JPWO2005085359A1 - Polymer nanodiamond composite - Google Patents
Polymer nanodiamond composite Download PDFInfo
- Publication number
- JPWO2005085359A1 JPWO2005085359A1 JP2006510768A JP2006510768A JPWO2005085359A1 JP WO2005085359 A1 JPWO2005085359 A1 JP WO2005085359A1 JP 2006510768 A JP2006510768 A JP 2006510768A JP 2006510768 A JP2006510768 A JP 2006510768A JP WO2005085359 A1 JPWO2005085359 A1 JP WO2005085359A1
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- nanodiamond
- dispersion
- polymerization
- physical properties
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
- C08L33/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymerisation Methods In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
ポリマーナノダイヤモンドコンポジットに関する。本発明にかかる製造方法は、ナノダイヤモンドを前処理して重合反応の際に重合溶媒中にナノダイヤモンドが十分分散するように前もって分散処理し、その後重合反応させることを特徴とする。The present invention relates to a polymer nanodiamond composite. The production method according to the present invention is characterized in that nanodiamonds are pretreated, subjected to a dispersion treatment in advance so that the nanodiamonds are sufficiently dispersed in the polymerization solvent during the polymerization reaction, and then polymerized.
Description
本発明は、ポリマーナノダイヤモンドコンポジット、及びその製造方法に関する。 The present invention relates to a polymer nanodiamond composite and a method for producing the same.
従来からポリマーと種々の無機材料とからなるハイブリッド材料が研究開発されてきた。特に透明性および強度の点で優れたポリメチルメタクリレート(PMMA)系のポリマーを改質し好ましい物性を付与すための試みがある。しかしこれらの材料はベースとなるポリマーと無機材料を混合して製造するものであり、従って得られた材料は、ベースポリマーのマトリックス中に、無機材料が単に分散したものや海島構造などのマクロオーダー(又はセミミクロオーダー)で混合した構造を有するものであった。その材料の物性もベースポリマーの物性をごく僅か変化させだけのものであった。 Conventionally, hybrid materials composed of polymers and various inorganic materials have been researched and developed. In particular, there is an attempt to modify a polymethyl methacrylate (PMMA) -based polymer that is excellent in transparency and strength to impart preferable physical properties. However, these materials are manufactured by mixing a base polymer and an inorganic material, and therefore the obtained material is a macro order such as a simple dispersion of an inorganic material or a sea-island structure in a matrix of a base polymer. (Or semi-micro order). The physical properties of the material also changed the physical properties of the base polymer only slightly.
近年種々の応用分野の広がりに伴って、全く新しい物性を有する新規材料の出現が期待されているが、これら従来のハイブリッド材料はこれらの要求を満たすものではなかった。 In recent years, with the spread of various application fields, new materials having completely new physical properties are expected to appear. However, these conventional hybrid materials do not satisfy these requirements.
ポリマーナノダイヤモンドコンポジットを提供する。特に透明でかつ優れた強度を有するPMMA系ポリマーとナノダイヤモンドによるハイブリッド材料、及びその製造方法を提供することを目的とする。 A polymer nanodiamond composite is provided. In particular, it is an object to provide a hybrid material composed of a PMMA polymer and nanodiamond having transparency and excellent strength, and a method for producing the hybrid material.
本発明者は、以上の期待に鑑み、広範な技術分野に適用できる全く新しい機能を有する新規な構造を有するハイブリッド材料を開発すべく鋭意研究した結果、前処理したナノダイヤモンドの存在下、有機溶媒中で重合反応を行うことでポリマーとナノダイヤモンドとのコンポジットが製造可能であることを見出した。かかる知見に基づいて本発明を完成した。 In view of the above expectation, the present inventor has conducted intensive research to develop a hybrid material having a novel structure having a completely new function applicable to a wide range of technical fields. As a result, in the presence of pretreated nanodiamond, the organic solvent It was found that a composite of polymer and nanodiamond can be produced by conducting a polymerization reaction in the medium. The present invention has been completed based on such findings.
すなわち、本発明はナノダイヤモンドと有機ポリマーを用いた全く新規なハイブリッド材料であって、ナノ材料が高分子に十分分散して、かつ強い相互作用を形成したナノ構造を有する材料である。 That is, the present invention is a completely new hybrid material using nanodiamond and organic polymer, and is a material having a nanostructure in which the nanomaterial is sufficiently dispersed in a polymer and has formed a strong interaction.
