JP4714821B2 - Polymer composite material and manufacturing method thereof - Google Patents

Polymer composite material and manufacturing method thereof Download PDF

Info

Publication number
JP4714821B2
JP4714821B2 JP2004106565A JP2004106565A JP4714821B2 JP 4714821 B2 JP4714821 B2 JP 4714821B2 JP 2004106565 A JP2004106565 A JP 2004106565A JP 2004106565 A JP2004106565 A JP 2004106565A JP 4714821 B2 JP4714821 B2 JP 4714821B2
Authority
JP
Japan
Prior art keywords
pmma
polymer
blend
impregnation
hdpe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004106565A
Other languages
Japanese (ja)
Other versions
JP2005255964A (en
Inventor
孝志 澤口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Idemitsu Kosan Co Ltd
Original Assignee
Nihon University
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Idemitsu Kosan Co Ltd filed Critical Nihon University
Priority to JP2004106565A priority Critical patent/JP4714821B2/en
Priority to PCT/JP2005/001785 priority patent/WO2005075570A1/en
Publication of JP2005255964A publication Critical patent/JP2005255964A/en
Application granted granted Critical
Publication of JP4714821B2 publication Critical patent/JP4714821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate

Description

本発明は、高分子複合材料とその製造方法に関する。   The present invention relates to a polymer composite material and a method for producing the same.

近年、地球環境保全や化石資源の節約、省エネルギーなどの観点から、コストパーフォーマンスに優れた汎用高分子材料(プラスチック)の高性能化・機能化技術及び現溶融ブレンドコンパウンド技術の代替技術の開発が望まれている。このために特性の異なる2種類以上の高分子をブレンドし複合化すると、各成高分子の物性を超える材料を調製することが可能であり、異種高分子を共有結合で繋いだブロック共重合体やグラフト共重合体などの単一な材料を新たに開発するよりも経済的であり、効率的であることは良く知られている。   In recent years, from the viewpoints of global environment conservation, fossil resource saving, energy saving, etc., development of high-performance and functional technology of general-purpose polymer materials (plastics) with excellent cost performance and alternative technology of the current melt blend compound technology has been developed. It is desired. For this purpose, it is possible to prepare a material that exceeds the physical properties of each synthetic polymer by blending two or more types of polymers with different properties, and a block copolymer in which different types of polymers are linked by covalent bonds. It is well known that it is more economical and more efficient than newly developing a single material, such as a polymer or a graft copolymer.

しかし、高分子はそれぞれに凝集エネルギー密度が異なり、一般に、相溶化(分子オーダーで溶け合う分子分散)することが難しい。例えば汎用プラスチック代表的な素材であるイソタクチックポリプロピレン(PP)とポリメタクリル酸メチル(PMMA)は共通の有機溶媒を用いた均一溶液から再沈殿調製しブレンドしてもマクロ相分離(マイクロメーターオーダーの海島構造形成:相溶化)してしまうという根本的な問題があった。   However, the polymers have different cohesive energy densities and are generally difficult to compatibilize (molecular dispersion that dissolves in molecular order). For example, isotactic polypropylene (PP) and polymethyl methacrylate (PMMA), which are typical materials for general-purpose plastics, are prepared by reprecipitation from a homogeneous solution using a common organic solvent and blended to produce a macrophase separation (micrometer order). Sea-island structure formation: compatibilization).

本発明は、新規な高分子複合材料、特に非相溶結晶性高分子/非結晶性高分子のナノ分散系を提供することを目的とする。さらにその製造方法を提供することを目的とする。   An object of the present invention is to provide a novel polymer composite material, particularly an incompatible crystalline polymer / non-crystalline polymer nano-dispersed system. Furthermore, it aims at providing the manufacturing method.

本発明者等はかかる問題を解決すべく鋭意研究し、結晶高分子の結晶構造が崩壊しない条件下で、通常熱力学的に混じり合わない非晶性高分子のモノマーを結晶性高分子基質に含浸し、その含浸させたモノマーを基質内で重合することにより全く新しい物性を発現する高分子複合材料である非相溶結晶性高分子/非結晶性高分子のナノ分散系を得ることができることを見出し、かかる知見に基づいて本発明を完成した。   The inventors of the present invention have intensively studied to solve such a problem. Under the condition that the crystal structure of the crystalline polymer does not collapse, an amorphous polymer monomer that does not normally mix thermodynamically is used as the crystalline polymer substrate. By impregnating and polymerizing the impregnated monomer in the substrate, it is possible to obtain an incompatible crystalline polymer / non-crystalline polymer nano-dispersion system that is a polymer composite material that exhibits completely new physical properties. And the present invention was completed based on this finding.

本発明にかかる高分子複合材料は、熱力学的に混じり合わない非晶性高分子と結晶性高分子とからなるコンポジットであり、非晶性高分子が結晶性高分子の非晶層(球晶間、フィブリルのミクロボイド、及びラメラ構造間の全て)にナノメートルオーダーで分散して共連続相相互進入網目(IPN)を形成していることを特徴とするナノコンポジットである。   The polymer composite material according to the present invention is a composite composed of an amorphous polymer and a crystalline polymer that do not mix thermodynamically, and the amorphous polymer is an amorphous layer (sphere) of a crystalline polymer. It is a nanocomposite characterized in that a co-continuous interpenetrating network (IPN) is formed by being dispersed on the order of nanometers between intercrystals, fibril microvoids, and lamellar structures.

また本発明は、かかる非晶性高分子がPMMA系、アクリル系、ポリスチレン系、ポリ塩化ビニル系、ポリ酢酸ビニル系、ポリブタジエン系ポリマーであり、結晶性高分子が低密度及び高密度ポリエチレン(LDPE、HDPE)、シンジオタクチックポリスチレン(sPS)、ポリプロピレン(PP)、ポリエチレンテレフタラート(PET)、ポリカーボナート(PC)、ポリアミド(PA)、ポリイミド(PI)である高分子複合材料である。   In the present invention, the amorphous polymer is a PMMA-based, acrylic-based, polystyrene-based, polyvinyl chloride-based, polyvinyl acetate-based, or polybutadiene-based polymer, and the crystalline polymer is a low-density and high-density polyethylene (LDPE). , HDPE), syndiotactic polystyrene (sPS), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), polyamide (PA), and polyimide (PI).

さらに本発明は、上の新規な高分子複合体の製造方法に関するものであり、結晶高分子の結晶構造が崩壊しない条件下で、通常熱力学的に混じり合わない非晶性高分子のモノマーを結晶性高分子基質に含浸し、その含浸させたモノマーを基質内で重合することを特徴とする。   Furthermore, the present invention relates to a method for producing the above novel polymer composite, and a monomer of an amorphous polymer that does not normally mix thermodynamically under the condition that the crystal structure of the crystalline polymer does not collapse. It is characterized by impregnating a crystalline polymer substrate and polymerizing the impregnated monomer in the substrate.

また本発明は、結晶高分子が、LDPE、HDPE、sPS、PP、PET、PCのいずれかであり、非晶性高分子がPMMA系ポリマーであり、かつ超臨界流体中で非晶性高分子のモノマーを含浸させ重合させることを特徴とする。   In the present invention, the crystalline polymer is any of LDPE, HDPE, sPS, PP, PET, and PC, the amorphous polymer is a PMMA polymer, and the amorphous polymer is in a supercritical fluid. The monomer is impregnated and polymerized.

さらに本発明は、超臨界流体が超臨界二酸化炭素であることを特徴とする。   Furthermore, the present invention is characterized in that the supercritical fluid is supercritical carbon dioxide.

