JPWO2005100514A1 - Solid fuel and method for producing the same - Google Patents

Solid fuel and method for producing the same Download PDF

Info

Publication number
JPWO2005100514A1
JPWO2005100514A1 JP2006512301A JP2006512301A JPWO2005100514A1 JP WO2005100514 A1 JPWO2005100514 A1 JP WO2005100514A1 JP 2006512301 A JP2006512301 A JP 2006512301A JP 2006512301 A JP2006512301 A JP 2006512301A JP WO2005100514 A1 JPWO2005100514 A1 JP WO2005100514A1
Authority
JP
Japan
Prior art keywords
fuel body
fuel
solid
carbon
charcoal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006512301A
Other languages
Japanese (ja)
Inventor
正樹 寺田
正樹 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2005100514A1 publication Critical patent/JPWO2005100514A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L11/00Manufacture of firelighters
    • C10L11/06Manufacture of firelighters of a special shape
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/508Providing additional energy for combustion, e.g. by using supplementary heating
    • F23G2900/50804Providing additional energy for combustion, e.g. by using supplementary heating using thermit or other compositions of metal oxides as auxiliary fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/50Blending
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

燃料体に対する着火が確実かつ迅速に行え、しかも煙や異臭を伴うことなく長時間にわたって燃焼状態を維持できる。したがって、生食材の焼き調理や、加熱調理等の熱源として好適な固形燃料を提供する。燃焼空気用の通口(6)の一群が形成された扁平な円柱状の燃料体(1)と、燃料体(1)の下面全体に配置されるテルミット様発熱材からなる着火剤層(2)と、着火剤層(2)の表面の一部に設けられる点火部(3)とを備えている。燃料体(1)は、高温で焼成したヤシ殼炭を粉砕して、粒度が12〜32メッシュに調整された炭粒(4)を加圧成形して多孔質に形成する。通口(6)は燃料体(1)に16〜26個形成する。The fuel body can be ignited reliably and quickly, and the combustion state can be maintained for a long time without any smoke or odor. Therefore, a solid fuel suitable as a heat source for baking raw foods and cooking is provided. A flat cylindrical fuel body (1) in which a group of combustion air vents (6) are formed, and an igniter layer (2) made of a thermite-like heating material disposed on the entire lower surface of the fuel body (1). ) And an ignition part (3) provided on part of the surface of the igniter layer (2). The fuel body (1) is formed into a porous body by pulverizing coconut charcoal fired at a high temperature and pressure-molding carbon particles (4) having a particle size adjusted to 12 to 32 mesh. 16 to 26 passages (6) are formed in the fuel body (1).

Description

この発明は、焼き調理や加熱調理などの調理用の熱源として好適な固形燃料とその製造方法とに関する。  The present invention relates to a solid fuel suitable as a heat source for cooking such as grilling and cooking, and a method for producing the same.

炭素質の燃料体と着火材とを備えた固形燃料に関して、特許文献1が公知である。そこでの固形燃料は、木炭および成形炭とを含む燃料体と、着火材と、これら両者を収容する包装材とを含んでいる。着火材には、固形アルコールやゲル状の工業用アルコール燃料などを用いており、これで成形炭を着火させている。燃料体の殆どを占める木炭は、木炭群の中央に配置した成形炭の燃焼熱によって着火する。
着火しにくい木炭の着火材として、ヤシ殻や籾殻などの繊維質素材の炭化物粉末と、アルコールに代表される可燃液体有機物と、バインダーとを混練したうえで筒状に成形したのち、乾燥させることも提案されている(特許文献2)。
この発明では、着火材として例えばテルミットを使用して、その還元反応熱で燃料体を着火させる。この種のテルミット様反応熱を熱源とする発熱体は特許文献3に公知である。そこでは、テルミット様発熱剤と、繊維と、バインダーとを含む発熱剤含有ペーストをシート状に形成したのち、乾燥させて任意形状に整形している。発熱体の外面は、必要に応じて保護フィルムで覆ってある。この種の発熱体は、アルコール系やパラフィン系の発熱体に比べて反応速度が著しく速く、しかも発熱体がシート状であるため燃焼時間が極端に短く、調理用の熱源としては不向きである。
[特許文献1]特許第3157819号公報(段落番号0013、図2)
[特許文献2]特開2003−20491号公報(段落番号0015、図1)
[特許文献3]特開2003−240355号公報(段落番号0026、図1)
特許文献1の固形燃料においては、着火材、成形炭、次いで木炭の順で着火する。ところが、包装材に収容した木炭群の中央部分に成形炭が配置されるので、成形炭が燃焼し始めた時点で周辺の燃焼空気が消費され、酸素不足で成形炭の燃焼を持続できないことがある。着火材に点火してから、木炭群に火が回るのに多くの時間が掛かるため、例えばレストラン等において固形燃料を熱源にして焼き調理や加熱調理を行う場合に、木炭群を予め燃焼させておく必要があり即応性に欠ける。
さらに、未燃焼の木炭が燃焼灰で覆われて(以下灰かぶり現象という)、火力が徐々に低下しがちであり、木炭の一部が未燃焼状態のままで残ることがあり、その分だけ無駄になる。こうした固形燃料の無駄は、例えばレストラン等において固形燃料を熱源とする焼き物や鍋物などの各種の料理を提供する場合などに無視できない量になる。固形アルコールからなる着火材や、石炭や燃料油を含む成形炭は、特有の臭いを伴いながら燃焼するため、固形燃料で食材を加熱調理するのに問題があり、とくに生物(なまもの)を焼き調理する場合に他の食材に臭いが移りやすい。
本発明の目的は、燃料体に対する着火を確実かつ迅速に行える固形燃料を得るにある。本発明の目的は、燃料体が煙や異臭を伴うことなく長時間にわたって燃焼状態を維持する固形燃料を得るにある。したがって、本発明の目的は、生食材の焼き調理や、加熱調理等の熱源として好適な固形燃料を提供することにある。
本発明の目的は、燃料体に迅速に着火でき、灰かぶり現象による火力の低下も解消して燃料体を最後まで完全に燃焼でき、所定の加熱温度を長時間にわたって安定的に発揮する固形燃料を提供することにある。
Patent Document 1 is known regarding a solid fuel including a carbonaceous fuel body and an ignition material. The solid fuel there includes a fuel body including charcoal and formed coal, an ignition material, and a packaging material that accommodates both. As the ignition material, solid alcohol, gel-like industrial alcohol fuel, or the like is used, and the coal is ignited with this. The charcoal that occupies most of the fuel body is ignited by the combustion heat of the coal formed at the center of the charcoal group.
As an ignition material for charcoal that is difficult to ignite, carbonized powder of fiber material such as coconut husk and rice husk, combustible liquid organic substance typified by alcohol, and binder are kneaded and then molded into a cylinder and then dried Has also been proposed (Patent Document 2).
In the present invention, for example, thermite is used as the ignition material, and the fuel body is ignited by the reduction reaction heat. A heating element using this kind of thermite-like reaction heat as a heat source is known from Patent Document 3. There, a heat generating agent-containing paste containing a thermite-like heat generating agent, fibers, and a binder is formed into a sheet shape, and then dried and shaped into an arbitrary shape. The outer surface of the heating element is covered with a protective film as necessary. This type of heating element has a significantly higher reaction rate than alcohol-based or paraffin-based heating elements, and since the heating element is in the form of a sheet, the combustion time is extremely short, making it unsuitable as a heat source for cooking.
[Patent Document 1] Japanese Patent No. 3157819 (paragraph number 0013, FIG. 2)
[Patent Document 2] Japanese Unexamined Patent Application Publication No. 2003-20491 (paragraph number 0015, FIG. 1)
[Patent Document 3] Japanese Patent Application Laid-Open No. 2003-240355 (paragraph number 0026, FIG. 1)
In the solid fuel of Patent Document 1, ignition is performed in the order of an ignition material, formed coal, and then charcoal. However, because the charcoal is placed in the central part of the charcoal group contained in the packaging material, the surrounding combustion air is consumed when the charcoal starts to burn, and the combustion of the charcoal cannot be sustained due to lack of oxygen. is there. Since it takes a long time for the charcoal group to ignite after the ignition material is ignited, the charcoal group is pre-combusted when baking or heating cooking using solid fuel as a heat source in a restaurant, for example. It is necessary to keep it and lacks responsiveness.
Furthermore, unburned charcoal is covered with burning ash (hereinafter referred to as ash fog phenomenon), and the thermal power tends to gradually decrease, and a part of the charcoal may remain unburned. It becomes useless. Such waste of solid fuel becomes a non-negligible amount when, for example, a restaurant or the like provides various dishes such as pottery and hot pot using solid fuel as a heat source. Since ignition materials made of solid alcohol and coals containing coal and fuel oil burn with a specific odor, there are problems in cooking foods with solid fuel, especially for living things. When baking, the odor is easily transferred to other ingredients.
An object of the present invention is to obtain a solid fuel capable of reliably and quickly igniting a fuel body. An object of the present invention is to obtain a solid fuel in which a fuel body maintains a combustion state for a long time without accompanying smoke or a strange odor. Accordingly, an object of the present invention is to provide a solid fuel that is suitable as a heat source for raw cooking and cooking.
The object of the present invention is to provide a solid fuel capable of quickly igniting a fuel body, eliminating a decrease in thermal power due to an ash fog phenomenon and completely burning the fuel body to the end, and stably exhibiting a predetermined heating temperature over a long period of time. Is to provide.

