organisms can be avoided. As such a solvent, the same solvents as those described above can be used. Examples of the coating film forming agent include the same coating film forming agents. Examples of the additive include the same plasticizers, desiccants and regulators.

イソニトリル化合物(1)を溶媒に溶解させて溶液にして使用する場合、本発明のイソニトリル化合物(1)の使用量は、通常、溶液全体に対して、好ましくは0.00001〜90質量%、より好ましくは0.00001〜30質量%である。その他の溶液中の成分量には特に制限がなく、その用途に合わせて適宜決めればよい。  When the isonitrile compound (1) is dissolved in a solvent and used as a solution, the use amount of the isonitrile compound (1) of the present invention is usually preferably from 0.00001 to 90% by mass relative to the whole solution. Preferably it is 0.00001-30 mass%. There is no restriction | limiting in particular in the amount of components in other solutions, What is necessary is just to determine suitably according to the use.

[C]イソニトリル化合物(1)を乳化剤で乳化させて乳液にして使用する場合、前記イソニトリル化合物(1)の溶液に更に界面活性剤を添加し、常法により、乳液を調製し、該溶液を養殖漁網、定置漁網などの魚網や水中土木材などに塗布または浸透させることにより、有害付着生物を忌避することができる。界面活性剤としては、一般に使用されるものを用いることができ、例えば、アルキルベンゼンスルホン酸塩、脂肪酸塩などのアニオン系界面活性剤、有機アンモニウム塩などのカチオン系界面活性剤、ポリオキシエチレンアルキルエーテルなどの非イオン系界面活性剤などが挙げられる。常法による乳液の調製方法としては、例えば、イソニトリル化合物(1)と界面活性剤を混合し、水中で攪拌する方法などが挙げられる。  [C] When the isonitrile compound (1) is emulsified with an emulsifier and used as an emulsion, a surfactant is further added to the solution of the isonitrile compound (1) to prepare an emulsion by a conventional method. By applying or penetrating fish nets such as aquaculture fishing nets and stationary fishing nets and underwater earth and lumber, harmful adherent organisms can be avoided. As the surfactant, commonly used ones can be used. For example, anionic surfactants such as alkylbenzene sulfonates and fatty acid salts, cationic surfactants such as organic ammonium salts, and polyoxyethylene alkyl ethers. Nonionic surfactants such as Examples of the conventional method for preparing an emulsion include a method of mixing an isonitrile compound (1) and a surfactant and stirring in water.

イソニトリル化合物(1)を乳液にして使用する場合、イソニトリル化合物(1)の使用量は、通常、乳液全体に対して、好ましくは0.00001〜80質量%、より好ましくは0.00001〜30質量%である。その他の乳液中の成分の比に特に制限はなく、用途に合わせて適宜決めればよい。  When the isonitrile compound (1) is used as an emulsion, the amount of the isonitrile compound (1) used is usually preferably 0.00001 to 80% by mass, more preferably 0.00001 to 30% by mass with respect to the entire emulsion. %. There is no restriction | limiting in particular in the ratio of the component in another emulsion, What is necessary is just to determine suitably according to a use.

[D]イソニトリル化合物(1)をカプセル剤に内包して使用する場合、イソニトリル化合物(1)をカプセルの中に内包させたカプセル剤を漁網などに取り付け、カプセル剤から少しずつイソニトリル化合物(1)を溶出させることにより、水中付着生物を忌避することができる。  [D] When the isonitrile compound (1) is encapsulated and used, the capsule in which the isonitrile compound (1) is encapsulated is attached to a fishing net and the isonitrile compound (1) little by little from the capsule. It is possible to avoid the organisms attached to the water by eluting.

カプセルに内包されるイソニトリル化合物(1)の使用量は、通常、カプセル剤内部の体積に対して、好ましくは0.001〜5mmol/mL、より好ましくは0.1〜5mmol/mLである。  The amount of the isonitrile compound (1) used in the capsule is usually preferably 0.001 to 5 mmol / mL, more preferably 0.1 to 5 mmol / mL with respect to the volume inside the capsule.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例により何ら限定されるものではない。  EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples.

<合成例1>
シトロネロール460mgを塩化メチレン3mLに溶解し、トリメチルシリルシアニド580μLおよび過塩素酸銀910mgを加えて室温で15時間攪拌した。反応混合液に飽和炭酸水素ナトリウム水溶液5mLを加えてさらに5分間攪拌した後、飽和食塩水15mLを加えてセライト濾過を行い、酢酸エチル200mLで洗浄した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/2(体積比))により精製し、下記の物性を有する7−イソシアノ−3,7−ジメチル−1−オクタノール[以下、「CT−1」と称する。]490mgを得た。
<Synthesis Example 1>
Citronellol (460 mg) was dissolved in methylene chloride (3 mL), trimethylsilylcyanide (580 μL) and silver perchlorate (910 mg) were added, and the mixture was stirred at room temperature for 15 hours. To the reaction mixture was added 5 mL of saturated aqueous sodium hydrogen carbonate solution, and the mixture was further stirred for 5 minutes. Then, 15 mL of saturated brine was added, and the mixture was filtered through Celite, and washed with 200 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 1/2 (volume ratio)), and 7-isocyano-3,7-dimethyl-1-octanol [hereinafter referred to as “CT-1” having the following physical properties. ". 490 mg was obtained.

(CT−1のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.93(3H,d,J=6.6Hz)、1.15−1.22(1H,m)、1.30(1H,br)、1.32−1.67(14H,m)、1.40(6H,br)、3.63−3.74(2H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:19.49、21.53、28.94、29.02、29.34、36.86、39.84、42.61、57.39(t,J=5.0Hz)、61.02、152.90(t,J=5.0Hz)
(CT-1 NMR measurement results)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.93 (3H, d, J = 6.6 Hz), 1.15 to 1.22 (1H, m), 1.30 (1H, br) 1.32-1.67 (14H, m), 1.40 (6H, br), 3.63-3.74 (2H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 19.49, 21.53, 28.94, 29.02, 29.34, 36.86, 39.84, 42.61, 57. 39 (t, J = 5.0 Hz), 61.02, 152.90 (t, J = 5.0 Hz)

<合成例2>
シトロネロール10gに35%硫酸60mLを加え、アルゴン雰囲気下、室温で18時間攪拌した。反応混合液に10%KOH水溶液を加えて中和した後、酢酸エチル300mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮して7−ヒドロキシシトロネロール11gを得た。
<Synthesis Example 2>
60 g of 35% sulfuric acid was added to 10 g of citronellol, and the mixture was stirred at room temperature for 18 hours under an argon atmosphere. The reaction mixture was neutralized with 10% aqueous KOH solution, and extracted with 300 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 11 g of 7-hydroxycitronellol.

7−ヒドロキシシトロネロール1.47gをニトロメタン30mLに溶解し、トリメチルシリルシアニド1.4mLおよび過塩素酸銀2.1gを加えて室温で1時間攪拌した。反応混合液に飽和炭酸水素ナトリウム水溶液10mLを加えてさらに5分間攪拌した後、飽和食塩水30mLを加えてセライト濾過を行い、酢酸エチル200mLで洗浄した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/2(体積比))により精製し、「CT−1」1.3gを得た。  1.47 g of 7-hydroxycitronellol was dissolved in 30 mL of nitromethane, 1.4 mL of trimethylsilyl cyanide and 2.1 g of silver perchlorate were added, and the mixture was stirred at room temperature for 1 hour. 10 mL of saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was further stirred for 5 minutes. Then, 30 mL of saturated brine was added, the mixture was filtered through Celite, and washed with 200 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 1/2 (volume ratio)) to obtain 1.3 g of “CT-1”.

<合成例3>
「CT−1」220mgをピリジン1.5mLに溶解し、無水酢酸1.5mLを加えて室温で14時間攪拌した。反応混合液に飽和食塩水30mLを加え、さらに5分間攪拌した後、酢酸エチル150mLで抽出した。有機層を3M塩酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1(体積比))により精製し、下記の物性を有する酢酸7−イソシアノ−3,7−ジメチルオクチル[以下、「CT−2」と称する。]240mgを得た。
<Synthesis Example 3>
220 mg of “CT-1” was dissolved in 1.5 mL of pyridine, 1.5 mL of acetic anhydride was added, and the mixture was stirred at room temperature for 14 hours. To the reaction mixture was added 30 mL of saturated brine, and the mixture was further stirred for 5 minutes, and then extracted with 150 mL of ethyl acetate. The organic layer was washed with 3M hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 4/1 (volume ratio)), and 7-isocyano-3,7-dimethyloctyl acetate [hereinafter referred to as “CT-2”] having the following physical properties. Called. ] 240 mg was obtained.

