JPWO2006028005A1 - Ferromagnetic ferroelectric and manufacturing method thereof - Google Patents

Ferromagnetic ferroelectric and manufacturing method thereof Download PDF

Info

Publication number
JPWO2006028005A1
JPWO2006028005A1 JP2006535713A JP2006535713A JPWO2006028005A1 JP WO2006028005 A1 JPWO2006028005 A1 JP WO2006028005A1 JP 2006535713 A JP2006535713 A JP 2006535713A JP 2006535713 A JP2006535713 A JP 2006535713A JP WO2006028005 A1 JPWO2006028005 A1 JP WO2006028005A1
Authority
JP
Japan
Prior art keywords
ferromagnetic
electrons
transition metal
orbitals
ferromagnetic ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006535713A
Other languages
Japanese (ja)
Inventor
東 正樹
正樹 東
孝仁 寺嶋
孝仁 寺嶋
和英 高田
和英 高田
昌幸 橋坂
昌幸 橋坂
晋太郎 石渡
晋太郎 石渡
攻 壬生
攻 壬生
島川 祐一
祐一 島川
幹夫 高野
幹夫 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of JPWO2006028005A1 publication Critical patent/JPWO2006028005A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • H01F10/1933Perovskites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
    • H01F1/401Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted
    • H01F1/407Diluted non-magnetic ions in a magnetic cation-sublattice, e.g. perovskites, La1-x(Ba,Sr)xMnO3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本発明は強磁性と強誘電性を併せ持つ新規な材料を提供することを目的として成された。本発明に係る強磁性強誘電体は、組成式Bi2MM'O6又はPb2MM'O6で表されるペロブスカイト構造を有する物質であって、Mがeg軌道の一部に電子を持つ遷移金属イオンであり、M'がeg軌道に電子を持たない遷移金属イオンであることを特徴とする。特に、Bi2CuMnO6は強磁性転移温度が340Kであり、室温においても強磁性と強誘電性を併せ持つ。The present invention was made for the purpose of providing a novel material having both ferromagnetism and ferroelectricity. The ferromagnetic ferroelectric material according to the present invention is a substance having a perovskite structure represented by a composition formula Bi2MM′O6 or Pb2MM′O6, and M is a transition metal ion having an electron in a part of an eg orbit, M ′ is a transition metal ion having no electrons in eg orbitals. In particular, Bi2CuMnO6 has a ferromagnetic transition temperature of 340K and has both ferromagnetism and ferroelectricity even at room temperature.

Description

本発明は、強磁性と強誘電性を併せ持ち、磁場による強誘電性の制御や電場による強磁性の制御等が可能な機能性材料である強磁性強誘電体及びその製造方法に関する。   The present invention relates to a ferromagnetic ferroelectric that is a functional material having both ferromagnetism and ferroelectricity and capable of controlling ferroelectricity by a magnetic field, controlling ferromagnetism by an electric field, and the like, and a method of manufacturing the same.

強誘電体は、記憶媒体やセンサ等の各種デバイスに幅広く用いられている。強誘電体においては、電場を印加してその大きさを制御することにより、分極の大きさを制御することができる。また、印加された電場を除去しても分極が残留する。この性質を利用して、例えば不揮発性メモリを構成することができる。一方、強磁性体も同様に不揮発性メモリ等の各種デバイスに用いられ、その制御は外部磁場の印加により行われる。   Ferroelectric materials are widely used in various devices such as storage media and sensors. In a ferroelectric, the magnitude of polarization can be controlled by applying an electric field and controlling the magnitude. Further, polarization remains even after the applied electric field is removed. Using this property, for example, a nonvolatile memory can be configured. On the other hand, a ferromagnetic material is also used in various devices such as a nonvolatile memory, and its control is performed by applying an external magnetic field.

強誘電性と強磁性を併せ持つ材料(以下、「強磁性強誘電体」と呼ぶ)が得られれば、それら2つの性質を同時に利用して様々な機能を有するデバイスを実現することができる。例えば、1種類の材料のみで、強誘電性による記録と強磁性による記録を独立に行うメモリとすることができる。このようなメモリでは、強誘電性又は強磁性の一方のみを利用する場合よりも記録容量(記録密度)を増加させることができる。   If a material having both ferroelectricity and ferromagnetism (hereinafter referred to as “ferromagnetic ferroelectric”) is obtained, devices having various functions can be realized by utilizing these two properties simultaneously. For example, a single material can be used to make a memory that performs recording by ferroelectricity and recording by ferromagnetism independently. In such a memory, the recording capacity (recording density) can be increased as compared with the case of using only one of ferroelectricity and ferromagnetism.

また、強磁性強誘電体においては、磁場により強誘電性を制御したり、逆に電場により強磁性を制御したりすることができる。そのため、このような強磁性強誘電体により、通常の強誘電体や強磁性体では得られない特殊な機能を有するデバイスを構成することができる。   In a ferromagnetic ferroelectric material, ferroelectricity can be controlled by a magnetic field, and conversely, ferromagnetism can be controlled by an electric field. For this reason, a device having a special function that cannot be obtained with a normal ferroelectric or ferromagnetic material can be constituted by such a ferromagnetic ferroelectric material.

更に、このような材料はスピンフィルタに用いることができる。スピンフィルタは、スピンの向きが揃った電子の流れ(電流)を作り出す素子であり、スピントロニクス(電子の持つ、電荷とスピンの両方の性質を利用した技術)のキーデバイスである。その材料は強磁性の絶縁体であることが必要である。強誘電体は良好な絶縁体であるため、強磁性強誘電体はスピンフィルタに適した材料であるといえる。   Furthermore, such materials can be used for spin filters. A spin filter is an element that generates an electron flow (current) with a uniform spin direction, and is a key device of spintronics (a technology that utilizes both the properties of electrons and electric charges). The material needs to be a ferromagnetic insulator. Since a ferroelectric is a good insulator, it can be said that a ferromagnetic ferroelectric is a material suitable for a spin filter.

特許文献1には、ペロブスカイト構造を有する化合物(以下、ペロブスカイト型化合物)において強磁性強誘電体が見いだされた旨が記載されている。ここで、ペロブスカイト構造は、一般式ABX3で表され、AXから成る層とBX2から成る層が交互に積層した構造を有するものであり、強誘電体であるBaTiO3や巨大磁気抵抗効果を奏するLaMnO3等によりよく知られている。この文献では、強磁性強誘電体であるペロブスカイト型化合物としてBiMnO3が挙げられている。確かに、この物質は強誘電性と強磁性を併せ持つが、強磁性転移温度は110Kであり、不揮発性メモリ等のデバイスに用いるためには素子を冷却することが必要になる。なお、この文献にはBiFeO3が強磁性強誘電体であると記載されているが、実際にはこの物質は反強磁性体のスピンが傾いて配列することで磁化が生じる弱い強磁性体である。Patent Document 1 describes that a ferromagnetic ferroelectric substance has been found in a compound having a perovskite structure (hereinafter, a perovskite type compound). Here, the perovskite structure is represented by the general formula ABX 3, are those having a structure in which a layer consisting of a layer and BX 2 consisting of AX are alternately stacked, the BaTiO 3 or giant magnetoresistive effect which is ferroelectric It is well-known for playing LaMnO 3 and the like. In this document, BiMnO 3 is cited as a perovskite type compound which is a ferromagnetic ferroelectric substance. Certainly, this material has both ferroelectricity and ferromagnetism, but its ferromagnetic transition temperature is 110K, and it is necessary to cool the element in order to use it in a device such as a nonvolatile memory. Although this document describes that BiFeO 3 is a ferromagnetic ferroelectric material, this material is actually a weak ferromagnetic material that generates magnetization when the spins of the antiferromagnetic material are tilted. is there.