特に本発明は前記ポリマーがポリメチルメタクリレート(PMMA)系である、透明性が十分高くかつ高い耐熱性と高い硬度を兼ね備えるハイブリッド材料である。 In particular, the present invention is a hybrid material in which the polymer is a polymethylmethacrylate (PMMA) system, having sufficiently high transparency, high heat resistance, and high hardness.
また本発明はかかるハイブリッド材料を製造する方法に関するものであり、前処理したナノダイヤモンドを分散させた適当な有機溶媒中で、モノマーを重合させることを特徴とするものである。 The present invention also relates to a method for producing such a hybrid material, wherein the monomer is polymerized in an appropriate organic solvent in which pretreated nanodiamonds are dispersed.
本発明に係る製造方法は、ナノダイヤモンドを前処理して有機溶媒中に十分に分散させ、さらにそのナノダイヤモンド存在下でポリマーを重合反応させる方法であることから、ナノダイヤモンドが極めて少量含まれているにもかかわらず、非常に大きく向上した物性(透明性、耐熱性)を有するポリマーナノダイヤモンドコンポジットが得られる。 The production method according to the present invention is a method in which nanodiamonds are pretreated and sufficiently dispersed in an organic solvent, and a polymer is polymerized in the presence of the nanodiamonds. Nevertheless, a polymer nanodiamond composite having very greatly improved physical properties (transparency, heat resistance) can be obtained.
(ポリマーナノダイヤモンドコンポジット)
本発明にかかるコンポジットは、ポリマーとナノダイヤモンドとが強く相互作用し、ナノ構造を形成していることを特徴とする。かかる構造は従来の製造方法によっては全く得ることは不可能であり全く知られていなかった構造であり、従来のポリマーとナノダイヤモンドの単なるブレンド物で得られるものとは大きく異なり、また通常の方法でナノダイヤモンドの存在下重合反応を行って得られるものとも相違する。このことは以下の実施例で明らかなように、これらとは本質的に熱的、力学的挙動が相違することからも明らかである。(Polymer nano diamond composite)
The composite according to the present invention is characterized in that the polymer and nanodiamond interact strongly to form a nanostructure. Such a structure cannot be obtained at all by a conventional manufacturing method, and is a structure that has not been known at all. This structure differs greatly from that obtained by a simple blend of a conventional polymer and nanodiamond, and is a conventional method. This is also different from that obtained by conducting a polymerization reaction in the presence of nanodiamond. This is also evident from the differences in thermal and mechanical behaviors inherently, as will be apparent from the following examples.
(製造方法)
本発明において使用するポリマーは特に制限はなく、望ましい物性を有するベースポリマー(マトリックスポリマー)として通常公知の種々のタイプのポリマーが選択可能である。具体的には、ポリメチルメタクリレート系、ポリスチレン系、ポリカーボネート系が挙げられる。本発明では特にポリメチルメタクリレート系が好ましい。またこれらの共重合体も含まれる。(Production method)
The polymer used in the present invention is not particularly limited, and various types of polymers generally known as base polymers (matrix polymers) having desirable physical properties can be selected. Specific examples include polymethyl methacrylate, polystyrene, and polycarbonate. In the present invention, a polymethyl methacrylate type is particularly preferable. These copolymers are also included.
本発明で使用するナノダイヤモンドとしては、市販品であってナノサイズのダイヤモンドとして知られているものであれば制限なく使用可能である(具体的にはイズミテック株式会社製)。 The nano diamond used in the present invention can be used without limitation as long as it is a commercially available product and is known as a nano-sized diamond (specifically, manufactured by Izumi Tech Co., Ltd.).
本発明にかかる製造方法は、前記ナノダイヤモンドを前処理することが特徴である。一般に入手できるナノサイズのダイヤモンドは通常2次または高次の凝集体を形成している。従って、ナノサイズのダイヤモンドの大部分は凝集体として存在し、黒色から灰色を呈している。 The production method according to the present invention is characterized in that the nanodiamond is pretreated. Commonly available nano-sized diamonds usually form secondary or higher order aggregates. Therefore, most of the nano-sized diamonds exist as aggregates and have a black to gray color.