本発明の固形燃料は、図1に示すごとく、燃焼空気用の通口6の一群が形成された燃料体1と、燃料体1の表面に配置されるテルミット様発熱材からなる着火剤層2と、着火剤層2の表面の一部に設けられる点火部3とを備えている。このうち、燃料体1が、無臭性炭素材を原料とする炭粒4を加圧成形して、炭粒4間に隙間14を有する多孔質に形成されていることを特徴とする。
燃料体1を構成する炭粒4としては、木炭、ヤシ殻炭、竹炭、マングローブ炭などの植物由来の無臭性炭素材の1種以上を含んだものを選ぶことができる。
更に具体的にみると、燃料体1は、高温で焼成したヤシ殻炭を粉砕して、粒度が6〜60メッシュに調整された炭粒4と、炭粒4どうしを結着するバインダー5とを含む。そのバインダー5は、無機物の耐火セメントまたはキャスタブルと、天然物の多糖類または蛋白質で形成されるのりのいずれかひとつ、あるいは2種以上の混合物からなる。着火剤層2は、酸化鉄と、ケイ素と、鉱物繊維と、酸化アルミニウム系または酸化ケイ素系のバインダーとを含んでいる。かくして、水を加えてペースト状に調整した着火剤を、燃料体1の表面に付着させて乾燥することにより、着火剤層2を燃料体1と一体化する。その際、着火剤層2の表面の一部に点火部3を露出させておく。
前出の燃料体1は扁平な立体形状、例えば円盤状に形成して、燃料体1の下面全体を着火剤層2で覆い、着火剤層2の反応熱によって燃料体1を面状に迅速着火できるようにすればよい。
また、円盤状に形成した燃料体1には、16〜26個の通口6を上下貫通状に形成し、燃料体1の上面の面積に占める全通口6の開口面積の比を、7.5〜30%に設定することが好ましい。
本発明の固形燃料の製造方法においては、図4に示すごとく、型枠10に充填した炭粒4とバインダー5との混合物をプレス機で加圧して、炭粒4間に隙間14を有する多孔質の燃料体1を成形し、同時に燃料体1に通口6の一群を形成する第1工程と、型枠10内の燃料体1の表面にペースト状に調整した着火剤を流し込んで、燃料体1の片面の全体に着火剤層2を形成する第2工程と、着火剤層2を乾燥固化して燃料体1と一体化したのち、着火剤層2の表面の一部に、点火部3をこれが着火剤層2の表面に露出するよう塗布形成し、型枠10から燃料体1を分離する第3工程とを経て固形燃料を製造する。
先の第2工程においては、型枠10ごと燃料体1を乾燥固化したのち、型枠10内の燃料体1の表面に、ペースト状に調整した着火剤を流し込んで着火剤層2を形成することができる。
発明の効果
本発明の固形燃料では、燃焼空気用の通口6の一群を形成した燃料体1と、燃焼空気を必要とせず、しかも高温の反応熱を発生するテルミット様発熱材からなる着火剤層2と、着火剤層2の一部に設けられる点火部3とで構成されているので、身近なライターなどで点火部3に着火するだけで、着火剤層2の還元反応が開始し、その高温の反応熱によって燃料体1を燃やすことができる。したがって、従来のこの種の固形燃料に比べて、より迅速にしかも確実に燃料体1を着火できる。
燃料体1は、炭粒4を加圧成形して多孔質に形成されているので、隣接する炭粒4の間に比較的大きな隙間14が確保されており、この隙間14の存在によって、炭粒4に対する燃焼空気や炎の接触機会が増え、その分だけ炭粒4への迅速な着火、すなわち燃料体1の迅速な着火を実現できる。先の隙間14は、個々の炭粒4に対する燃焼空気の送給を円滑化して、燃料体1の燃焼状態を好適に維持し、燃料体1を完全燃焼させることにも役立つ。炭粒4を無臭性炭素材で形成したのは、燃料体1の燃焼時に煙や異臭が発生するのを避けるためであり、これにより生食材の焼き調理や、加熱調理等の熱源として好適な固形燃料が得られる。燃料体1の形成素材を炭粒4とすることにより、着火のしやすさを実現しながらも、同じ重量の粉状の炭で形成した燃料体に比べて燃焼持続時間を長時間化できる。
炭粒4が木炭、ヤシ殻炭、竹炭、マングローブ炭などの植物由来の無臭性炭素材の1種以上を含んでいると、燃料体1の燃焼時に煙や異臭が発生するのを確実に解消して、生食材の焼き調理や、加熱調理等の熱源として好適な固形燃料が得られる。複数種の無臭性炭素材で炭粒4が形成されていると、例えば着火特性に優れた無臭性炭素材と、火持ちの良好な無臭性炭素材とを組み合わせるなどにより、用途に応じた特性の固形燃料を形成でき、その分だけ固形燃料の適用対象が拡大する。
燃料体1は、例えば円盤状などの扁平な立体形状に形成して、その下面全体に着火剤層2を形成してあると、着火剤層2の反応熱で燃料体1を面状に迅速着火できる。燃料体1が扁平な立体形状に形成されていると、市販の練炭に代表される上下厚みの大きい成形炭に比べて、燃料体1の全周面への着火時間を大幅に短縮でき、燃料体1の上面全体で強い火力を均等に発揮して、生食材の焼き調理や、加熱調理等をさらに好適に行える。
高温で焼成したヤシ殻炭のみを原料にして、粒度が6〜60メッシュに調整された炭粒4と、炭粒4どうしを結着するバインダー5とを含む燃料体1によれば、竹炭やマングローブ炭などの他の無臭性炭素材を原料とする場合に比べて、着火の容易性と火持ちの良さとをバランスよく発揮する燃料体1が得られ、原料炭を低コストで入手できる。炭粒4の粒度が6メッシュを越えて大きくなると、粒度が大きい分だけ着火しにくくなり、燃料体1の着火に時間が掛かる。また、粒度が60メッシュより小さな炭粒4の場合には、その比表面積が大きくなり過ぎて燃焼持続時間が著しく短くなり、火持ちが悪い点で実用に適さなくなる。したがって、炭粒4は8〜60メッシュのものが用いて好ましい。
因みに木炭は、他の無臭性炭素材を原料とする場合に比べて、原料コストが高く付くうえ、焼成原木の違いで炭素材の質にばらつきが出るのを避けられず、炭粒4の燃焼特性を一律に揃えるのが難しい。例えば、備長炭などの均質な木炭がない訳ではないが、これでは原料コストが高くつき過ぎる。よって、炭粒4は、高温で焼成したヤシ殻炭のみを原料にすることが望まれる。
炭粒4を結着するためのバインダー5が、耐火セメントまたはキャスタブルと、多糖類または蛋白質で形成されるのりとの混合物で構成されていると、炭粒4と共に燃焼するのりによって異臭や煙が発生するのをよく防止できる。バインダー5に耐火セメントまたはキャスタブルを加えてあると、燃焼途中における炭粒4の隣接間隔を維持して、前記灰かぶり現象によって炭粒群が不完全燃焼状態に陥るのを防ぎ、さらに燃焼末期に燃料体1が崩壊するのを防いで、所定の加熱温度を長時間にわたって安定的に発揮させることができる。また、耐火セメントおよびキャスタブルは、未使用状態における燃料体1の構造強度の向上に寄与し、流通時の燃料体1の破損を防ぐことにもなる。
酸化鉄と、ケイ素と、鉱物繊維と、酸化アルミニウム系または酸化ケイ素系のバインダーとを含む着火剤層2は、合成樹脂系のバインダーを使用する場合に避けられなかった、燃えかすの滴下や付着、あるいは異臭の発生がないうえ、鉱物繊維の混入で着火剤層2これ自体の強度が向上し、長期保管時の着火剤層2の剥落や崩壊をよく防止する。水を加えてペースト状に調整した着火剤は、燃料体1の表面に付着させて乾燥固化すると、着火剤の一部が隣接する炭粒4間の隙間14に入り込んだ状態で固化する。したがって、着火剤を乾燥した状態では着火剤層2と燃料体1とを強固に一体化でき、流通時や長期保管時に着火剤層2が燃料体1から剥離したり、分離したりするのを確実に防止できる。
円盤状に形成した燃料体1に、16〜26個の通口6を上下貫通状に形成して、燃料体1の上面の面積に占める全通口6の開口面積の比を7.5〜30%の範囲に設定してあると、実用上支障のない時間内に燃料体1の着火を図りながら、必要かつ十分な燃焼持続時間を確保できる。更に、着火の容易性と、火持ちの良さとをバランスよく備えた固形燃料が得られる。先の面積の比が7.5%より小さいと、着火に要する時間が長引いて即応性に欠ける。先の面積の比が30%を越えると、燃焼持続時間が短くなるため、ごく短時間の加熱調理にしか適用できず実用性に問題が出る。したがって、前出の面積比は、7.5〜30%が最適である。
本発明の固形燃料の製造方法においては、炭粒4とバインダー5との混合物を加圧成形して密度が均一な燃料体1を形成したのち、型枠10で囲まれた燃料体1の表面にペースト状に調整した着火剤を流し込んで、燃料体1の片面の全体に着火剤層2を形成する。さらに、着火剤層2を乾燥固化して燃料体1と一体化したのち、着火剤層2の表面の一部に点火部3を形成する仕様としたので、複層構造の固形燃料をより少ない手間で簡便に製造できる。燃料体1の加圧成形から着火剤層2の形成、ついで乾燥にまで至る一連の処理を、加圧成形された燃料体1が型枠10内に収まった状態のままで行うので、燃料体1や着火剤層2の一部が、製造途中に欠損したり、異物が混入したりするのを確実に防止でき、形状および燃焼特性が均一の固形燃料を提供できる。
本発明方法の第2工程において、型枠10ごと燃料体1を乾燥固化したのち、型枠10内の燃料体1の表面にペースト状の着火剤を流し込んで着火剤層2を形成すると、ペースト状の着火剤の一部が、隣接する炭粒4間の隙間14に入り込んだ状態で着火剤が固化するので、着火剤を乾燥した状態では着火剤層2と燃料体1とを分離不能な状態で強固に一体化でき、得られた固形燃料の形状を長期にわたって安定的に維持できる。もちろん、必要に応じて型枠10を別の型枠に移し変えてもよい。
As shown in FIG. 1, the solid fuel of the present invention includes a fuel body 1 in which a group of combustion air passages 6 are formed, and an igniter layer 2 made of a thermite-like heating material disposed on the surface of the fuel body 1. And an igniter 3 provided on a part of the surface of the igniter layer 2. Among these, the fuel body 1 is characterized by being formed into a porous material having a gap 14 between the carbon particles 4 by pressure-molding the carbon particles 4 made of an odorless carbon material.
As the carbon particles 4 constituting the fuel body 1, those containing at least one plant-derived odorless carbon material such as charcoal, coconut shell charcoal, bamboo charcoal, and mangrove charcoal can be selected.
More specifically, the fuel body 1 includes pulverized coconut shell charcoal fired at a high temperature, a carbon particle 4 having a particle size adjusted to 6 to 60 mesh, and a binder 5 that binds the carbon particles 4 together. including. The binder 5 is made of any one of inorganic refractory cement or castable and natural polysaccharide or protein, or a mixture of two or more. The igniter layer 2 includes iron oxide, silicon, mineral fibers, and an aluminum oxide or silicon oxide binder. Thus, the igniting agent layer 2 is integrated with the fuel body 1 by adhering the igniting agent adjusted to a paste form by adding water to the surface of the fuel body 1 and drying it. At that time, the ignition part 3 is exposed to a part of the surface of the igniter layer 2.
The above-described fuel body 1 is formed in a flat three-dimensional shape, for example, a disk shape, and the entire lower surface of the fuel body 1 is covered with the igniting agent layer 2, and the fuel body 1 is rapidly planarized by the reaction heat of the igniting agent layer 2. Just make it possible to ignite.
Further, the fuel body 1 formed in a disk shape has 16 to 26 through holes 6 formed in a vertically penetrating manner, and the ratio of the opening area of all the through holes 6 to the area of the upper surface of the fuel body 1 is 7 It is preferable to set it to 5 to 30%.
In the method for producing a solid fuel according to the present invention, as shown in FIG. 4, a mixture of the carbon particles 4 and the binder 5 filled in the mold 10 is pressurized with a press machine so as to have a gap 14 between the carbon particles 4. A first step of forming a quality fuel body 1 and simultaneously forming a group of through holes 6 in the fuel body 1, and pouring an ignitant adjusted in a paste form on the surface of the fuel body 1 in the mold 10, A second step of forming the igniting agent layer 2 on the entire surface of the body 1, and after the igniting agent layer 2 is dried and solidified and integrated with the fuel body 1, an ignition part is formed on a part of the surface of the igniting agent layer 2. 3 is applied and formed so as to be exposed on the surface of the igniter layer 2, and a solid fuel is manufactured through a third step of separating the fuel body 1 from the mold 10.
In the second step, after the fuel body 1 is dried and solidified together with the mold 10, the igniting agent layer 2 is formed by pouring a paste-like igniting agent onto the surface of the fuel body 1 in the mold 10. be able to.
Effect of the Invention In the solid fuel of the present invention, an igniter comprising a fuel body 1 forming a group of combustion air vents 6 and a thermite-like heating material that does not require combustion air and generates high-temperature reaction heat. Since it is composed of the layer 2 and the ignition part 3 provided in a part of the igniting agent layer 2, the ignition reaction of the igniting agent layer 2 starts only by igniting the ignition part 3 with a familiar lighter or the like. The fuel body 1 can be burned by the high reaction heat. Therefore, the fuel body 1 can be ignited more quickly and reliably than the conventional solid fuel of this type.
Since the fuel body 1 is formed to be porous by press-molding the carbon particles 4, a relatively large gap 14 is secured between the adjacent carbon particles 4. The contact opportunity of the combustion air and flame with respect to the grain 4 increases, and the quick ignition to the coal grain 4, that is, the quick ignition of the fuel body 1 can be realized correspondingly. The previous gap 14 facilitates the supply of combustion air to the individual coal particles 4, favorably maintains the combustion state of the fuel body 1, and helps to burn the fuel body 1 completely. The reason why the carbon particles 4 are formed of the odorless carbon material is to avoid the generation of smoke and off-flavor during the combustion of the fuel body 1, which is suitable as a heat source for grilling raw foods and cooking. Solid fuel is obtained. By using the carbon particles 4 as the forming material of the fuel body 1, it is possible to increase the combustion duration as compared with a fuel body formed of powdered charcoal having the same weight while realizing ease of ignition.
When the coal particles 4 contain one or more odorless carbon materials derived from plants such as charcoal, coconut shell charcoal, bamboo charcoal, and mangrove charcoal, the generation of smoke and off-flavor is surely eliminated when the fuel body 1 is burned. As a result, a solid fuel suitable as a heat source for raw cooking and cooking is obtained. When the carbon particles 4 are formed of a plurality of types of odorless carbon materials, for example, by combining an odorless carbon material with excellent ignition characteristics and an odorless carbon material with good fire resistance, the characteristics according to the application Solid fuel can be formed, and the application target of solid fuel is expanded accordingly.
When the fuel body 1 is formed in a flat three-dimensional shape such as a disk shape and the igniter layer 2 is formed on the entire lower surface of the fuel body 1, the fuel body 1 can be quickly formed into a planar shape by the reaction heat of the igniter layer 2. I can ignite. When the fuel body 1 is formed in a flat three-dimensional shape, the ignition time on the entire circumferential surface of the fuel body 1 can be greatly shortened as compared with the formed coal having a large vertical thickness represented by commercially available briquettes. A strong heating power is evenly exerted on the entire upper surface of the body 1 so that the raw food can be cooked or cooked more suitably.
According to the fuel body 1 including only the coconut shell charcoal baked at a high temperature and having the particle size 4 adjusted to 6 to 60 mesh and the binder 5 binding the carbon particles 4, bamboo charcoal or Compared with the case where other odorless carbon materials such as mangrove charcoal are used as a raw material, the fuel body 1 that exhibits a balance between ease of ignition and good fire resistance is obtained, and the raw coal can be obtained at a low cost. When the particle size of the carbon particles 4 exceeds 6 meshes, it becomes difficult to ignite by the size of the particle size, and it takes time to ignite the fuel body 1. Moreover, in the case of the carbon particles 4 having a particle size smaller than 60 mesh, the specific surface area becomes too large and the combustion duration time is remarkably shortened. Therefore, it is preferable to use a carbon grain 4 having a particle size of 8 to 60 mesh.
By the way, charcoal has a higher raw material cost than other odorless carbon materials, and it is inevitable that the quality of the carbon material will vary due to the difference in the raw baked wood. It is difficult to make the characteristics uniform. For example, it does not mean that there is no homogeneous charcoal such as Bincho charcoal, but this makes the raw material costs too expensive. Therefore, it is desirable that the charcoal particles 4 be made only from coconut shell charcoal fired at a high temperature.
If the binder 5 for binding the carbon particles 4 is composed of a mixture of fire-resistant cement or castable and a paste formed of polysaccharides or proteins, a bad odor or smoke is generated by burning with the carbon particles 4. It can be well prevented from occurring. When refractory cement or castable is added to the binder 5, the adjacent interval of the coal particles 4 during the combustion is maintained, and the ash fog phenomenon prevents the coal particles from falling into an incomplete combustion state, and at the end of combustion. The fuel body 1 can be prevented from collapsing, and a predetermined heating temperature can be stably exhibited over a long period of time. Further, the refractory cement and the castable contribute to the improvement of the structural strength of the fuel body 1 in an unused state, and also prevent the fuel body 1 from being damaged during distribution.
The igniting agent layer 2 containing iron oxide, silicon, mineral fiber, and an aluminum oxide or silicon oxide binder is inevitable when using a synthetic resin binder. In addition, there is no generation of off-flavor, and the strength of the igniter layer 2 itself is improved by mixing with mineral fibers, and the igniter layer 2 is prevented from peeling off or collapsing during long-term storage. When the igniting agent adjusted to a paste form by adding water adheres to the surface of the fuel body 1 and solidifies by drying, the igniting agent solidifies in a state where a part of the igniting agent enters the gap 14 between the adjacent carbon grains 4. Therefore, when the igniting agent is dried, the igniting agent layer 2 and the fuel body 1 can be firmly integrated, and the igniting agent layer 2 can be separated from or separated from the fuel body 1 during distribution or long-term storage. It can be surely prevented.
In the fuel body 1 formed in a disk shape, 16 to 26 through holes 6 are formed vertically penetrating so that the ratio of the opening area of all the through holes 6 to the area of the upper surface of the fuel body 1 is 7.5 to If it is set in the range of 30%, the necessary and sufficient combustion duration can be ensured while the fuel body 1 is ignited within a time that does not hinder practical use. Furthermore, a solid fuel having a good balance between ease of ignition and good fire resistance can be obtained. If the ratio of the previous area is less than 7.5%, the time required for ignition is prolonged and the quick response is lacking. If the ratio of the previous area exceeds 30%, the combustion duration time is shortened, so that it can be applied only to cooking for a very short time, and there is a problem in practicality. Accordingly, the optimal area ratio is 7.5 to 30%.
In the method for producing a solid fuel according to the present invention, a mixture of carbon particles 4 and a binder 5 is pressure-molded to form a fuel body 1 having a uniform density, and then the surface of the fuel body 1 surrounded by a mold 10 An igniting agent adjusted to a paste is poured into the fuel body 1 to form the igniting agent layer 2 on the entire surface of one side. Furthermore, since the igniter layer 2 is dried and solidified and integrated with the fuel body 1, the ignition part 3 is formed on a part of the surface of the igniter layer 2, so that the solid fuel having a multilayer structure is less. It can be easily and easily manufactured. A series of processes from the pressure forming of the fuel body 1 to the formation of the igniting agent layer 2 and then to the drying are performed while the pressure-molded fuel body 1 remains in the mold 10. 1 and a part of the igniting agent layer 2 can be reliably prevented from being lost during the production or mixed with foreign matters, and a solid fuel having a uniform shape and combustion characteristics can be provided.
In the second step of the method of the present invention, after the fuel body 1 is dried and solidified together with the mold 10, a paste-like ignitant is poured onto the surface of the fuel body 1 in the mold 10 to form the igniter layer 2. Since the igniting agent is solidified in a state where a part of the igniting agent enters the gap 14 between the adjacent carbon particles 4, the igniting agent layer 2 and the fuel body 1 cannot be separated in a state where the igniting agent is dried. It can be firmly integrated in a state, and the shape of the obtained solid fuel can be stably maintained over a long period of time. Of course, the mold 10 may be transferred to another mold as necessary.