特許文献2には、強磁性又は反強磁性を示すペロブスカイト型化合物を形成し得る元素と、強誘電性や反強誘電性等の誘電性を有するペロブスカイト型化合物を形成し得る元素とから成る酸化物セラミックス材料の一群が示されている。そして、これらの材料について誘電性と磁性との間の相互作用の大きさを表す電気磁気結合定数が測定され、それにより、これらの材料において磁性と誘電特性の相関があることが示されている。しかし、これらの材料が強磁性と強誘電性を併せ持つかどうかは明らかではない。また、X線回折測定によると、これらの材料はアモルファスであって結晶性がなく、更に、単相であるかどうかは確認されていないため、上記の特性がどの物質により生じているのか特定することができない。   Patent Document 2 discloses an oxidation comprising an element capable of forming a perovskite type compound exhibiting ferromagnetism or antiferromagnetism and an element capable of forming a perovskite type compound having dielectric properties such as ferroelectricity and antiferroelectricity. A group of ceramic materials is shown. And the electromagnetic coupling constants representing the magnitude of the interaction between dielectric and magnetism are measured for these materials, which shows that there is a correlation between magnetism and dielectric properties in these materials . However, it is not clear whether these materials have both ferromagnetism and ferroelectricity. In addition, X-ray diffraction measurements indicate that these materials are amorphous and non-crystalline, and that it is not confirmed whether they are single-phase, and therefore identify which substances cause the above characteristics. I can't.

また、これらの文献のいずれにおいても、一般式で書き表された一連の物質群が挙げられているが、それらの物質群に共通した、強誘電性と強磁性を併せ持つ理由が示されていない。そのため、これら一連の物質群のうち、実験結果の示されたもの以外の材料については、実際に強誘電性と強磁性を併せ持つかどうかは明らかではない。   In addition, in each of these documents, a series of substance groups written in a general formula is mentioned, but the reason for having both ferroelectricity and ferromagnetism common to those substance groups is not shown. . Therefore, it is not clear whether materials other than those shown in the experimental results in the series of substance groups actually have both ferroelectricity and ferromagnetism.

特開平11-286774号公報([0015]〜[0017], 図1〜図4)Japanese Patent Laid-Open No. 11-286774 ([0015] to [0017], FIGS. 1 to 4) 特開平5-043227号公報([0003]〜[0004])JP 5-043227 A ([0003] to [0004])

室温において強誘電性と強磁性を併せ持つ材料は未だ知られていない。また、BiMnO3においてはeg軌道の秩序配列のために強磁性が生じることが分かっているが、同様の軌道秩序による強磁性体を他の物質で実現した例はない。強磁性強誘電体を得るための指針を確立できれば、強磁性と強誘電性を併せ持つ物質が得られるうえ、1種類の物質のみではなくその指針に適合する多種類の物質から成る一連の物質群を得ることができる。このような物質群が得られれば、その中から更に最適な物質を探索することにより、室温において強誘電性と強磁性を併せ持つ強磁性強誘電体が得られると期待される。A material having both ferroelectricity and ferromagnetism at room temperature is not yet known. Although it has been found that the ferromagnetic for the orderly arrangement of e g orbitals occurs in BiMnO 3, no example of realizing by another substance ferromagnetic by similar orbital order. If a guideline for obtaining a ferromagnetic ferroelectric material can be established, a substance having both ferromagnetism and ferroelectricity can be obtained, and a series of substance groups consisting of not only one kind of substance but also many kinds of substances conforming to the guideline. Can be obtained. If such a substance group is obtained, it is expected that a ferromagnetic ferroelectric material having both ferroelectricity and ferromagnetism at room temperature can be obtained by searching for an optimum substance from among them.

本発明が解決しようとする課題は、強磁性と強誘電性を併せ持つ新規の物質群を提供することにある。そして、特に室温において強磁性と強誘電性を併せ持つ材料を提供することにある。   The problem to be solved by the present invention is to provide a novel substance group having both ferromagnetism and ferroelectricity. Another object is to provide a material having both ferromagnetism and ferroelectricity at room temperature.

上記課題を解決するために成された本発明に係る強磁性強誘電体の第1の態様のものは、組成式Bi2MM'O6で表されるペロブスカイト構造を有する物質であって、Mが最外殻のd軌道のうちt2g軌道の一部又は全て及びeg軌道の一部のみに電子を持つ3d-5d遷移金属イオンであり、M'が最外殻のd軌道のうちt2g軌道の一部又は全てに電子を持ちeg軌道に電子を持たない3d-5d遷移金属イオンであることを特徴とする。The first aspect of the ferromagnetic ferroelectric material according to the present invention for solving the above problems is a substance having a perovskite structure represented by a composition formula Bi 2 MM′O 6 , t There is a 3d-5d transition metal ions with electrons only a portion of some or all and e g orbitals of t 2 g trajectory of the d orbital of outermost, M 'is of the d orbital of outermost characterized in that a part or all of 2g orbitals is 3d-5d transition metal ions having no electrons e g orbitals have electron.

本発明に係る強磁性強誘電体の第2の態様のものは、組成式Pb2MM'O6で表されるペロブスカイト構造を有する物質であって、Mが最外殻のd軌道のうちt2g軌道の一部又は全て及びeg軌道の一部のみに電子を持つ3d-5d遷移金属イオンであり、M'が最外殻のd軌道のうちt2g軌道の一部又は全てに電子を持ちeg軌道に電子を持たない3d-5d遷移金属イオンであることを特徴とする。A second aspect of the ferromagnetic ferroelectric material according to the present invention is a substance having a perovskite structure represented by a composition formula Pb 2 MM′O 6 , wherein M is t of d orbitals of the outermost shell. a 3d-5d transition metal ions with electrons only a portion of some or all and e g orbitals of 2g orbitals, the electronic part or all of the t 2g orbitals of d orbitals of M 'is the outermost shell characterized in that it is a have e g orbitals 3d-5d transition metal ions having no electrons.

本願において、「3d-5d遷移金属イオン」とは、3d、4d又は5dのいずれかの電子軌道に電子が存在し、且つ閉殻構造を持たない遷移金属イオンを指す。また、3d軌道が閉殻構造を持たない遷移金属イオンを「3d遷移金属イオン」と呼ぶ。同様に4d軌道、5d軌道が閉殻構造を持たない遷移金属イオンをそれぞれ「4d遷移金属イオン」、「5d遷移金属イオン」と呼ぶ。   In the present application, the “3d-5d transition metal ion” refers to a transition metal ion in which electrons are present in any of the electron orbits of 3d, 4d, or 5d and does not have a closed shell structure. In addition, transition metal ions whose 3d orbitals do not have a closed shell structure are called “3d transition metal ions”. Similarly, transition metal ions whose 4d or 5d orbitals do not have a closed shell structure are referred to as “4d transition metal ions” and “5d transition metal ions”, respectively.

M及びM'は3d遷移金属イオンであることが望ましい。その中でも、Bi2MM'O6においてMはCo, Ni, Cuのうちのいずれか1種であり、前記M'はMnであることが望ましい。特に、Bi2CuMnO6は室温において強磁性と強誘電性を共に示す点で、より望ましい。M and M ′ are preferably 3d transition metal ions. Among them, in Bi 2 MM′O 6 , M is any one of Co, Ni, and Cu, and the M ′ is preferably Mn. In particular, Bi 2 CuMnO 6 is more desirable in that it exhibits both ferromagnetism and ferroelectricity at room temperature.

なお、上記組成式Bi2MM'O6及びPb2MM'O6に示した各元素の比が多少ずれた材料であっても、後述する原理により強磁性と強誘電性を併せ持つものは本願発明の技術的範囲に含まれる。Even if the ratio of each element shown in the above composition formulas Bi 2 MM'O 6 and Pb 2 MM'O 6 is slightly deviated, the material having both ferromagnetism and ferroelectricity according to the principle described later It is included in the technical scope of the invention.