(CT−2のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.93(3H,d,J=6.6Hz)、1.15−1.23(1H,m)、1.31−1.71(14H,m)、1.40(6H,t,J=1.8Hz)、2.05(3H,s)、4.06−4.15(2H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:19.34、21.00、21.48、28.99、29.73、35.43、36.64、42.60、57.34(t,J=5.0Hz)、62.82、153.02(t,J=5.0Hz)、171.16
(NMR measurement result of CT-2)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.93 (3H, d, J = 6.6 Hz), 1.15-1.23 (1H, m), 1.31-1.71 ( 14H, m), 1.40 (6H, t, J = 1.8 Hz), 2.05 (3H, s), 4.06 to 4.15 (2H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 19.34, 21.00, 21.48, 28.99, 29.73, 35.43, 36.64, 42.60, 57. 34 (t, J = 5.0 Hz), 62.82, 153.02 (t, J = 5.0 Hz), 171.16

<合成例4>
[CT−1]220mgをピリジン1.5mLに溶解し、塩化ベンゾイル0.2mLを加えて室温で24時間攪拌した。反応混合液に飽和食塩水30mLを加え、さらに5分間攪拌した後、酢酸エチル150mLで抽出した。有機層を3M塩酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=10/1(体積比))により精製し、下記の物性を有する安息香酸7−イソシアノ−3,7−ジメチルオクチル[以下、「CT−3」と称する。]200mgを得た。
<Synthesis Example 4>
[CT-1] 220 mg was dissolved in pyridine 1.5 mL, benzoyl chloride 0.2 mL was added, and the mixture was stirred at room temperature for 24 hours. To the reaction mixture was added 30 mL of saturated brine, and the mixture was further stirred for 5 minutes, and then extracted with 150 mL of ethyl acetate. The organic layer was washed with 3M hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 10/1 (volume ratio)) and benzoic acid 7-isocyano-3,7-dimethyloctyl [hereinafter referred to as “CT-3”] having the following physical properties. Called. 200 mg was obtained.

(CT−3のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.99(3H,d,J=6.6Hz)、1.20−1.27(1H,m)、1.35−1.63(12H,m)、1.64−1.73(1H,m)、1.79−1.86(1H,m)、4.32−4.41(2H,m)、7.42−7.46(2H,m)、7.54−7.57(1H,m)、8.02−8.05(2H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:19.47、21.52、28.98、28.99、29.89、35.54、36.68、42.61、57.34(t,J=5.0Hz)、63.33、128.34、129.52、130.45、132.83、153.04(t,J=5.0Hz)、166.65
(NMR measurement result of CT-3)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.99 (3H, d, J = 6.6 Hz), 1.20-1.27 (1H, m), 1.35 to 1.63 ( 12H, m), 1.64-1.73 (1H, m), 1.79-1.86 (1H, m), 4.32-4.41 (2H, m), 7.42-7. 46 (2H, m), 7.54-7.57 (1H, m), 8.02-8.05 (2H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 19.47, 21.52, 28.98, 28.99, 29.89, 35.54, 36.68, 42.61, 57. 34 (t, J = 5.0 Hz), 63.33, 128.34, 129.52, 130.45, 132.83, 153.04 (t, J = 5.0 Hz), 166.65

<合成例5>
「CT−1」550mgをピリジン3mLに溶解し、p−トルエンスルホニルクロリド860mgを加えて室温で2日間攪拌した。反応混合液に飽和食塩水30mLを加え、さらに5分間攪拌した後、酢酸エチル150mLで抽出した。有機層を3M塩酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=10/1(体積比))により精製し、下記の物性を有する1−クロロ−7−イソシアノ−3,7−ジメチルオクタン[以下、「CT−4」と称する。]260mgを得た。
<Synthesis Example 5>
550 mg of “CT-1” was dissolved in 3 mL of pyridine, 860 mg of p-toluenesulfonyl chloride was added, and the mixture was stirred at room temperature for 2 days. To the reaction mixture was added 30 mL of saturated brine, and the mixture was further stirred for 5 minutes, and then extracted with 150 mL of ethyl acetate. The organic layer was washed with 3M hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 10/1 (volume ratio)), and 1-chloro-7-isocyano-3,7-dimethyloctane [hereinafter referred to as “CT- 4 ". ] 260 mg was obtained.

(CT−4のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.93(3H,d,J=6.6Hz)、1.15−1.23(1H,m)、1.31−1.63(12H,m)、1.40(6H,t,J=1.8Hz)、1.66−1.74(1H,m)、1.77−1.84(1H,m)、3.51−3.62(2H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:18.90、21.45、28.98、29.03、30.14、36.36、39.64、42.55、43.14、57.35(t,J=5.0Hz)、153.05(t,J=5.0Hz)
(NMR measurement result of CT-4)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.93 (3H, d, J = 6.6 Hz), 1.15-1.23 (1H, m), 1.31-1.63 ( 12H, m), 1.40 (6H, t, J = 1.8 Hz), 1.66-1.74 (1H, m), 1.77-1.84 (1H, m), 3.51- 3.62 (2H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 18.90, 21.45, 28.98, 29.03, 30.14, 36.36, 39.64, 42.55, 43. 14, 57.35 (t, J = 5.0 Hz), 153.05 (t, J = 5.0 Hz)

<合成例6>
「CT−1」1gをピリジン5mLに溶解し、氷冷下p−トルエンスルホニルクロリド1.6gを加え、さらに同条件下で12時間攪拌した。反応混合液に飽和食塩水30mLを加え、さらに5分間攪拌した後、酢酸エチル200mLで抽出した。有機層を3M塩酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1(体積比))により精製し、下記の物性を有するp−トルエンスルホン酸7−イソシアノ−3,7−ジメチルオクチル[以下、「CT−5」と称する。]1.8gを得た。
<Synthesis Example 6>
1 g of “CT-1” was dissolved in 5 mL of pyridine, 1.6 g of p-toluenesulfonyl chloride was added under ice cooling, and the mixture was further stirred for 12 hours under the same conditions. To the reaction mixture was added 30 mL of saturated brine, and the mixture was further stirred for 5 minutes, and then extracted with 200 mL of ethyl acetate. The organic layer was washed with 3M hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 3/1 (volume ratio)), and p-toluenesulfonic acid 7-isocyano-3,7-dimethyloctyl [hereinafter referred to as “CT” -5 ". 1.8 g was obtained.

(CT−5のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.84(3H,d,J=6.6Hz)、1.09−1.16(1H,m)、1.22−1.29(1H,m)、1.39(6H,t,J=1.8Hz)、1.32−1.52(11H,m)、1.53−1.61(1H,m)、1.65−1.72(1H,m)、2.46(3H,s)、4.02−4.12(2H,m)、7.36(2H,d,J=8.1Hz)、7.79(2H,d,J=8.1Hz)
13C−NMR(150.8MHz、CDCl、TMS)δ:18.96、21.35、21.61、28.94、28.98、29.05、35.66、36.35、42.45、57.31(t,J=5.0Hz)、68.80、127.85、129.82、133.19、144.68、153.01(t,J=5.0Hz)
(NMR measurement result of CT-5)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.84 (3H, d, J = 6.6 Hz), 1.09-1.16 (1H, m), 1.22-1.29 ( 1H, m), 1.39 (6H, t, J = 1.8 Hz), 1.32-1.52 (11H, m), 1.53-1.61 (1H, m), 1.65 1.72 (1H, m), 2.46 (3H, s), 4.02-4.12 (2H, m), 7.36 (2H, d, J = 8.1 Hz), 7.79 ( 2H, d, J = 8.1Hz)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 18.96, 21.35, 21.61, 28.94, 28.98, 29.05, 35.66, 36.35, 42. 45, 57.31 (t, J = 5.0 Hz), 68.80, 127.85, 129.82, 133.19, 144.68, 153.01 (t, J = 5.0 Hz)

<合成例7>
「CT−1」155mgをジメチルホルムアミド(DMF)6mLに溶解し、8−ブロモ−1−オクテン170mg、水素化ナトリウム60mgを加えて室温で15時間攪拌した。反応混合液に飽和塩化アンモニウム水溶液30mLを加えた後、酢酸エチル150mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=40/1〜10/1(体積比))により精製し、下記の物性を有する8−(7−イソシアノ−3,7−ジメチルオクチルオキシ)−1−オクテン[以下、「CT−6」と称する。]110mgを得た。
<Synthesis Example 7>
155 mg of “CT-1” was dissolved in 6 mL of dimethylformamide (DMF), 170 mg of 8-bromo-1-octene and 60 mg of sodium hydride were added, and the mixture was stirred at room temperature for 15 hours. After adding 30 mL of saturated aqueous ammonium chloride solution to the reaction mixture, extraction was performed with 150 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 40/1 to 10/1 (volume ratio)), and 8- (7-isocyano-3,7-dimethyloctyloxy)-having the following physical properties: 1-octene [hereinafter referred to as “CT-6”. 110 mg was obtained.

(CT−6のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.91(3H,d,J=6.6Hz)、1.13−1.20(1H,m)、1.25−1.65(22H,m)、1.40(6H,br)、2.01−2.07(2H,m)、3.35−3.48(4H,m)、4.89−5.02(2H,m)、5.76−5.85(1H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:19.53、21.54、26.06、28.86、28.95、28.97、29.01、29.72、29.81、33.71、36.74、36.93、42.70、57.38(t,J=5.0Hz)、69.03、70.98、114.16、139.10、152.94(t,J=5.0Hz)
(CT-6 NMR measurement results)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.91 (3H, d, J = 6.6 Hz), 1.13 to 1.20 (1H, m), 1.25 to 1.65 ( 22H, m), 1.40 (6H, br), 2.01-1.07 (2H, m), 3.35-3.48 (4H, m), 4.89-5.02 (2H, m) 5.76-5.85 (1H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 19.53, 21.54, 26.06, 28.86, 28.95, 28.97, 29.01, 29.72, 29. 81, 33.71, 36.74, 36.93, 42.70, 57.38 (t, J = 5.0 Hz), 69.03, 70.98, 114.16, 139.10, 152.94 (T, J = 5.0Hz)

<合成例8>
ヒドロキシシトロネロール500mgをアセトン5mLに溶解し、氷冷下にジョーンズ試薬(CrO/HSOaq)1mLを加え、さらに1時間攪拌した。反応混合液に2−プロパノール1mLを加えて過剰のジョーンズ試薬を失活させた後、飽和食塩水30mLを加え、酢酸エチル150mLで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮して7−ヒドロキシ−3,7−ジメチルオクタン酸480mgを得た。
<Synthesis Example 8>
Hydroxycitronellol (500 mg) was dissolved in acetone (5 mL), Jones reagent (CrO 3 / H 2 SO 4 aq) (1 mL) was added under ice cooling, and the mixture was further stirred for 1 hour. To the reaction mixture, 1 mL of 2-propanol was added to deactivate the excess Jones reagent, 30 mL of saturated brine was added, and the mixture was extracted with 150 mL of ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 480 mg of 7-hydroxy-3,7-dimethyloctanoic acid.