本発明にかかる製造方法は、結晶高分子の結晶構造が崩壊しない条件下で、通常熱力学的に混じり合わない非晶性高分子のモノマーを結晶性高分子基質に含浸し、その含浸させたモノマーを基質内で重合することを特徴とする。従って、本発明にかかる高分子複合材料は、熱力学的に混じり合わない非晶性高分子と結晶性高分子とからなるコンポジットであり、非晶性高分子が結晶性高分子の非晶層(球晶間、フィブリルのミクロボイド、及びラメラ構造間の全て)にナノメートルオーダーで分散して共連続相相互進入網目(IPN)を形成していることを特徴とするナノコンポジットである。   In the production method according to the present invention, a crystalline polymer substrate is impregnated with a monomer of an amorphous polymer that does not normally mix thermodynamically under a condition that the crystal structure of the crystalline polymer does not collapse. The monomer is polymerized in a substrate. Therefore, the polymer composite material according to the present invention is a composite composed of an amorphous polymer and a crystalline polymer that do not mix thermodynamically, and the amorphous polymer is an amorphous layer of a crystalline polymer. It is a nanocomposite characterized in that it is dispersed in nanometer order (all between spherulites, fibril microvoids, and lamella structures) to form a co-continuous phase interpenetrating network (IPN).

(高分子複合材料)
本発明の高分子複合材料は、2種類以上の高分子からなるコンポジットである。また、これらの高分子は熱力学的に混じり合わない高分子である。かかる高分子は従来の方法では、溶液で混合して再沈殿させても、溶融混合ブレンドしてもいわゆるマクロ分離した構造(例えばミクロンオーダーの海島構造)となる。本発明の高分子材料はこのような2種以上の高分子がナノオーダーで混合した構造を有するコンポジットである。特に本発明のかかる高分子複合材料は結晶性高分子と非結晶性高分子からなるコンポジットであることを特徴とする。より詳しく説明すると、本発明にかかる高分子複合材料は、熱力学的に混じり合わない非晶性高分子と結晶性高分子とからなるコンポジットであり、非晶性高分子が結晶性高分子の非晶層(球晶間、フィブリルのミクロボイド、及びラメラ構造間の全て)にナノメートルオーダーで分散して共連続相相互進入網目(IPN)を形成していることを特徴とするナノコンポジットである。
(Polymer composite material)
The polymer composite material of the present invention is a composite composed of two or more kinds of polymers. These polymers are polymers that do not mix thermodynamically. In the conventional method, such a polymer has a so-called macro-separated structure (for example, a sea-island structure of micron order) even if it is mixed in a solution and reprecipitated or melt-blended. The polymer material of the present invention is a composite having a structure in which two or more kinds of polymers are mixed on the nano order. In particular, the polymer composite material of the present invention is a composite comprising a crystalline polymer and an amorphous polymer. More specifically, the polymer composite material according to the present invention is a composite composed of an amorphous polymer and a crystalline polymer that do not mix thermodynamically, and the amorphous polymer is a crystalline polymer. It is a nanocomposite characterized in that it forms a co-continuous interpenetrating network (IPN) dispersed in amorphous layers (all between spherulites, fibril microvoids, and lamellar structures) in nanometer order. .

ここで本発明で使用可能な非結晶性高分子としては特に制限はなく、望まれる物性を有する公知の非結晶性の高分子であればよい。具体的には、PMMA系、ポリメチルアクリレート(PMA)系、ポリスチレン(PS)系、ポリ塩化ビニル(PVC)系、ポリ酢酸ビニル(PVAC)系、ポリブタジエン系などの高分子が挙げられる。   Here, the amorphous polymer that can be used in the present invention is not particularly limited and may be any known amorphous polymer having desired physical properties. Specific examples include polymers such as PMMA, polymethyl acrylate (PMA), polystyrene (PS), polyvinyl chloride (PVC), polyvinyl acetate (PVAC), and polybutadiene.

また本発明で使用可能な結晶性高分子も特に制限はなく結晶化度の知られた種々の高分子が選択可能である。具体的には、ポリエチレン系、ポリスチレン系、ポリプロピレン系、ポリエステル系、ポリアミノ系、ポリカーボナート系が挙げられる。特に公知の低密度ポリエチレン(LDPE)や高密度ポリエチレン(HDPE)、シンジオタクチックポリスチレン、ポリプロピレン(PP)、ポリエステル(PET)、ポリアミノ(PA)、ポリイミド(PI)、ポリカーボナート(PC)が挙げられる。結晶性高分子は、結晶層と非晶層が存在し、種々の公知の方法でその結晶度や結晶構造の構造を決めることが可能である。また結晶性高分子はその分子鎖の折り畳たたみ結晶がナノメートルオーダーのラメラ構造を形成し、ラメラ構造は非晶タイ分子(非晶層)によりラメラ繰り返し構造を形成し、さらにそれらがフィブリルとなり、数μm−数mmオーダーの球晶に成長する階層構造をとっている。本発明にかかる高分子複合材料は、非結晶高分子がかかる結晶性高分子の球晶間、フィブリルのミクロボイド、及びラメラ構造間にナノメートルオーダーで分散して、共連続相相互進入網目(IPN)構造を有する。従って本発明の高分子複合材料は結晶性高分子のラメラ繰り返し構造が変化していることが特徴である。   The crystalline polymer that can be used in the present invention is not particularly limited, and various polymers having a known crystallinity can be selected. Specific examples include polyethylene, polystyrene, polypropylene, polyester, polyamino, and polycarbonate. Particularly known low-density polyethylene (LDPE), high-density polyethylene (HDPE), syndiotactic polystyrene, polypropylene (PP), polyester (PET), polyamino (PA), polyimide (PI), and polycarbonate (PC). . A crystalline polymer has a crystalline layer and an amorphous layer, and its crystallinity and crystal structure can be determined by various known methods. In addition, the crystalline polymer has a folded molecular chain that forms a lamella structure on the order of nanometers. The lamella structure forms a lamellar repeating structure with amorphous tie molecules (amorphous layers), and these become fibrils. , Has a hierarchical structure that grows into spherulites on the order of several μm to several mm. In the polymer composite material according to the present invention, an amorphous polymer is dispersed in a nanometer order between the spherulites of the crystalline polymer, the microvoids of the fibrils, and the lamellar structure, and a co-continuous phase interpenetrating network (IPN ) Structure. Therefore, the polymer composite material of the present invention is characterized in that the lamellar repeating structure of the crystalline polymer is changed.

さらに、非結晶高分子が結晶性高分子の球晶間、フィブリルのミクロボイド、及びラメラ構造間にナノメートルオーダーで分散して、共連続相相互進入網目(IPN)構造を有することから、本発明の高分子複合材料は、非結晶高分子及び結晶性高分子自体とは全く相違するモルホロジーを示し、かつ熱力学的、さらに力学的物性を示すことを特徴とする。具体的には結晶融解挙動、熱分解挙動、Tg、貯蔵弾性率等において独自の値を示す。   Furthermore, since the non-crystalline polymer is dispersed in nanometer order between the spherulites of the crystalline polymer, the microvoids of the fibrils, and the lamellar structure, it has a co-continuous phase interpenetrating network (IPN) structure. The polymer composite material is characterized in that it exhibits a completely different morphology from that of the amorphous polymer and the crystalline polymer itself, and also exhibits thermodynamic and further mechanical properties. Specifically, it has unique values for crystal melting behavior, thermal decomposition behavior, Tg, storage elastic modulus and the like.

(製造方法)
以上説明した本発明の高分子複合材料は、結晶高分子の結晶構造が崩壊しない条件下で、通常熱力学的に混じり合わない非晶性高分子のモノマーを結晶性高分子基質に含浸し、その含浸させたモノマーを基質内で重合することを特徴とする。
(Production method)
The polymer composite material of the present invention described above impregnates a crystalline polymer substrate with a monomer of an amorphous polymer that does not normally mix thermodynamically under conditions where the crystal structure of the crystalline polymer does not collapse, The impregnated monomer is polymerized in a substrate.