本発明に係る強磁性強誘電体の結晶構造を示す模式図。The schematic diagram which shows the crystal structure of the ferromagnetic ferroelectric substance which concerns on this invention. 本実施例の強磁性強誘電体薄膜の製造に用いた装置の概略構成図。The schematic block diagram of the apparatus used for manufacture of the ferromagnetic ferroelectric thin film of a present Example. 本実施例において作製されたBi2NiMnO6バルク試料のX線(波長0.0421nm)回折チャート。X-ray (wavelength 0.0421Nm) diffraction chart of Bi 2 NiMnO 6 bulk sample produced in this example. Bi2NiMnO6バルク試料のX線(波長0.0421nm)回折の温度変化を示すチャート。Bi 2 NiMnO 6 X-ray of the bulk sample (wavelength 0.0421Nm) chart showing a temperature change of the diffraction. Bi2NiMnO6の比誘電率の温度変化を示すグラフ。Graph showing the temperature change of the dielectric constant of the Bi 2 NiMnO 6. Bi2NiMnO6の帯磁率の温度変化を示すグラフ。Graph showing temperature variation of magnetic susceptibility of Bi 2 NiMnO 6. Bi2NiMnO6の磁化曲線を示すグラフ。Graph showing the magnetization curves of Bi 2 NiMnO 6. Bi2CuMnO6の帯磁率の温度変化を示すグラフ。Graph showing temperature variation of magnetic susceptibility of Bi 2 CuMnO 6. Bi2CoMnO6の帯磁率の温度変化を示すグラフ。Graph showing temperature variation of magnetic susceptibility of Bi 2 CoMnO 6. 本実施例において作製されたBi2NiMnO6薄膜のX線回折チャート((002)ピーク付近の拡大図)。X-ray diffraction chart of Bi 2 NiMnO 6 thin film fabricated in the present embodiment ((002) enlarged view of the vicinity of the peak). Bi2NiMnO6薄膜の温度100Kにおける分極P-電場E曲線を示すグラフ。Graph showing the polarization P- electric field E curve in Bi 2 NiMnO 6 Temperature 100K of the thin film. Bi2NiMnO6薄膜の誘電率の磁場による変化を示すグラフ。Graph showing the change by the magnetic field of the Bi 2 NiMnO 6 thin film dielectric constant.

符号の説明Explanation of symbols

11…Bi又はPb
12…MO6八面体
13…M'O6八面体
21…チャンバ
22…基板ホルダ
23…ターゲットホルダ
24…レーザ光源
25…ポンプ
26…ガス供給口
27a…RHEED装置の電子銃
27b…RHEED装置のスクリーン
28…基板
29…ターゲット
30…レーザ光
31…蒸発したターゲット
11 ... Bi or Pb
12 ... MO 6 octahedron 13 ... M'O 6 octahedron 21 ... chamber 22 ... substrate holder 23 ... target holder 24 ... laser light source 25 ... pump 26 ... gas supply port 27a ... RHEED device electron gun 27b ... RHEED device screen 28 ... Substrate 29 ... Target 30 ... Laser beam 31 ... Evaporated target

発明の実施の形態及び効果Embodiments and effects of the invention

本発明の強磁性強誘電体は基本的にはペロブスカイト構造を有する。ペロブスカイト構造を持つ物質の組成は上記のように一般式ABX3で表されるが、本発明ではBサイト2個分で1つの単位が構成されるため、この組成をA2B2X6と表す。本発明の強磁性強誘電体においては、AはBi(ビスマス)又はPb(鉛)であり、XはO(酸素)である。Bは、その半分が最外殻のd軌道のうちt2g軌道の一部又は全て及びeg軌道の一部のみに電子を持つ3d-5d遷移金属イオン(Mイオン)であり、残りの半分が最外殻のd軌道のうちt2g軌道の一部又は全てに電子を持ちeg軌道に電子を持たない3d-5d遷移金属イオン(M'イオン)である。従って、本発明の強磁性強誘電体の組成式はBi2MM'O6又はPb2MM'O6と表される。The ferromagnetic ferroelectric material of the present invention basically has a perovskite structure. The composition of the substance having a perovskite structure is represented by the general formula ABX 3 as described above, but in the present invention, one unit is composed of two B sites, and this composition is expressed as A 2 B 2 X 6 . To express. In the ferromagnetic ferroelectric material of the present invention, A is Bi (bismuth) or Pb (lead), and X is O (oxygen). B is the half t 2 g trajectories of some or all and e g portion of the track only with electronic 3d-5d transition metal ions of the d orbital of the outermost shell (M ions), the other half There is a t 2 g trajectory of some or all have the electronic e g no electrons orbit 3d-5d transition metal ions of the d orbital of the outermost shell (M 'ions). Therefore, the composition formula of the ferromagnetic ferroelectric material of the present invention is expressed as Bi 2 MM′O 6 or Pb 2 MM′O 6 .

本発明の強磁性強誘電体の構造を、図1を用いて説明する。MO6八面体12(図中に淡い色で示した八面体)は中心付近にMイオンを有し八面体の頂点にO2-イオンを有する。M'O6八面体13(図中に濃い色で示した八面体)は中心付近にMイオンを有し八面体の頂点にO2-イオンを有する。MO6八面体12に最隣接の6個の八面体はいずれもM'O6八面体13であり、同様にM'O6八面体13に最隣接の6個の八面体はいずれもMO6八面体12である。最隣接のMO6八面体12とM'O6八面体13は1個ずつO2-イオンを共有する。MイオンとM'イオンのみに着目すると、それらはNaCl型に配置されている。Aサイト11は8個の八面体に囲まれた位置にあり、Bi3+イオン又はPb2+イオンが配置される。The structure of the ferromagnetic ferroelectric material of the present invention will be described with reference to FIG. MO 6 octahedron 12 (the octahedron shown in the light color in the figure) has M ions near the center and O 2− ions at the apexes of the octahedron. The M′O 6 octahedron 13 (the octahedron shown in the drawing in dark color) has M ions near the center and O 2− ions at the vertices of the octahedron. The six nearest octahedrons to the MO 6 octahedron 12 are all M′O 6 octahedrons 13, and the six nearest octahedrons to the M′O 6 octahedron 13 are all MO 6. It is an octahedron 12. The nearest MO 6 octahedron 12 and M′O 6 octahedron 13 share one O 2− ion one by one. Focusing only on M ions and M ′ ions, they are arranged in NaCl type. The A site 11 is in a position surrounded by eight octahedrons, and Bi 3+ ions or Pb 2+ ions are arranged.

ここで、eg軌道について説明する。本発明の強磁性強誘電体では、上記のように、Mイオン及びM'イオンは頂点にO2-イオンを有する八面体の中心付近に配置される。このような配置の場合には、Mイオン及びM'イオンの最外殻のd電子はxy, yz, zx, 3z2-r2, x2-y2と称される5つの軌道のいずれかに配置される。eg軌道は、このうち3z2-r2軌道及びx2-y2軌道を総称したものである。なお、xy, yz, zxはt2g軌道と総称される。Here will be described e g orbitals. In the ferromagnetic ferroelectric material of the present invention, as described above, M ions and M ′ ions are arranged near the center of an octahedron having O 2− ions at the apexes. In such an arrangement, the outermost d electrons of the M and M ′ ions are one of five orbitals called xy, yz, zx, 3z 2 -r 2 , x 2 -y 2 Placed in. Of these, the e g orbit is a generic term for the 3z 2 -r 2 orbit and the x 2 -y 2 orbit. Xy, yz, and zx are collectively referred to as t 2g orbitals.

AがBi3+イオンの場合には、MイオンとM'イオンの平均価数は3価でなければならないため、両イオンの価数の組み合わせは「Mイオン:1価、M'イオン:5価」、「Mイオン:2価、M'イオン:4価」、「Mイオン:3価、M'イオン:3価」、「Mイオン:4価、M'イオン:2価」又は「Mイオン:5価、M'イオン:1価」となる。AがPb2+イオンの場合には、MイオンとM'イオンの平均価数は4価でなければならないため、両イオンの価数の組み合わせは「Mイオン:2価、M'イオン:6価」、「Mイオン:3価、M'イオン:5価」、「Mイオン:4価、M'イオン:4価」、「Mイオン:5価、M'イオン:3価」又は「Mイオン:6価、M'イオン:2価」となる。When A is Bi 3+ ion, the average valence of M ion and M ′ ion must be trivalent, so the combination of valences of both ions is “M ion: monovalent, M ′ ion: 5 "M ion: Divalent, M 'ion: Tetravalent", "M ion: Trivalent, M' ion: Trivalent", "M ion: Tetravalent, M 'ion: Divalent" or "M Ion: pentavalent, M ′ ion: monovalent ”. When A is a Pb 2+ ion, the average valence of M and M ′ ions must be tetravalent, so the combination of valences of both ions is “M ion: 2 valence, M ′ ion: 6 "M ion: trivalent, M 'ion: pentavalent", "M ion: tetravalent, M' ion: tetravalent", "M ion: pentavalent, M 'ion: trivalent" or "M Ion: Hexavalent, M 'ion: Divalent ".