7−ヒドロキシ−3,7−ジメチルオクタン酸150mgをDMF10mLに溶解し、8−ブロモ−1−オクテン175mgおよび炭酸カリウム400mgを加えて室温で12時間攪拌した。反応混合液に水30mLを加えた後、酢酸エチル150mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1(体積比))により精製し、7−ヒドロキシ−3,7−ジメチルオクタン酸7−オクテニル220mgを得た。  150 mg of 7-hydroxy-3,7-dimethyloctanoic acid was dissolved in 10 mL of DMF, 175 mg of 8-bromo-1-octene and 400 mg of potassium carbonate were added, and the mixture was stirred at room temperature for 12 hours. 30 mL of water was added to the reaction mixture, followed by extraction with 150 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 5/1 (volume ratio)) to obtain 220 mg of 7-hydroxy-3,7-dimethyloctanoic acid 7-octenyl.

7−ヒドロキシ−3,7−ジメチルオクタン酸7−オクテニル210mgをニトロメタン2mLに溶解し、トリメチルシリルシアニド110μL、過塩素酸銀175mgを加えて室温で1時間攪拌した。反応混合液に飽和炭酸水素ナトリウム水溶液2mLを加えてさらに5分間攪拌した後、飽和食塩水10mLを加えてセライト濾過を行い、酢酸エチル150mLで洗浄した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=10/1(体積比))により精製し、下記の物性を有する7−イソシアノ−3,7−ジメチルオクタン酸7−オクテニル[以下、「CT−7」と称する。]170mgを得た。  210 mg of 7-hydroxy-3,7-dimethyloctanoic acid 7-octenyl was dissolved in 2 mL of nitromethane, 110 μL of trimethylsilyl cyanide and 175 mg of silver perchlorate were added, and the mixture was stirred at room temperature for 1 hour. To the reaction mixture was added 2 mL of saturated aqueous sodium hydrogen carbonate solution, and the mixture was further stirred for 5 minutes. Then, 10 mL of saturated brine was added, and the mixture was filtered through Celite, and washed with 150 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 10/1 (volume ratio)), and 7-isocyano-3,7-dimethyloctanoic acid having the following physical properties [hereinafter referred to as “CT- 7 ". 170 mg was obtained.

(CT−7のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.96(3H,d,J=6.6Hz)、1.19−1.26(1H,m)、1.29−1.66(18H,m)、1.40(6H,t,J=1.8Hz)、1.94−2.08(4H,m)、2.14(1H,dd,J=14.7,8.1Hz)、2.29(1H,dd,J=14.7,6.2Hz)、4.07(2H,t,J=6.6Hz)、4.91−5.02(2H,m)、5.75−5.84(1H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:19.61、21.51、25.78、28.59、28.66、28.75、28.95、29.01、30.15、33.64、36.37、41.82、42.43、57.30(t,J=5.0Hz)、64.34、114.30、138.92、153.10(t,J=5.0Hz)、173.16
(NMR measurement result of CT-7)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.96 (3H, d, J = 6.6 Hz), 1.19-1.26 (1H, m), 1.29-1.66 ( 18H, m), 1.40 (6H, t, J = 1.8 Hz), 1.94-2.08 (4H, m), 2.14 (1H, dd, J = 14.7, 8.1 Hz) ), 2.29 (1H, dd, J = 14.7, 6.2 Hz), 4.07 (2H, t, J = 6.6 Hz), 4.91-5.02 (2H, m), 5 .75-5.84 (1H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 19.61, 21.51, 25.78, 28.59, 28.66, 28.75, 28.95, 29.01, 30. 15, 33.64, 36.37, 41.82, 42.43, 57.30 (t, J = 5.0 Hz), 64.34, 114.30, 138.92, 153.10 (t, J = 5.0 Hz), 173.16

<合成例9>
7−オクテノール5gをアセトン50mLに溶解し、氷冷下ジョーンズ試薬20mLを加え、さらに2時間攪拌した。反応混合液に2−プロパノール5mLを加えて過剰のジョーンズ試薬を失活させた後、飽和食塩水30mLを加え、酢酸エチル300mLで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮して7−オクテン酸5.3gを得た。
<Synthesis Example 9>
7-octenol (5 g) was dissolved in 50 mL of acetone, and 20 mL of Jones reagent was added under ice cooling, and the mixture was further stirred for 2 hours. To the reaction mixture, 5 mL of 2-propanol was added to deactivate the excess Jones reagent, 30 mL of saturated brine was added, and the mixture was extracted with 300 mL of ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 5.3 g of 7-octenoic acid.

7−オクテン酸1.3gに塩化チオニル1mLを加え、2時間加熱還流した後、反応混合液を減圧下に濃縮して7−オクテン酸クロリド1.6gを得た。  After adding 1 mL of thionyl chloride to 1.3 g of 7-octenoic acid and heating to reflux for 2 hours, the reaction mixture was concentrated under reduced pressure to obtain 1.6 g of 7-octenoic acid chloride.

「CT−1」170mgをピリジン2mLに溶解し、7−オクテン酸クロリド250mgを加えて室温で24時間攪拌した。反応混合液に飽和食塩水10mLを加え、さらに5分間攪拌した後、酢酸エチル150mLで抽出した。有機層を3M塩酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=20/1〜10/1(体積比))により精製し、下記の物性を有する7−オクテン酸7−イソシアノ−3,7−ジメチルオクチル[以下、「CT−8」と称する。]256mgを得た。  170 mg of “CT-1” was dissolved in 2 mL of pyridine, 250 mg of 7-octenoic acid chloride was added, and the mixture was stirred at room temperature for 24 hours. 10 mL of saturated brine was added to the reaction mixture, and the mixture was further stirred for 5 minutes, and then extracted with 150 mL of ethyl acetate. The organic layer was washed with 3M hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 20/1 to 10/1 (volume ratio)), and 7-octenoic acid 7-isocyano-3,7-dimethyloctyl [below] having the following physical properties. , Referred to as “CT-8”. ] 256 mg was obtained.

(CT−8のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.93(3H,d,J=6.6Hz)、1.15−1.23(1H,m)、1.29−1.66(22H,m)、1.40(6H,t,J=1.8Hz)、2.02−2.07(2H,m)、2.30(2H,t,J=7.3Hz)、4.06−4.15(2H,m)、4.90−5.02(2H,m)、5.75−5.83(1H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:19.35、21.50、24.82、28.49、28.58、28.99、29.77、33.52、34.31、35.50、36.66、42.61、57.34(t,J=5.0Hz)、62.61、114.38、138.78、153.05(t,J=5.0Hz)、173.86
(NMR measurement result of CT-8)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.93 (3H, d, J = 6.6 Hz), 1.15 to 1.23 (1H, m), 1.29 to 1.66 ( 22H, m), 1.40 (6H, t, J = 1.8 Hz), 2.02-2.07 (2H, m), 2.30 (2H, t, J = 7.3 Hz), 4. 06-4.15 (2H, m), 4.90-5.02 (2H, m), 5.75-5.83 (1H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 19.35, 21.50, 24.82, 28.49, 28.58, 28.99, 29.77, 33.52, 34. 31, 35.50, 36.66, 42.61, 57.34 (t, J = 5.0 Hz), 62.61, 114.38, 138.78, 153.05 (t, J = 5.0 Hz) ), 173.86

<合成例10>
「CT−5」720mgをアセトニトリル30mLに溶解し、臭化ナトリウム400mgを加えて6時間加熱還流した。反応混合液に酢酸エチル150mLを加えた後、有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=20/1(体積比))により精製し、1−ブロモ−7−イソシアノ−3,7−ジメチルオクタン[以下、「CT−9」と称する。]530mgを得た。
<Synthesis Example 10>
720 mg of “CT-5” was dissolved in 30 mL of acetonitrile, 400 mg of sodium bromide was added, and the mixture was heated to reflux for 6 hours. After adding 150 mL of ethyl acetate to the reaction mixture, the organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 20/1 (volume ratio)) and 1-bromo-7-isocyano-3,7-dimethyloctane [hereinafter referred to as “CT-9”. 530 mg was obtained.