図1ないし図4は、本発明に係る固形燃料の実施例を示す。図1および図2において、本発明の固形燃料は、径寸法の割に高さ寸法が小さい扁平な円盤状の立体形状に形成される燃料体1と、燃料体1の下面に全体的に配置される着火剤層2と、着火剤層2の外周縁の一部に設けられる点火部3とを含む。
燃焼時に異臭や煙が発生するのを防ぐために、燃料体1は木炭、ヤシ殻炭、竹炭、マングローブ炭など植物由来の無臭性炭素材の1種以上を原料とする炭粒4で形成する。具体的には、高温で焼成したヤシ殻炭を粉砕して得られた炭粒4を原料にして、これにバインダー5を混合したうえで円盤状に加圧成形し、得られた成形燃料体を乾燥固化して、多孔体状の燃料体1を形成する。燃料体1には燃焼空気用の通口6の一群を上下貫通状に形成して、燃料体1の全体にわたって火が回るようにする。この実施例では、燃料体1の直径寸法を10cm、その厚みを25mmとするとき、直径寸法が10mmの21個の通口6を均等に分散する状態で燃料体1に形成した。各通口6は丸孔とした。
バインダー5は、澱粉のりと、酸化アルミニウムまたは酸化ケイ素を含む耐火セメントと、水との混合物からなり、隣接する炭粒4どうしは澱粉のりの粘着力で結着する。バインダー5には、酸化アルミニウムまたは酸化ケイ素を含む耐火セメントに変えて、キャスタブルを用いてもよい。澱粉のりは個々の炭粒4が燃焼するとき、同時に燃え尽きるが、異臭や煙を発生することはない。耐火セメントおよびキャスタブルは、燃焼途中における炭粒4の隣接関係を維持して、灰かぶり現象によって炭粒群が不完全燃焼状態に陥るのを防ぎ、さらに燃焼末期に燃料体1が崩壊するのを防いで、全ての炭粒4を完全燃焼させるために混合する。加えて、耐火セメントおよびキャスタブルは、未使用状態における燃料体1の構造強度を向上して、流通時の燃料体1の破損を防ぐ。キャスタブルは市販品を適用することができる。もちろん、炭粒4が燃焼し終わると直ぐに、崩れてコンロの底に落下し、燃焼中の赤い炭粒が絶えず表われるように工夫された燃料体1も構成できる。その場合には、添加される耐火セメントやキャスタブルの量を少なくするか、単に多糖類やたんぱく質だけでバインダーを形成する。
着火剤層2は、金属酸化物と還元剤とで構成されるテルミット様の発熱材からなり、金属酸化物の還元反応で高温の熱を発生する。金属酸化物と還元剤との組み合わせとしては、酸化鉄とアルミニウム、酸化鉄とケイ素、マグネシウムと酸化ケイ素、チタンと炭素、カルシウムと炭素などがある。この実施例では酸化鉄を金属酸化物とし、ケイ素を還元剤として、これらに鉱物繊維と、酸化アルミニウム系のバインダーとを混合して着火剤を構成した。酸化アルミニウム系のバインダーに代えて、酸化ケイ素系のバインダーを使用することもできる。後述するように着火剤層2は、前記着火剤に水を加えてペースト状に調整したうえで、ペースト状の着火剤を燃料体1の下面全体に付着させ、乾燥することにより形成する。
点火部3は、クロム酸バリウムや過酸化バリウムを主剤として、これに粉末状のアルミニウムと無定形ホウ酸を添加した発火剤で形成してあり、この発火剤を水に溶解して着火剤層2に塗布したのち乾燥して形成する。点火部3を周面側から容易に点火するために、点火部3は着火剤層2の下面から外周縁にわたって設ける(図2参照)。固形燃料を使用するときは、ライターやマッチの火で点火部3を点火することにより、着火剤層2の還元反応を開始させることができる。このとき、着火剤層2は激しく反応して、ごく短時間で還元反応が燃料体1の下面全体に行き渡る。そのため、燃料体1の下面を着火剤層2の反応熱によって面状に迅速着火できる。図1に示すように着火剤層2の一部は通口6内に入り込んでいるので、通口6の下端内周面も同時に着火でき、その分だけ燃料体1をより短かい時間で着火できることになる。
上記構成の固形燃料は以下の製造方法によって量産できる。図4は製造方法の概略工程を示す。固形燃料の製造に先行して、まず炭粒4とバインダー5との混合物を調整しておく。ペースト状の着火剤と、水に溶解した点火剤も同様に予め調整しておく。
本発明の固形燃料は、型枠10に充填した炭粒4とバインダー5との混合物をプレス機で加圧して、多孔質の燃料体1を成形すると同時に、燃料体1に通口6の一群を形成する第1工程と、型枠10ごと燃料体1を乾燥固化したのち、型枠10内の燃料体1の片面の全体にペースト状に調整した着火剤を流し込んで着火剤層2を形成する第2工程と、着火剤層2を乾燥固化して燃料体1と一体化したのち、着火剤層2の表面の一部に点火部3を塗布形成し、型枠10から燃料体1を分離する第3工程とを経て製造する。
すなわち第1工程においては、図4(a)に示すように、上面が開口する丸皿状の型枠10に所定量の炭粒4とバインダー5との混合物を充填した後、これらをプレス機で加圧して燃料体1を成形すると同時に、燃料体1に通口6の一群を形成する。そのために、型枠10内に入り込む成形型11側には、通口6を成形するためのピン12を設けてある。成形型11は、炭粒4どうしがバインダー5を介して結着し、全体の密度が一定となるように加圧できればよい。符号13は型枠10を受け止めるベースである。成形型11で炭粒4とバインダー5との混合物を加圧することにより、炭粒4どうしはバインダー5を介して結着する。但し、隣接する炭粒4の間には、僅かな隙間14が確保されており、これで多孔質の燃料体1を得ることができる。
第2工程においては、図4(b)に示すように、多孔質の燃料体1を型枠10ごと乾燥処理して固化させる。具体的には、燃料体1および型枠10を、雰囲気温度が90〜100度Cの乾燥炉に収容し、その状態を8時間維持することにより、燃料体1を固化させる。このとき、バインダー5が幾分収縮するので、図1(a)に示すように隣接する炭粒4間の隙間14を拡充できる。この隙間14の存在によって、炭粒14に対する燃焼空気や炎の接触機会が増える。したがって、炭粒4の迅速な着火と、燃焼状態の維持とを実現できる。因みに、前記隙間14の大きさは、炭粒4の大きさや、大きさが異なる炭粒4の混合比などによって種々に変化し、燃料体1の着火に要する時間や、燃焼持続時間を左右するので、本発明者は、後述する試験を行って炭粒4の好適な大きさを決定した。
第3工程では、図4(c)に示すように、型枠10内に流し込んだ着火剤層2を乾燥固化する。具体的には、着火剤層2が流し込まれた型枠10を、雰囲気温度が110度Cの乾燥炉に収容し、その状態を12時間維持することにより、着火剤層2を固化させた。先に説明したように、燃料体1は多孔質に形成されていて、隣接する炭粒4間に隙間がある。そのため、型枠10内にペースト状の着火剤を流し込むと、図1(b)に示すようにその一部が通口6に入り込み、さらに隣接する炭粒4間の隙間に入り込む。したがって、ペースト状の着火剤を乾燥した状態では、着火剤層2が燃料体1と強固に結着するので、流通時に着火剤層2が燃料体1から剥離し、あるいは分離するのを確実に防止できる。
乾燥後の着火剤層2の表面一部に点火部3を塗布形成し、図4(d)に示すように型枠10から燃料体1を分離することにより、円盤状の固形燃料が得られる。先に説明したように、点火部3は着火剤層2の外周側面に臨ませておく。
上記の製造方法とは異なり、第2工程において燃料体1を乾燥固化する前に、型枠10内の燃料体1の片面全体にペースト状に調整した着火剤を流し込んで着火剤層2を形成し、燃料体1および着火剤層2を同時に乾燥固化して、燃料体1および着火剤層2の乾燥処理に要する手間を半減することができる。
以上のように、この発明の固形燃料においては、バインダー5が混合された一群の炭粒4をプレス機で成形して多孔質の燃料体1を形成するが、本発明者は使用する無臭性炭素材や、炭粒4の大きさ、および大きさが異なる炭粒4の混合比率などの違いによって、燃料体1の着火時間と燃焼継続時間とがどのように変化するかをテストし、同時に燃焼時における煙の発生や、灰かぶり現象の有無を確認して、生食材の焼き調理や、加熱調理等の熱源として好適な燃料体1をいかにしてつくるか、これを実験した。さらに、燃料体1における通口6の直径や形成個数を変更して、燃料体1に設けるべき通口6の好適化を図った。
(実施例1) 700〜800度Cで焼成したヤシ殻炭を原材料にして、炭粒4の粒度を6〜12メッシュに調整し、これにバインダー5と水とを加えて混合し、得られた混合物を直径が10cm、厚み35mmの円盤状に成形して燃料体1を得た。
燃料体1に形成すべき通口6は、直径が10mmの丸孔とし、その形成個数は21個とした。炭粒4の使用量は、1個の燃料体1について60gとした。
バインダー5は、25重量パーセントの澱粉のりと、53重量パーセントの酸化アルミニウムと、22重量パーセントの耐火セメントとで形成し、炭粒4の重量に対して20重量パーセントを混合した。以上の条件で成形した燃料体1の密度は0.24であった。燃焼体1の片面には、着火剤層2を形成し、さらに点火部3を前述の要領で形成した。着火剤層2の厚みは5mmとした。
(実施例2) 炭粒4の粒度を12〜32メッシュに調整し、燃料体1の厚みを20mmとする以外は、実施例1と同じ条件で燃料体1を形成した。炭粒4の粒度が幾分小さくなるために、燃料体1の密度は0.41になった。
(実施例3) 炭粒4の粒度を60メッシュ以上に調整して、実施例2と同じ条件で燃料体1を形成した。炭粒4の粒度がさらに小さくなるために、燃料体1の密度は0.44になった。
(実施例4) 400〜500度Cで焼成したヤシ殻炭を原材料にして、炭粒4の粒度を12〜32メッシュに調整して、実施例2と同じ条件で燃料体1を形成した。実施例1に比べて低温でヤシ殻炭を焼成したので、燃料体1の密度は0.37になった。
(実施例5) 400〜500度Cで焼成したマングローブ炭を原材料にして、炭粒4の粒度を12〜32メッシュに調整して、実施例2と同じ条件で燃料体1を形成した。炭原料が異なるため、燃料体1の密度は0.37であった。
(実施例6) 700度Cで焼成した竹炭を原材料にして、炭粒4の粒度を12〜32メッシュに調整して、実施例2と同じ条件で燃料体1を形成した。炭原料が異なるため、燃料体1の密度は0.37であった。
(実施例7) 400〜500度Cで焼成した竹炭を原材料にして、炭粒4の粒度を10〜30メッシュに調整して、実施例2と同じ条件で燃料体1を形成した。実施例6に比べて低温でヤシ殻炭を焼成したので、燃料体1の密度は0.30になった。
(実施例8) 700度Cで焼成した木炭を原材料にして、炭粒4の粒度を12〜32メッシュに調整して、実施例2と同じ条件で燃料体1を形成した。燃料体1の密度は0.23であった。
以上のように形成した実施例1から8の各固形燃料を、着火剤層2の下面に通気隙間を確保した状態でテストベンチ上に載置し、着火剤層2を点火してから燃料体1に着火するまでの時間と、燃焼持続時間とを計測した。さらに、燃焼時の灰かぶり現象の有無と、異臭の発生の有無と、燃焼に伴う形状崩落の有無を目視によって確認した。表1はその結果を示す。着火に要する時間は、着火剤層2を点火してから燃料体1の上面の温度が250度Cに達するまでの時間とした。燃焼持続時間は、着火完了以後に燃料体1の上面の温度が150度C以下に低下するまでの時間とした。
表1から理解できるように、着火に要する時間は、原料炭の焼成温度が低いほど短く、炭粒4の粒度が小さいほど短い。また、燃焼持続時間は、原料炭の焼成温度が高いほど長く、さらに煙や異臭の発生もみられない。これらのテスト結果から、炭粒4の原料としては、高温で焼成したヤシ殻炭、なかでも粒度を12〜32メッシュに調整した実施例2の炭粒4が、着火の容易性と、火持ちの良さとで最適であることが解る。実施例2の燃料体1においては、燃焼時の煙や異臭の発生がないのはもちろんのこと、灰かぶり現象に伴う炭粒4の不完全燃焼や、燃料体1の崩壊もなかった。