Mイオンとして用いられるeg軌道の一部に電子を持つ3d-5d遷移金属イオンには、Pd1+(以上、1価), Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Pd2+, Ag2+, Pt2+, Au2+(以上、2価), Mn3+, Fe3+, Co3+, Ni3+, Ru3+, Rh3+, Pd3+, Os3+, Ir3+, Pt3+(以上、3価)、Co4+, Fe4+, Ru4+, Rh4+, Pd4+, Re4+, Os4+, Ir4+, Pt4+(以上、4価)、Rh5+, Ir5+, Pt5+(以上、5価)等がある。M'イオンとして用いられるeg軌道に電子を持たない3d-5d遷移金属イオンには、V2+(以上2価)、Ti3+, V3+, Cr3+, Nb3+, Ta3+(以上3価)、V4+, Cr4+, Mn4+, Nb4+, Mo4+, Tc4+, Ta4+, W4+, Re4+(以上、4価)、 Mo5+, Tc5+, Ru5+, W5+, Re5+, Os5+(以上、5価)、Re6+, Os6+(以上、6価)等がある。
なお、MイオンやM'イオンにはいずれも、上記の条件を満たす2種以上のイオンを組み合わせて用いてもよい。
The 3d-5d transition metal ions with electrons in a part of the e g orbitals used as the M ion, Pd 1+ (or, monovalent), Cr 2+, Mn 2+, Fe 2+, Co 2+, Ni 2+ , Cu 2+ , Pd 2+ , Ag 2+ , Pt 2+ , Au 2+ (above, bivalent), Mn 3+ , Fe 3+ , Co 3+ , Ni 3+ , Ru 3+ , Rh 3+ , Pd 3+ , Os 3+ , Ir 3+ , Pt 3+ (trivalent), Co 4+ , Fe 4+ , Ru 4+ , Rh 4+ , Pd 4+ , Re 4+ , Os 4+ , Ir 4+ , Pt 4+ (above, tetravalent), Rh 5+ , Ir 5+ , Pt 5+ (above, pentavalent), etc. The 3d-5d transition metal ions having no electrons e g orbitals used as M 'ions, V 2+ (or divalent), Ti 3+, V 3+, Cr 3+, Nb 3+, Ta 3 + (More than trivalent), V 4+ , Cr 4+ , Mn 4+ , Nb 4+ , Mo 4+ , Tc 4+ , Ta 4+ , W 4+ , Re 4+ (more than tetravalent), Mo 5+ , Tc 5+ , Ru 5+ , W 5+ , Re 5+ , Os 5+ (above, pentavalent), Re 6+ , Os 6+ (above, hexavalent), etc.
It should be noted that both M ions and M ′ ions may be used in combination of two or more ions that satisfy the above conditions.

本発明の強磁性強誘電体が強磁性と強誘電性を併せ持つ理由を説明する。
(i)強磁性
本発明の強磁性強誘電体において、AサイトのBi3+又はPb2+及びXサイトのO2-はいずれも不対電子を持たないため非磁性であって、磁性はM及びM'イオンが担う。上記のように、Mイオンにおいては最外殻のd電子はt2g軌道の一部又は全てと、eg軌道の一部のみを占め、これらのd電子が磁性を担う。そして、Mイオンにおいて、eg軌道は八面体の頂点にあるO2-イオンの方に張り出すように存在する。それに対して、このMイオンに最隣接のM'イオンにおいて、t2g軌道はO2-イオンを避けるように存在する。このような場合、MイオンとM'イオンの間にはO2-イオンを介した反強磁性的な超交換相互作用は働かず、両者の電子スピンを同じ向きに揃えようとする強磁性的な直接交換相互作用のみが生じる。この相互作用により、本発明に係る材料において強磁性が出現する。
The reason why the ferromagnetic ferroelectric material of the present invention has both ferromagnetism and ferroelectricity will be described.
(i) Ferromagnet In the ferromagnetic ferroelectric material of the present invention, Bi 3+ or Pb 2+ at the A site and O 2− at the X site have no unpaired electrons, and are therefore non-magnetic. M and M 'ions are responsible. As described above, d electrons of the outermost shell in M ions occupy a portion or all of the t 2 g orbit, only a portion of the e g orbitals, these d electrons provide magnetism. Then, the M ions, e g orbitals are present so as to protrude toward the O 2- ions in the vertices of the octahedron. On the other hand, in the M ′ ion closest to this M ion, the t 2g orbital exists so as to avoid the O 2− ion. In such a case, the antiferromagnetic superexchange interaction via the O 2- ion does not work between the M ion and the M ′ ion, and the ferromagnetic spin that tries to align both electron spins in the same direction. Only direct exchange interactions occur. Due to this interaction, ferromagnetism appears in the material according to the present invention.

(ii)強誘電性
本発明の強磁性強誘電体において、AサイトのBi3+又はPb2+は空間的に張り出した6s軌道に孤立電子対を有する。Aサイトに近接するO2-イオンとこの孤立電子対との間にクーロン反発力が働くことにより、キュリー温度以下の温度領域において結晶構造に歪みが生じ反転対称性が失われる。この反転対称性が無いことはまさに、本発明に係る材料が強誘電性を有することを意味する。
(ii) Ferroelectricity In the ferromagnetic ferroelectric material of the present invention, Bi 3+ or Pb 2+ at the A site has a lone pair of electrons in a 6s orbit that protrudes spatially. The Coulomb repulsive force acts between the O 2− ions close to the A site and this lone pair, and the crystal structure is distorted in the temperature range below the Curie temperature, and the inversion symmetry is lost. This lack of inversion symmetry just means that the material according to the invention has ferroelectricity.

以上のように本発明に係る材料の一群はいずれも強磁性と強誘電性を併せ持つ。そのため、不揮発性メモリやスピンフィルタ等、強磁性と強誘電性を共に利用するデバイスに好適に用いることができる。   As described above, each group of materials according to the present invention has both ferromagnetism and ferroelectricity. Therefore, it can be suitably used for devices that utilize both ferromagnetism and ferroelectricity, such as nonvolatile memories and spin filters.

MイオンとM'イオンの間の距離が短い程、定性的には直接交換相互作用は大きくなり、それにより強磁性転移温度を高くすることができる。そのため、MイオンとM'イオンの間の距離を短くするために、Mイオン及びM'イオンには、4d及び5d遷移金属イオンよりもイオン半径が小さい3d遷移金属イオンを用いることが望ましい。   Qualitatively, the direct exchange interaction becomes larger as the distance between the M ion and the M ′ ion is shorter, so that the ferromagnetic transition temperature can be increased. Therefore, in order to shorten the distance between the M ion and the M ′ ion, it is desirable to use a 3d transition metal ion having an ion radius smaller than that of the 4d and 5d transition metal ions for the M ion and the M ′ ion.

本発明に係る一群の強磁性強誘電体の中でも特に、Bi2CuMnO6は室温よりも高い340K以上で強磁性と強誘電性を共に有するという特長を有する。このような高い温度で強磁性と強誘電性を共に有する強磁性強誘電体を上記のようなデバイスに用いた場合には、デバイスを冷却する必要がないか、又は空冷等の簡単な冷却を行うのみでよいため、装置を簡素化することができ、またコストを抑制することができる。Among the group of ferromagnetic ferroelectrics according to the present invention, Bi 2 CuMnO 6 is characterized by having both ferromagnetism and ferroelectricity at 340 K or higher, which is higher than room temperature. When a ferromagnetic ferroelectric material having both ferromagnetism and ferroelectricity at such a high temperature is used in the above device, it is not necessary to cool the device or simple cooling such as air cooling is performed. Since it only needs to be performed, the apparatus can be simplified and the cost can be reduced.