ここで結晶高分子の結晶構造が崩壊しない条件下とは、結晶性高分子を基質として用い、その結晶性構造が熱的作用または溶媒との相互作用により崩壊させない条件であれば特に制限はない。好ましくは結晶高分子基質の形状を変形することなく、非晶性高分子モノマーを必要量溶解し、かつそのまま(in−situ)重合させることができるものであればよい。   Here, the conditions under which the crystal structure of the crystalline polymer does not collapse is not particularly limited as long as the crystalline polymer is used as a substrate and the crystalline structure does not collapse due to thermal action or interaction with a solvent. . It is preferable that the amorphous polymer monomer is dissolved in a necessary amount and can be polymerized as it is (in-situ) without changing the shape of the crystalline polymer substrate.

本発明者はかかる特殊な条件を実現するものとして種々の超臨界状態の流体が使用できることを見出した。特に超臨界二酸化炭素の使用が好ましい。この超臨界流体中では、基質である結晶性高分子はその形状が大きく変わることなく十分な量の非晶性高分子モノマーを含浸することができる(平衡)。また、含浸後の重合反応の際、結晶性高分子内で非晶性高分子が生成するに従い、結晶性高分子内の非晶性高分子モノマーの濃度が減少し平衡がずれることにより、該モノマーがさらに結晶性高分子内に移動し重合反応が進行することが可能となる。   The present inventor has found that various supercritical fluids can be used to realize such special conditions. The use of supercritical carbon dioxide is particularly preferable. In this supercritical fluid, the crystalline polymer as a substrate can be impregnated with a sufficient amount of amorphous polymer monomer without changing its shape greatly (equilibrium). Further, during the polymerization reaction after the impregnation, as the amorphous polymer is formed in the crystalline polymer, the concentration of the amorphous polymer monomer in the crystalline polymer is decreased and the equilibrium is shifted. The monomer further moves into the crystalline polymer, and the polymerization reaction can proceed.

具体的に本発明で使用可能な結晶高分子は、基質として使用できるものであれば特に制限はない。所望の特性・機能を有する種々の公知の結晶性高分子が使用でき、例えば、LDPE、HDPE、sPS、PP、PET、PC、PA、PITなどが挙げられる。ここでLDPE、HDPE、sPSの結晶度は公知であればその値を利用可能であり、公知でなければ適当な測定方法(広角X線回折(WAXD)、示差走査型熱量計(DSC)等)により結晶度を知ることができる。LDPEやHDPEは種々の構成成分やその存在比、分子量(分子量分布)のものが市販されておりこれらを好ましく使用することができる。またsPSについても種々市販されておりこれらを使用することができる。また、例えば特開昭62−187708号公報、特開昭63−191811号公報に記載の方法に従い製造したものを使用してもよい。具体的には、不活性炭化水素溶媒中、または溶媒不存在下に、チタン化合物及び水とトリアルキルアルミニウムの縮合生成物を触媒として種々のスチレン系モノマーを重合することにより得られる。   Specifically, the crystalline polymer usable in the present invention is not particularly limited as long as it can be used as a substrate. Various known crystalline polymers having desired characteristics and functions can be used, and examples thereof include LDPE, HDPE, sPS, PP, PET, PC, PA, and PIT. Here, the crystallinity of LDPE, HDPE, and sPS can be used if known, and if not known, an appropriate measuring method (wide angle X-ray diffraction (WAXD), differential scanning calorimeter (DSC), etc.) Thus, the crystallinity can be known. LDPE and HDPE are commercially available in various constituent components, abundance ratios, and molecular weights (molecular weight distribution), and these can be preferably used. Various sPS are commercially available and can be used. Further, for example, those produced according to the methods described in JP-A Nos. 62-187708 and 63-191811 may be used. Specifically, it can be obtained by polymerizing various styrene monomers in the presence of an inert hydrocarbon solvent or in the absence of a solvent, using a titanium compound and a condensation product of water and trialkylaluminum as a catalyst.

またこれらを基質として用いる場合の形状についても特に制限はない。フィルム、板状、ペレット状、粒状、または種々の形状の成形体が挙げられる。かかる形状に成形する方法についても特に制限はなく通常公知の方法が好ましく使用できる。   Moreover, there is no restriction | limiting in particular also about the shape in the case of using these as a substrate. Examples include films, plates, pellets, granules, or molded articles having various shapes. There is no restriction | limiting in particular also about the method of shape | molding in this shape, A normally well-known method can be used preferably.

本発明の製造方法で使用する非晶性高分子は、モノマーの状態でまず上の結晶性高分子基質に含浸させるものである。従って超臨界流体中で基質の外側と内側で濃度勾配が達成されるモノマーであれば特に制限されない。所望の性質・機能を発揮させるべく種々の高分子モノマーが選択可能である。具体的には、PMMA系、PS系、PMA系が挙げられる。特に本発明においてはPE系、PS系、PP系との組み合わせでPMMA系の使用が好ましい。   The amorphous polymer used in the production method of the present invention is the one in which the above crystalline polymer substrate is first impregnated in a monomer state. Therefore, the monomer is not particularly limited as long as it is a monomer in which a concentration gradient is achieved outside and inside the substrate in a supercritical fluid. Various polymer monomers can be selected to exhibit desired properties and functions. Specifically, PMMA system, PS system, and PMA system are mentioned. In particular, in the present invention, it is preferable to use a PMMA system in combination with a PE system, a PS system, or a PP system.

含浸の条件には特に制限はなく、使用する超臨界流体の中に十分なモノマーが含浸するまでの適当な時間、適当な温度で放置することで可能である。ここで含浸温度は超臨界条件にも依存し、続いて行う重合反応に重合開始剤が含まれている場合、その重合開始温度より数十度程度低い温度が好ましい。具体的には臨界状態の二酸化炭素を使用する場合、含浸圧力は1−40MPa、温度は−50−150℃、時間は0.1−96時間の範囲である。また含浸の程度は含浸後に基質を取り出し重量増加を測定することで容易に知ることができる。含浸条件により重量増加は数wt%−数百wt%までの範囲で自由に設定可能である。   There are no particular limitations on the impregnation conditions, and it is possible to leave it at an appropriate temperature for an appropriate time until sufficient monomers are impregnated in the supercritical fluid to be used. Here, the impregnation temperature also depends on supercritical conditions, and when a polymerization initiator is included in the subsequent polymerization reaction, a temperature lower by several tens of degrees than the polymerization start temperature is preferable. Specifically, when carbon dioxide in a critical state is used, the impregnation pressure is 1-40 MPa, the temperature is −50 to 150 ° C., and the time is in the range of 0.1 to 96 hours. The degree of impregnation can be easily known by removing the substrate after the impregnation and measuring the weight increase. Depending on the impregnation conditions, the weight increase can be freely set in the range of several wt% to several hundred wt%.

本発明において好ましくは、含浸後、含浸させたモノマーをそのまま重合反応させる(in−situ反応)。重合反応条件は、使用した超臨界流体、非晶性高分子モノマーの種類、重合反応の種類により適宜選択することができる。好ましくは特定の温度で開始できるラジカル重合反応である。ラジカル重合反応に使用するラジカル重合反応開始剤は、すでに説明した含浸で使用する温度より数十℃高い温度で開始するものが好ましい。具体的には、α、α’-アゾビスイソブチロニトリル(AIBN)、過酸化ベンゾイル(BPO)等が挙げられる。超臨界流体が二酸化炭素であり、モノマーがメチルメタクリル酸(MMA)の場合、重合開始剤は約80℃で使用できるAIBNが好ましい。重合反応時間についても特に制限はなく、適宜選択し、必要ならば重合停止剤の添加、反応系の冷却等で停止することができる。また反応装置から取り出した後、基質外での重合反応により生成したポリマーを除く必要があるが、適当な溶媒により洗浄することが好ましい。   In the present invention, preferably, after impregnation, the impregnated monomer is polymerized as it is (in-situ reaction). The polymerization reaction conditions can be appropriately selected depending on the supercritical fluid used, the type of amorphous polymer monomer, and the type of polymerization reaction. A radical polymerization reaction that can be initiated at a specific temperature is preferred. The radical polymerization reaction initiator used for the radical polymerization reaction is preferably one that starts at a temperature several tens of degrees higher than the temperature used in the impregnation described above. Specific examples include α, α'-azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO), and the like. When the supercritical fluid is carbon dioxide and the monomer is methyl methacrylic acid (MMA), the polymerization initiator is preferably AIBN that can be used at about 80 ° C. There is no restriction | limiting in particular also about polymerization reaction time, It can select suitably and can be stopped by addition of a polymerization terminator, cooling of a reaction system, etc. if necessary. Further, after removal from the reaction apparatus, it is necessary to remove the polymer produced by the polymerization reaction outside the substrate, but washing with an appropriate solvent is preferred.