Figure 2005100514
これらの結果から、固形燃料の用途によって、炭粒4の粒度は、6〜60メッシュの範囲内が好ましく、12〜32メッシュの範囲内で選択することがより好ましい。因みに、炭粒4の粒度が6メッシュを下回ると、平均的な粒径が2mmと大きくなり、着火に時間が掛かるうえ、成形時の保形性に劣る。炭粒4の粒度が60メッシュを越えると、平均的な粒径が0.25mmと小さくなり、炭粒4の比表面積が大きくなる分だけ燃焼持続時間が短くなる。粒度が大きな炭粒4と、粒度が小さな炭粒4とを混合したとき、粒度の大きな炭粒4の隙間に、粒度の小さな炭粒4が入り込むため、燃料体1の密度が大きくなるが、適度の隙間14を確保できず燃焼しにくい点で好ましくない。
次に、実施例2の燃料体1における通口6の直径や形成個数を変更して、燃料体1において最も好適な通口6の形態を調べた。通口6の直径は6mm、8mm、10mm、12mmの4種類とし、その形成個数は16個、21個、26個の3種類とした。得られた6種類の固形燃料は、先のテストと同様に、着火剤層2の下面に通気隙間を確保した状態でテストベンチ上に載置し、着火剤層2を点火してから燃料体に着火するまでの時間と、燃焼持続時間とを計測した。さらに、燃焼に伴う形状崩壊の有無を目視によって確認した。その結果を表2に示す。
Figure 2005100514
表2から理解できるように、通口6の直径が大きいほど着火に要する時間は短くなるものの、逆に燃焼持続時間が短くなる。通口6の形成個数が多いほど、着火に要する時間は短くなるものの、逆に燃焼持続時間が短くなる。実際の使用状況を考慮すると、着火に要する時間としては、3.5〜4分ほどで十分であり、燃焼持続時間は40分以上あれば足りる。これらの結果から、通口6の直径は8〜10mm、通口6の形成個数は16〜26個であればよい。換言すると、燃料体1の上面の面積に占める全通口6の開口面積の比は、7.5〜30%の範囲であればよいことが判った。さらに直径が10mm前後の通口6を20個前後形成することが最も好ましく、その場合の全通口6の開口面積の比は16〜20%となる。
本発明の固形燃料は、図3に示す燃焼容器20を用いて燃焼させることができる。燃焼容器20は、上下面が開口する金属製の円筒体からなり、その筒壁20aの上下中途部を筒内面側へ折り曲げて、固形燃料を受け止める支持片21とする。支持片21は筒壁20aの周方向4箇所に設ける。燃焼容器20の下部4箇所には、燃焼空気を導入するための通気口22を切り欠き形成する。支持片21を形成することによって筒壁20aに形成される開口のひとつは、点火口23として利用できる。
使用時には、着火剤層2の下面が支持片21で受け止められる状態で固形燃料を燃焼容器20内に収容し、点下部3を点火口23に臨ませる。この状態で、着火用のライターの火で点下部3に点火すると、着火剤層2の還元反応が開始されて、ごく短時間で還元反応が燃料体1の下面全体に行き渡る。そのため、燃料体1の下面を着火剤層2の反応熱によって面状に迅速着火できる。
着火剤層2の反応かすは一部が燃料体1側に残るが、その殆どは還元反応時に飛び散って、燃焼容器20の下方の火皿上に落下する。そのため、通口6の下面を開口して、燃焼空気を問題なく、通口6内へ導入することができる。以後は、着火した燃料体1の火が、下方から上方へと移るので、固形燃料を焼き調理の熱源や、鍋料理の熱源として使用することができる。
上記の燃焼容器20は、固形燃料の包装容器を兼ねることができ、容器内に収容した固形燃料を遊動不能に固定したうえで、燃焼容器20を通気不能に密封し、包装用の紙箱内に収容することにより、長期保存時の品質劣化がない固形燃料を提供できる。もちろん、1個あるいは複数個の固形燃料のみを密封した状態で販売してもよい。
図示例の通口6は丸孔としたが、例えば多角形など任意の孔形状にすることができる。必要があれば、通口6の一群を放射溝状に形成してもよい。燃料体1は平面視で円盤状に形成する必要はなく、例えば横断面が多角形で、他の寸法に比べて上下寸法が小さい扁平な立体形状に形成することができる。点火部3は複数箇所に設けてあってもよい。
なお、燃焼容器20は、2個以上の固形燃料を隣接して収容できる構造であってもよく、その場合には固形燃料の平面視形状を多角形状としておくことにより、発熱面を均等に配置することができる。炭粒4は木炭、ヤシ殻炭、竹炭、マングローブ炭などの植物由来の無臭性炭素材の1種以上を含んでいれば足りる。
実施例で説明した固形燃料の製造方法においては、成形型11の側に設けたピン12で通口6を形成したが、型枠10側にピン12を設けて通口6を形成してもよい。その場合には、加圧成形された燃料体1を強制的に離型するためのノックアウトピンを、型枠10側に設けることができる。
固形燃料は以下に説明する態様で形成できる。テルミット反応を利用した発熱体(着火剤層)32と固形炭素(燃料体)31とを、接触あるいは近接した構造とする。テルミット反応を利用した発熱体32の上に固形炭素31を積層し、これらを容器33に充填し、あるいは包装材で包装する。テルミット反応を利用した発熱体32を、金属酸化物と、金属酸化物に含まれる酸素と結合して還元反応を生じさせる還元金属などの還元剤と、必要に応じて添加される少量の補助組成物との混合物で構成する。
テルミット反応を利用した発熱体32の原料を水あるいは有機溶剤と混練し、それを成型し、乾燥して固形燃料を形成する。固形燃料31は、木炭、竹炭、ヤシ殻炭、パーム椰子炭などの植物を原料とした炭、鉱物系の燻炭、黒鉛、石炭、コークス、炭化繊維などを原料にして形成する。
固形炭素31を、粉状あるいは粒状の炭素原料に、セラミック繊維、ガラス繊維、石綿などの不燃性繊維、バインダーおよび水を加えて混練し、厚みを有する、円形、正方形、長方形、楕円形、三角形、不定形、あるいは棒状や塊状に成型し、乾燥して製造する。
固形炭素31の燃焼を助長するために、固形炭素31に貫通した穴(通口)34、あるいは表面に凹凸35を設ける。固形炭素31に、燃焼を触媒する添加物としてカリウム塩、ナトリウム塩、過酸化物を混入する。発熱体32あるいは固形炭素31を、鉄、アルミニウム、ステンレスなどの金属素材、あるいはセラミック、陶器、磁器、炭素などの素材よりなる容器33、あるいは包装材に収納する。発熱体32あるいは固形炭素31を、紙、ニトロセルロース、プラスチック、塗料などの可燃性素材によって被覆する。固形炭素31の燃焼を促進するため、発熱体32あるいは固形炭素31が収納してある容器33、および包装材に空気の流入穴37を形成する。
図5ないし図13に固形燃料の具体的な実施形態を示す。図5(a)において符号40は焼き料理に用いられる通常の金網である。図5(b)に示すように、固形燃料は、金属缶(容器)33に充填された発熱体32の上に円盤型の燃料体31を重ねて形成する。図5(c)において、符号41は固形燃料を嵌め込むための窪み42を備えた卓上コンロである。図5(d)はこれらを組み重ねた状態を示す。
上記のように発熱体32と固形炭素31を接触あるいは近接して配置し、発熱体32にフリントや導火線などの公知の方法で点火すると、発熱体32が短時間で高温に達し、直ちに固形炭素31に延焼する。発熱体32のテルミット反応による高温発熱と固形炭素31の持続燃焼によって、高温の状態を長時間持続できる。
発熱体32の発熱には酸素を供給する必要はないが、固形炭素31には酸素を供給しなければ燃焼を持続できない。したがって、固形炭素31に空気を如何に供給するかで、いろいろな構造が考えられ、燃焼の持続時間や燃焼効率に影響する。以下にその詳細を述べる。
図6(a)に示すように、金属缶33に充填された発熱体32の上に円盤型の固形炭素31を重ねた固形燃料においては、発熱体32に点火すると、固形炭素31に延焼し、空気と接している側面および上面が燃焼する。固形炭素31の底面は酸素が欠乏し、未燃焼炭素が残存する。しかし、固形炭素31の厚みが薄ければ、未燃焼物はそれだけ少なくなる。
図6(b)に示すように、発熱体32と接する円盤型の固形炭素31の底面に凹凸35を形成すると、発熱体32と固形炭素31との間の空隙部を多くし、固形炭素31の底面への空気の供給を促して、固形炭素31の燃焼を促進できる。
図6(c)に示すように、円盤型の固形炭素31の代わりに、繊維状の固形炭素31Aを発熱体32の上に積層すると、繊維状の固形炭素31Aの空隙が大きいので、空気の流通に優れ、未燃焼の炭素の残存量は少ない。しかし、燃焼の持続時間は短い。
図7(a)に示すように、発熱体32の上に塊状の固形燃料31Bを配置する場合には、塊状の固形燃料31Bが落下しないように、金属缶33の側面を高くしなければならない。すると、固形燃料31Bへの空気の供給が不十分となるので、図7(b)に示すように金属缶33の側面に空気の流入穴37を設けて、固形燃料31Bの燃焼を促進する。
図8(a)(b)に示すように、円盤型の固形燃料31に上下に貫通する穴34を多数設けると、空気は発熱体32と固形炭素31との間隙から流入し、穴34を通って上方に排気されるので、固形炭素31に十分な酸素が供給され、燃焼を持続できる。
図9に示すように、金属缶33の底に貫通する穴36と連通する穴38を設けると、先のように、固形炭素31のみに貫通する穴34を設けた場合よりも、固形炭素31への酸素の供給がより良好となる。この場合には、固形燃料31の穴34と連通する穴38を形成することになる。
図10(a)、(b)に示すように、固形燃料の形状は円柱状に形成できる。そこでは、円柱型の発熱体32の周囲を固形炭素31で被覆した。符号45は発熱体32に塗布した点火剤である。
図11(a)、(b)に示すように、固形燃料は球状に形成できる。球形の発熱体32の周囲を固形炭素31で包んで固形燃料を球状に形成する。符号46は点火部で、発熱体32を固形炭素31の外部に導出し、その先端に点火剤45を塗布し、フリントや火薬で点火する。図9および図10で説明した、円柱型および球形の固形燃料は、豆炭や備長炭の代用として利用できる。
図12に示すように、図10で説明した複数の円柱状の固形燃料を、その点火剤45が互いに接触するように組むと、一箇所に点火するだけで、後は連鎖的に燃焼させることができる。また、図13に示すように、図11で説明した球形の固形燃料を、その点火部46が、他の固形燃料に接触するように並べることによって連鎖的に燃焼を誘起させることができる。
以上のように構成した固形燃料は、発熱体32の高温発熱と固形炭素31の持続燃焼を同時に発揮させることによって、▲1▼短時間に着火し、▲2▼高温となって赤熱し、▲3▼それが持続する。▲4▼固形燃料の体積も比較的小さい。これらの特徴は、固形燃料が焼き料理に適していることを示す。
発熱体32の構成成分にはいろいろな組み合わせが考えられるが、原理的には、金属酸化物と、金属酸化物に含まれる酸素と結合して還元反応を生じさせる還元金属などの還元剤と、必要に応じて添加される少量の補助組成物との混合物である。最も一般的で、経済的に好ましいのは酸化鉄とケイ素、あるいは酸化鉄とアルミニウムの各混合物である。
発熱体32に点火すると、テルミット反応が即座に開始し、発熱体32は数十秒で高温に達する。テルミット反応は酸素を必要としないので、発熱時間や発熱量は構成成分によって決まる。もちろん、構成成分の粒子サイズや製造方法によって影響されるが、一般的には発熱温度は1000℃付近で、反応は数十秒で完結する。
ところで、固形炭素31の燃焼には酸素が必要であるので、それを如何に供給するかによって、燃料としての発熱時間や熱量が大きく異なる。また、炭素の種類によっても同様である。図6(a)、(b)で説明した固形燃料は、円盤型の固形炭素31を発熱体32の上に重ねただけであるので、固形炭素31の燃焼は空気と触れている周囲に限定される。短時間では固形炭素31の未燃焼物が多量に残存するが、それもかなり長時間後にはほぼ消失する。
図6(c)の固形燃料は、繊維状の固形炭素31Aを使用した場合で、一般的に繊維間の空隙は非常に大きく、酸素の供給は十分なので短時間でそれは燃え尽きる。繊維の太さと空隙密度を調節することによって燃焼温度と時間、残り火をコントロールできる。
図7の固形燃料は、発熱体32の上に塊状の固形炭素31Bを配置した。塊状の固形炭素31Bが落下しないように、金属缶3の側面を高くし、その側面に空気の流入穴37を設けた。空気は側面の流入穴37から進入し、固形炭素31の塊の間を通って、上部に放出されるので、中央部の炭素塊も十分に燃焼する。
図8の固形燃料は、円盤型の固形炭素31に上下に貫通する穴34を多数設けるので、空気は発熱体32と固形炭素31の間隙から流入し、穴34を通って上方に排気される。従って、固形炭素31に十分な酸素が供給される。燃焼は固形燃料の上下のみならず円盤の中央部も均一に起こる。
図9の固形燃料は、通気用の穴34と連通する穴36を金属缶33の底に設けるので、酸素の供給が非常に良好となる。しかし、発熱体32が空気によって冷却されるので燃料としての持続時間は短い。
図10の円柱型の固形燃料、および図11の球形の固形燃料は、それぞれ発熱体32の周囲を固形炭素31で被覆するので、テルミット反応の開始と共に発熱体32が熱膨張して固形炭素31にひび割れを起こし、そこから酸素が供給されるので固形炭素31の燃焼が内部まで起こる。
上記の固形燃料の燃焼状況、例えば赤熱時間および未燃焼量などに及ぼす円盤型の固形炭素31の形状の影響を比較した(実験1)。さらに、固形炭素31に設けた穴34の数、大きさ、分布が、固形燃料の燃焼に及ぼす影響を調べた(実験2)。
(実験1)固形燃料を図5で説明した卓上コンロ41に納め、ガスバーナーで発熱体32に点火後、次の項目を測定した。
▲1▼点火後の赤熱時間:卓上コンロ41の上方から肉眼で固形炭素31の燃焼を観察し、それが赤熱している時間を測定した。
▲2▼点火30分後の固形炭素31の上面の表面温度を接触温度計で測定した。
▲3▼点火30分後の固形炭素31の未燃焼量を%で示した。
燃焼実験に供した固形炭素31の原料および製法は、後述する燃焼試験1に示した方法と同じで、固形炭素31の形状の詳細は以下の通りである。
図6(a)の固形炭素31の直径を6.5cmとし、その厚さ2cmとした。
図6(b)の固形炭素31の底部に深さ巾共に5mmの溝を縦横に5本設けた。
図6(c)の固形燃料において、直径が0.05mmの炭化繊維3.7gを図6に示す容器33に充填した。炭化繊維の層の厚さは2cmであった。
図7の固形炭素31の炭素塊のサイズを0.2ないし1cmとし、その層の厚さを2cmとした。
図8の固形炭素31に直径0.6cmの穴34を25個設けた。
以上の固形炭素31をそれぞれ100gの発熱体32の上に重ね、点火後の燃焼を観察した。その結果を表3に示す。なお、対象として、発熱体32のみについても測定した。
下記の表3から明らかなように、発熱体32のみと比較して固形炭素31を発熱体32に重ねることによって赤熱時間を著しく延長できることが判った。また、固形炭素31への空気の流入を計ることによって固形炭素31の燃焼効率も改善されることが判明した。
Figure 2005100514
なお、図6(b)のように、固形炭素31の底面に凹凸35を設けても効果がなかったのは、発熱体32が発熱するとその上表面は、かなり凹凸になるので、図6(a)のように、発熱体32の上に重ねた固形炭素31の底面が平滑でも、固形炭素31の底面に凹凸35を設けた場合と同じ状態になって空気の流通が容易に起こるからである。
図8(a)の固形炭素31には、上下にたくさんの貫通穴8が設けられているが、下端は発熱体32と密着して閉塞しており、空気の流入は制限されるはずである。しかし、発熱によって発熱体32の表面が凹凸になり、十分の間隙が生じて空気の流入が十分に起こっていることが推察される。流入した空気は下端から上端に向かって上昇、煙突的効果で固形炭素31の燃焼が促進される結果、固形炭素31の燃焼率が増大し、赤熱時間も延長されたと考えられる。
(実験2)
図8(a)の固形炭素31の穴34のサイズと数を変更して、燃焼状況を確認し、その結果を表4に示す。
Figure 2005100514
この実験結果から穴34の数、サイズ、位置によって固形炭素31の燃焼は大きく影響されることが判る。また穴34への空気の供給は中央部になるほど不十分となるので、それだけ穴34の径を大きくすればよいことが判る。
固形炭素31の種類については、炭、黒鉛、石炭、コークスなどいろいろ考えられるが、着火温度はそれぞれ異なる。黒鉛やコークスなどは高温で製造され、炭素の純度は高いが、その着火温度は高く、酸化鉄と珪素の組み合わせのテルミット反応で延焼させることは困難である。石炭は着火温度も低く、火力も強く経済的で好ましいが、燃焼したときの匂いは料理に適さない。炭の着火温度は1000℃以下で、黒鉛やコークスなどに比べて低く、また匂いの問題もなく、経済的であるので本発明の固形炭素の原料として適している。
炭は着火温度が高い白炭と低い黒炭に分類でき、前者には備長炭、後者にはマングローブ炭、パームヤシ炭、ヤシガラ炭、ノコ屑炭、竹炭などがある。マングローブ炭は容易に燃焼するが、炎の発生が大である。また、ノコ屑炭は火花の発生が多く、危険である。その他に鉱物系の燻炭もある。それぞれに特徴があるので、本発明の燃料の固形炭素として使用するとき、いろいろな炭素を適当に配合して固形化することも考えられる。
発熱体32および固形炭素31を収納する容器33については、その素材として鉄、アルミニウム、ステンレスなどの金属、あるいはセラミック、陶器、磁器、炭素などが利用できる。また、それが容器33でなくても単にそれらで包装するだけでもよい。さらには、可燃性素材、たとえば、紙、ニトロセルロース、プラスチック、塗料なども発熱体32の形状を補強する目的で使用できる。
図8(a)に示す固形燃料を用いて、別の燃焼試験1を行った。試験のために用いた金網40はステンレス製で、サイズは20cm×20cm、格子空隙は0.8cm平方であった。卓上コンロ41の大きさは底辺15cm×15cm、高さ10cmであった。その材質は市販のセラッミク断熱材を使用し、中央を直径7.2cm、深さ2cmにくりぬいて、窪み42を形成した。固形燃料は、マングローブ炭(サイズは2mm>)30g、でんぷん糊6gに水24mlを加えてよく練り、直径6.5cm、深さ2cmのテフロン容器に入れた。
上記の固形燃料に直径1cmの貫通穴10個と、0.6cmの貫通穴を25個を、それぞれ中央部と周辺部に均等な間隔で開け、120℃で3時間乾燥して円盤型の固形炭素31とした。一方、酸化鉄(Fe)80gと珪素20gを水35mlでよく練り、それを直径6.9cm、深さ1.5cmのブリキ缶に入れ、120℃で一晩乾燥して円盤型の発熱体32とした。固形炭素31を発熱体32上に重ねて、卓上コンロ用燃料とした。その断面図は図8(a)の通りである。
この固形燃料を卓上コンロ41に納め、発熱体32にフリント火花で点火したのち、固形炭素31が赤熱している時間を測定すると、それは30分間であった。また、固形炭素31の燃焼率は80%で、完全燃焼までの時間は1時間であった。
図11の固形炭素31を用いて、別の燃焼試験2を行った。酸化鉄(Fe)80gと珪素20gに、水35mlを加えてよく練り、それを直径1cm、長さ10cmの円柱にして、120℃で一晩乾燥したものを円柱形の発熱体32とした。一方、マングローブ炭90g、でんぷん糊18gに水72mlを加えてよく練り、それを発熱体32の周囲に塗布して被覆し、120℃で3時間乾燥したものを円柱型の固形燃料とした。被覆部は長さ3cm、厚さ0.5cmで、非被覆部の長さは2cmとした。
得られた円柱型の固形燃料を燃焼試験1と同じ卓上コンロ41に納め、固形燃料の発熱体32の部分にフリント火花で点火した。固形燃料は全て赤熱し、赤熱した備長炭に似ていた。1 to 4 show an embodiment of a solid fuel according to the present invention. 1 and 2, the solid fuel according to the present invention is disposed on the lower surface of the fuel body 1 and the fuel body 1 formed in a flat disk-shaped solid shape having a small height dimension relative to the diameter dimension. The igniting agent layer 2 and the igniter 3 provided on a part of the outer peripheral edge of the igniting agent layer 2 are included.
In order to prevent generation of off-flavors and smoke during combustion, the fuel body 1 is formed of carbon particles 4 made from one or more odorless carbon materials derived from plants such as charcoal, coconut shell charcoal, bamboo charcoal, and mangrove charcoal. Specifically, a carbon fuel 4 obtained by pulverizing coconut shell charcoal fired at a high temperature is used as a raw material, and a binder 5 is mixed therewith, and then pressure-molded into a disk shape, and the resulting molded fuel body is obtained. Is dried and solidified to form a porous fuel body 1. A group of combustion air vents 6 are formed in the fuel body 1 in a vertically penetrating manner so that the whole fuel body 1 is ignited. In this embodiment, when the diameter dimension of the fuel body 1 is 10 cm and the thickness thereof is 25 mm, 21 through holes 6 having a diameter dimension of 10 mm are formed in the fuel body 1 in a state of being evenly dispersed. Each through-hole 6 was a round hole.
The binder 5 is made of a mixture of starch paste, a refractory cement containing aluminum oxide or silicon oxide, and water, and the adjacent carbon particles 4 are bound by the adhesive strength of the starch paste. The binder 5 may be castable instead of a refractory cement containing aluminum oxide or silicon oxide. The starch paste burns out simultaneously when the individual carbon particles 4 burn, but does not generate off-flavors or smoke. The refractory cement and castable maintain the adjacent relationship of the coal particles 4 during the combustion, prevent the ash fog phenomenon from causing the coal particles to fall into an incomplete combustion state, and further prevent the fuel body 1 from collapsing at the end of combustion. Prevent and mix all the charcoal grains 4 to burn completely. In addition, the refractory cement and the castable improve the structural strength of the fuel body 1 in an unused state and prevent the fuel body 1 from being damaged during distribution. A commercially available castable can be applied. Of course, as soon as the charcoal particles 4 are burned, the fuel body 1 devised so that it collapses and falls to the bottom of the stove, and the red charcoal particles during combustion appear constantly. In that case, the amount of refractory cement or castable added is reduced, or the binder is formed only with polysaccharides or proteins.
The igniter layer 2 is made of a thermite-like heat generating material composed of a metal oxide and a reducing agent, and generates high-temperature heat by the reduction reaction of the metal oxide. Examples of the combination of the metal oxide and the reducing agent include iron oxide and aluminum, iron oxide and silicon, magnesium and silicon oxide, titanium and carbon, and calcium and carbon. In this example, iron oxide was used as a metal oxide, silicon was used as a reducing agent, and mineral fibers and an aluminum oxide binder were mixed with these to form an ignition agent. Instead of the aluminum oxide binder, a silicon oxide binder can also be used. As will be described later, the igniting agent layer 2 is formed by adding water to the igniting agent to adjust the igniting agent layer 2 so as to adhere to the entire lower surface of the fuel body 1 and drying the paste.
The igniter 3 is formed of an ignition agent obtained by adding barium chromate or barium peroxide as a main component and adding powdered aluminum and amorphous boric acid thereto, and dissolving the ignition agent in water to form an ignition agent layer. After applying to 2, it is formed by drying. In order to easily ignite the ignition part 3 from the peripheral surface side, the ignition part 3 is provided from the lower surface of the igniting agent layer 2 to the outer peripheral edge (see FIG. 2). When using solid fuel, the reduction reaction of the igniter layer 2 can be started by igniting the ignition unit 3 with a lighter or a match fire. At this time, the igniter layer 2 reacts violently, and the reduction reaction spreads over the entire lower surface of the fuel body 1 in a very short time. Therefore, the lower surface of the fuel body 1 can be quickly ignited in a planar shape by the reaction heat of the igniter layer 2. As shown in FIG. 1, since a part of the igniting agent layer 2 has entered the through-hole 6, the inner peripheral surface of the lower end of the through-hole 6 can be ignited at the same time, and the fuel body 1 is ignited in a shorter time accordingly. It will be possible.
The solid fuel having the above structure can be mass-produced by the following manufacturing method. FIG. 4 shows a schematic process of the manufacturing method. Prior to the production of the solid fuel, first, a mixture of the carbon particles 4 and the binder 5 is prepared. The pasty igniter and the igniter dissolved in water are similarly adjusted in advance.
In the solid fuel of the present invention, a mixture of the carbon particles 4 and the binder 5 filled in the mold 10 is pressurized with a press machine to form the porous fuel body 1 and at the same time, a group of the openings 6 in the fuel body 1. After the fuel body 1 and the mold 10 are dried and solidified, the igniter adjusted in a paste form is poured into the entire surface of the fuel body 1 in the mold 10 to form the igniter layer 2. After the igniter layer 2 is dried and solidified and integrated with the fuel body 1, the ignition part 3 is applied and formed on a part of the surface of the igniter layer 2, and the fuel body 1 is removed from the mold 10. It manufactures through the 3rd process to isolate | separate.
That is, in the first step, as shown in FIG. 4 (a), after a predetermined amount of the mixture of the carbon particles 4 and the binder 5 is filled in the round dish-shaped mold 10 whose upper surface is opened, these are pressed by a press machine. At the same time that the fuel body 1 is formed by pressurizing at the same time, a group of through holes 6 is formed in the fuel body 1. For this purpose, a pin 12 for forming the through hole 6 is provided on the side of the mold 11 that enters the mold 10. The molding die 11 only needs to be pressurized so that the carbon particles 4 are bound together via the binder 5 and the overall density is constant. Reference numeral 13 denotes a base for receiving the mold 10. By pressing the mixture of the carbon particles 4 and the binder 5 with the molding die 11, the carbon particles 4 are bound together via the binder 5. However, a slight gap 14 is secured between the adjacent charcoal particles 4, and the porous fuel body 1 can be obtained with this.
In the second step, as shown in FIG. 4B, the porous fuel body 1 is dried together with the mold 10 and solidified. Specifically, the fuel body 1 and the mold 10 are housed in a drying furnace having an atmospheric temperature of 90 to 100 ° C., and the state is maintained for 8 hours to solidify the fuel body 1. At this time, since the binder 5 contracts somewhat, the gap 14 between the adjacent carbon grains 4 can be expanded as shown in FIG. The presence of the gap 14 increases the chance of contact of the combustion air and flame with the coal particles 14. Therefore, quick ignition of the charcoal particles 4 and maintenance of the combustion state can be realized. Incidentally, the size of the gap 14 changes variously depending on the size of the charcoal particles 4 and the mixing ratio of the charcoal particles 4 having different sizes, and affects the time required for ignition of the fuel body 1 and the combustion duration time. Therefore, this inventor determined the suitable magnitude | size of the carbon grain 4 by performing the test mentioned later.