本発明者は、重合反応の際に重合溶媒中にナノダイヤモンドが十分分散するように前もって分散処理することで、本発明にかかるコンポジットが得られることを見出した。この知見に基づき通常公知の分散処理である超音波ホモジナイザーを用いた分散も含めて、分散処理の程度と得られたハイブリッド材料の物性について詳細に検討することで再現性ある物性の向上を得る分散条件を見出すことができる。 The present inventor has found that a composite according to the present invention can be obtained by carrying out a dispersion treatment in advance so that nanodiamonds are sufficiently dispersed in a polymerization solvent during the polymerization reaction. Based on this knowledge, dispersion that improves reproducible physical properties by examining in detail the degree of dispersion treatment and physical properties of the obtained hybrid material, including dispersion using an ultrasonic homogenizer, which is a commonly known dispersion treatment You can find the conditions.
具体的には望まれるポリマーの重合に使用する重合用溶媒に、(1)ナノダイヤモンドを超音波ホモジナイザーで適当な時間分散させる(以下「分散」とする。)、(2)分散させた溶液をろ紙を用いてろ紙する(以下、「分散/ろ過」とする。)、(3)吸引ろ過して集めたナノダイヤモンド残差を再び溶媒に分散させる(以下、「精製/分散」とする。)、(4)吸引ろ過して集めたナノダイヤモンド残差を再び溶媒に分散させ、さらにろ過(以下、「精製/分散/ろ過」とする。)なる処理を意味する。 Specifically, in a polymerization solvent used for polymerization of a desired polymer, (1) nano-diamond is dispersed for an appropriate time with an ultrasonic homogenizer (hereinafter referred to as “dispersion”), and (2) the dispersed solution is Filter paper is used to filter paper (hereinafter referred to as “dispersion / filtration”). (3) The nanodiamond residual collected by suction filtration is dispersed again in the solvent (hereinafter referred to as “purification / dispersion”). (4) A process of dispersing nano-diamond residues collected by suction filtration again in a solvent and further filtering (hereinafter referred to as “purification / dispersion / filtration”).
また上で吸引ろ過して得られる残差を溶媒で濡れたまま使用する場合(湿式)、及び当該残差をアセトンで洗浄して真空乾燥したものを使用する場合(乾式)可能である。 In addition, it is possible to use the residue obtained by suction filtration above while wet with a solvent (wet type) and to use the residue obtained by washing the residue with acetone and vacuum drying (dry type).
一方、上の前処理をして得た溶媒中のナノダイヤモンド分散物は徐々に再凝集し、重合体の物性にばらつきを生じさせることがある。従って、前処理をした後は速やかに使用することが好ましい。ナノダイヤモンドは溶媒中に十分分散しているかどうかはその色(透明、灰色、黒色)で定性的に判断できる。また種々の公知の分散物の評価装置を用いて分散状態を知ることも可能である。 On the other hand, the nanodiamond dispersion in the solvent obtained by the above pretreatment may gradually reagglomerate and cause variations in the physical properties of the polymer. Therefore, it is preferable to use it immediately after pretreatment. Whether or not nanodiamonds are sufficiently dispersed in a solvent can be qualitatively determined by their colors (transparent, gray, black). It is also possible to know the dispersion state using various known dispersion evaluation devices.
ナノ材料のナノメートルオーダーの空孔内部及び近傍で貫入し網目を形成していることを特徴とする。かかるミクロ構造はいままでの製造方法によっては全く製造することは不可能であった。 It is characterized in that it penetrates inside and in the vicinity of nanometer-order pores of nanomaterials to form a network. Such a microstructure could not be manufactured at all by conventional manufacturing methods.
本発明にかかる製造方法は、上で説明した通り適当な重合用溶媒にまず上のようなナノダイヤモンドの前処理をした分散溶液を調製してそこに必要なモノマーを導入する。さらに通常公知の重合条件を用いてモノマーを重合させる。 In the production method according to the present invention, as described above, first, a dispersion solution prepared by pre-treating nanodiamond as described above is prepared in a suitable polymerization solvent, and necessary monomers are introduced therein. Further, the monomer is polymerized using generally known polymerization conditions.