得られた高分子複合体は、基質の形状はほぼ保持されているが増加した非晶性高分子により変化する場合がある。例えば方形のフィルム形状を基質とした場合得られた複合体の形状は方形ではあるがより大きな方形を示す。   The obtained polymer composite may change due to the increased amorphous polymer, although the shape of the substrate is almost maintained. For example, when a square film shape is used as a substrate, the shape of the composite obtained is a square but a larger square.

以下実施例によりさらに詳細に説明する。   Examples will be described in more detail below.

(PMMAとHDPE及びLDPEの複合材料)
測定装置: TG、DMAの測定にはそれぞれ、精工電子工業株式会社製EXSTAR6000シリーズTG/DTA6200と、アクティー計測制御株式会社製動的粘弾性DVA-220を使用した。引っ張り試験には、INTESCO IM-20を使用した。SAXSの測定は高エネルギー加速器研究機構フォトンファクトリーを使用した。
(Composite material of PMMA, HDPE and LDPE)
Measuring device: EXSTAR6000 series TG / DTA6200 manufactured by Seiko Denshi Kogyo Co., Ltd. and dynamic viscoelastic DVA-220 manufactured by Acty Measurement Control Co., Ltd. were used for measurement of TG and DMA, respectively. INTERSCO IM-20 was used for the tensile test. The SAXS measurement was performed using a high energy accelerator research organization Photon Factory.

反応装置:耐圧硝子工業(株)製の、最高使用温度・圧力が200℃・12MPaのものと、最高使用温度・圧力400℃・40MPaのものとの2種類の超臨界反応装置を使用した。   Reactor: Two types of supercritical reactors manufactured by Pressure Glass Industry Co., Ltd., having a maximum operating temperature and pressure of 200 ° C. and 12 MPa and a maximum operating temperature and pressure of 400 ° C. and 40 MPa were used.

基質の作成:市販の低密度ポリエチレン(LDPE、分子量(Mn)1.4×10、結晶化度37%)ペレット、および日本ポリオレフィン社製高密度ポリエチレン(HDPE、分子量(Mn)1.5×10、結晶化度71%)ペレットをそれぞれポリエチレンテレフタレートのシートではさみ、ヒートプレス機でペレットを10〜15分間溶解した後、180℃、30MPaで30分間ヒートプレスしてシート状に加工し、これを冷却銅板にはさみ急冷した。その後、シートは20mm×20mm×0.5mmにカットして基質(約0.2g)とした。かかる基質を表1及び2にまとめられた条件で含浸・重合させた。 Preparation of substrate: Commercially available low density polyethylene (LDPE, molecular weight (Mn) 1.4 × 10 4 , crystallinity 37%) pellets and high density polyethylene (HDPE, molecular weight (Mn) 1.5 × manufactured by Nippon Polyolefin Co., Ltd. 10 5 , degree of crystallinity 71%) Each of the pellets was sandwiched between polyethylene terephthalate sheets, dissolved in a heat press machine for 10 to 15 minutes, and then heat pressed at 180 ° C. and 30 MPa for 30 minutes to form a sheet, This was sandwiched between cooling copper plates and quenched. Thereafter, the sheet was cut into 20 mm × 20 mm × 0.5 mm to obtain a substrate (about 0.2 g). Such substrates were impregnated and polymerized under the conditions summarized in Tables 1 and 2.

含浸条件:メタクリル酸メチル(MMA)5g、α、α’-アゾビスイソブチロニトリル(AIBN)を表1、2に示された所定量を採取し、基質と共に反応装置に仕込んだ。後反応装置内に二酸化炭素を表1、2の条件で供給し、40℃、7MPaの条件で、1時間及び24時間含浸させた。   Impregnation conditions: 5 g of methyl methacrylate (MMA), α, α'-azobisisobutyronitrile (AIBN) in a predetermined amount shown in Tables 1 and 2 were sampled and charged into the reactor together with the substrate. Carbon dioxide was supplied into the post-reactor under the conditions shown in Tables 1 and 2, and impregnation was performed at 40 ° C. and 7 MPa for 1 hour and 24 hours.

重合条件:含浸後、表1、2の重合条件に示されるように、そのまま温度を80℃にして所定圧力下で所定の時間反応させた。反応終了後、反応セルを急冷しセル内の二酸化炭素を系外に除去した。基質表面に付着したポリマーを取り除くため、アセトン200mlでソックスレー還流器を用いて1時間還流させ、得られた高分子複合材料表面に付着したポリマーを溶解、洗浄を行った。その後基質が恒量となるまで50℃にて真空加温乾燥した。溶解したポリマーは反応セル内のポリマーと同様にヘキサンにより再沈殿して分別回収後、50℃にて真空加温乾燥し回収した。   Polymerization conditions: After impregnation, as shown in the polymerization conditions of Tables 1 and 2, the temperature was kept at 80 ° C. for a predetermined time under a predetermined pressure. After completion of the reaction, the reaction cell was rapidly cooled to remove carbon dioxide in the cell out of the system. In order to remove the polymer adhering to the surface of the substrate, 200 ml of acetone was refluxed for 1 hour using a Soxhlet refluxer, and the polymer adhering to the surface of the resulting polymer composite material was dissolved and washed. Thereafter, the substrate was vacuum-heated and dried at 50 ° C. until the substrate became a constant weight. The dissolved polymer was re-precipitated with hexane in the same manner as the polymer in the reaction cell, separated and recovered, and then recovered by vacuum drying at 50 ° C.

得られた高分子複合材料の重量増加率も表1、2にまとめた。   Tables 1 and 2 also summarize the weight increase rates of the obtained polymer composite materials.

結果:図1および表3には得られた高分子複合材料の示差走査型熱量分析(DSC)の測定結果を示した。ここで図1はLDPE、HDPEの結晶融解エンタルピーをLDPE、HDPEの重量分率に対してプロットしたものである。高分子複合材料中のMMAの含量が増加すると結晶融解エンタルピーはほぼ直線的に減少することが分かる。また表1にはLDPEおよびHDPEの重量分率に対する高分子複合体の融点、結晶融解エンタルピー、結晶化度をまとめた。   Results: FIG. 1 and Table 3 show the results of differential scanning calorimetry (DSC) measurement of the obtained polymer composite material. Here, FIG. 1 plots the crystal melting enthalpy of LDPE and HDPE against the weight fraction of LDPE and HDPE. It can be seen that as the MMA content in the polymer composite increases, the crystal melting enthalpy decreases almost linearly. Table 1 summarizes the melting point, crystal melting enthalpy, and crystallinity of the polymer composite with respect to the weight fraction of LDPE and HDPE.

図2及び図3にはそれぞれHDPE、LDPEとPMMAとの複合体(それぞれHDPE/PMMA(数字)%hybrid、LDPE/PMMA(数字)%hybridと表される。ここで複合体に含まれるPMMAの重量%を(数字)%で示す)の熱重量分析(TG)の結果を示す。PMMAの増加により熱分解開始温度はHDPE、LDPEともに徐々に低下し、熱分解速度はPMMA組成の増加により大きく変化することが分かる。   2 and 3, HDPE, LDPE and PMMA composites (represented as HDPE / PMMA (number)% hybrid, LDPE / PMMA (number)% hybrid, respectively). Here, PMMA contained in the composite The results of thermogravimetric analysis (TG) of (% by weight) (%) are shown. It can be seen that the thermal decomposition start temperature gradually decreases for both HDPE and LDPE due to an increase in PMMA, and the thermal decomposition rate changes greatly with an increase in the PMMA composition.