次に、本発明の強磁性強誘電体の製造方法について説明する。
バルク状の強磁性強誘電体は高圧合成法により製造することができる。まず、Aサイトの原子(Bi又はPb)とMとM'の原子数の比が2:1:1になるように原料を混合する。ここで、酸素量を調整するために、上記原料中のA, M, M'及びOの原子数の比が2:1:1:6になるようにしてもよいが、KClO4、AgO2等の酸化剤、又はTi金属などの還元剤を原料に混合することで酸素量を調整すれば、原料中のOは上記の比に従わなくてもよい。混合された原料を1GPa〜10GPaの圧力下で600℃〜1500℃に加熱する。なお、温度が600℃以下又は圧力が1GPa以下では、目的の強磁性強誘電体が生成されない。また、温度を1500℃以上にすると原料が分解してしまう。更に、圧力は10GPa以下で十分純度の高い試料が得られるため、それ以上高い圧力を印加してもコストが上昇するのみであって利点がない。加熱後、生成物を室温まで冷却し、圧力を取り除く。これにより、本発明に係るバルク状の強磁性強誘電体が得られる。
Next, the manufacturing method of the ferromagnetic ferroelectric substance of this invention is demonstrated.
Bulk ferromagnetic ferroelectrics can be manufactured by a high-pressure synthesis method. First, the raw materials are mixed so that the ratio of the number of atoms of A site atoms (Bi or Pb) and M and M ′ is 2: 1: 1. Here, in order to adjust the amount of oxygen, the ratio of the number of atoms of A, M, M ′ and O in the raw material may be 2: 1: 1: 6, but KClO 4 , AgO 2 If the amount of oxygen is adjusted by mixing a reducing agent such as an oxidizing agent or Ti metal with the raw material, O in the raw material may not follow the above ratio. The mixed raw material is heated to 600 ° C. to 1500 ° C. under a pressure of 1 GPa to 10 GPa. Note that when the temperature is 600 ° C. or lower or the pressure is 1 GPa or lower, the target ferromagnetic ferroelectric material is not generated. In addition, when the temperature is 1500 ° C. or higher, the raw material is decomposed. Furthermore, since a sample having sufficiently high purity can be obtained at a pressure of 10 GPa or less, application of a higher pressure only increases the cost and has no advantage. After heating, the product is cooled to room temperature and the pressure is removed. Thereby, the bulk-like ferromagnetic ferroelectric substance according to the present invention is obtained.

本発明に係る強磁性強誘電体においては、その強磁性強誘電体に格子定数が近い単結晶基板上に、化学気相堆積(CVD)法、ゾル・ゲル法、レーザアブレーション法等によりエピタキシャル成長させることにより、薄膜を得ることができる。単結晶基板には、SrTiO3やBaTiO3等のペロブスカイト型化合物を用いることが望ましい。薄膜を形成する際に、Biは蒸気圧が高いため単体で析出しやすい。そのため、エピタキシャル成長はオゾンガスを含むガス中で行うとよい。オゾンガスを用いることにより強い酸化雰囲気が得られ、それによりBiの析出(還元)が抑制される。The ferromagnetic ferroelectric material according to the present invention is epitaxially grown on a single crystal substrate having a lattice constant close to that of the ferromagnetic ferroelectric material by a chemical vapor deposition (CVD) method, a sol-gel method, a laser ablation method, or the like. Thus, a thin film can be obtained. It is desirable to use a perovskite type compound such as SrTiO 3 or BaTiO 3 for the single crystal substrate. When forming a thin film, Bi has a high vapor pressure and thus tends to precipitate alone. Therefore, epitaxial growth is preferably performed in a gas containing ozone gas. By using ozone gas, a strong oxidizing atmosphere can be obtained, thereby suppressing the precipitation (reduction) of Bi.

(1)本発明に係る強磁性強誘電体の製造方法の実施例
本発明の一実施例として、Bi2CoMnO6、Bi2NiMnO6及びBi2CuMnO6のバルク試料及び薄膜を作製し、その磁性及び誘電特性を測定した結果を述べる。
まず、バルク試料の作製方法を述べる。Bi2O3、MnO2及びMO(CoO, NiO又はCuO)をBi2O3:MnO2:MO=1:1:1の比になるように秤量・混合し、金製のカプセルに封入する。このカプセルを立方体アンビル型高圧発生装置により6GPaに加圧する。その状態でカプセルを700〜1000℃に加熱し、この温度で30分間保持する。本実施例では原料が十分に反応するように、30分間という十分に長い時間、加熱状態を維持した。この時間が経過した後、カプセルを8時間かけて徐冷する。そして、圧力を取り除き、試料を取り出す。これにより、Bi2MMnO6(M=Co, Ni又はCu)のバルク試料が得られる。
(1) Example of manufacturing method of ferromagnetic ferroelectric material according to the present invention As an example of the present invention, a bulk sample and a thin film of Bi 2 CoMnO 6 , Bi 2 NiMnO 6 and Bi 2 CuMnO 6 were prepared. The result of measuring the magnetic and dielectric properties will be described.
First, a method for manufacturing a bulk sample will be described. Bi 2 O 3 , MnO 2 and MO (CoO, NiO or CuO) are weighed and mixed in a ratio of Bi 2 O 3 : MnO 2 : MO = 1: 1: 1 and enclosed in a gold capsule. . The capsule is pressurized to 6 GPa by a cubic anvil type high pressure generator. In this state, the capsule is heated to 700 to 1000 ° C. and held at this temperature for 30 minutes. In this example, the heating state was maintained for a sufficiently long time of 30 minutes so that the raw materials sufficiently reacted. After this time has elapsed, the capsule is slowly cooled over 8 hours. Then, the pressure is removed and the sample is taken out. Thereby, a bulk sample of Bi 2 MMnO 6 (M = Co, Ni or Cu) is obtained.

次に、薄膜の作製方法を述べる。
図2は、薄膜作製に用いたレーザアブレーション装置である。この装置は、チャンバ21内に、基板を固定する基板ホルダ22と、薄膜の原料となるターゲットを保持するターゲットホルダ23を有する。また、ターゲットにレーザ光を照射するレーザ光源24を有する。本実施例ではレーザ光源24にエキシマレーザを用いた。チャンバ21内は、ポンプ25により排気されると共に、ガス供給口26からオゾンを含む酸素ガスが供給される。なお、基板上に成膜される薄膜は、電子銃27aとスクリーン27bから成るRHEED(反射高速電子回折)装置により成膜中に観察することができる。また、基板ホルダ22及びターゲットホルダ23が回転することにより、薄膜を均一に成膜することができる。
Next, a method for manufacturing a thin film will be described.
FIG. 2 shows a laser ablation apparatus used for thin film production. This apparatus has in a chamber 21 a substrate holder 22 for fixing a substrate and a target holder 23 for holding a target as a raw material for a thin film. Moreover, it has the laser light source 24 which irradiates a target with a laser beam. In this embodiment, an excimer laser is used as the laser light source 24. The chamber 21 is evacuated by a pump 25 and oxygen gas containing ozone is supplied from a gas supply port 26. The thin film formed on the substrate can be observed during film formation by an RHEED (reflection high-energy electron diffraction) apparatus including an electron gun 27a and a screen 27b. In addition, the thin film can be uniformly formed by rotating the substrate holder 22 and the target holder 23.

表面が(001)面であるSrTiO3の単結晶基板28を、該表面をターゲット29側(下側)に向け基板ホルダ22に固定する。上記と同様にBi2O3、MnO2及びMO(CoO, NiO又はCuO)をBi2O3:MnO2:MO=1:1:1の比になるように秤量・混合して作製したターゲット29をターゲットホルダ23に載置する。チャンバ21内を真空引きした後、チャンバ21内にオゾンを10%含む酸素ガスを供給する。そして、基板ホルダ22及びターゲットホルダ23を回転させながら、レーザ光源24からターゲット29に波長248nm、強度2J/cm2Wのレーザ光30を照射する。ターゲット29のうちレーザーの当たった部分は瞬間的に蒸発し、その蒸発したターゲット31が単結晶基板に堆積する。これにより、単結晶基板上にBi2MMnO6(M=Co, Ni又はCu)の薄膜がエピタキシャル成長する。A SrTiO 3 single crystal substrate 28 having a (001) surface is fixed to the substrate holder 22 with the surface facing the target 29 (downward). Target prepared by weighing and mixing Bi 2 O 3 , MnO 2 and MO (CoO, NiO or CuO) in the same manner as above to a ratio of Bi 2 O 3 : MnO 2 : MO = 1: 1: 1 29 is placed on the target holder 23. After evacuating the chamber 21, oxygen gas containing 10% ozone is supplied into the chamber 21. Then, while rotating the substrate holder 22 and the target holder 23, the laser light source 24 irradiates the target 29 with the laser light 30 having a wavelength of 248 nm and an intensity of 2 J / cm 2 W. The portion of the target 29 that has been irradiated with the laser is instantaneously evaporated, and the evaporated target 31 is deposited on the single crystal substrate. Thereby, a thin film of Bi 2 MMnO 6 (M = Co, Ni or Cu) is epitaxially grown on the single crystal substrate.