従って重合反応条件についても特に制限はなく、選択した溶媒、反応温度、反応圧力、必要な触媒等を適宜選択することができる。好ましくは適当な温度により開始可能なラジカル重合開始剤の存在下でラジカル重合させることである。具体的にはメチルメタクリレート系の場合、重合条件(溶媒、温度、重合開始剤、反応時間)はトルエン中約80℃で、AIBNを重合開始剤として、約24時間反応させることが好ましい。 Accordingly, the polymerization reaction conditions are not particularly limited, and the selected solvent, reaction temperature, reaction pressure, necessary catalyst, and the like can be appropriately selected. Preferably, radical polymerization is performed in the presence of a radical polymerization initiator that can be initiated at an appropriate temperature. Specifically, in the case of methyl methacrylate, the polymerization conditions (solvent, temperature, polymerization initiator, reaction time) are preferably about 80 ° C. in toluene and AIBN is used as the polymerization initiator for about 24 hours.
重合反応の後処理は通常公知の分離精製方法が使用できる。 For the post-treatment of the polymerization reaction, generally known separation and purification methods can be used.
以下実施例によりさらに詳細に説明する。 Examples will be described in more detail below.
(前分散処理)
モノマーPMMA、溶媒トルエンとした。(Pre-distribution processing)
Monomer PMMA and solvent toluene were used.
「分散」:0.1gのナノダイアモンドを25mlのトルエンに添加し、超音波ホモジナイザーに30分かけたもの 結果:試料は黒色で物性にばらつきが見られた。 "Dispersion": 0.1 g of nanodiamond was added to 25 ml of toluene and subjected to an ultrasonic homogenizer for 30 minutes. Result: The sample was black and showed variations in physical properties.
「分散/ろ過」:0.1gのナノダイアモンドを25mlのトルエンに添加し、超音波ホモジナイザーに1時間かけたものをろ紙(No.2)でろ過したもの 結果:試料は透明だったが、物性にばらつきが見られた。 “Dispersion / filtration”: 0.1 g of nanodiamond added to 25 ml of toluene and filtered with an ultrasonic homogenizer for 1 hour using a filter paper (No. 2) Result: The sample was transparent, but the physical properties The variation was seen.
「精製/分散」:0.1gのナノダイアモンドを25mlのトルエンに添加し、超音波ホモジナイザーに30分かけたものを吸引ろ過(10μm)し、その残さに再度25mlのトルエンを添加し、超音波ホモジナイザーに30分かけたもの(再沈殿時、デカンテーションを実施しナノダイアモンドの沈殿を除去) 結果:試料は黒色だが物性には再現性が確認できた。 “Purification / dispersion”: 0.1 g of nanodiamond is added to 25 ml of toluene, and the mixture that has been applied to an ultrasonic homogenizer for 30 minutes is suction filtered (10 μm), and 25 ml of toluene is added to the residue again. Homogenizer run for 30 minutes (during reprecipitation, decantation was performed to remove nanodiamond precipitate) Result: Although the sample was black, the reproducibility of the physical properties could be confirmed.
「精製/分散/ろ過」:0.1gのナノダイアモンドを25mlのトルエンに添加し、超音波ホモジナイザーに30分間かけたものを吸引ろ過(10μm)し、その残さに再度25mlのトルエンを添加し、超音波ホモジナイザーに30分かけたものをろ紙(No.2)でろ過したもの 結果:試料は透明かつ、物性に再現性が確認できた。 “Purification / Dispersion / Filtration”: 0.1 g of nanodiamond is added to 25 ml of toluene, filtered through an ultrasonic homogenizer for 30 minutes by suction filtration (10 μm), and 25 ml of toluene is added to the residue again. What was passed through an ultrasonic homogenizer for 30 minutes and was filtered with a filter paper (No. 2). Result: The sample was transparent and the reproducibility of physical properties could be confirmed.