図4及び図5にはそれぞれHDPE、LDPEとの複合体のDMA曲線を示す。   4 and 5 show DMA curves of complexes with HDPE and LDPE, respectively.

HDPEでは有機溶媒を用いてHDPEとPMMAとをブレンドして得られたHDPE/PMMA有機溶媒系blendとは明らかな違いがあることが分かる。この結果は本発明の複合体(scCO系hybrid)でのPMMA鎖の可塑化効果によると考えられる。一方、170℃で1分間加熱処理するとHDPE/PMMA有機溶媒系blendとほぼ同様の曲線となり、本発明の複合体では可塑化効果が見られなかった。 It can be seen that HDPE has a clear difference from the HDPE / PMMA organic solvent blend obtained by blending HDPE and PMMA using an organic solvent. This result is considered to be due to the plasticizing effect of the PMMA chain in the composite of the present invention (scCO 2 system hybrid). On the other hand, when the heat treatment was performed at 170 ° C. for 1 minute, a curve almost similar to that of the HDPE / PMMA organic solvent blend was obtained, and the plasticizing effect was not observed in the composite of the present invention.

LDPE/PMMAhybridでは、含浸時間(1hと24h含浸)により貯蔵弾性率(E′)に違いがあることが分かる。LDPE/PMMAhybridのtanδにおいてもホモPMMA鎖のTgと比べ高温側へTgが移動することが分かる。さらにまたHDPE/PMMA有機溶媒系blendとも有意に相違することが分かる。   In LDPE / PMMA hybrid, it can be seen that there is a difference in storage elastic modulus (E ′) depending on the impregnation time (1 h and 24 h impregnation). It can be seen that also in LDPE / PMMA hybrid tan δ, Tg moves to the higher temperature side than the Tg of homo PMMA chain. It can also be seen that it is also significantly different from HDPE / PMMA organic solvent blend.

図6、7、8、9及び10には、SAXS測定で得られたローレンツ補正Iqのq(散乱ベクトル)に対するプロットを示した。ここで図6、7はそれぞれ、純物質HDPE、有機溶媒系blend,scCO系hybrid、およびscCO系hybridの加熱(アニーリング)後を比較したものである。scCO系hybridはHDPEと比較して散乱ピークに違いが認められ、ラメラ繰り返し構造が変化し、その長周期に違いが現れた。特にscCO系 hybrid AIBN0.1mol%で調製したものについては長周期に由来するピークが減少し消失する傾向を示した。これはラメラ結晶層間の全ての非晶相でPMMAが生成し、モノマーMMAがより均一に含浸し・重合した結果によると考えられる。 6, 7, 8, 9 and 10, plots of the Lorentz correction Iq 2 obtained by SAXS measurement with respect to q (scattering vector) are shown. Here, FIGS. 6 and 7 compare the heating of the pure substance HDPE, the organic solvent system blend, the scCO 2 system hybrid, and the scCO 2 system hybrid, respectively. The scCO 2 hybrid showed a difference in scattering peak as compared with HDPE, the lamellar repeat structure changed, and a difference in its long period appeared. In particular, those prepared with scCO 2 system hybrid AIBN 0.1 mol% showed a tendency that the peak derived from the long period decreased and disappeared. This is considered to be due to the result that PMMA was generated in all amorphous phases between the lamellar crystal layers, and monomer MMA was more uniformly impregnated and polymerized.

図7,図8はHDPE系でのscCO系 hybridとscCO系 hybrid加熱(アニーリング)後を比較したもので、ラメラ繰り返し長周期由来のピークトップに変化が現れ、長周期が加熱により変化し、scCO系 hybridは非晶層で生成したPMMAが熱により幾分分離崩壊したと考えられる。 7 and 8 a comparison of post scCO 2 system hybrid and scCO 2 based hybrid heating in HDPE system (annealing), appears a change in the peak top from lamellar repeat length cycle, the long period is changed by heating In the scCO 2 hybrid, it is considered that PMMA produced in the amorphous layer was somewhat separated and decomposed by heat.

図9はLDPE,LDPE/PMMA有機溶媒系blend, scCO系 hybridとの比較をしたものである。scCO系 hybridはラメラ繰り返し構造長周期由来のピ‐クがほぼ消失しいることから、PMMAがラメラ結晶層間の全ての非晶相で均一に生成したことを示している。 FIG. 9 is a comparison with LDPE, LDPE / PMMA organic solvent blend, scCO 2 hybrid. The scCO 2 hybrid shows that the peak derived from the long period of the lamellar repeating structure almost disappears, indicating that PMMA was uniformly generated in all the amorphous phases between the lamellar crystal layers.

図10はscCO系 hybridとscCO系 hybrid加熱後5、20、40分で比較したものである。加熱の時間に応じて、ラメラ繰り返し構造長周期由来のピ‐クが幾分観測できるが、有機溶媒系blendに比較して極めて弱いピークであり、scCO系 hybridはLDPEの結晶が融解する条件で加熱しても、その構造はほとんど分離崩壊していないと考えられる。 FIG. 10 is a comparison between scCO 2 -based hybrid and scCO 2 -based hybrid at 5, 20, and 40 minutes after heating. Depending on the heating time, a peak derived from the long period of the lamellar repetitive structure can be observed somewhat, but it is a very weak peak compared to the organic solvent blend, and the scCO 2 hybrid is a condition under which the LDPE crystal melts. It is considered that the structure is hardly separated and disintegrated even when heated at.

図11はHDPE/PMMA100%有機溶媒系blendの薄片(クライオミクロトーム法)のTEM写真である。白い部分は空隙であり、その周りに黒く見えるところがPMMA(島)、海相はHDPEである。このようにTEM写真はミクロンオーダーのマクロ相分離をしている。   FIG. 11 is a TEM photograph of a thin piece of HDPE / PMMA 100% organic solvent blend (cryomicrotome method). The white part is a void, the area around it that appears black is PMMA (island), and the sea phase is HDPE. As described above, the TEM photograph has macro phase separation on the order of microns.

図12はHDPE/PMMA77.8%hybrid 24h含浸のTEM写真(常温ミクロトーム法)である。白い部分と黒い部分の筋は明瞭に現れているが、これはミクロトームのチャタリングによる。しかし有機溶媒系blendと比較して、マクロ相分離が全く確認できないことからPMMAはナノメートルオーダーで均一に分散していると考えられる。   FIG. 12 is a TEM photograph (room temperature microtome method) impregnated with HDPE / PMMA 77.8% hybrid 24h. The white and black streaks appear clearly, but this is due to microtome chattering. However, since no macrophase separation can be confirmed as compared with the organic solvent blend, it is considered that PMMA is uniformly dispersed on the nanometer order.

図13はHDPE/PMMA87.3%hybrid 24h含浸 アニ‐リング(170℃、1分)後のTEM写真(常温ミクロトーム法)である。1分間のアニ‐リングよってもミクロンオーダーの海島構造は確認できず、マクロ相分離は起きておらず、均一な分散状態を保っている事が確認できる。   FIG. 13 is a TEM photograph (room temperature microtome method) after annealing (170 ° C., 1 minute) impregnated with HDPE / PMMA 87.3% hybrid 24h. Even with 1-minute annealing, the sea-island structure on the order of microns cannot be confirmed, and no macrophase separation has occurred, confirming that a uniform dispersed state is maintained.

図14はLDPE/PMMA100%有機溶媒系blendのTEM写真(クライオミクロトーム法)である。白い部分は空隙であり、LDPEが比較的柔らかいため切断時に硬いPMMA抜け出て穴となってしまったことによる。モルフォロジーはミクロンオーダーのマクロ相分離構造(島がPMMA、海がLDPE)を形成していることが確認できた。   FIG. 14 is a TEM photograph (cryomicrotome method) of LDPE / PMMA 100% organic solvent blend. The white portions are voids, and the LDPE is relatively soft, so that the hard PMMA slips out and becomes a hole during cutting. It was confirmed that the morphology formed a micro phase separation structure of micron order (island was PMMA, sea was LDPE).