(2)本実施例により作製された強磁性強誘電体の構造及び特性測定
まず、本実施例により作製されたバルク試料のX線回折測定を行った。図3に、波長0.0421nm(0.421Å)のX線を用いて測定した室温におけるBi2NiMnO6のバルク試料のX線回折チャートを示す。このX線回折チャートを用いて、試料の結晶構造を特定するための解析であるリートベルト(Rietveld)解析を行った。その結果、結晶の空間群をC2とし、Ni2+とMn4+を規則配列させた図1の結晶構造を仮定した時に測定結果と計算結果がよく一致した。Bi2CoMnO6及びBi2CuMnO6についても、Bi2NiMnO6と同様のX線回折チャートが得られたため、空間群はC2であると考えられる。
(2) Measurement of structure and characteristics of the ferromagnetic ferroelectric material produced by this example First, X-ray diffraction measurement of the bulk sample produced by this example was performed. FIG. 3 shows an X-ray diffraction chart of a bulk sample of Bi 2 NiMnO 6 at room temperature measured using an X-ray having a wavelength of 0.0421 nm (0.421Å). Using this X-ray diffraction chart, Rietveld analysis, which is analysis for specifying the crystal structure of the sample, was performed. As a result, when the crystal space group is C2 and the crystal structure of FIG. 1 in which Ni 2+ and Mn 4+ are regularly arranged is assumed, the measurement results and the calculation results agree well. As for Bi 2 CoMnO 6 and Bi 2 CuMnO 6 , since the same X-ray diffraction chart as Bi 2 NiMnO 6 was obtained, the space group is considered to be C2.

空間群がC2である結晶は単斜晶である(図1に単位格子を一点鎖線で表す)。また、空間群がC2の場合、結晶は反転対称性を持たない。このことは、本実施例において作製されたBi2CoMnO6、Bi2NiMnO6及びBi2CuMnO6がいずれも強誘電性を有することを示している。A crystal whose space group is C2 is a monoclinic crystal (a unit cell is shown by a one-dot chain line in FIG. 1). When the space group is C2, the crystal does not have inversion symmetry. This indicates that all of Bi 2 CoMnO 6 , Bi 2 NiMnO 6 and Bi 2 CuMnO 6 produced in this example have ferroelectricity.

図4に、Bi2NiMnO6のバルク試料について、波長0.0421nm(0.421Å)で測定した、温度が300K及び500Kである時のX線回折パターンを示す。温度が500Kの時には反転対称性のあるP21/n空間群を持つのに対して、温度が300Kの時には反転対称性のないC2空間群を持つ。このことから、300Kと500Kの間の温度で強誘電転移が生じることがわかる。FIG. 4 shows X-ray diffraction patterns of Bi 2 NiMnO 6 bulk samples measured at a wavelength of 0.0421 nm (0.421 mm) at temperatures of 300K and 500K. It has a P2 1 / n space group with inversion symmetry when the temperature is 500K, while it has a C2 space group without inversion symmetry when the temperature is 300K. This shows that the ferroelectric transition occurs at temperatures between 300K and 500K.

図5に、Bi2NiMnO6の比誘電率の温度変化を測定した結果を示す。この比誘電率は485Kに極大値を有する。この温度はBi2NiMnO6の強誘電転移温度であり、上記X線回折チャートの温度変化測定の結果と一致している。FIG. 5 shows the results of measuring the temperature change of the relative permittivity of Bi 2 NiMnO 6 . This relative dielectric constant has a maximum value at 485K. This temperature is the ferroelectric transition temperature of Bi 2 NiMnO 6 , which is consistent with the temperature change measurement result of the X-ray diffraction chart.

図7に、100エルステッドの外部磁場を印加して測定したBi2NiMnO6の帯磁率を示す。140K付近において、帯磁率は温度下降と共に急上昇している。また、図7(a)に、5K〜180Kの間の複数の温度で測定した磁化曲線を示す。温度が160K及び180Kの時にはほぼ磁化が磁場に比例しているのに対して、温度が140K以下の時には、ゼロ磁場付近において磁場の絶対値が増加するにつれて磁化が急激に増大する傾向が見られる。更に、図7(b)に示すように、温度が5Kの時に磁場を上昇及び下降させながら磁化曲線を測定すると、強磁性体に特有のヒステリシスが見られる。これらのことから、Bi2NiMnO6は転移温度が140Kの強磁性体であることがわかる。FIG. 7 shows the magnetic susceptibility of Bi 2 NiMnO 6 measured by applying an external magnetic field of 100 oersted. In the vicinity of 140K, the magnetic susceptibility increases rapidly with decreasing temperature. FIG. 7 (a) shows magnetization curves measured at a plurality of temperatures between 5K and 180K. When the temperature is 160K and 180K, the magnetization is almost proportional to the magnetic field, whereas when the temperature is 140K or less, the magnetization tends to increase rapidly as the absolute value of the magnetic field increases near the zero magnetic field. . Further, as shown in FIG. 7 (b), when the magnetization curve is measured while raising and lowering the magnetic field when the temperature is 5K, hysteresis peculiar to the ferromagnetic material is observed. These facts indicate that Bi 2 NiMnO 6 is a ferromagnetic material with a transition temperature of 140K.

以上のように、Bi2NiMnO6は強誘電転移温度が485K、強磁性転移温度が140Kの強磁性強誘電体であることが確認された。As described above, it was confirmed that Bi 2 NiMnO 6 is a ferromagnetic ferroelectric material having a ferroelectric transition temperature of 485K and a ferromagnetic transition temperature of 140K.

図8に、Bi2CuMnO6について帯磁率測定を行った結果を示す。この結果から、Bi2CuMnO6は室温以上の340Kにおいて強磁性に転移することが確認された。また、上記のように、Bi2CuMnO6は室温においてBi2NiMnO6と同様の構造であるため強誘電性を有するといえる。このように、Bi2CuMnO6は室温において強磁性と強誘電性を併せ持つ材料であることが確認された。従って、Bi2CuMnO6は強磁性及び強誘電性の双方の性質を利用するデバイスとして室温で使用することができ、冷却する必要がないという利点を有する材料であるといえる。FIG. 8 shows the results of susceptibility measurement for Bi 2 CuMnO 6 . From this result, it was confirmed that Bi 2 CuMnO 6 transitions to ferromagnetism at 340 K above room temperature. Further, as described above, Bi 2 CuMnO 6 has the same structure as Bi 2 NiMnO 6 at room temperature, so it can be said that it has ferroelectricity. Thus, Bi 2 CuMnO 6 was confirmed to be a material having both ferromagnetism and ferroelectricity at room temperature. Therefore, Bi 2 CuMnO 6 can be used as a device that utilizes both ferromagnetic and ferroelectric properties at room temperature, and can be said to be a material that has the advantage of not requiring cooling.

図9に、Bi2CoMnO6について帯磁率測定を行った結果を示す。この結果から、Bi2CoMnO6は温度80Kにおいて強磁性に転移することが確認された。また、このBi2CoMnO6は上記と同様の理由により強誘電性を有する。FIG. 9 shows the results of susceptibility measurement for Bi 2 CoMnO 6 . From this result, it was confirmed that Bi 2 CoMnO 6 transitions to ferromagnetism at a temperature of 80K. Further, this Bi 2 CoMnO 6 has ferroelectricity for the same reason as described above.