(CT−9のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.92(3H,d,J=6.6Hz)、1.23−1.15(1H,m)、1.63−1.31(11H,m)、1.40(6H,t,J=1.8Hz)、1.73−1.64(2H,m)、1.93−1.85(1H,m)、3.50−3.37(2H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:18.78、21.43、28.98、29.03、31.40、31.91、36.24、39.88、42.55、57.34(t,J=5.0Hz)、153.10(t,J=5.0Hz)
(NMR measurement result of CT-9)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.92 (3H, d, J = 6.6 Hz), 1.23-1.15 (1H, m), 1.63-1.31 ( 11H, m), 1.40 (6H, t, J = 1.8 Hz), 1.73-1.64 (2H, m), 1.93-1.85 (1H, m), 3.50- 3.37 (2H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 18.78, 21.43, 28.98, 29.03, 31.40, 31.91, 36.24, 39.88, 42. 55, 57.34 (t, J = 5.0 Hz), 153.10 (t, J = 5.0 Hz)

<合成例11>
「CT−5」2.2gをアセトニトリル50mLに溶解し、ヨウ化ナトリウム1.6gを加えて1時間加熱還流した。反応混合液に水50mLを加えた後、ヘキサン200mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=40/1(体積比))により精製し、下記の物性を有する1−ヨード−7−イソシアノ−3,7−ジメチルオクタン[以下、「CT−10」と称する。]1.52gを得た。
<Synthesis Example 11>
2.2 g of “CT-5” was dissolved in 50 mL of acetonitrile, 1.6 g of sodium iodide was added, and the mixture was heated to reflux for 1 hour. 50 mL of water was added to the reaction mixture, followed by extraction with 200 mL of hexane. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 40/1 (volume ratio)), and 1-iodo-7-isocyano-3,7-dimethyloctane [hereinafter referred to as “CT- 10 ". ] 1.52 g was obtained.

(CT−10のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.91(3H,d,J=6.6Hz)、1.14−1.22(1H,m)、1.30−1.69(2H,m)、1.31−1.63(11H,m)、1.41(6H,t,J=1.8Hz)、1.84−1.92(1H,m)、3.14−3.20(1H,m)、3.23−3.28(1H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:4.96、18.56、21.41、28.98、29.03、33.63、36.01、40.73、42.56、57.33(t,J=5.0Hz)、153.10(t,J=5.0Hz)
(NMR measurement result of CT-10)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.91 (3H, d, J = 6.6 Hz), 1.14-1.22 (1H, m), 1.30-1.69 ( 2H, m), 1.31-1.63 (11H, m), 1.41 (6H, t, J = 1.8 Hz), 1.84-1.92 (1H, m), 3.14- 3.20 (1H, m), 3.23-3.28 (1H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 4.96, 18.56, 21.41, 28.98, 29.03, 33.63, 36.01, 40.73, 42. 56, 57.33 (t, J = 5.0 Hz), 153.10 (t, J = 5.0 Hz)

<合成例12>
「CT−5」227mgをメタノール10mLに溶解し、フッ化カリウム770mgを加えて20時間加熱還流した。反応混合液に水20mLを加えた後、ヘキサン150mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=15/1〜5/1(体積比))により精製し、下記の物性を有する1−フルオロ−7−イソシアノ−3,7−ジメチルオクタン[以下、「CT−11」と称する。]29mgおよび7−イソシアノ−1−メトキシ−3,7−ジメチルオクタン[以下、「CT−12」と称する。]68mgを得た。
<Synthesis Example 12>
227 mg of “CT-5” was dissolved in 10 mL of methanol, 770 mg of potassium fluoride was added, and the mixture was heated to reflux for 20 hours. 20 mL of water was added to the reaction mixture, followed by extraction with 150 mL of hexane. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 15/1 to 5/1 (volume ratio)), and 1-fluoro-7-isocyano-3,7-dimethyloctane [hereinafter referred to as the following physical properties] , Referred to as “CT-11”. ] 29 mg and 7-isocyano-1-methoxy-3,7-dimethyloctane [hereinafter referred to as “CT-12”. ] 68 mg was obtained.

(CT−11のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.95(3H,d,J=6.6Hz)、1.17−1.25(1H,m)、1.31−1.63(12H,m)、1.40(6H,t,J=1.8Hz)、1.62−1.80(2H,m)、4.43−4.57(2H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:19.37、21.52、28.99、29.04、29.21(d,J=5.0Hz)、36.72、37.30(d,J=18.6Hz)、42.60、57.38(t,J=5.0Hz)、82.53(d,J=163.8Hz)、153.07(t,J=5.0Hz)
(NMR measurement result of CT-11)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.95 (3H, d, J = 6.6 Hz), 1.17-1.25 (1H, m), 1.31-1.63 ( 12H, m), 1.40 (6H, t, J = 1.8 Hz), 1.62-1.80 (2H, m), 4.43-4.57 (2H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 19.37, 21.52, 28.99, 29.04, 29.21 (d, J = 5.0 Hz), 36.72, 37 .30 (d, J = 18.6 Hz), 42.60, 57.38 (t, J = 5.0 Hz), 82.53 (d, J = 163.8 Hz), 153.07 (t, J = 5.0Hz)

(CT−12のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.91(3H,d,J=6.6Hz)、1.14−1.21(1H,m)、1.30−1.66(15H,m)、1.40(6H,t,J=1.8Hz)、3.33(3H,s)、3.38−3.44(1H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:19.51、21.56、28.99、29.03、29.74、36.67、36.94、42.69、57.40(t,J=5.0Hz)、58.59、71.02、152.97(t,J=5.0Hz)
(NMR measurement result of CT-12)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.91 (3H, d, J = 6.6 Hz), 1.14 to 1.21 (1H, m), 1.30 to 1.66 ( 15H, m), 1.40 (6H, t, J = 1.8 Hz), 3.33 (3H, s), 3.38-3.44 (1H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 19.51, 21.56, 28.99, 29.03, 29.74, 36.67, 36.94, 42.69, 57. 40 (t, J = 5.0 Hz), 58.59, 71.02, 152.97 (t, J = 5.0 Hz)

<合成例13>
シトロネロール6.5gをピリジン20mLに溶解し、氷冷下p−トルエンスルホン酸クロリド10.3gを加え、さらに同条件下24時間攪拌した。反応混合液に飽和食塩水40mLを加え、さらに5分間攪拌した後、酢酸エチル250mLで抽出した。有機層を3M塩酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮してp−トルエンスルホン酸3,7−ジメチル−6−オクテニル13.3gを得た。
<Synthesis Example 13>
Citronellol 6.5g was melt | dissolved in pyridine 20mL, p-toluenesulfonic acid chloride 10.3g was added under ice-cooling, and also it stirred under the same conditions for 24 hours. To the reaction mixture was added 40 mL of saturated brine, and the mixture was further stirred for 5 minutes, and then extracted with 250 mL of ethyl acetate. The organic layer was washed with 3M hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and p-toluenesulfonic acid 3,7-dimethyl-6-octenyl 13 .3 g was obtained.

p−トルエンスルホン酸3,7−ジメチル−6−オクテニル2.2gをアセトニトリル30mLに溶解し、ヨウ化ナトリウム1.6gを加えて1時間加熱還流した。反応混合液に水30mLを加えた後、ヘキサン200mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=40/1(体積比))により精製し、下記の物性を有する8−ヨード−2,6−ジメチル−2−オクテン1.52gを得た。  2.2 g of 3,7-dimethyl-6-octenyl p-toluenesulfonate was dissolved in 30 mL of acetonitrile, 1.6 g of sodium iodide was added, and the mixture was heated to reflux for 1 hour. 30 mL of water was added to the reaction mixture, followed by extraction with 200 mL of hexane. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 40/1 (volume ratio)) to obtain 1.52 g of 8-iodo-2,6-dimethyl-2-octene having the following physical properties.

シトロネロール528mgをDMF5mLに溶解し、アルゴン雰囲気下水素化ナトリウム140mgを加えて室温で15分間攪拌した後、反応混合液に8−ヨード−2,6−ジメチル−2−オクテン600mgを加え、アルゴン雰囲気下、110℃で18時間攪拌した。反応混合液に飽和塩化アンモニウム水溶液20mLを加えた後、酢酸エチル150mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=30/1〜10/1(体積比))により精製し、ジ(3,7−ジメチル−6−オクテニル)エーテル200mgを得た。  Citronellol (528 mg) was dissolved in DMF (5 mL), sodium hydride (140 mg) was added in an argon atmosphere, and the mixture was stirred at room temperature for 15 minutes, and then 8-iodo-2,6-dimethyl-2-octene (600 mg) was added to the reaction mixture. , And stirred at 110 ° C. for 18 hours. After adding 20 mL of saturated aqueous ammonium chloride solution to the reaction mixture, the mixture was extracted with 150 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 30/1 to 10/1 (volume ratio)) to obtain 200 mg of di (3,7-dimethyl-6-octenyl) ether.

ジ(3,7−ジメチル−6−オクテニル)エーテル200mgを塩化メチレン2mLに溶解し、トリメチルシリルシアニド450μLおよび過塩素酸銀700mgを加えて室温で24時間攪拌した。反応混合液に飽和炭酸水素ナトリウム水溶液20mLを加えてさらに5分間攪拌した後、飽和食塩水30mLを加えてセライト濾過を行い、酢酸エチル200mLで洗浄した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=10/1(体積比))により精製し、下記の物性を有するジ(7−イソシアノ−3,7−ジメチルオクチル)エーテル[以下、「CT−13」と称する。]150mgを得た。  200 mg of di (3,7-dimethyl-6-octenyl) ether was dissolved in 2 mL of methylene chloride, 450 μL of trimethylsilyl cyanide and 700 mg of silver perchlorate were added, and the mixture was stirred at room temperature for 24 hours. To the reaction mixture, 20 mL of saturated aqueous sodium hydrogen carbonate solution was added and stirred for another 5 minutes. Then, 30 mL of saturated brine was added, and the mixture was filtered through Celite, and washed with 200 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 10/1 (volume ratio)), and di (7-isocyano-3,7-dimethyloctyl) ether having the following physical properties [hereinafter referred to as “CT- 13 ". 150 mg was obtained.