図15はLDPE/PMMA82.2%hybrid 24h含浸 のTEM写真(常温ミクロトーム法)である。マクロ相分離構造は全く確認できず、PMMAがLDPEにより均一に分散していることを示している。   FIG. 15 is a TEM photograph (room temperature microtome method) of LDPE / PMMA 82.2% hybrid 24h impregnation. The macrophase separation structure cannot be confirmed at all, indicating that PMMA is uniformly dispersed by LDPE.

図16はLDPE/PMMA87.3%hybrid 24h含浸 アニ−リング170℃20分のTEM写真(常温ミクロトーム)である。加熱時間20分においてさえもなおミクロンオーダーのマクロ相分離は確認されないことから、形成されたナノメートルオーダーの均一分散構造を保っていると考えられる。   FIG. 16 is a TEM photograph (room temperature microtome) of LDPE / PMMA 87.3% hybrid 24h-impregnated annealing at 170 ° C. for 20 minutes. Even when the heating time is 20 minutes, macro-phase separation on the micron order is not confirmed, and it is considered that the formed nanometer order uniform dispersion structure is maintained.

(PMMAとsPSの複合材料)
反応に用いた試薬は以下のように精製した。
(Composite material of PMMA and sPS)
The reagent used for the reaction was purified as follows.

シンジオタクチックポリスチレン(sPS)は株式会社出光製のシート形状を用いた。α,α′−アゾビスイソブチロニトリル(AIBN)は関東化学(株)製(鹿特級)のAIBNをメタノール精製したものを使用した。メタクリル酸メチル(MMA)は和光純薬工業株式会社製(98.0%)を用いた。   As the syndiotactic polystyrene (sPS), a sheet shape made by Idemitsu Co., Ltd. was used. As α, α′-azobisisobutyronitrile (AIBN), AIBN produced by Kanto Chemical Co., Ltd. (Koshi Special Grade) was purified by methanol. Methyl methacrylate (MMA) manufactured by Wako Pure Chemical Industries, Ltd. (98.0%) was used.

反応装置は実施例1で使用したものと同じ装置を用いた(Jasco SCF−Get(超臨界二酸化炭素流体注入ポンプ)、SCF−Sro(空気恒温槽))。   The same reactor as that used in Example 1 was used (Jasco SCF-Get (supercritical carbon dioxide fluid injection pump), SCF-Sro (air thermostat)).

基質の作成:sPSのシートを20×20×0.3mmにカットして使用した。   Preparation of substrate: sPS sheet was cut into 20 × 20 × 0.3 mm and used.

含浸条件:メタクリル酸メチル(MMA)2g、α、α’-アゾビスイソブチロニトリル(AIBN)を1mol%(0.0328g)を採取し、基質と共に反応装置に仕込んだ。後反応装置内に二酸化炭素を表4の条件で供給し、40℃で表4に記載の圧力で1時間含浸させた。   Impregnation conditions: 2 g of methyl methacrylate (MMA), 1 mol% (0.0328 g) of α, α′-azobisisobutyronitrile (AIBN) was collected and charged into the reactor together with the substrate. Carbon dioxide was supplied into the post-reactor under the conditions shown in Table 4 and impregnated at 40 ° C. and the pressure shown in Table 4 for 1 hour.

重合条件:後温度を80℃にして所定圧力下で24時間反応させた。反応終了後、反応セルを急冷しセル内の二酸化炭素を系外に除去した。基質表面に付着したポリマーを取り除くため、アセトン200mlでソックスレー還流器を用いて1時間還流させ、得られた高分子複合材料表面に付着したポリマーを溶解、洗浄を行なった。その後基質が恒量となるまで50℃にて真空加温乾燥した。溶解したポリマーは反応セル内のポリマーと同様にヘキサンにより再沈殿して分別回収後、50℃にて真空加温乾燥し回収した。   Polymerization conditions: The post-temperature was set to 80 ° C. and reacted for 24 hours under a predetermined pressure. After completion of the reaction, the reaction cell was rapidly cooled to remove carbon dioxide in the cell out of the system. In order to remove the polymer adhering to the substrate surface, 200 ml of acetone was refluxed for 1 hour using a Soxhlet refluxer, and the polymer adhering to the obtained polymer composite material surface was dissolved and washed. Thereafter, the substrate was vacuum-heated and dried at 50 ° C. until the substrate became a constant weight. The dissolved polymer was re-precipitated with hexane in the same manner as the polymer in the reaction cell, separated and recovered, and then recovered by vacuum drying at 50 ° C.

得られた高分子複合材料の重量増加率も表4にまとめた。   Table 4 also summarizes the weight increase rate of the obtained polymer composite material.

上で製造された高分子複合体(以下、「sPS/PMMA臨界ブレンド」とする。)と比較する目的で有機溶媒中でsPSとPMMAを溶解させて沈殿させて得られたブレンド(以下、「sPS/PMMA有機溶媒ブレンド」とする。)、及びそれぞれのアニール処理して得たものの透過電子顕微鏡(TEM)観察の結果を図17−21に示した。図17にはsPS基質自体のTEM写真を示す。図18には有機溶媒ブレンドのTEM写真を示すが、従来知られているようにマクロ相分離を起こし、大きな海島構造のモルフォロジーを形成しているが分かる。これに比較して、図19、20で示されるようにsPS/PMMA超臨界ブレンドでは観察倍率ではミクロンオーダーの海島構造のような明確なモルフォロジーは見られないことが特徴である。この結果はsPS/PMMA超臨界ブレンドではむしろナノメートルオーダーのミクロ相分離のモルフォロジーを形成していることを意味する。さらに図21はsPS/PMMA超臨界ブレンドをsPSの結晶が融解する温度300℃で1分間アニーリングした後のTEM写真を示す。確かにアニール処理により海島構造のホモロジーの形成が見られるが、その海島構造は有機溶媒ブレンドで見られるものより遥かに小さなサイズのものであることが分かる。この結果は、超臨界によるブレンドの構造が有機溶媒によるブレンドに比較して熱に対して安定であることを意味する。 A blend obtained by dissolving and precipitating sPS and PMMA in an organic solvent for the purpose of comparison with the polymer composite produced above (hereinafter referred to as “sPS / PMMA critical blend”). sPS / PMMA organic solvent blend "), and the results of transmission electron microscope (TEM) observation of those obtained by the annealing treatment are shown in FIGS. FIG. 17 shows a TEM photograph of the sPS substrate itself. FIG. 18 shows a TEM photograph of the organic solvent blend, and it can be seen that macrophase separation occurs and a large sea-island morphology is formed as conventionally known. Compared to this, as shown in FIGS. 19 and 20, the sPS / PMMA supercritical blend is characterized in that no clear morphology such as a micron-order sea-island structure is observed in the observation magnification. This result means that the sPS / PMMA supercritical blend rather forms a nanometer-order microphase separation morphology. Further, FIG. 21 shows a TEM photograph after annealing the sPS / PMMA supercritical blend for 1 minute at a temperature of 300 ° C. at which the crystals of sPS melt. Certainly, the annealing treatment forms a homology of the sea-island structure, but it can be seen that the sea-island structure is much smaller in size than that found in the organic solvent blend. This result means that the structure of the supercritical blend is more stable to heat than the blend with the organic solvent.

図22にはTGによる分析結果を示す。有機溶媒ブレンドでは、PMMAが分解した後sPSが分解していることが分かる。一方、超臨界ブレンドは、340℃付近で全てのPMMAが分解することが分かる。この結果はPMMAポリマー分子がsPSポリマー分子に強く作用し合うため、それぞれ独立して熱分解反応が起こり得ないことを意味する。これは、下のSAXSの測定結果からも強く示唆されるように、PMMAポリマー分子がsPSポリマー分子の非晶質部分に強く作用していることを意味する。   FIG. 22 shows the analysis result by TG. It can be seen that in the organic solvent blend, sPS is decomposed after PMMA is decomposed. On the other hand, in the supercritical blend, it can be seen that all PMMA decomposes at around 340 ° C. This result means that since the PMMA polymer molecule strongly acts on the sPS polymer molecule, thermal decomposition reaction cannot occur independently of each other. This means that the PMMA polymer molecule strongly acts on the amorphous part of the sPS polymer molecule, as strongly suggested by the SAXS measurement results below.