In the third step, as shown in FIG. 4C, the igniter layer 2 poured into the mold 10 is dried and solidified. Specifically, the mold 10 into which the igniting agent layer 2 was poured was housed in a drying furnace having an atmospheric temperature of 110 ° C., and the state was maintained for 12 hours to solidify the igniting agent layer 2. As described above, the fuel body 1 is formed to be porous, and there is a gap between the adjacent carbon grains 4. Therefore, when a paste-like igniting agent is poured into the mold 10, a part thereof enters the opening 6 as shown in FIG. 1 (b), and further enters a gap between the adjacent carbon grains 4. Therefore, when the paste-like igniting agent is dried, the igniting agent layer 2 is firmly bonded to the fuel body 1, so that the igniting agent layer 2 is surely separated from the fuel body 1 or separated during distribution. Can be prevented.
The ignition part 3 is applied and formed on a part of the surface of the dried igniter layer 2, and the fuel body 1 is separated from the mold 10 as shown in FIG. . As described above, the ignition unit 3 is allowed to face the outer peripheral side surface of the igniting agent layer 2.
Unlike the manufacturing method described above, before the fuel body 1 is dried and solidified in the second step, the igniting agent layer 2 is formed by pouring an adjusted igniter into the entire surface of the fuel body 1 in the mold 10. In addition, the fuel body 1 and the igniting agent layer 2 can be dried and solidified simultaneously, so that the labor required for the drying treatment of the fuel body 1 and the igniting agent layer 2 can be halved.
As described above, in the solid fuel of the present invention, a group of charcoal particles 4 mixed with the binder 5 is molded by a press machine to form the porous fuel body 1, but the inventor uses the odorless property. Test how the ignition time and combustion duration of the fuel body 1 change depending on the carbon material, the size of the carbon particles 4 and the mixing ratio of the carbon particles 4 of different sizes, etc. Experiments were conducted on how to make a fuel body 1 suitable as a heat source for baking raw foods and cooking by checking the generation of smoke during combustion and the presence or absence of ash fogging. Furthermore, the diameter and the number of formed through holes 6 in the fuel body 1 were changed to optimize the through holes 6 to be provided in the fuel body 1.
(Example 1) Using coconut shell charcoal baked at 700 to 800 degrees C as a raw material, the particle size of the charcoal particles 4 is adjusted to 6 to 12 mesh, and the binder 5 and water are added to and mixed with this. The mixture was molded into a disk shape having a diameter of 10 cm and a thickness of 35 mm to obtain a fuel body 1.
The through holes 6 to be formed in the fuel body 1 were round holes having a diameter of 10 mm, and the number of formed holes was 21. The amount of carbon particles 4 used was 60 g per fuel body 1.
Binder 5 was formed of 25 weight percent starch paste, 53 weight percent aluminum oxide, and 22 weight percent refractory cement, with 20 weight percent mixed with the weight of the carbon granules 4. The density of the fuel body 1 molded under the above conditions was 0.24. An igniter layer 2 was formed on one side of the combustor 1, and an ignition part 3 was formed as described above. The thickness of the igniter layer 2 was 5 mm.
(Example 2) The fuel body 1 was formed on the same conditions as Example 1 except adjusting the particle size of the carbon grain 4 to 12-32 mesh, and making the thickness of the fuel body 1 into 20 mm. Since the particle size of the carbon particles 4 is somewhat smaller, the density of the fuel body 1 is 0.41.
(Example 3) The fuel body 1 was formed on the same conditions as Example 2 by adjusting the particle size of the carbon particles 4 to 60 mesh or more. Since the particle size of the carbon particles 4 is further reduced, the density of the fuel body 1 is 0.44.
(Example 4) The fuel body 1 was formed on the same conditions as Example 2 by using the coconut shell charcoal baked at 400-500 degreeC as a raw material, and adjusting the particle size of the carbon grain 4 to 12-32 mesh. Since the coconut shell charcoal was fired at a lower temperature than in Example 1, the density of the fuel body 1 was 0.37.
(Example 5) Mangrove charcoal baked at 400 to 500 degrees C was used as a raw material, and the particle size of the charcoal particles 4 was adjusted to 12 to 32 mesh to form a fuel body 1 under the same conditions as in Example 2. Since the charcoal raw materials are different, the density of the fuel body 1 was 0.37.
(Example 6) Bamboo charcoal fired at 700 ° C was used as a raw material, and the particle size of the charcoal particles 4 was adjusted to 12 to 32 mesh to form a fuel body 1 under the same conditions as in Example 2. Since the charcoal raw materials are different, the density of the fuel body 1 was 0.37.
(Example 7) Bamboo charcoal fired at 400 to 500 degrees C was used as a raw material, and the particle size of the charcoal particles 4 was adjusted to 10 to 30 mesh to form a fuel body 1 under the same conditions as in Example 2. Since the coconut shell charcoal was fired at a lower temperature than in Example 6, the density of the fuel body 1 was 0.30.
(Example 8) The fuel body 1 was formed on the same conditions as Example 2, using the charcoal baked at 700 degree C as a raw material, adjusting the particle size of the carbon grain 4 to 12-32 mesh. The density of the fuel body 1 was 0.23.
Each solid fuel of Examples 1 to 8 formed as described above was placed on a test bench in a state where a ventilation gap was secured on the lower surface of the igniter layer 2, and after igniting the igniter layer 2, the fuel body The time until ignition to 1 and the combustion duration were measured. Furthermore, the presence or absence of the ash fog phenomenon at the time of combustion, the presence or absence of generation of a strange odor, and the presence or absence of shape collapse due to combustion were confirmed visually. Table 1 shows the results. The time required for ignition was the time from when the igniter layer 2 was ignited until the temperature of the upper surface of the fuel body 1 reached 250 ° C. The combustion duration was defined as the time until the temperature of the upper surface of the fuel body 1 decreased to 150 ° C. or less after the completion of ignition.
As can be understood from Table 1, the time required for ignition is shorter as the firing temperature of the raw coal is lower, and shorter as the particle size of the carbon particles 4 is smaller. Moreover, the combustion duration is longer as the firing temperature of the raw coal is higher, and no smoke or off-flavor is generated. From these test results, as the raw material of the carbon particles 4, the coconut shell charcoal baked at high temperature, especially the carbon particles 4 of Example 2 in which the particle size is adjusted to 12 to 32 mesh, is easy to ignite, It turns out that it is optimal with the goodness of. In the fuel body 1 of Example 2, not only smoke and off-flavor were not generated during combustion, but there was no incomplete combustion of the charcoal particles 4 accompanying the ash fog phenomenon, and there was no collapse of the fuel body 1.
Figure 2005100514
From these results, the particle size of the carbon particles 4 is preferably in the range of 6 to 60 mesh, more preferably in the range of 12 to 32 mesh, depending on the use of the solid fuel. Incidentally, if the particle size of the carbon particles 4 is less than 6 mesh, the average particle size becomes as large as 2 mm, and it takes time to ignite and is inferior in shape retention during molding. When the particle size of the carbon particles 4 exceeds 60 mesh, the average particle size becomes as small as 0.25 mm, and the combustion duration is shortened by the increase in the specific surface area of the carbon particles 4. When the coal particles 4 having a large particle size and the coal particles 4 having a small particle size are mixed, the coal particles 4 having a small particle size enter the gaps between the coal particles 4 having a large particle size. It is not preferable in that a moderate gap 14 cannot be secured and combustion is difficult.
Next, by changing the diameter and the number of formed through holes 6 in the fuel body 1 of Example 2, the most preferable form of the through holes 6 in the fuel body 1 was examined. The diameter of the through-hole 6 was 6 types, 6 mm, 8 mm, 10 mm, and 12 mm, and the number of formation was 16 types, 21 types, and 26 types. The obtained six types of solid fuels were placed on a test bench with a ventilation gap secured on the lower surface of the igniter layer 2 in the same manner as in the previous test. The time to ignite and the combustion duration were measured. Furthermore, the presence or absence of the shape collapse accompanying combustion was confirmed visually. The results are shown in Table 2.
Figure 2005100514
As can be understood from Table 2, the larger the diameter of the through-hole 6 is, the shorter the time required for ignition is, but conversely, the combustion duration is shortened. The greater the number of formed openings 6, the shorter the time required for ignition, but the shorter the combustion duration. Considering the actual use situation, it is sufficient that the time required for ignition is about 3.5 to 4 minutes, and the combustion duration is 40 minutes or more. From these results, the diameter of the through holes 6 may be 8 to 10 mm, and the number of formed through holes 6 may be 16 to 26. In other words, it has been found that the ratio of the opening area of all the openings 6 to the area of the upper surface of the fuel body 1 may be in the range of 7.5 to 30%. Further, it is most preferable to form about 20 through-holes 6 having a diameter of about 10 mm. In that case, the ratio of the opening areas of all the through-holes 6 is 16 to 20%.
The solid fuel of the present invention can be burned using the combustion container 20 shown in FIG. The combustion container 20 is made of a metal cylindrical body whose upper and lower surfaces are open, and a vertical halfway portion of the cylindrical wall 20a is bent toward the inner surface of the cylinder to form a support piece 21 that receives solid fuel. The support pieces 21 are provided at four locations in the circumferential direction of the cylindrical wall 20a. Ventilation holes 22 for introducing combustion air are cut out and formed in the lower four places of the combustion container 20. One of the openings formed in the cylindrical wall 20 a by forming the support piece 21 can be used as the ignition port 23.
In use, the solid fuel is accommodated in the combustion container 20 with the lower surface of the igniter layer 2 received by the support piece 21, and the lower point 3 faces the ignition port 23. In this state, when the spot lower part 3 is ignited by the light of the lighter for ignition, the reduction reaction of the igniter layer 2 is started, and the reduction reaction spreads over the entire lower surface of the fuel body 1 in a very short time. Therefore, the lower surface of the fuel body 1 can be quickly ignited in a planar shape by the reaction heat of the igniter layer 2.
A part of the reaction dust of the igniter layer 2 remains on the fuel body 1 side, but most of the reaction dust scatters during the reduction reaction and falls onto the baking pan below the combustion container 20. Therefore, the lower surface of the opening 6 can be opened, and combustion air can be introduced into the opening 6 without any problem. Thereafter, since the fire of the ignited fuel body 1 moves from the lower side to the upper side, the solid fuel can be used as a heat source for baking cooking and a heat source for cooking pots.
The combustion container 20 can also serve as a solid fuel packaging container. After fixing the solid fuel accommodated in the container so as not to move freely, the combustion container 20 is sealed so as not to be ventilated and placed in a packaging paper box. By containing the solid fuel, it is possible to provide a solid fuel that does not deteriorate in quality during long-term storage. Of course, only one or a plurality of solid fuels may be sold in a sealed state.
Although the through hole 6 in the illustrated example is a round hole, it can be formed in an arbitrary hole shape such as a polygon. If necessary, the group of through holes 6 may be formed in a radial groove shape. The fuel body 1 does not need to be formed in a disc shape in plan view, and can be formed in a flat three-dimensional shape having a polygonal cross section and a smaller vertical dimension than other dimensions, for example. The ignition unit 3 may be provided at a plurality of locations.
The combustion container 20 may have a structure that can accommodate two or more solid fuels adjacent to each other. In this case, the heating surface is evenly arranged by setting the shape of the solid fuel in a plan view to a polygonal shape. can do. It is sufficient that the carbon particles 4 include one or more odorless carbon materials derived from plants such as charcoal, coconut shell charcoal, bamboo charcoal, and mangrove charcoal.
In the solid fuel manufacturing method described in the embodiment, the through hole 6 is formed by the pin 12 provided on the mold 11 side. However, even if the pin 12 is provided on the mold 10 side and the through hole 6 is formed. Good. In that case, a knockout pin for forcibly releasing the pressure-molded fuel body 1 can be provided on the mold 10 side.
The solid fuel can be formed in the manner described below. The heating element (igniting agent layer) 32 and the solid carbon (fuel body) 31 using the thermite reaction are brought into contact or close to each other. Solid carbon 31 is laminated on a heating element 32 utilizing a thermite reaction, and these are filled in a container 33 or packaged with a packaging material. The heating element 32 utilizing the thermite reaction is combined with a metal oxide, a reducing agent such as a reduced metal that causes a reduction reaction by combining with oxygen contained in the metal oxide, and a small amount of auxiliary composition added as necessary. Consists of a mixture with the product.
The raw material of the heating element 32 utilizing the thermite reaction is kneaded with water or an organic solvent, molded, and dried to form a solid fuel. The solid fuel 31 is formed using charcoal made from plants such as charcoal, bamboo charcoal, coconut shell charcoal, palm coconut charcoal, mineral-based charcoal, graphite, coal, coke, carbonized fiber, or the like.
Solid carbon 31 is kneaded by adding non-combustible fiber such as ceramic fiber, glass fiber, asbestos, binder and water to powdery or granular carbon raw material, and has a thickness, circular, square, rectangular, elliptical, triangular It is molded into an indeterminate shape, a rod shape or a lump shape, and dried.
In order to promote the combustion of the solid carbon 31, a hole (passage) 34 penetrating the solid carbon 31 or an unevenness 35 is provided on the surface. The solid carbon 31 is mixed with potassium salt, sodium salt and peroxide as additives for catalyzing combustion. The heating element 32 or the solid carbon 31 is accommodated in a container 33 or a packaging material made of a metal material such as iron, aluminum, or stainless steel, or a material such as ceramic, ceramic, porcelain, or carbon. The heating element 32 or the solid carbon 31 is covered with a combustible material such as paper, nitrocellulose, plastic, or paint. In order to promote the combustion of the solid carbon 31, an air inflow hole 37 is formed in the heating element 32 or the container 33 in which the solid carbon 31 is stored, and the packaging material.
5 to 13 show specific embodiments of solid fuel. In FIG. 5A, reference numeral 40 denotes a normal wire mesh used for grilled dishes. As shown in FIG. 5B, the solid fuel is formed by stacking a disk-shaped fuel body 31 on a heating element 32 filled in a metal can (container) 33. In FIG.5 (c), the code | symbol 41 is a desktop stove provided with the hollow 42 for inserting solid fuel. FIG.5 (d) shows the state which accumulated these.