(CT−13のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.91(6H,d,J=6.6Hz)、1.13−1.21(2H,m)、1.29−1.66(28H,m)、1.40(12H,t,J=1.8Hz)、3.38−3.48(4H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:19.56、19.57、21.57、29.01、29.03、29.84、29.86、36.76、36.96、36.98、42.73、57.41(t,J=5.0Hz)、69.12、69.16、152.98(t,J=5.0Hz)
(NMR measurement result of CT-13)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.91 (6H, d, J = 6.6 Hz), 1.13 to 1.21 (2H, m), 1.29 to 1.66 ( 28H, m), 1.40 (12H, t, J = 1.8 Hz), 3.38-3.48 (4H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 19.56, 19.57, 21.57, 29.01, 29.03, 29.84, 29.86, 36.76, 36. 96, 36.98, 42.73, 57.41 (t, J = 5.0 Hz), 69.12, 69.16, 152.98 (t, J = 5.0 Hz)

<合成例14>
[CT−4]640mgをメタノール20mLに溶解し、硫化ナトリウム・九水和物760mgを加え、20時間加熱還流した。反応混合液に飽和食塩水50mLを加えた後、酢酸エチル200mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=200/1(体積比))により精製し、下記の物性を有するジ(7−イソシアノ−3,7−ジメチルオクチル)スルフィド[以下、「CT−14」と称する。]300mgを得た。
<Synthesis Example 14>
[CT-4] 640 mg was dissolved in methanol 20 mL, sodium sulfide nonahydrate 760 mg was added, and the mixture was heated to reflux for 20 hours. To the reaction mixture was added 50 mL of saturated brine, and the mixture was extracted with 200 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 200/1 (volume ratio)) to obtain di (7-isocyano-3,7-dimethyloctyl) sulfide [hereinafter referred to as “CT- 14 ". ] 300 mg was obtained.

(CT−14のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.91(6H,d,J=6.6Hz)、1.21−1.13(2H,m)、1.40(12H,t,J=1.8Hz)、1.64−1.28(28H,m)、2.60−2.45(4H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:19.21、21.53、28.97、29.00、29.89、29.91、32.04、32.07、36.55、36.79、36.80、42.63、57.35(t,J=5.0Hz)、153.02(t,J=5.0Hz)
(NMR measurement result of CT-14)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.91 (6H, d, J = 6.6 Hz), 1.21-1.13 (2H, m), 1.40 (12H, t, J = 1.8 Hz), 1.64-1.28 (28H, m), 2.60-2.45 (4H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 19.21, 21.53, 28.97, 29.00, 29.89, 29.91, 32.04, 32.07, 36. 55, 36.79, 36.80, 42.63, 57.35 (t, J = 5.0 Hz), 153.02 (t, J = 5.0 Hz)

<合成例15>
[CT−14]76mgをメタノール10mLに溶解し、過ヨウ素酸ナトリウム53mgを加え、室温で20時間攪拌した。反応混合液に飽和食塩水20mLを加えた後、酢酸エチル150mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/3(体積比))により精製し、下記の物性を有するジ(7−イソシアノ−3,7−ジメチルオクチル)スルホキシド[以下、「CT−15」と称する。]30mgを得た。
<Synthesis Example 15>
76 mg of [CT-14] was dissolved in 10 mL of methanol, 53 mg of sodium periodate was added, and the mixture was stirred at room temperature for 20 hours. To the reaction mixture was added 20 mL of saturated brine, and the mixture was extracted with 150 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 1/3 (volume ratio)), and di (7-isocyano-3,7-dimethyloctyl) sulfoxide having the following physical properties [hereinafter referred to as “CT- 15 ”. ] 30 mg was obtained.

(CT−15のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.96(3H,d,J=6.6Hz)、0.97(3H,d,J=6.6Hz)、1.28−1.17(2H,m)、1.40(12H,br)、1.66−1.34(26H,m)、1.87−1.74(2H,m)、2.75−2.60(4H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:19.07、19.24、21.48、28.90、28.94、28.95、28.99、29.25、29.31、29.44、29.49、32.17、32.40、36.34、36.48、42.49、50.10、50.18、57.30(t,J=5.0Hz)、153.06(t,J=5.0Hz)
(NMR measurement result of CT-15)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.96 (3H, d, J = 6.6 Hz), 0.97 (3H, d, J = 6.6 Hz), 1.28-1. 17 (2H, m), 1.40 (12H, br), 1.66-1.34 (26H, m), 1.87-1.74 (2H, m), 2.75-2.60 ( 4H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 19.07, 19.24, 21.48, 28.90, 28.94, 28.95, 28.99, 29.25, 29. 31, 29.44, 29.49, 32.17, 32.40, 36.34, 36.48, 42.49, 50.10, 50.18, 57.30 (t, J = 5.0 Hz) 153.06 (t, J = 5.0 Hz)

<合成例16>
シトロネロール10gをピリジン20mLに溶解し、p−トルエンスルホニルクロリド14.6gを加えて室温で3日間攪拌した。反応混合液に飽和食塩水30mLを加え、さらに5分間攪拌した後、ヘキサン200mLで抽出した。有機層を3M塩酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮してシトロネリルクロリド8.5gを得た。
<Synthesis Example 16>
Citronellol (10 g) was dissolved in pyridine (20 mL), p-toluenesulfonyl chloride (14.6 g) was added, and the mixture was stirred at room temperature for 3 days. To the reaction mixture was added 30 mL of saturated brine, and the mixture was further stirred for 5 minutes, and then extracted with 200 mL of hexane. The organic layer was washed with 3M hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 8.5 g of citronellyl chloride.

シトロネリルクロリド7.8gをメタノール100mLに溶解し、硫化ナトリウム・九水和物8gを加え、20時間加熱還流した。反応混合液に飽和食塩水100mLを加えた後、酢酸エチル300mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮してジ(3,7−ジメチル−6−オクテニル)スルフィド7gを得た。  7.8 g of citronellyl chloride was dissolved in 100 mL of methanol, 8 g of sodium sulfide nonahydrate was added, and the mixture was heated to reflux for 20 hours. 100 mL of saturated brine was added to the reaction mixture, followed by extraction with 300 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 7 g of di (3,7-dimethyl-6-octenyl) sulfide.

ジ(3,7−ジメチル−6−オクテニル)スルフィド2.1gをメタノール30mLに溶解し、過ヨウ素酸ナトリウム433mgを加え、室温で15時間加熱還流した。反応混合液に飽和食塩水30mLを加えた後、酢酸エチル150mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチルー40/1〜5/1(体積比))により精製し、ジ(3,7−ジメチル−6−オクテニル)スルホン210mgを得た。  Di (3,7-dimethyl-6-octenyl) sulfide (2.1 g) was dissolved in methanol (30 mL), sodium periodate (433 mg) was added, and the mixture was heated to reflux for 15 hours at room temperature. To the reaction mixture was added 30 mL of saturated brine, and the mixture was extracted with 150 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate-40 / 1-5 / 1 (volume ratio)) to obtain 210 mg of di (3,7-dimethyl-6-octenyl) sulfone.

ジ(3,7−ジメチル−6−オクテニル)スルホン210mgを塩化メチレン2mLに溶解し、トリメチルシリルシアニド330μL、過塩素酸銀500mgを加えて室温で24時間攪拌した。反応混合液に飽和炭酸水素ナトリウム水溶液20mLを加えてさらに5分間攪拌した後、飽和食塩水20mLを加えてセライト濾過を行い、酢酸エチル150mLで洗浄した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1(体積比))により精製し、下記の物性を有するジ(7−イソシアノ−3,7−ジメチルオクチル)スルホン[以下、「CT−16」と称する。]100mgを得た。  210 mg of di (3,7-dimethyl-6-octenyl) sulfone was dissolved in 2 mL of methylene chloride, 330 μL of trimethylsilyl cyanide and 500 mg of silver perchlorate were added, and the mixture was stirred at room temperature for 24 hours. To the reaction mixture, 20 mL of saturated aqueous sodium hydrogen carbonate solution was added and stirred for another 5 minutes. Then, 20 mL of saturated brine was added, and the mixture was filtered through Celite, and washed with 150 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 2/1 (volume ratio)) and di (7-isocyano-3,7-dimethyloctyl) sulfone [hereinafter referred to as “CT- 16 ". 100 mg was obtained.

(CT−16のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.96(3H,d,J=6.6Hz)、1.18−1.26(2H,m)、1.32−1.71(26H,m)、1.40(12H,br)、1.84−1.92(2H,m)、2.88−3.03(4H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:19.09、21.54、28.56、28.99、29.04、32.03、36.33、42.52、50.84、57.35(t,J=5.0Hz)、153.27(t,J=5.0Hz)
(NMR measurement result of CT-16)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.96 (3H, d, J = 6.6 Hz), 1.18-1.26 (2H, m), 1.32-1.71 ( 26H, m), 1.40 (12H, br), 1.84-1.92 (2H, m), 2.88-3.03 (4H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 19.09, 21.54, 28.56, 28.99, 29.04, 32.03, 36.33, 42.52, 50. 84, 57.35 (t, J = 5.0 Hz), 153.27 (t, J = 5.0 Hz)

<合成例17>
[CT−1]250mgをDMF5mLに溶解し、アルゴン雰囲気下、水素化ナトリウム100mgを加えて室温で15分間攪拌した後、反応混合液にシトロネリルヨージド500mgを加えて室温で8時間攪拌した。反応混合液に飽和塩化アンモニウム水溶液20mLを加えた後、酢酸エチル150mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=30/1〜10/1(体積比))により精製し、(7−イソシアノ−3,7−ジメチルオクチル)(3,7−ジメチル−6−オクテニル)エーテル[以下、「CT−17」と称する。]25mgを得た。
<Synthesis Example 17>
[CT-1] 250 mg was dissolved in 5 mL of DMF. Under argon atmosphere, 100 mg of sodium hydride was added and stirred at room temperature for 15 minutes, and then 500 mg of citronellyl iodide was added to the reaction mixture, followed by stirring at room temperature for 8 hours. After adding 20 mL of saturated aqueous ammonium chloride solution to the reaction mixture, the mixture was extracted with 150 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 30/1 to 10/1 (volume ratio)) to give (7-isocyano-3,7-dimethyloctyl) (3,7-dimethyl-6- Octenyl) ether [hereinafter referred to as “CT-17”. ] 25 mg was obtained.