「湿式、乾式」:精製/分散/ろ過操作において、0.1gのナノダイアモンドを25mlのトルエンに添加し、超音波ホモジナイザーに30分かけたものを吸引ろ過(10μm)したとき、その残さをトルエンで濡れたまま次の操作に使用したもの(湿式)とアセトンで洗浄した後、真空乾燥機に30分間入れた後、次の操作に使用したもの(乾式) 結果:両者に物性の差は見られなかった。 “Wet, dry”: In the purification / dispersion / filtration operation, 0.1 g of nanodiamond was added to 25 ml of toluene, and the mixture that was applied to an ultrasonic homogenizer for 30 minutes was suction filtered (10 μm). What was used for the next operation while wet (wet) and washed with acetone, then placed in a vacuum dryer for 30 minutes and then used for the next operation (dry) Result: The difference in physical properties between the two I couldn't.
「経時変化」:精製/分散/ろ過操作において、0.6gのナノダイアモンドを150mlのトルエンに添加し、超音波ホモジナイザーに30分かけたものを吸引ろ過(10μm)したとき、その残さ(湿式)をトルエン中に保存し、日を置いて適量採取し、再度25mlのトルエンを添加し、超音波ホモジナイザーに30分かけたものをろ紙(No.2)でろ過したもの結果:4日目までは当日と同じ物性が見られたが、以後物性は低下した。 “Change with time”: In the purification / dispersion / filtration operation, 0.6 g of nanodiamond was added to 150 ml of toluene, and the residue (wet) was removed by suction filtration (10 μm) over 30 minutes using an ultrasonic homogenizer. Was stored in toluene, collected in an appropriate amount over the course of the day, added again with 25 ml of toluene, and filtered through an ultrasonic homogenizer for 30 minutes using filter paper (No. 2). The same physical properties as on the day were observed, but the physical properties thereafter decreased.
「粒径・粒度分布」:50nm単結晶、50nm多結晶ナノダイヤモンドについては精製/分散/ろ過操作で調製した。250nm単結晶、250nm多結晶ナノダイヤモンドについては分散/ろ過操作(ただしろ紙ではなく吸引ろ過(0.45μm)を用いた。分散時間は30分)で調製した。図8に示すように、単結晶を用いた場合大きな効果が見られた。具体的には多結晶では約3℃程度高温側にシフトしたが、単結晶では約30℃高温側にシフトした。 “Particle size / particle size distribution”: 50 nm single crystal and 50 nm polycrystalline nanodiamond were prepared by purification / dispersion / filtration operation. The 250 nm single crystal and 250 nm polycrystalline nanodiamond were prepared by a dispersion / filtration operation (however, suction filtration (0.45 μm) was used instead of filter paper; dispersion time was 30 minutes). As shown in FIG. 8, a large effect was observed when a single crystal was used. Specifically, the polycrystal shifted to about 3 ° C on the high temperature side, but the single crystal shifted to about 30 ° C on the high temperature side.
(重合)
重合条件は、一般的にナノダイヤモンドを種々の程度(「分散」、分散/ろ過」、「精製/分散/ろ過」、及び湿式、乾式)で分散させた分散液に、モノマーとして10gのメタクリル酸メチルと、重合開始剤として0.0164gのα,α′−アゾビスイソブチロニトリルを添加し、窒素置換後、80℃で24時間重合させた。その後重合溶液をテトラヒドラフランで希釈し、n−ヘキサンへ滴下して再沈殿を行った。(polymerization)
The polymerization conditions are generally 10 g of methacrylic acid as a monomer in a dispersion in which nanodiamonds are dispersed in various degrees (“dispersion”, dispersion / filtration ”,“ purification / dispersion / filtration ”, and wet, dry). Methyl and 0.0164 g of α, α′-azobisisobutyronitrile as a polymerization initiator were added, and after substitution with nitrogen, polymerization was carried out at 80 ° C. for 24 hours. Thereafter, the polymerization solution was diluted with tetrahydrafuran and added dropwise to n-hexane for reprecipitation.