As described above, the heating element 32 and the solid carbon 31 are arranged in contact with or close to each other, and when the heating element 32 is ignited by a known method such as flint or a conductive wire, the heating element 32 reaches a high temperature in a short time, and the solid carbon is immediately generated. Fire to 31. A high temperature state can be maintained for a long time by the high temperature heat generation by the thermite reaction of the heating element 32 and the continuous combustion of the solid carbon 31.
Although it is not necessary to supply oxygen to generate heat from the heating element 32, combustion cannot be continued unless oxygen is supplied to the solid carbon 31. Therefore, various structures can be considered depending on how air is supplied to the solid carbon 31, which affects the combustion duration and the combustion efficiency. Details are described below.
As shown in FIG. 6A, in the solid fuel in which the disk-shaped solid carbon 31 is stacked on the heating element 32 filled in the metal can 33, when the heating element 32 is ignited, it spreads to the solid carbon 31. The side and top surfaces in contact with air burn. The bottom surface of the solid carbon 31 is deficient in oxygen, and unburned carbon remains. However, if the thickness of the solid carbon 31 is thin, the amount of unburned material decreases accordingly.
As shown in FIG. 6B, when the irregularities 35 are formed on the bottom surface of the disk-shaped solid carbon 31 in contact with the heating element 32, the gap between the heating element 32 and the solid carbon 31 is increased, and the solid carbon 31. It is possible to promote the supply of air to the bottom surface of the carbon and to promote the combustion of the solid carbon 31.
As shown in FIG. 6 (c), when the fibrous solid carbon 31A is laminated on the heating element 32 instead of the disk-shaped solid carbon 31, the voids of the fibrous solid carbon 31A are large, so that the air Excellent distribution and low residual amount of unburned carbon. However, the duration of combustion is short.
As shown in FIG. 7A, when the massive solid fuel 31B is arranged on the heating element 32, the side surface of the metal can 33 must be raised so that the massive solid fuel 31B does not fall. . Then, since the supply of air to the solid fuel 31B becomes insufficient, an air inflow hole 37 is provided on the side surface of the metal can 33 as shown in FIG. 7B to promote the combustion of the solid fuel 31B.
As shown in FIGS. 8A and 8B, when a large number of holes 34 penetrating vertically are provided in the disk-shaped solid fuel 31, air flows in from the gap between the heating element 32 and the solid carbon 31, and Since the exhaust gas is exhausted upward, sufficient oxygen is supplied to the solid carbon 31 and combustion can be continued.
As shown in FIG. 9, when the hole 38 communicating with the hole 36 penetrating the bottom of the metal can 33 is provided, the solid carbon 31 is more than the case where the hole 34 penetrating only the solid carbon 31 is provided. The supply of oxygen to the water becomes better. In this case, a hole 38 communicating with the hole 34 of the solid fuel 31 is formed.
As shown in FIGS. 10A and 10B, the shape of the solid fuel can be formed in a cylindrical shape. There, the periphery of the cylindrical heating element 32 was covered with solid carbon 31. Reference numeral 45 is an ignition agent applied to the heating element 32.
As shown in FIGS. 11A and 11B, the solid fuel can be formed in a spherical shape. The periphery of the spherical heating element 32 is wrapped with solid carbon 31 to form a solid fuel into a spherical shape. Reference numeral 46 denotes an ignition unit, which leads the heating element 32 to the outside of the solid carbon 31, applies an igniter 45 to the tip, and ignites with flint or explosives. The cylindrical and spherical solid fuels described in FIGS. 9 and 10 can be used as substitutes for bean coal or Bincho charcoal.
As shown in FIG. 12, when the plurality of columnar solid fuels described in FIG. 10 are assembled so that the igniters 45 are in contact with each other, they are ignited only at one place and then burned in a chain. Can do. Further, as shown in FIG. 13, combustion can be induced in a chain manner by arranging the spherical solid fuels described in FIG. 11 so that the igniter 46 contacts other solid fuels.
The solid fuel configured as described above is ignited in a short time by simultaneously exhibiting high-temperature heat generation of the heating element 32 and continuous combustion of the solid carbon 31, and (2) becomes red hot at a high temperature. 3 ▼ It lasts. (4) The volume of solid fuel is also relatively small. These characteristics indicate that the solid fuel is suitable for grilled dishes.
Various combinations of the components of the heating element 32 are possible, but in principle, a metal oxide and a reducing agent such as a reducing metal that causes a reduction reaction by combining with oxygen contained in the metal oxide; It is a mixture with a small amount of auxiliary composition added as necessary. The most common and economically preferred are iron oxide and silicon or iron oxide and aluminum mixtures.
When the heating element 32 is ignited, the thermite reaction starts immediately, and the heating element 32 reaches a high temperature in several tens of seconds. Since the thermite reaction does not require oxygen, the heat generation time and the heat generation amount are determined by the components. Of course, although it is influenced by the particle size of the constituent components and the production method, in general, the exothermic temperature is around 1000 ° C., and the reaction is completed in several tens of seconds.
By the way, since oxygen is required for the combustion of the solid carbon 31, the heat generation time and the amount of heat as fuel vary greatly depending on how it is supplied. The same applies to the type of carbon. Since the solid fuel described in FIGS. 6 (a) and 6 (b) is obtained by simply stacking the disk-shaped solid carbon 31 on the heating element 32, the combustion of the solid carbon 31 is limited to the area in contact with the air. Is done. Although a large amount of unburned solid carbon 31 remains in a short time, it also almost disappears after a considerably long time.
The solid fuel shown in FIG. 6C is a case where fibrous solid carbon 31A is used. Generally, the gap between the fibers is very large and the supply of oxygen is sufficient, so that it burns out in a short time. Combustion temperature, time and embers can be controlled by adjusting fiber thickness and void density.
In the solid fuel of FIG. 7, massive solid carbon 31 </ b> B is disposed on the heating element 32. The side surface of the metal can 3 was raised so that the massive solid carbon 31B did not fall, and an air inflow hole 37 was provided on the side surface. The air enters from the side inflow hole 37 and passes between the solid carbon 31 masses and is released to the upper part, so that the central carbon mass is also burned sufficiently.
The solid fuel shown in FIG. 8 is provided with many holes 34 penetrating up and down in the disk-shaped solid carbon 31, so that air flows from the gap between the heating element 32 and the solid carbon 31 and is exhausted upward through the holes 34. . Accordingly, sufficient oxygen is supplied to the solid carbon 31. Combustion occurs not only above and below the solid fuel, but also at the center of the disk.
The solid fuel shown in FIG. 9 is provided with a hole 36 communicating with the vent hole 34 at the bottom of the metal can 33, so that the supply of oxygen is very good. However, since the heating element 32 is cooled by air, the duration as fuel is short.
The cylindrical solid fuel of FIG. 10 and the spherical solid fuel of FIG. 11 each coat the periphery of the heating element 32 with the solid carbon 31, so that the heating element 32 thermally expands with the start of the thermite reaction, and the solid carbon 31 Cracking occurs and oxygen is supplied from there, so that combustion of the solid carbon 31 occurs to the inside.
The effects of the shape of the disk-shaped solid carbon 31 on the combustion state of the solid fuel, for example, the red hot time and the unburned amount, were compared (Experiment 1). Further, the influence of the number, size, and distribution of the holes 34 provided in the solid carbon 31 on the combustion of the solid fuel was examined (Experiment 2).
(Experiment 1) The solid fuel was placed in the tabletop stove 41 described with reference to FIG. 5, and after the ignition element 32 was ignited with a gas burner, the following items were measured.
(1) Red hot time after ignition: The burning of the solid carbon 31 was observed with the naked eye from above the stovetop 41, and the time during which it was red hot was measured.
(2) The surface temperature of the upper surface of the solid carbon 31 after 30 minutes of ignition was measured with a contact thermometer.
(3) The unburned amount of solid carbon 31 after 30 minutes of ignition is shown in%.
The raw material and the manufacturing method of the solid carbon 31 used in the combustion experiment are the same as the method shown in the combustion test 1 described later, and the details of the shape of the solid carbon 31 are as follows.
The diameter of the solid carbon 31 in FIG. 6A was 6.5 cm, and the thickness was 2 cm.
Five grooves having a depth and width of 5 mm were provided vertically and horizontally at the bottom of the solid carbon 31 in FIG.
In the solid fuel shown in FIG. 6C, 3.7 g of carbonized fiber having a diameter of 0.05 mm was filled in the container 33 shown in FIG. The thickness of the carbonized fiber layer was 2 cm.
The carbon lump size of the solid carbon 31 in FIG. 7 was 0.2 to 1 cm, and the thickness of the layer was 2 cm.
25 holes 34 having a diameter of 0.6 cm were formed in the solid carbon 31 of FIG.
The above solid carbon 31 was stacked on 100 g of each heating element 32, and the combustion after ignition was observed. The results are shown in Table 3. In addition, it measured also about the heat generating body 32 only as object.
As apparent from Table 3 below, it was found that the red hot time can be significantly extended by superimposing the solid carbon 31 on the heating element 32 as compared with the heating element 32 alone. It has also been found that the combustion efficiency of the solid carbon 31 is improved by measuring the inflow of air into the solid carbon 31.
Figure 2005100514
In addition, as shown in FIG. 6B, even if the unevenness 35 is provided on the bottom surface of the solid carbon 31, there is no effect. When the heating element 32 generates heat, the upper surface becomes considerably uneven. As shown in a), even if the bottom surface of the solid carbon 31 overlaid on the heating element 32 is smooth, the air flow easily occurs in the same state as when the unevenness 35 is provided on the bottom surface of the solid carbon 31. is there.
The solid carbon 31 in FIG. 8A is provided with a large number of through holes 8 at the top and bottom, but the lower end is in close contact with the heating element 32 and is blocked, and the inflow of air should be restricted. . However, it is presumed that the surface of the heating element 32 becomes uneven due to heat generation, a sufficient gap is generated, and air is sufficiently inflowed. The inflowing air rises from the lower end toward the upper end, and as a result of the combustion of the solid carbon 31 being promoted by the chimney effect, it is considered that the burning rate of the solid carbon 31 increased and the red hot time was extended.
(Experiment 2)
The size and number of the holes 34 of the solid carbon 31 shown in FIG. 8A are changed, and the combustion state is confirmed. Table 4 shows the results.
Figure 2005100514
From this experimental result, it can be seen that the combustion of the solid carbon 31 is greatly influenced by the number, size, and position of the holes 34. In addition, since the air supply to the hole 34 becomes insufficient as it goes to the center, it can be seen that the diameter of the hole 34 should be increased accordingly.
Various kinds of solid carbon 31 are conceivable, such as charcoal, graphite, coal, coke, etc., but the ignition temperatures are different. Graphite, coke, etc. are produced at high temperatures, and the purity of carbon is high, but the ignition temperature is high, and it is difficult to spread by a thermite reaction of a combination of iron oxide and silicon. Coal has a low ignition temperature, high thermal power, and is economical and preferable, but the smell when burned is not suitable for cooking. The ignition temperature of charcoal is 1000 ° C. or lower, which is lower than that of graphite, coke, etc., has no problem of odor, and is economical and suitable as a raw material for solid carbon of the present invention.
Charcoal can be classified into white coal with high ignition temperature and low black coal. The former includes Bincho charcoal, and the latter includes mangrove charcoal, palm palm charcoal, coconut shell charcoal, sawdust and bamboo charcoal. Mangrove charcoal burns easily, but the flame is large. In addition, sawdust is dangerous because there are many sparks. There are also other mineral-based charcoal. Since each has a characteristic, when it is used as the solid carbon of the fuel of the present invention, various carbons may be appropriately blended and solidified.
For the container 33 for storing the heating element 32 and the solid carbon 31, a metal such as iron, aluminum, stainless steel, ceramic, ceramics, porcelain, carbon, or the like can be used as the material. Moreover, even if it is not the container 33, you may just package with them. Furthermore, combustible materials such as paper, nitrocellulose, plastic, paint, etc. can be used for the purpose of reinforcing the shape of the heating element 32.
Another combustion test 1 was performed using the solid fuel shown in FIG. The wire mesh 40 used for the test was made of stainless steel, the size was 20 cm × 20 cm, and the lattice gap was 0.8 cm square. The size of the tabletop stove 41 was 15 cm × 15 cm at the bottom and 10 cm in height. A commercially available ceramic heat insulating material was used as the material, and the center was hollowed to a diameter of 7.2 cm and a depth of 2 cm to form a recess 42. The solid fuel was 30 g of mangrove charcoal (size: 2 mm>) and 6 g of starch paste with 24 ml of water and kneaded well, and placed in a Teflon container having a diameter of 6.5 cm and a depth of 2 cm.
The solid fuel has 10 through-holes with a diameter of 1 cm and 25 through-holes with a diameter of 0.6 cm, and is opened at equal intervals in the center and the periphery, respectively, and dried at 120 ° C. for 3 hours. Carbon 31 was used. On the other hand, iron oxide (Fe 2 O 3 80 g and 20 g of silicon were kneaded well with 35 ml of water, put in a tin can having a diameter of 6.9 cm and a depth of 1.5 cm, and dried at 120 ° C. overnight to form a disc-shaped heating element 32. The solid carbon 31 was stacked on the heating element 32 to obtain a fuel for a stovetop. The sectional view is as shown in FIG.
When this solid fuel was placed in the tabletop stove 41 and the heating element 32 was ignited with flint sparks, the time during which the solid carbon 31 was red-hot was measured, and it was 30 minutes. Moreover, the burning rate of the solid carbon 31 was 80%, and the time to complete combustion was 1 hour.
Another combustion test 2 was performed using the solid carbon 31 of FIG. Iron oxide (Fe 2 O 3 ) To 80 g and 20 g of silicon, 35 ml of water was added and kneaded well to make a cylinder having a diameter of 1 cm and a length of 10 cm, and dried at 120 ° C. overnight to form a cylindrical heating element 32. On the other hand, 72 g of water was added to 90 g of mangrove charcoal and 18 g of starch paste, kneaded well, coated around the heating element 32, coated and dried at 120 ° C. for 3 hours to obtain a cylindrical solid fuel. The covering part was 3 cm in length and 0.5 cm in thickness, and the length of the non-covering part was 2 cm.
The obtained cylindrical solid fuel was placed in the same tabletop stove 41 as in the combustion test 1 and the solid fuel heating element 32 was ignited with flint sparks. All solid fuels were red-hot and resembling red-hot Bincho charcoal.