(CT−17のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.89(3H,d,J=6.6Hz)、0.91(3H,d,J=6.6Hz)、1.11−1.22(2H,m)、1.40(6H,t,J=1.8Hz)、1.60(3H,br)、1.30−1.66(22H,m)、1.68(3H,br)、1.91−2.05(2H,m)、3.38−3.48(4H,m)、5.05−5.12(1H,m)
13C−NMR(150.8MHz、CDCl、TMS)δ:17.64、19.55、19.60、21.56、25.50、25.72、28.99、29.03、29.68、29.69、29.82、29.84、36.74、36.78、36.95、36.97、37.25、37.27、42.73、57.40(t,J=5.0Hz)、69.08、69.10、69.27、69.30、124.87、131.12、152.98(t,J=5.0Hz)
(NMR measurement result of CT-17)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.89 (3H, d, J = 6.6 Hz), 0.91 (3H, d, J = 6.6 Hz), 1.11-1. 22 (2H, m), 1.40 (6H, t, J = 1.8 Hz), 1.60 (3H, br), 1.30-1.66 (22H, m), 1.68 (3H, br), 1.91-2.05 (2H, m), 3.38-3.48 (4H, m), 5.05-5.12 (1H, m)
13 C-NMR (150.8 MHz, CDCl 3 , TMS) δ: 17.64, 19.55, 19.60, 21.56, 25.50, 25.72, 28.99, 29.03, 29. 68, 29.69, 29.82, 29.84, 36.74, 36.78, 36.95, 36.97, 37.25, 37.27, 42.73, 57.40 (t, J = 5.0 Hz), 69.08, 69.10, 69.27, 69.30, 124.87, 131.12, 152.98 (t, J = 5.0 Hz)

<合成例18>
シトロネロール3.4gをテトラヒドロフラン30mLに溶解し、アルゴン雰囲気下および氷冷下にて、トリフェニルホスフィン5.9g、フタルイミド3.6gおよびアゾジカルボン酸イソプロピルエステル5.4mLを加え、氷冷下で1時間攪拌した。反応混合液に飽和塩化アンモニウム水溶液20mLを加えた後、酢酸エチル150mLで抽出した。有機層を5%水酸化カリウム水溶液、水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=10/1(体積比))により精製し、N−(3,7−ジメチル−6−オクテニル)フタルイミド4.9gを得た。
<Synthesis Example 18>
Citronellol 3.4 g was dissolved in 30 mL of tetrahydrofuran, and 5.9 g of triphenylphosphine, 3.6 g of phthalimide and 5.4 mL of azodicarboxylic acid isopropyl ester were added under an argon atmosphere and ice cooling, and the mixture was cooled for 1 hour under ice cooling. Stir. After adding 20 mL of saturated aqueous ammonium chloride solution to the reaction mixture, the mixture was extracted with 150 mL of ethyl acetate. The organic layer was washed with 5% aqueous potassium hydroxide solution, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 10/1 (volume ratio)) to obtain 4.9 g of N- (3,7-dimethyl-6-octenyl) phthalimide.

N−(3,7−ジメチル−6−オクテニル)フタルイミド1.5gを塩化メチレン20mLに溶解し、トリメチルシリルシアニド1.1mLおよび過塩素酸銀1.6gを加えて室温で14時間攪拌した。反応混合液に飽和炭酸水素ナトリウム水溶液30mLを加えた後、酢酸エチル200mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1(体積比))により精製し、N−(7−イソシアノ−3,7−ジメチルオクチル)フタルイミド[以下、「CT−18」と称する。]192mgを得た。  N- (3,7-dimethyl-6-octenyl) phthalimide (1.5 g) was dissolved in methylene chloride (20 mL), trimethylsilyl cyanide (1.1 mL) and silver perchlorate (1.6 g) were added, and the mixture was stirred at room temperature for 14 hours. After adding 30 mL of saturated aqueous sodium hydrogen carbonate solution to the reaction mixture, extraction was performed with 200 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 1/1 (volume ratio)), and N- (7-isocyano-3,7-dimethyloctyl) phthalimide [hereinafter referred to as “CT-18”. . 192 mg was obtained.

<合成例19>
N−(3,7−ジメチル−6−オクテニル)フタルイミド3.6gをメタノール30mLに溶解し、ヒドラジン・一水和物880μLを加えて1時間加熱還流した。反応混合液に飽和食塩水50mLを加えた後、酢酸エチル150mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥させ、次いで減圧下に濃縮し、3,7−ジメチル−6−オクテニルアミン1.36gを得た。
<Synthesis Example 19>
3.6 g of N- (3,7-dimethyl-6-octenyl) phthalimide was dissolved in 30 mL of methanol, 880 μL of hydrazine monohydrate was added, and the mixture was heated to reflux for 1 hour. After adding 50 mL of saturated brine to the reaction mixture, the mixture was extracted with 150 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and then concentrated under reduced pressure to obtain 1.36 g of 3,7-dimethyl-6-octenylamine.

3,7−ジメチル−6−オクテニルアミン1.36gをギ酸エチル40mLに溶解し、p−トルエンスルホン酸50mgを加えて14時間加熱還流した。反応混合液に酢酸エチル100mLを加え、有機層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1〜0/1(体積比))により精製し、N−(3,7−ジメチル−6−オクテニル)ホルムアミド850mgを得た。  1.36 g of 3,7-dimethyl-6-octenylamine was dissolved in 40 mL of ethyl formate, 50 mg of p-toluenesulfonic acid was added, and the mixture was heated to reflux for 14 hours. Ethyl acetate (100 mL) was added to the reaction mixture, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 5/1 to 0/1 (volume ratio)) to obtain 850 mg of N- (3,7-dimethyl-6-octenyl) formamide.

N−(3,7−ジメチル−6−オクテニル)ホルムアミド300mgを塩化メチレン5mLに溶解し、トリメチルシリルシアニド460μLおよび過塩素酸銀680mgを加えて室温で24時間攪拌した。反応混合液に飽和炭酸水素ナトリウム水溶液20mLを加えた後、酢酸エチル150mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1(体積比))により精製し、N−(7−イソシアノ−3,7−ジメチルオクチル)ホルムアミド[以下、「CT−19」と称する。]192mgを得た。  300 mg of N- (3,7-dimethyl-6-octenyl) formamide was dissolved in 5 mL of methylene chloride, 460 μL of trimethylsilylcyanide and 680 mg of silver perchlorate were added, and the mixture was stirred at room temperature for 24 hours. After adding 20 mL of saturated aqueous sodium hydrogen carbonate solution to the reaction mixture, the mixture was extracted with 150 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 1/1 (volume ratio)), and N- (7-isocyano-3,7-dimethyloctyl) formamide [hereinafter referred to as “CT-19”. . 192 mg was obtained.

<合成例20>
「CT−19]」170mgをピリジン2mLに溶解し、p−トルエンスルホニルクロリド312mgを加えて室温で16時間攪拌した。反応混合液に飽和食塩水20mLを加えた後、酢酸エチル150mLで抽出した。有機層を3M塩酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=10/1(体積比))により精製し、1,7−ジイソシアノ−3,7−ジメチルオクタン[以下、「CT−20」と称する。]86mgを得た。
<Synthesis Example 20>
170 mg of “CT-19” was dissolved in 2 mL of pyridine, 312 mg of p-toluenesulfonyl chloride was added, and the mixture was stirred at room temperature for 16 hours. To the reaction mixture was added 20 mL of saturated brine, and the mixture was extracted with 150 mL of ethyl acetate. The organic layer was washed with 3M hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 10/1 (volume ratio)), and 1,7-diisocyano-3,7-dimethyloctane [hereinafter referred to as “CT-20”. ] 86 mg was obtained.

<合成例21>
「CT−18」1gをメタノール30mLに溶解し、ヒドラジン・一水和物200μLを加えて2時間加熱還流した。反応混合液に飽和食塩水50mLを加えた後、酢酸エチル150mLで抽出した。有機層を水および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をアミノシリカゲルカラムクロマトグラフィー(酢酸エチル/メタノール=10/1(体積比))により精製し、7−イソシアノ−3,7−ジメチルオクチルアミン[以下、「CT−21」と称する。]300mgを得た。
<Synthesis Example 21>
1 g of “CT-18” was dissolved in 30 mL of methanol, 200 μL of hydrazine monohydrate was added, and the mixture was heated to reflux for 2 hours. After adding 50 mL of saturated brine to the reaction mixture, the mixture was extracted with 150 mL of ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by amino silica gel column chromatography (ethyl acetate / methanol = 10/1 (volume ratio)), and 7-isocyano-3,7-dimethyloctylamine [hereinafter referred to as “CT-21”. ] 300 mg was obtained.