(実施例1)
粒径約50nm、黒色の単結晶ナノダイヤモンド(ND、イズミテック社製)をメチルメタクリレート(MMA)に対して1wt%となるように25mlのトルエンに添加し、超音波ホモジナイザーで0.5時間分散を行った。この分散液にはNDの作成時に副生成物として存在しNDの二次凝集を強化する煤が多く含まれておりこれを吸引ろ過によって取り除いた(精製ND)。得られた残さを再度、同量のトルエンに添加し、超音波ホモジナイザーで再び分散を行った。さらに非分散NDをろ紙で取り除いて得られたろ液をND分散液とした。Example 1
Black single-crystal nanodiamond (ND, manufactured by Izumi Tech Co., Ltd.) with a particle size of about 50 nm is added to 25 ml of toluene so as to be 1 wt% with respect to methyl methacrylate (MMA), and dispersed for 0.5 hour with an ultrasonic homogenizer. Went. This dispersion liquid contained a large amount of soot that was present as a by-product during the production of ND and strengthened secondary aggregation of ND, and this was removed by suction filtration (purified ND). The obtained residue was again added to the same amount of toluene and dispersed again with an ultrasonic homogenizer. Furthermore, the filtrate obtained by removing non-dispersed ND with filter paper was used as the ND dispersion.
この分散液にMMA及びAIBNを添加し、80℃で24時間重合させた。反応後重合溶液をTHFで希釈し、ヘキサンへ滴下して再沈殿を行った。 MMA and AIBN were added to this dispersion and polymerized at 80 ° C. for 24 hours. After the reaction, the polymerization solution was diluted with THF and added dropwise to hexane for reprecipitation.
得られたハイブリッドの物性を動的粘弾性(DMA)等で測定した(図1〜6参照)。ハイブリッドのDMA曲線において、貯蔵弾性率E´の低下温度及び、tanδのピークトップはPMMA単独と比較して共に約30℃高温側にシフトし、再現性のある透明度の高いハイブリッドが得られた。調製されたハイブリッド中のND含有量は0.1wt%以下であった。 The physical properties of the obtained hybrid were measured by dynamic viscoelasticity (DMA) or the like (see FIGS. 1 to 6). In the DMA curve of the hybrid, the temperature at which the storage elastic modulus E ′ decreased and the peak top of tan δ both shifted to the high temperature side by about 30 ° C. compared to PMMA alone, and a reproducible and highly transparent hybrid was obtained. The ND content in the prepared hybrid was 0.1 wt% or less.
(実施例2)実施例1の精製NDをトルエン中に保存し、ND分散液調製前の経日変化を検討した。その結果(図7参照)、4日目に調製したハイブリッドは直後の物性を保持したが、6日目から物性が徐々に低下し、さらに8日目でPMMA単独とほぼ同じDMA曲線となり物性の向上が認められなくなった。これは精製時にある程度分散したNDが時間とともに再凝集しているためと考えられる。 (Example 2) The purified ND of Example 1 was stored in toluene, and changes over time before preparation of the ND dispersion were examined. As a result (see FIG. 7), the hybrid prepared on the 4th day maintained the physical properties immediately after, but the physical properties gradually decreased from the 6th day, and on the 8th day, the DMA curve became almost the same as that of PMMA alone. Improvement is no longer recognized. This is presumably because ND dispersed to some extent during purification reaggregates with time.
サイズ及び結晶性の相違によるDMA曲線の比較を図8に示した。 A comparison of DMA curves with differences in size and crystallinity is shown in FIG.
本発明にかかるコンポジットは、ポリマーとナノダイヤモンドとが強く相互作用し、構造を形成していることを特徴とする。かかる構造は従来の製造方法によっては全く得ることは不可能であり全く知られていなかった構造であり、従来のポリマーとナノダイヤモンドの単なるブレンド物で得られるものとは大きく異なり、また通常の方法でナノダイヤモンドの存在下重合反応を行って得られるものとも相違する。このことは以下の実施例で明らかなように、これらとは本質的に熱的、力学的挙動が相違することからも明らかであり、広範な分野の基礎材料として応用可能なものである。
The composite according to the present invention is characterized in that a polymer and nanodiamonds interact strongly to form a structure. Such a structure cannot be obtained at all by a conventional manufacturing method, and is a structure that has not been known at all. This structure differs greatly from that obtained by a simple blend of a conventional polymer and nanodiamond, and is a conventional method. This is also different from that obtained by conducting a polymerization reaction in the presence of nanodiamond. As is apparent from the following examples, this is also evident from the difference in thermal and mechanical behavior from these, and can be applied as a basic material in a wide range of fields.