以上のように、本実施例により得られた一連の物質群であるBi2NiMnO6, Bi2CuMnO6, Bi2CoMnO6はいずれも強磁性と強誘電性を併せ持つ材料であることが確認された。As described above, Bi 2 NiMnO 6, Bi 2 CuMnO 6, Bi 2 CoMnO 6 is a series of substance groups obtained in this example was confirmed that both a material having both ferromagnetic and ferroelectric It was.

次に、本実施例において作製されたBi2NiMnO6薄膜に関する実験結果を述べる。図10に、室温におけるBi2NiMnO6薄膜のX線回折チャートにおける、(002)ピーク付近の拡大図を示す。なお、縦軸はX線強度を対数で表している。SrTiO3基板の(002)ピークの低角度側の近傍に、Bi2NiMnO6薄膜の(002)回折ピークが明瞭に見られる。このことから、Bi2NiMnO6薄膜はその(001)面が(001)-SrTiO3基板上に平行に成長したエピタキシャル薄膜であることがわかる。また、薄膜の(002)ピークの回りにサテライトピークが観測されている。このサテライトピークは膜厚が有限であることによるラウエ(Laue)ピークであり、膜厚が一様な単結晶薄膜が得られたことを示している。Next, experimental results regarding the Bi 2 NiMnO 6 thin film produced in this example will be described. FIG. 10 shows an enlarged view near the (002) peak in the X-ray diffraction chart of the Bi 2 NiMnO 6 thin film at room temperature. The vertical axis represents the X-ray intensity in logarithm. The (002) diffraction peak of the Bi 2 NiMnO 6 thin film is clearly seen near the low angle side of the (002) peak of the SrTiO 3 substrate. This indicates that the Bi 2 NiMnO 6 thin film is an epitaxial thin film whose (001) plane is grown in parallel on the (001) -SrTiO 3 substrate. In addition, a satellite peak is observed around the (002) peak of the thin film. This satellite peak is a Laue peak due to the finite film thickness, indicating that a single crystal thin film with a uniform film thickness was obtained.

Bi2NiMnO6薄膜の誘電特性を測定した結果を示す。図11に、温度100Kにおける誘電分極測定の結果を示す。この図の横軸は電場E、縦軸は分極Pである。このP-E曲線から、本実施例において得られたBi2NiMnO6薄膜が100Kにおいて15μC/cm2の分極を有することがわかる。The results of the measurements of the dielectric properties of Bi 2 NiMnO 6 thin. FIG. 11 shows the results of dielectric polarization measurement at a temperature of 100K. The horizontal axis of this figure is the electric field E, and the vertical axis is the polarization P. From this PE curve, it can be seen that the Bi 2 NiMnO 6 thin film obtained in this example has a polarization of 15 μC / cm 2 at 100K.

図12に、Bi2NiMnO6薄膜の誘電率の磁場による変化を測定した結果を示す。ここで、縦軸は測定した誘電率をゼロ磁場における誘電率で除した値を示す。この測定結果より、Bi2NiMnO6は磁場の印加により誘電率を制御することができることが明らかになった。例えば温度が140Kである場合、90000エルステッド(7.2×106A/m)の磁場を印加した時の誘電率は、ゼロ磁場における誘電率から約4%増加する。FIG. 12 shows the result of measuring the change of the dielectric constant of the Bi 2 NiMnO 6 thin film due to the magnetic field. Here, the vertical axis represents a value obtained by dividing the measured dielectric constant by the dielectric constant in a zero magnetic field. From this measurement result, it was clarified that Bi 2 NiMnO 6 can control the dielectric constant by applying a magnetic field. For example, when the temperature is 140 K, the dielectric constant when a magnetic field of 90000 oersted (7.2 × 10 6 A / m) is applied is increased by about 4% from the dielectric constant in the zero magnetic field.

Claims (10)

組成式Bi2MM'O6で表されるペロブスカイト構造を有する物質であって、Mが最外殻のd軌道のうちt2g軌道の一部又は全て及びeg軌道の一部のみに電子を持つ3d-5d遷移金属イオンであり、M'が最外殻のd軌道のうちt2g軌道の一部又は全てに電子を持ちeg軌道に電子を持たない3d-5d遷移金属イオンであることを特徴とする強磁性強誘電体。A substance having a perovskite structure represented by a composition formula Bi 2 MM'O 6, electrons only a portion of some or all and e g orbitals of t 2 g trajectory of the d orbital of M is the outermost shell with a 3d-5d transition metal ions, M 'is t 2 g trajectory of some or all have the electronic e g orbitals 3d-5d transition metal ions having no electrons within the d orbitals of the outermost A ferromagnetic ferroelectric material characterized by MがCo, Ni, Cuのうちのいずれか1種であり、前記M'がMnであることを特徴とする請求項1に記載の強磁性強誘電体。   2. The ferromagnetic ferroelectric material according to claim 1, wherein M is any one of Co, Ni, and Cu, and M ′ is Mn. 前記MがCuであることを特徴とする請求項2に記載の強磁性強誘電体。   The ferromagnetic ferroelectric substance according to claim 2, wherein M is Cu. 組成式Pb2MM'O6で表されるペロブスカイト構造を有する物質であって、Mが最外殻のd軌道のうちt2g軌道の一部又は全て及びeg軌道の一部のみに電子を持つ3d-5d遷移金属イオンであり、M'が最外殻のd軌道のうちt2g軌道の一部又は全てに電子を持ちeg軌道に電子を持たない3d-5d遷移金属イオンであることを特徴とする強磁性強誘電体。A substance having a perovskite structure represented by a composition formula Pb 2 MM'O 6, electrons only a portion of some or all and e g orbitals of t 2 g trajectory of the d orbital of M is the outermost shell with a 3d-5d transition metal ions, M 'is t 2 g trajectory of some or all have the electronic e g orbitals 3d-5d transition metal ions having no electrons within the d orbitals of the outermost A ferromagnetic ferroelectric material characterized by M及びM'が3d遷移金属イオンであることを特徴とする請求項1〜4のいずれかに記載の強磁性強誘電体。   5. A ferromagnetic ferroelectric material according to claim 1, wherein M and M ′ are 3d transition metal ions. 強磁性転移温度及び強誘電転移温度が共に340K以上であることを特徴とする請求項1〜5のいずれかに記載の強磁性強誘電体。   6. The ferromagnetic ferroelectric material according to claim 1, wherein both the ferromagnetic transition temperature and the ferroelectric transition temperature are 340K or higher. 組成式A2MM'O6で表されるペロブスカイト構造を有する物質であって、AがBi又はPbであり、Mが最外殻のd軌道のうちt2g軌道の一部又は全て及びeg軌道の一部のみに電子を持つ3d-5d遷移金属イオンであり、M'が最外殻のd軌道のうちt2g軌道の一部又は全てに電子を持ちeg軌道に電子を持たない3d-5d遷移金属イオンである強磁性強誘電体の製造方法において、
AとMとM'を略2:1:1の比で含む原料を、温度が600℃〜1500℃、圧力が1GPa〜10GPaの条件で反応させることを特徴とする前記強磁性強誘電体の製造方法。
A substance having a perovskite structure represented by a composition formula A 2 MM'O 6, A is Bi or Pb, some or all of the t 2 g trajectory of the d orbital of M is outermost and e g a 3d-5d transition metal ions with electrons only a part of the track, M 'has no electrons e g orbitals have electrons into some or all of the t 2 g trajectory of the d orbital of the outermost shell 3d In a method for producing a ferromagnetic ferroelectric material that is a 5d transition metal ion,
A material containing A, M, and M ′ in a ratio of approximately 2: 1: 1 is reacted at a temperature of 600 ° C. to 1500 ° C. and a pressure of 1 GPa to 10 GPa. Production method.
組成式A2MM'O6で表されるペロブスカイト構造を有する物質であって、AがBi又はPbであり、Mが最外殻のd軌道のうちt2g軌道の一部又は全て及びeg軌道の一部のみに電子を持つ3d-5d遷移金属イオンであり、M'が最外殻のd軌道のうちt2g軌道の一部又は全てに電子を持ちeg軌道に電子を持たない3d-5d遷移金属イオンである強磁性強誘電体の製造方法において、
AとMとM'を略2:1:1の比で含む原料を用い、組成式A2MM'O6薄膜を単結晶基板上にエピタキシャル成長させることを特徴とする前記強磁性強誘電体薄膜の製造方法。
A substance having a perovskite structure represented by a composition formula A 2 MM'O 6, A is Bi or Pb, some or all of the t 2 g trajectory of the d orbital of M is outermost and e g a 3d-5d transition metal ions with electrons only a part of the track, M 'has no electrons e g orbitals have electrons into some or all of the t 2 g trajectory of the d orbital of the outermost shell 3d In a method for producing a ferromagnetic ferroelectric material that is a 5d transition metal ion,
The ferromagnetic ferroelectric thin film characterized by using a raw material containing A, M and M ′ in a ratio of approximately 2: 1: 1 and epitaxially growing a thin film of composition A 2 MM′O 6 on a single crystal substrate. Manufacturing method.
前記基板がペロブスカイト構造を有する材料から成ることを特徴とする請求項8に記載の強磁性強誘電体薄膜の製造方法。   9. The method of manufacturing a ferromagnetic ferroelectric thin film according to claim 8, wherein the substrate is made of a material having a perovskite structure. オゾンを含む雰囲気中で前記薄膜をエピタキシャル成長させることを特徴とする請求項8又は9に記載の強磁性強誘電体薄膜の製造方法。   10. The method for producing a ferromagnetic ferroelectric thin film according to claim 8, wherein the thin film is epitaxially grown in an atmosphere containing ozone.
JP2006535713A 2004-09-08 2005-09-02 Ferromagnetic ferroelectric and manufacturing method thereof Pending JPWO2006028005A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004261629 2004-09-08
JP2004261629 2004-09-08
PCT/JP2005/016083 WO2006028005A1 (en) 2004-09-08 2005-09-02 Ferromagnetic ferroelectric substance and process for producing the same