図23、24にはDMAによる分析結果を示す。図23に示されるsPS/PMMA超臨界ブレンドでは、sPS自体のtanδピーク(Tg)は110℃付近であり、PMMA自体のtanδピークは140℃付近にあることが分かる。一方、超臨界ブレンドでは、tanδピークは全体的に低温側にシフト(PMMAの含有量により90−120℃付近)していることが分かる。   23 and 24 show the results of analysis by DMA. In the sPS / PMMA supercritical blend shown in FIG. 23, it can be seen that the tan δ peak (Tg) of sPS itself is around 110 ° C., and the tan δ peak of PMMA itself is around 140 ° C. On the other hand, in the supercritical blend, it can be seen that the tan δ peak is shifted to the low temperature side as a whole (around 90 to 120 ° C. depending on the PMMA content).

さらにE′を見ると、sPSでは一度減少し、再び上昇する。これは、sPSの構造において再配列が起こったためと考えられる。一方超臨界ブレンドではPMMAの含有量が多いほどこの再配列が起こる温度が上昇し、戻る幅が減少していることが分かる。重量増加率300wt%においてはほとんど戻らない。また、図24にsPS/PMMA超臨界ブレンドをアニーリングした結果を示すが、190℃に加熱することで再配列が既に進行しているので、E′においてそのピークが観測されないが、アニーリング前と同等の強度を保っていることがわかる。この結果は、SAXSの測定結果からも強く示唆されるように、PMMAポリマー分子がsPSポリマー分子の非晶質領域に強く作用し、sPSの再配列を阻害していると考えられる。興味深いことに、この現象は、PMMA自体の分解温度以上においてもその効果が認められることである。   Looking further at E ', sPS decreases once and then increases again. This is probably because rearrangement occurred in the structure of sPS. On the other hand, it can be seen that in the supercritical blend, the higher the PMMA content, the higher the temperature at which this rearrangement occurs, and the lower the return width. It hardly returns at a weight increase rate of 300 wt%. FIG. 24 shows the result of annealing the sPS / PMMA supercritical blend. Since rearrangement has already progressed by heating to 190 ° C., the peak is not observed at E ′, but it is the same as before annealing. It can be seen that the strength of is maintained. This result is considered that the PMMA polymer molecule acts strongly on the amorphous region of the sPS polymer molecule and inhibits the rearrangement of sPS, as strongly suggested from the measurement result of SAXS. Interestingly, this phenomenon is recognized as being effective even above the decomposition temperature of PMMA itself.

図25〜27には結晶構造解析のための小角X線散乱(SAXS)曲線を示す。sPS自体では、ラメラ繰り返し構造の長周期は観測されなかった。また有機溶媒ブレンドでは海島構造を形成しているため小角側ほど散乱強度が増大した。一方、超臨界ブレンド(65wt%)ではq=0.04Å−1(長周期16nm)においてそのピークが観測されるが、この結果はPMMAがsPS中の特定の非晶領域に侵入(ブレンド)した結果、ラメラ繰り返し構造間が広げられことによると考えられる。またPMMAの含浸量が増加したとき、そのピークがq=0.018Å−1(長周期35nm)にシフトしている。これは、sPS中のラメラ繰返し構造間の非晶層に含浸したPMMAがさらに非晶領域を広げ、ラメラ繰り返し構造間が広げられたことによると考えられる。超臨界ブレンドをアニーリング処理(300℃、1min)したものではこの長周期のピークがほぼ消失し小角側に大きなピークが観測される。この結果は300℃のアニール処理によりマクロ相分離構造を形成したものと考えられ、先に説明したTEMの観察結果と一致する。一方、図26、27に示されるように、sPSの結晶が融解しない温度190℃でアニーリング処理(65〜97wt%、1min、5min、10min)したものでは、長周期ピークが高温側にシフトするが、300℃でのアニーリング処理および有機溶媒ブレンドとは全く異なっている。これは、190℃でアニーリング処理をしても超臨界ブレンドで形成したナノメートルオーダーのミクロ相分離構造はほとんど崩壊せず、ミクロンオーダーの海島構造は形成しておらず、超臨界ブレンドで形成したのモルフォロジーを保持していると考えられる。 25 to 27 show small angle X-ray scattering (SAXS) curves for crystal structure analysis. In sPS itself, a long period of a lamellar repeating structure was not observed. In the organic solvent blend, since the sea island structure was formed, the scattering intensity increased as the angle decreased. On the other hand, in the supercritical blend (65 wt%), the peak is observed at q = 0.04Å −1 (long period 16 nm). This result indicates that PMMA penetrates (blends) into a specific amorphous region in sPS. As a result, it is considered that the space between the lamellar repeating structures is widened. Further, when the amount of impregnation with PMMA increases, the peak shifts to q = 0.018 -1 (long period 35 nm). This is considered to be due to the PMMA impregnated in the amorphous layer between the lamellar repeating structures in sPS further expanding the amorphous region and the space between the lamellar repeating structures. When the supercritical blend is annealed (300 ° C., 1 min), this long-period peak almost disappears and a large peak is observed on the small angle side. This result is considered to have formed a macrophase separation structure by annealing at 300 ° C., and agrees with the observation result of TEM described above. On the other hand, as shown in FIGS. 26 and 27, in the case where the annealing treatment (65 to 97 wt%, 1 min, 5 min, 10 min) is performed at a temperature of 190 ° C. at which the sPS crystal does not melt, the long period peak shifts to the high temperature side. This is completely different from the annealing treatment at 300 ° C. and the organic solvent blend. This is because even when annealed at 190 ° C., the nanometer-order microphase separation structure formed with the supercritical blend hardly collapses, the micron-order sea-island structure does not form, and is formed with the supercritical blend. It is thought that it retains the morphology.

図28には引張り試験の結果を示す。sPS自体とPMMA自体は共に硬い材料であるため超臨界ブレンドの比較が困難であるが、PMMAの方がわずかに伸び率が高いため、超臨界ブレンドではsPSとPMMAがほぼ1:1のためsPSとPMMAとのちょうど間に観測された。通常マクロ相分離を形成しているものは、その界面に応力が集中し基質や含浸物質よりも物性が落ちると予測されるので、超臨界ブレンドではミクロ相分離構造を形成し、強い絡み合いを起こしていると考えられる。   FIG. 28 shows the result of the tensile test. Since both sPS itself and PMMA itself are hard materials, it is difficult to compare supercritical blends. However, since PMMA has a slightly higher elongation, sPS and PMMA are almost 1: 1 in supercritical blends. And was observed just between PMMA. Those that normally form macro-phase separation are expected to concentrate stress at the interface and have a lower physical property than the substrate or impregnated material, so supercritical blends form a micro-phase separation structure and cause strong entanglement. It is thought that.

(PMMAとPPの複合材料)
基質の作成:反応に用いたイソタクチックポリプロピレン(iPP)は株式会社チッソ製のペレットをヒートプレスにて190℃、15分間溶解後、20MPa、20分間加圧し、その後冷却してPP基質(シートを20×20×0.5mmにカットして使用)。
(Composite material of PMMA and PP)
Preparation of substrate: Isotactic polypropylene (iPP) used in the reaction was prepared by dissolving Chisso Corporation pellets at 190 ° C. for 15 minutes in a heat press, pressurizing at 20 MPa for 20 minutes, and then cooling to PP substrate (sheet) Is cut into 20 × 20 × 0.5 mm).

使用した試薬は実施例1、2と同じ物を用いた。   The same reagents as used in Examples 1 and 2 were used.