(b)は固形燃料の縦断面図、(a)はその一部拡大図である。(B) is a longitudinal sectional view of the solid fuel, and (a) is a partially enlarged view thereof. 固形燃料の斜視図である。It is a perspective view of solid fuel. 燃焼容器の一部を破断した固形燃料の正面図である。It is a front view of the solid fuel which fractured | ruptured a part of combustion container. 固形燃料の製造工程を説明する断面図である。(a)は第1工程、(b)は第2工程、(c)は第2工程及び第3工程、(d)は第3工程をそれぞれ示す。It is sectional drawing explaining the manufacturing process of solid fuel. (A) is the first step, (b) is the second step, (c) is the second step and the third step, and (d) is the third step. (d)は別の固形燃料の実施形態を示す斜視図であり、(a)、(b)、(c)はその分解斜視図である。(D) is a perspective view which shows another embodiment of solid fuel, (a), (b), (c) is the exploded perspective view. 別の固形燃料の各実施形態を示す断面図である。It is sectional drawing which shows each embodiment of another solid fuel. (a)は別の固形燃料の実施形態を示す断面図、(b)はその一部を破断した正面図である。(A) is sectional drawing which shows embodiment of another solid fuel, (b) is the front view which fractured | ruptured the part. (a)は別の固形燃料の実施形態を示す断面図、(b)はその平面図である。(A) is sectional drawing which shows embodiment of another solid fuel, (b) is the top view. 別の固形燃料の実施形態を示す断面図である。It is sectional drawing which shows embodiment of another solid fuel. (a)は別の固形燃料の実施形態を示す斜視図、(b)はその断面図である。(A) is a perspective view which shows embodiment of another solid fuel, (b) is the sectional drawing. (a)は別の固形燃料の実施形態を示す斜視図、(b)はその断面図である。(A) is a perspective view which shows embodiment of another solid fuel, (b) is the sectional drawing. 別の固形燃料の実施形態を示す斜視図である。It is a perspective view which shows embodiment of another solid fuel. 別の固形燃料の実施形態を示す斜視図である。It is a perspective view which shows embodiment of another solid fuel.