<合成例22>
「CT−21」100mgをピリジン500μLに溶解し、無水酢酸500μLを加えて室温で10時間撹拌した。反応混合液に、飽和食塩水20mLを加えた後、酢酸エチル100mLで抽出した。有機層を3M塩酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄した後、無水硫酸マグネシウムを用いて乾燥し、減圧下に濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/9(体積比))により精製し、N−(7−イソシアノ−3,7−ジメチルオクチル)アセトアミド[以下、「CT−22」と称する。]104mgを得た。
<Synthesis Example 22>
100 mg of “CT-21” was dissolved in 500 μL of pyridine, 500 μL of acetic anhydride was added, and the mixture was stirred at room temperature for 10 hours. After adding 20 mL of saturated saline to the reaction mixture, extraction was performed with 100 mL of ethyl acetate. The organic layer was washed with 3M hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 1/9 (volume ratio)), and N- (7-isocyano-3,7-dimethyloctyl) acetamide [hereinafter referred to as “CT-22”. . 104 mg was obtained.

<合成例23>
「CT−1」18.7gを塩化メチレン70mLに溶解し、氷冷下にてトリエチルアミン17mLおよびメタクリル酸クロリド12mLを加え、さらに同条件で4時間攪拌した。反応混合液を濃縮し、酢酸エチル100mLを加えてから濾過した後、減圧下に濃縮した。残留物を減圧下に単蒸発[105℃/133Pa(1mmHg)]することにより、下記の物性を有するメタクリル酸7−イソシアノ−3,7−ジメチルオクチル[以下、「CT−23」と称する。]2.96gを得た。
<Synthesis Example 23>
18.7 g of “CT-1” was dissolved in 70 mL of methylene chloride, 17 mL of triethylamine and 12 mL of methacrylic acid chloride were added under ice cooling, and the mixture was further stirred for 4 hours under the same conditions. The reaction mixture was concentrated, 100 mL of ethyl acetate was added, filtered, and concentrated under reduced pressure. By subjecting the residue to single evaporation [105 ° C./133 Pa (1 mmHg)] under reduced pressure, 7-isocyano-3,7-dimethyloctyl methacrylate having the following physical properties [hereinafter referred to as “CT-23”]. ] 2.96 g was obtained.

(CT−23のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.95(3H,d,J=6.6Hz)、1.16−1.76(15H,m)、1.93−1.95(3H,m)、4.13−4.24(2H,m)、5.52−5.56(1H,m)、6.07−6.10(1H,m)
(NMR measurement result of CT-23)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.95 (3H, d, J = 6.6 Hz), 1.16-1.76 (15H, m), 1.93-1.95 ( 3H, m), 4.13-4.24 (2H, m), 5.52-5.56 (1H, m), 6.07-6.10 (1H, m)

<合成例24>
「CT−1」16.8gを塩化メチレン70mLに溶解し、氷冷下にてトリエチルアミン20mLおよびアクリル酸クロリド10mLを加え、さらに同条件で4時間攪拌した。反応混合液を濃縮した後、酢酸エチル100mLを加えて固体を濾過した後、減圧下に濃縮し、粗アクリル酸7−イソシアノ−3,7−ジメチルオクチル[以下、「CT−24」と称する。]21.8gを得た。
<Synthesis Example 24>
16.8 g of “CT-1” was dissolved in 70 mL of methylene chloride, 20 mL of triethylamine and 10 mL of acrylic acid chloride were added under ice cooling, and the mixture was further stirred for 4 hours under the same conditions. After concentrating the reaction mixture, 100 mL of ethyl acetate was added and the solid was filtered, then concentrated under reduced pressure, and crude 7-isocyano-3,7-dimethyloctyl acrylate [hereinafter referred to as “CT-24”. ] 21.8 g was obtained.

(CT−24のNMR測定結果)
H−NMR(600MHz、CDCl、TMS)δ:0.95(3H,d,J=6.6Hz)、1.16−1.24(2H,m)、1.30−1.76(13H,m)、6.40(1H,dd,J=10、1.5Hz)、6.13(1H,dd,J=18、10Hz)、6.40(1H,dd,J=18、1.5Hz)
(NMR measurement result of CT-24)
1 H-NMR (600 MHz, CDCl 3 , TMS) δ: 0.95 (3H, d, J = 6.6 Hz), 1.16 to 1.24 (2H, m), 1.30 to 1.76 ( 13H, m), 6.40 (1H, dd, J = 10, 1.5 Hz), 6.13 (1H, dd, J = 18, 10 Hz), 6.40 (1H, dd, J = 18, 1 .5Hz)

<実施例1>
実施例1における試験方法は、マルチウェルプレートを用いたRittschofらが考案した方法(Rittschof et.al,J.Exp.Mar.Bio.Ecl.,82,p.131−146(1984年)参照)に基づいて実施した。サンプルとしては、イソニトリル化合物(1)として、前記合成例1〜23で製造した「CT1」〜「CT23」を使用した。
<Example 1>
The test method in Example 1 was devised by Rittschof et al. Using a multi-well plate (see Rittschof et.al, J. Exp. Mar. Bio. Ecl., 82, p. 131-146 (1984)). Based on. As the sample, “CT1” to “CT23” produced in Synthesis Examples 1 to 23 were used as the isonitrile compound (1).

25℃のインキュベータ内で珪藻を与えて飼育したタテジマフジツボのキプリス幼生を用いて、「CT1」〜「CT23」の忌避効果について試験した。試験にはCorning社製24ウェルのポリスチレン製マルチウェルプレート(容量3.2mL、直径15.5mm、高さ17.6mm)を用い、「CT1」〜「CT23」の各化合物をメタノール約0.3mLに溶かした混合溶液をウェルに注ぎ込み、乾燥させてメタノールを除去した後、さらに濾過済みの海水2mLを注入した。試験する化合物の濃度(μg/mL)は、それぞれの化合物につき、0.01、0.03、0.1、0.3、1、3、10となるように調製した。1ウェルにつき6個体のフジツボ幼生を収容し、4ウェルを1濃度区とした。5日後に付着個体数および死亡個体数を実体顕微鏡下で計数し、各濃度区別のフジツボ幼生の付着率および死亡率を算出した。  The repellent effect of “CT1” to “CT23” was tested using cypris larvae of the vertical barnacles fed with diatoms in an incubator at 25 ° C. For the test, a 24-well polystyrene multiwell plate (volume: 3.2 mL, diameter: 15.5 mm, height: 17.6 mm) made by Corning was used, and each compound of “CT1” to “CT23” was about 0.3 mL of methanol. The mixed solution dissolved in was poured into wells, dried to remove methanol, and then 2 mL of filtered seawater was injected. The concentration of the compound to be tested (μg / mL) was adjusted to 0.01, 0.03, 0.1, 0.3, 1, 3, 10 for each compound. Six barnacle larvae were accommodated per well, and 4 wells were defined as one concentration group. After 5 days, the number of adhered individuals and the number of dead individuals were counted under a stereoscopic microscope, and the adhesion rate and mortality rate of barnacle larvae for each concentration were calculated.

なお、試験を3回繰り返し、その平均値を求めて横軸にイソニトリル化合物(1)の濃度、縦軸にフジツボ幼生の付着率をプロットした。また同時に、各濃度におけるフジツボ幼生の死亡率をプロットした。その結果を図1〜7のグラフ1〜23に示す。但し、フジツボ幼生の付着率のプロットを黒塗りの四角形(■)、フジツボ幼生の死亡率を黒塗りのひし形(◆)で示す。  In addition, the test was repeated 3 times, the average value was calculated | required, the density | concentration of the isonitrile compound (1) was plotted on the horizontal axis, and the adhesion rate of the barnacle larvae was plotted on the vertical axis. At the same time, barnacle larvae mortality at each concentration was plotted. The results are shown in graphs 1 to 23 in FIGS. The barnacle larvae adherence rate plot is indicated by a black square (■), and the barnacle larvae mortality rate is indicated by a black diamond (♦).

<比較例>
イソニトリル化合物(1)の代わりに、硫酸銅を使用した以外は、実施例1と同様に試験を行った。その結果を図8のグラフ24に示す。
<Comparative example>
The test was performed in the same manner as in Example 1 except that copper sulfate was used instead of the isonitrile compound (1). The result is shown in the graph 24 of FIG.

図1〜7のグラフ1〜23より、本発明のイソニトリル化合物(1)は、いずれも優れたフジツボ幼生の付着防止効果を有していることがわかる。また、図8のグラフ24より、銅化合物(硫酸銅)にもフジツボ幼生の付着防止効果があることがわかる。  1 to 7 show that the isonitrile compound (1) of the present invention has an excellent effect of preventing adhesion of barnacle larvae. Moreover, it can be seen from the graph 24 in FIG. 8 that the copper compound (copper sulfate) also has the effect of preventing the adhesion of barnacle larvae.