Publications (1)

Publication Number Publication Date
JPWO2006028005A1 true JPWO2006028005A1 (en) 2008-05-08

Family

ID=36036290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006535713A Pending JPWO2006028005A1 (en) 2004-09-08 2005-09-02 Ferromagnetic ferroelectric and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JPWO2006028005A1 (en)
TW (1) TW200610737A (en)
WO (1) WO2006028005A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135817A1 (en) * 2006-05-24 2007-11-29 Japan Science And Technology Agency Multiferroic element
JP5564701B2 (en) * 2007-05-16 2014-08-06 学校法人上智学院 Room temperature magnetic ferroelectric superlattice and method of manufacturing the same
WO2014030293A1 (en) * 2012-08-21 2014-02-27 国立大学法人東京工業大学 Negative thermal expansion material
JP6103524B2 (en) * 2013-02-06 2017-03-29 国立研究開発法人物質・材料研究機構 Perovskite nanosheets based on homologous series layered perovskite oxide and uses thereof
US10242989B2 (en) 2014-05-20 2019-03-26 Micron Technology, Inc. Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods
JP6546483B2 (en) * 2015-08-31 2019-07-17 地方独立行政法人神奈川県立産業技術総合研究所 Method of manufacturing negative thermal expansion material
KR102148944B1 (en) * 2019-05-03 2020-08-28 울산과학기술원 Room-temperature multiferroic materials, preparing method of the same and electronic device comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170306A (en) * 1988-12-23 1990-07-02 Olympus Optical Co Ltd Ferromagnetic ferroelectric oxide and manufacture of thin film thereof
JPH11286774A (en) * 1998-04-02 1999-10-19 Japan Science & Technology Corp Ferromagnetic and ferroelectric thin film and its production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141205A (en) * 1986-12-04 1988-06-13 太陽誘電株式会社 Dielectric ceramic
US5164349A (en) * 1990-06-29 1992-11-17 Ube Industries Ltd. Electromagnetic effect material
JPH07221356A (en) * 1994-02-01 1995-08-18 Hitachi Ltd Semiconductor element and its integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170306A (en) * 1988-12-23 1990-07-02 Olympus Optical Co Ltd Ferromagnetic ferroelectric oxide and manufacture of thin film thereof
JPH11286774A (en) * 1998-04-02 1999-10-19 Japan Science & Technology Corp Ferromagnetic and ferroelectric thin film and its production

Also Published As

Publication number Publication date
TW200610737A (en) 2006-04-01
WO2006028005A1 (en) 2006-03-16

Similar Documents

Publication Publication Date Title
Moure et al. Recent advances in perovskites: Processing and properties
Chen et al. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications
Montanari et al. Room temperature polymorphism in metastable BiMnO3 prepared by high-pressure synthesis
Bouilly et al. Electrical properties of epitaxial thin films of oxyhydrides ATiO3–x H x (A= Ba and Sr)
Freitas et al. Synthesis and multiferroism in mechanically processed BiFeO3–PbTiO3 ceramics
JPWO2006028005A1 (en) Ferromagnetic ferroelectric and manufacturing method thereof
Raghavan et al. Investigation of structural, electrical and multiferroic properties of Co-doped Aurivillius Bi6Fe2Ti3O18 thin films
Molak et al. Synthesis and characterization of electrical features of bismuth manganite and bismuth ferrite: effects of doping in cationic and anionic sublattice: Materials for applications
Yan et al. Growth and magnetoelectric properties of (00l)-oriented La0. 67Sr0. 33MnO3/PbZr0. 52Ti0. 48O3 heterostructure films
US9299485B1 (en) Micro and nanoscale magnetoelectric multiferroic lead iron tantalate-lead zirconate titanate
Islam et al. Structural, morphological and cryogenic magnetic behaviour of double perovskite La 1.9 Sr 0.1 NiMnO 6− δ thin film
Roulland et al. Promoting the magnetic exchanges in PLD deposited strained films of FeV2O4 thin films
Xu Unconventional Ferroelectricity, Quantum Magnetism, and Multiferroicity of Single-Crystalline Quantum Materials
Duan et al. Magnetoelectric composite films of La0. 67Sr0. 33MnO3 and Fe-substituted Bi4Ti3O12 fabricated by chemical solution deposition
Ghahfarokhi et al. Synthesizing Bi1-xCoxFe1-yZnyO3 nanoparticles and investigating their structural, optical and photocatalytic properties
Verma et al. Processing Techniques with Heating Conditions for Multiferroic Systems of BiFeO 3, BaTiO 3, PbTiO 3, CaTiO 3 Thin Films
Bae et al. Novel sol-gel processing for polycrystalline and epitaxial thin films of La 0.67 Ca 0.33 MnO 3 with colossal magnetoresistance
Yuan et al. Growth, structure, and characterization of new High-TC piezo-/ferroelectric Bi (Zn2/3Ta1/3) O3-PbTiO3 single crystals
Pugazhvadivu et al. Effect of Substrate Orientation on Structural and Magnetic Properties of BiMnO3 Thin Films by RF Magnetron Sputtering
Tomczyk Designing 2D functional materials for future microelectronics applications
Saija Synthesis and Characterization of Tetravalent Cation Substituted Mn-Zn Ferrite Suitable for High Frequency Applications
Mahenur et al. Decrypting the effects of isovalent zirconium ions content on crystallographic phase formation, microstructure, dielectric, electrical, impedance, and modulus spectroscopic traits of (1− y)[Bi3. 25La0. 75 (Ti1− x Zr x) 3O12]+(y)[La0. 70Sr0. 30MnO3] composite ceramics
Frank Design and Synthesis of Perovskites and Corundum Derivatives with Unusual Magnetic, Electronic, and Structural Coupling
US7276226B2 (en) Chromium dioxide (CrO2) and composites of chromium dioxide and other oxides of chromium such as CrO2/Cr2O3 and CrO2/Cr2O5) and process for manufacturing the same
Nasrin et al. Exploring the influence of iron-deficient non-stoichiometry dominance on the crystal structure, morphological, electromagnetic, and magnetoelectric characteristics of (1− y)[Ba0. 90Ca0. 10Ti0. 90Zr0. 10O3]+(y)[Ni0. 25Cu0. 13Zn0. 62Fe2− xO4− 3x/2] composites

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301