符号の説明Explanation of symbols

1 燃料体
2 着火剤層
3 点火部
4 炭粒
5 バインダー
6 通口
10 型枠
14 隙間
DESCRIPTION OF SYMBOLS 1 Fuel body 2 Ignition agent layer 3 Ignition part 4 Charcoal grain 5 Binder 6 Entrance 10 Formwork 14 Gap

Claims (7)

燃焼空気用の通口(6)の一群が形成された燃料体(1)と、燃料体(1)の表面に配置されるテルミット様発熱材からなる着火剤層(2)と、着火剤層(2)の表面の一部に設けられる点火部(3)とを備えており、
燃料体(1)が、無臭性炭素材を原料とする炭粒(4)を加圧成形して、炭粒(4)間に隙間(14)を有する多孔質に形成されていることを特徴とする固形燃料。
A fuel body (1) in which a group of combustion air vents (6) is formed, an igniter layer (2) made of a thermite-like heating material disposed on the surface of the fuel body (1), and an igniter layer An ignition part (3) provided on a part of the surface of (2),
The fuel body (1) is characterized by being formed into a porous body having a gap (14) between the carbon particles (4) by press-molding the carbon particles (4) made of an odorless carbon material. Solid fuel.
燃料体(1)を構成する炭粒(4)が、木炭、ヤシ殻炭、竹炭、マングローブ炭などの植物由来の無臭性炭素材の1種以上を含んでいる請求項1記載の固形燃料。The solid fuel according to claim 1, wherein the carbon particles (4) constituting the fuel body (1) contain one or more plant-derived odorless carbon materials such as charcoal, coconut shell charcoal, bamboo charcoal, and mangrove charcoal. 燃料体(1)が、高温で焼成したヤシ殻炭を粉砕して、粒度が6〜60メッシュに調整された炭粒(4)と、炭粒(4)どうしを結着するバインダー(5)とを含み、
バインダー(5)が、耐火セメントまたはキャスタブルと、多糖類または蛋白質で形成されるのりとの混合物からなり、
着火剤層(2)が、酸化鉄と、ケイ素と、鉱物繊維と、酸化アルミニウム系または酸化ケイ素系のバインダーとを含んでおり、
水を加えてペースト状に調整した着火剤を、燃料体(1)の表面に付着させて乾燥することにより、着火剤層(2)が燃料体(1)と一体化されており、
着火剤層(2)の表面の一部に点火部(3)が露出している請求項1記載の固形燃料。
The fuel body (1) pulverizes the coconut shell charcoal fired at a high temperature to bind the carbon particles (4) whose particle size is adjusted to 6 to 60 mesh and the carbon particles (4) (5). Including
The binder (5) consists of a mixture of refractory cement or castable and glue formed of polysaccharides or proteins;
The igniting agent layer (2) includes iron oxide, silicon, mineral fibers, and an aluminum oxide-based or silicon oxide-based binder,
The igniting agent layer (2) is integrated with the fuel body (1) by adhering the igniting agent adjusted to a paste by adding water to the surface of the fuel body (1) and drying,
The solid fuel according to claim 1, wherein the ignition part (3) is exposed at a part of the surface of the igniter layer (2).
燃料体(1)が、扁平な立体形状に形成されており、
燃料体(1)の下面全体が、着火剤層(2)で覆われており、
着火剤層(2)の反応熱によって燃料体(1)を面状に迅速着火できる請求項3記載の固形燃料。
The fuel body (1) is formed in a flat three-dimensional shape,
The entire lower surface of the fuel body (1) is covered with an igniter layer (2),
The solid fuel according to claim 3, wherein the fuel body (1) can be quickly ignited in a planar shape by the reaction heat of the igniter layer (2).
円盤状に形成した燃料体(1)に、16〜26個の通口(6)が上下貫通状に形成されており、
燃料体(1)の上面の面積に占める全通口(6)の開口面積の比が、7.5〜30%に設定されている請求項4記載の固形燃料。
The fuel body (1) formed in a disk shape has 16 to 26 through holes (6) formed in a vertically penetrating manner,
The solid fuel according to claim 4, wherein the ratio of the opening area of all the openings (6) to the area of the upper surface of the fuel body (1) is set to 7.5 to 30%.
型枠(10)に充填した炭粒(4)とバインダー(5)との混合物をプレス機で加圧して、炭粒(4)間に隙間(14)を有する多孔質の燃料体(1)を成形し、同時に燃料体(1)に通口(6)の一群を形成する第1工程と、
型枠(10)内の燃料体(1)の表面にペースト状に調整した着火剤を流し込んで、燃料体(1)の片面の全体に着火剤層(2)を形成する第2工程と、
着火剤層(2)を乾燥固化して燃料体(1)と一体化したのち、着火剤層(2)の表面の一部に点火部(3)を着火剤層(2)の表面に露出するよう塗布形成し、型枠(10)から燃料体(1)を分離する第3工程とからなる固形燃料の製造方法。
A porous fuel body (1) having a gap (14) between carbon particles (4) by pressing a mixture of carbon particles (4) and binder (5) filled in a mold (10) with a press. A first step of simultaneously forming a group of through holes (6) in the fuel body (1),
A second step of forming an ignitant layer (2) on the entire surface of one side of the fuel body (1) by pouring an igniter adjusted in a paste form on the surface of the fuel body (1) in the mold (10);
After the igniter layer (2) is dried and solidified and integrated with the fuel body (1), the ignition part (3) is exposed on the surface of the igniter layer (2) on a part of the surface of the igniter layer (2). A solid fuel manufacturing method comprising: a third step of coating and forming so as to separate the fuel body (1) from the mold (10).
型枠(10)ごと燃料体(1)を乾燥固化したのち、型枠(10)内の燃料体(1)の表面に、ペースト状に調整した着火剤を流し込んで着火剤層(2)を形成する請求項6記載の固形燃料の製造方法。After the fuel body (1) is dried and solidified together with the mold (10), the igniting agent layer (2) is poured into the surface of the fuel body (1) in the mold (10) by pouring the adjusted igniter into a paste. The manufacturing method of the solid fuel of Claim 6 formed.
JP2006512301A 2004-04-13 2005-03-30 Solid fuel and method for producing the same Pending JPWO2005100514A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004147018 2004-04-13
JP2004147018 2004-04-13
PCT/JP2005/006736 WO2005100514A1 (en) 2004-04-13 2005-03-30 Solid fuel and method of producing the same

Publications (1)

Publication Number Publication Date
JPWO2005100514A1 true JPWO2005100514A1 (en) 2008-03-06

Family

ID=35149989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006512301A Pending JPWO2005100514A1 (en) 2004-04-13 2005-03-30 Solid fuel and method for producing the same

Country Status (2)

Country Link
JP (1) JPWO2005100514A1 (en)
WO (1) WO2005100514A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689658B2 (en) * 2007-11-19 2011-05-25 株式会社西塚商店 Solid fuel and method for producing solid fuel
JP5625322B2 (en) * 2009-10-30 2014-11-19 Jfeスチール株式会社 Charcoal production method
KR101953361B1 (en) * 2018-05-11 2019-02-28 최희식 alcohol impregnated solid fuel using spent mushroom substrates, and manufacturing method thereof
KR102459412B1 (en) * 2021-04-05 2022-10-27 농업회사법인향유미가(주) Corn Complexing Agent

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511559U (en) * 1974-06-24 1976-01-08
JPS60181195A (en) * 1984-02-29 1985-09-14 Mitsuuroko:Kk Ignition agent for solid fuel
JPH048799A (en) * 1990-04-26 1992-01-13 Toshiya Yoshida Bamboo charcoal for fuel
JPH07258666A (en) * 1994-03-25 1995-10-09 Shinagawa Fuel Co Ltd Briquetted coal and method for roasting coffee bean using the same
JPH1060464A (en) * 1996-08-21 1998-03-03 Shinagawa Fuel Co Ltd Formed charcoal and its production
JP2000319676A (en) * 1999-05-11 2000-11-21 Nisshin Kogyo Kk Solidified fuel and preparation thereof
JP2003020491A (en) * 2001-07-05 2003-01-24 Tsuboi:Kk Igniting material
JP2003105363A (en) * 2001-09-28 2003-04-09 Hideaki Shimizu Fuel charcoal
JP2003171679A (en) * 2001-12-10 2003-06-20 Hideo Sumino Coal moldings for fuel, fuel with ignition material and method for producing the same
JP2003240355A (en) * 2002-02-20 2003-08-27 Guraiko Materials:Kk Heat generator and road marking material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511559U (en) * 1974-06-24 1976-01-08
JPS60181195A (en) * 1984-02-29 1985-09-14 Mitsuuroko:Kk Ignition agent for solid fuel
JPH048799A (en) * 1990-04-26 1992-01-13 Toshiya Yoshida Bamboo charcoal for fuel
JPH07258666A (en) * 1994-03-25 1995-10-09 Shinagawa Fuel Co Ltd Briquetted coal and method for roasting coffee bean using the same
JPH1060464A (en) * 1996-08-21 1998-03-03 Shinagawa Fuel Co Ltd Formed charcoal and its production
JP2000319676A (en) * 1999-05-11 2000-11-21 Nisshin Kogyo Kk Solidified fuel and preparation thereof
JP2003020491A (en) * 2001-07-05 2003-01-24 Tsuboi:Kk Igniting material
JP2003105363A (en) * 2001-09-28 2003-04-09 Hideaki Shimizu Fuel charcoal
JP2003171679A (en) * 2001-12-10 2003-06-20 Hideo Sumino Coal moldings for fuel, fuel with ignition material and method for producing the same
JP2003240355A (en) * 2002-02-20 2003-08-27 Guraiko Materials:Kk Heat generator and road marking material

Also Published As

Publication number Publication date
WO2005100514A1 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US4725286A (en) Firestarter
AU2013383052B2 (en) A disposable grill
JPWO2005100514A1 (en) Solid fuel and method for producing the same
US20090214997A1 (en) Burner for household or recreational use
US5762656A (en) Dense core charcoal briquet
JP4689658B2 (en) Solid fuel and method for producing solid fuel
US8250995B2 (en) Log cartridge burning system
AU2003201492B2 (en) Combustible fuel composition and method
EP2978826B1 (en) Firelog and method of making a firelog
US20160075961A1 (en) Charcoal chimney
US5912192A (en) Multi-layered solid combustible article and its manufacture
US6027539A (en) Fire starter and method of making same
US8439988B2 (en) Coffee grounds-based fuel and method of manufacture
EP3947609B1 (en) A combustible briquette and a method for manufacturing a combustible briquette
WO2009044375A2 (en) Heating means comprising a carbonaceous material, a binder, limestone, an oxidising compound and a zeolite
JPS6370004A (en) Deposit for granular carbonaceous fuel and usage for producing fire having high efficiency for baking, etc. from said deposit
JP3325885B1 (en) Molded coal for fuel, fuel with ignition material, and manufacturing method
JP3164627U (en) Ignition charcoal
JP3231098U (en) Block type ignition agent
JP3227221U (en) Solid fuel and stove set
JP2006022206A (en) Solid fuel
US20220041947A1 (en) Coconut shell charcoal log
JP2022020928A (en) Flame-retardant material and combustion device
JP3587558B2 (en) Solid fuel for house and heating device containing the same
JPS60181195A (en) Ignition agent for solid fuel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061004

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20070327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214