しかし、本発明のイソニトリル化合物(1)を含有する防汚剤(2)は、図8のグラフ24(比較例)と比べ、イソニトリル化合物(1)の濃度が0.3μg/mL以上でもフジツボ幼生の死亡率がほとんど上がっていない。このことから、イソニトリル化合物(1)を含有する防汚剤(2)は、毒性により海洋生物の付着を防止しているのではなく、忌避効果により付着の防止をしていることがわかる。したがって、本発明のイソニトリル化合物(1)および防汚剤(2)は、海洋生物にとって非常に優しい化合物であることがわかる。  However, the antifouling agent (2) containing the isonitrile compound (1) of the present invention has a barnacle larvae even if the concentration of the isonitrile compound (1) is 0.3 μg / mL or more as compared with the graph 24 (comparative example) in FIG. There has been little increase in mortality. From this, it can be seen that the antifouling agent (2) containing the isonitrile compound (1) does not prevent adhesion of marine organisms due to toxicity but prevents adhesion due to a repellent effect. Therefore, it can be seen that the isonitrile compound (1) and the antifouling agent (2) of the present invention are very gentle compounds for marine organisms.

また、本発明のイソニトリル化合物(1)および防汚剤(2)は、前記特徴に加えて、さらに低コストで容易に製造することができるという利点があり、産業上とても有用であるといえる。  Further, the isonitrile compound (1) and the antifouling agent (2) of the present invention have the advantage that they can be easily produced at a lower cost in addition to the above characteristics, and can be said to be very useful industrially.

本発明のイソニトリル化合物(1)は、水中付着生物に対して毒性が低いにも関わらず忌避効果を有するため、例えば、水中付着生物防汚剤などに好適に使用することができる。  The isonitrile compound (1) of the present invention has a repellent effect in spite of its low toxicity to underwater organisms, and therefore can be suitably used for, for example, underwater organism antifouling agents.

Claims (2)

一般式(1):
Figure 2006035891
〔式中、RはCHX基(Xは水酸基、ハロゲン原子、イソシアノ基、アミノ基、置換アミノ基または置換基を有していてもよい、アルコキシ基、アルケニルオキシ基、アシルオキシル基、有機スルホニルオキシ基、有機スルフェニル基、有機スルフィニル基、有機スルホニル基、アミド基もしくはイミド基を示す)またはCOOR基(Rは置換基を有していてもよいアルキル基、アルケニル基またはアラルキル基を示す)を示し、各RおよびRはそれぞれ独立してアルキル基を示す〕
で表されるイソニトリル化合物。
General formula (1):
Figure 2006035891
[Wherein, R 1 represents a CH 2 X group (X represents a hydroxyl group, a halogen atom, an isocyano group, an amino group, a substituted amino group, or an optionally substituted alkoxy group, alkenyloxy group, acyloxyl group, An organic sulfonyloxy group, an organic sulfenyl group, an organic sulfinyl group, an organic sulfonyl group, an amide group or an imide group) or a COOR 4 group (R 4 is an optionally substituted alkyl group, alkenyl group or aralkyl group). Each of R 2 and R 3 independently represents an alkyl group.
An isonitrile compound represented by
一般式(1):
Figure 2006035891
〔式中、RはCHX基(Xは水酸基、ハロゲン原子、イソシアノ基、アミノ基、置換アミノ基または置換基を有していてもよい、アルコキシ基、アルケニルオキシ基、アシルオキシル基、有機スルホニルオキシ基、有機スルフェニル基、有機スルフィニル基、有機スルホニル基、アミド基もしくはイミド基を示す)またはCOOR基(Rは置換基を有していてもよい、アルキル基、アルケニル基またはアラルキル基を示す)を示し、各RおよびRはそれぞれ独立してアルキル基を示す〕
で表されるイソニトリル化合物を含有する水中付着生物防汚剤。
General formula (1):
Figure 2006035891
[Wherein, R 1 represents a CH 2 X group (X represents a hydroxyl group, a halogen atom, an isocyano group, an amino group, a substituted amino group, or an optionally substituted alkoxy group, alkenyloxy group, acyloxyl group, An organic sulfonyloxy group, an organic sulfenyl group, an organic sulfinyl group, an organic sulfonyl group, an amide group or an imide group) or a COOR 4 group (R 4 may have an substituent, an alkyl group, an alkenyl group, or Each of R 2 and R 3 independently represents an alkyl group]
A biofouling agent attached to water containing an isonitrile compound represented by the formula:
JP2006537815A 2004-09-30 2005-09-29 Isonitrile compounds and underwater biofouling agents Active JP4933261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006537815A JP4933261B2 (en) 2004-09-30 2005-09-29 Isonitrile compounds and underwater biofouling agents

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004288210 2004-09-30
JP2004288210 2004-09-30
PCT/JP2005/017988 WO2006035891A1 (en) 2004-09-30 2005-09-29 Isonitriles and antifouling agents against the adhesion of aquatics
JP2006537815A JP4933261B2 (en) 2004-09-30 2005-09-29 Isonitrile compounds and underwater biofouling agents

Publications (2)

Publication Number Publication Date
JPWO2006035891A1 true JPWO2006035891A1 (en) 2008-05-15
JP4933261B2 JP4933261B2 (en) 2012-05-16

Family

ID=36119037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006537815A Active JP4933261B2 (en) 2004-09-30 2005-09-29 Isonitrile compounds and underwater biofouling agents

Country Status (2)

Country Link
JP (1) JP4933261B2 (en)
WO (1) WO2006035891A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104257A1 (en) * 2008-02-20 2009-08-27 国立大学法人北海道大学 Antifouling coating film free from attachment of aquatic organisms, method for obtaining the antifouling coating film and utilization of the same
JP6164610B2 (en) * 2013-08-26 2017-07-19 国立大学法人東京農工大学 Antifouling agent for underwater organisms with amino acid isonitrile skeleton
JP6926863B2 (en) * 2017-09-11 2021-08-25 三菱ケミカル株式会社 Methods for manufacturing polymers for antifouling paints, resin compositions, antifouling paints, coating films, and polymers for antifouling paints
JP2019167335A (en) * 2018-03-23 2019-10-03 国立大学法人東京農工大学 Isothiocyanate compound and underwater adhering organism antifouling agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51118830A (en) * 1975-01-16 1976-10-19 Kumiai Chem Ind Co Ltd A controlling or coating compound against harmful organisms in water
JPS57128612A (en) * 1981-02-02 1982-08-10 Kuraray Co Ltd Terpene alcoholic controlling agent against underwater injurious organism
JPH04288003A (en) * 1991-03-14 1992-10-13 Mikasa Kagaku Kogyo Kk Harmful animal repelling composition
WO1997009464A2 (en) * 1995-08-31 1997-03-13 Synthetic Technology Corporation Isonitrile anti-fouling agents
JP2002370907A (en) * 2001-06-19 2002-12-24 Japan Science & Technology Corp Antifouling agent against underwater noxious attached organism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51118830A (en) * 1975-01-16 1976-10-19 Kumiai Chem Ind Co Ltd A controlling or coating compound against harmful organisms in water
JPS57128612A (en) * 1981-02-02 1982-08-10 Kuraray Co Ltd Terpene alcoholic controlling agent against underwater injurious organism
JPH04288003A (en) * 1991-03-14 1992-10-13 Mikasa Kagaku Kogyo Kk Harmful animal repelling composition
WO1997009464A2 (en) * 1995-08-31 1997-03-13 Synthetic Technology Corporation Isonitrile anti-fouling agents
JP2002370907A (en) * 2001-06-19 2002-12-24 Japan Science & Technology Corp Antifouling agent against underwater noxious attached organism

Also Published As

Publication number Publication date
JP4933261B2 (en) 2012-05-16
WO2006035891A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4533383B2 (en) Capsaicin derivatives and their production and use
RU2616608C2 (en) Method of producing derivatives of 4,4-difluoro-3,4-dihydroisoquinolin
JP4933261B2 (en) Isonitrile compounds and underwater biofouling agents
KR20060136361A (en) Capsaicin derivates and the production and use thereof
EP2198713A1 (en) Extract of red alga laurencia sp. with organic solvent, and agent for prevention of the settlement of barnacle comprising compound isolated from the extract
US20110185944A1 (en) Antifouling furan-2-one derivatives
Nogata et al. Antifouling substances against larvae of the barnacle Balanus amphitrite from the marine sponge, Acanthella cavernosa
JPS5928523B2 (en) Aquatic harmful sessile organism control agent
JP4152092B2 (en) Antifouling agent against underwater harmful organisms
CN109265381B (en) Cyano-containing phthalic diamide derivative and preparation and application thereof
CN109438442B (en) Indole compound, and synthesis method and application thereof
CN109627240B (en) Indole compound, synthesis method and antifouling application thereof
JP4920002B2 (en) Antifouling agent against underwater harmful organisms
WO2001006853A2 (en) Novel juvenile hormone analogues and their use as antifouling agents
JP4592153B2 (en) Diarylborane-primary amine complex compound and water-fouling biofouling agent
CN1273457C (en) Alkoxy propyl isothiazolinone and its preparation process and use
JPWO2010109855A1 (en) Antifouling agent against underwater harmful organisms
JPWO2016204127A1 (en) Marine adherent repellent composition
WO2006037274A1 (en) Alkoxypropyl isothiazolinone and preparation method and use thereof
WO1998039289A1 (en) Urea derivatives, and industrial antibacterial and antifungal agents, algaecides and antiperiphytic agents containing the same
JP2023159371A (en) Underwater adhering organism antifouling agent
JPH10330309A (en) New sesquiterpene compound with antifouling ability
JPS63246355A (en) Diphenylamine derivative and controlling agent against aquatic adhesive organism containing said derivative
JPS6333304A (en) Controller for preventing attaching of organism in water
JPH041107A (en) Underwater antifouling agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Ref document number: 4933261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350