Claims (3)
A method for producing a polymer nanodiamond composite comprising nanodiamond and an organic polymer, characterized by pre-dispersing so that nanodiamonds are sufficiently dispersed in a polymerization solvent during the polymerization reaction, and then performing a polymerization reaction .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004064281 | 2004-03-08 | ||
JP2004064281 | 2004-03-08 | ||
PCT/JP2005/003887 WO2005085359A1 (en) | 2004-03-08 | 2005-03-07 | Polymer nanodiamond composite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2005085359A1 true JPWO2005085359A1 (en) | 2007-12-13 |
Family
ID=34918183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006510768A Pending JPWO2005085359A1 (en) | 2004-03-08 | 2005-03-07 | Polymer nanodiamond composite |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2005085359A1 (en) |
WO (1) | WO2005085359A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101194387B1 (en) * | 2011-04-07 | 2012-10-25 | 광주과학기술원 | Nanodiamond-polymer nanoparticle composites and their thin films |
WO2014027620A1 (en) * | 2012-08-15 | 2014-02-20 | ダイキン工業株式会社 | Fluororesin composition containing fluorinated nano-diamond |
CN108884176B (en) * | 2016-03-18 | 2021-03-02 | 株式会社大赛璐 | Curable resin composition and optical component |
JP7084133B2 (en) * | 2017-12-26 | 2022-06-14 | ポリプラスチックス株式会社 | Liquid crystal resin manufacturing method |
JP7083636B2 (en) * | 2017-12-26 | 2022-06-13 | ポリプラスチックス株式会社 | Liquid crystal resin manufacturing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004051937A (en) * | 2002-05-31 | 2004-02-19 | Univ Nihon | Polymer composite material and method for producing the same |
JP2004256592A (en) * | 2003-02-24 | 2004-09-16 | Toshiba Corp | Composite particle, composite member, composite film, and methods for producing them |
-
2005
- 2005-03-07 WO PCT/JP2005/003887 patent/WO2005085359A1/en active Application Filing
- 2005-03-07 JP JP2006510768A patent/JPWO2005085359A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2005085359A1 (en) | 2005-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yin et al. | Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate | |
CN106916587B (en) | oil-soluble carbon quantum dot, polymer OCDs @ PMMA, and preparation method and application thereof | |
JP2007537313A (en) | COMPOSITE MATERIAL BASED ON CARBON NANOTUBES AND POLYMER MATRIX AND METHOD FOR PRODUCING THE SAME | |
CA2489352A1 (en) | Carbon nanotube-filled composites | |
KR20050074466A (en) | Method for producing inverse opaline structures | |
JPH11501346A (en) | Filterable polystyrene dispersion | |
JPWO2005085359A1 (en) | Polymer nanodiamond composite | |
KR100689866B1 (en) | Process for synthesizing polymer-grafted carbon nanotubes and its precursor | |
Zhong et al. | A versatile encapsulation method of noncovalently modified carbon nanotubes by RAFT polymerization | |
JP2004051937A (en) | Polymer composite material and method for producing the same | |
TWI414645B (en) | Nano-diamonds of modified surface and method for manufacturing the same | |
US20070160521A1 (en) | Use of core/shell particles | |
Jiang et al. | Surface-initiated PET-ATRP and mussel-inspired chemistry for surface engineering of MWCNTs and application in self-healing nanocomposite hydrogels | |
Larsson et al. | Thermoresponsive cryogels reinforced with cellulose nanocrystals | |
Gu et al. | New driving forces and recent advances in polymerization-induced self-assembly | |
JP5117718B2 (en) | Porous nanomaterial polymer composite | |
TW200523089A (en) | Use of core/shell particles | |
Jaisankar et al. | Single-electron transfer living radical copolymerization of SWCNT-g-PMMA via graft from approach | |
CN103755849A (en) | Carbon nanotube-polysilane-organic high-molecular composite material and preparation method thereof | |
JP6196169B2 (en) | Method for producing surface-modified biofiber | |
JP4714821B2 (en) | Polymer composite material and manufacturing method thereof | |
JP2011213984A (en) | Cellulose block copolymer, intermediate thereof, and filler | |
JP2004168843A (en) | Organic polymer containing inorganic nanoparticle | |
JP4251641B2 (en) | Method for producing polymer composite material | |
WO2024048770A1 (en) | Method for producing polymer fine particles, polymer fine particle molded body and method for recycling polymer fine particles |