反応装置は実施例1で使用したものと同じ装置を用いた(Jasco SCF−Get(超臨界二酸化炭素流体注入ポンプ)、SCF−Sro(空気恒温槽))。   The same reactor as that used in Example 1 was used (Jasco SCF-Get (supercritical carbon dioxide fluid injection pump), SCF-Sro (air thermostat)).

含浸条件:メタクリル酸メチル(MMA)2g、α、α’−アゾビスイソブチロニトリル(AIBN)を1mol%(0.0328g)を採取し、PP基質と共に反応装置に仕込んだ。後表に記載された条件で反応装置内に二酸化炭素を供給し含浸させた。また含浸処理のscCOの圧力は5分含浸、1時間含浸でそれぞれ6.3MPa、6.8MPaであった。 Impregnation conditions: 2 g of methyl methacrylate (MMA), 1 mol% (0.0328 g) of α, α′-azobisisobutyronitrile (AIBN) was collected and charged into the reactor together with the PP substrate. Carbon dioxide was supplied and impregnated into the reactor under the conditions described in the following table. Further, the pressure of scCO 2 for the impregnation treatment was 6.3 MPa and 6.8 MPa for 5 minutes impregnation and 1 hour impregnation, respectively.

重合条件:後温度を80℃にして所定圧力下で24時間反応させた。また重合圧力は5分含浸後の重合反応では9.1MPa、1時間含浸後の重合反応では9.4MPaであった。反応終了後、反応セルを急冷しセル内の二酸化炭素を系外に除去した。基質表面に付着したポリマーを取り除くため、熱アセトンで2回洗浄して得られた高分子複合材料表面に付着したポリマーを溶解、洗浄を行なった。その後基質が恒量となるまで50℃にて真空加温乾燥した。溶解したポリマーは反応セル内のポリマーと同様にヘキサンにより再沈殿して分別回収後、50℃にて真空加温乾燥し回収した。   Polymerization conditions: The post-temperature was set to 80 ° C. and reacted for 24 hours under a predetermined pressure. The polymerization pressure was 9.1 MPa for the polymerization reaction after 5 minutes of impregnation and 9.4 MPa for the polymerization reaction after 1 hour of impregnation. After completion of the reaction, the reaction cell was rapidly cooled to remove carbon dioxide in the cell out of the system. In order to remove the polymer adhering to the substrate surface, the polymer adhering to the polymer composite surface obtained by washing twice with hot acetone was dissolved and washed. Thereafter, the substrate was vacuum-heated and dried at 50 ° C. until the substrate became a constant weight. The dissolved polymer was re-precipitated with hexane in the same manner as the polymer in the reaction cell, separated and recovered, and then recovered by vacuum drying at 50 ° C.

図29にはscCO Blend(含浸条件35℃、5min)のSAXS測定で得たローレンツ補正散乱強度(I(q)q)のq(散乱ベクトル)に対するプロットを示した。図中の数値はブレンド中の各成分の重量比を表わす。PP基質では第1ピーク(q=0.43)、第2ピーク(q=0.88)および第3ピーク(q=1.28)が観測され、PP結晶層(PPc)−PP非晶層(PPa)の繰り返し長周期の平均値約14.3nmであった。 FIG. 29 shows a plot of Lorentz corrected scattering intensity (I (q) q 2 ) obtained by SAXS measurement of scCO 2 Blend (impregnation condition 35 ° C., 5 min) against q (scattering vector). The numerical values in the figure represent the weight ratio of each component in the blend. In the PP substrate, the first peak (q = 0.43), the second peak (q = 0.88) and the third peak (q = 1.28) are observed, and the PP crystal layer (PPc) -PP amorphous layer The average value of the long cycle of (PPa) was about 14.3 nm.

また、PPとPMMAの均一溶液から調製したOrganic Solvent BlendではPPc−PPa構造の散乱ピークだけが観察されたが、これはPPとPMMAがマイクロメートルオーダーの海/島構造を形成しているためと考えられる。   In Organic Solvent Blend prepared from a homogeneous solution of PP and PMMA, only PPc-PPa structure scattering peaks were observed. This is because PP and PMMA formed a sea / island structure of micrometer order. Conceivable.

一方、scCO Blendでは、PMMA含量の増加に伴い、PP単独で観察されたPPc−PPa間の散乱ピークが広角側へシフトし、長周期はわずかに短くなり、同時に小角側にショルダーが現われ、重量増加率39wt%でq=0.20付近(長周期31.4nm)に新たな繰り返し構造に相当するピークとなり、その散乱の強度は徐々に大きくなった。 On the other hand, with scCO 2 Blend, as the PMMA content increases, the PPc-PPa scattering peak observed with PP alone shifts to the wide-angle side, the long period slightly shortens, and at the same time a shoulder appears on the small-angle side, At a weight increase rate of 39 wt%, a peak corresponding to a new repetitive structure was observed around q = 0.20 (long period 31.4 nm), and the intensity of scattering gradually increased.

この結果は、PMMAが結晶層間の全てのPPa層で生成したのではなく、重合はscCOが浸透拡散したPPa層だけで重点的に起こり、PPa/PMMA層が不均一に形成した結果、PPa層とPPa/PMMA層の2種類の非晶領域が存在することを示している。 This result shows that PMMA was not generated in all PPa layers between the crystal layers, but polymerization occurred mainly only in the PPa layer in which scCO 2 was permeated and diffused, and as a result of the non-uniform formation of the PPa / PMMA layer, It shows that there are two types of amorphous regions, namely a layer and a PPa / PMMA layer.

しかしながら、scCOBlend 100/109を結晶が融解する条件(190℃、1min)で加熱するとOrganic Solvent Blendとほぼ同じ散乱ピークとなり、形成されたナノ構造は熱力学的に不安定で直ちに崩壊することを示している。 However, when scCO 2 Blend 100/109 is heated under the condition that the crystal melts (190 ° C., 1 min), the scattering peak is almost the same as that of Organic Solvent Blend, and the formed nanostructure is thermodynamically unstable and immediately collapses. Is shown.

また、DMA曲線から、OrganicSolvent BlendのPMMA鎖のTg はPMMA単独(130℃付近)と同程度であるが、scCOBlendのPMMA鎖は100℃付近に低下した。これはPP非晶分子との絡み合いにより可塑化されたからであると考えられる。しかし、加熱(190℃、1min)により、このナノ構造が崩壊し、PMMA単独と同じ130℃付近に再び上昇する。この再加熱によるナノ構造の分離崩壊は引っ張り試験結果からも分かる。 Moreover, from the DMA curve, Tg of the PMMA chain of Organic Solvent Blend was the same as that of PMMA alone (around 130 ° C.), but the PMMA chain of scCO 2 Blend decreased to around 100 ° C. This is considered to be because it was plasticized by entanglement with PP amorphous molecules. However, heating (190 ° C., 1 min) causes the nanostructure to collapse and rise again to around 130 ° C., the same as PMMA alone. This separation / disintegration of the nanostructure due to reheating can also be seen from the tensile test results.

表5には種々の含浸条件(40℃、5min、1hおよび6h)で調製して得られた高分子複合材料(scCOBlend)の重量増加率(Mass gain)、PP含有量(Weight fraction of PP)、Tm(℃)、scCOBlend中のPP基質の結晶融解エンタルピー値(DSC)から算出した結晶化度を示した。 Table 5 shows the weight gain (Weight gain) and PP content (Weight fraction of) of the polymer composite material (scCO 2 Blend) prepared under various impregnation conditions (40 ° C., 5 min, 1 h and 6 h). The crystallinity calculated from the crystal melting enthalpy value (DSC) of the PP substrate in PP), Tm (° C.), and scCO 2 Blend was shown.

PP基質の結晶化度は含浸・重合条件でのscCO処理(PP(scCO))によって増加することが分かる。またscCOBlendの結晶化度はPMMA含量に対して、バラツキが認められるが、PPの結晶領域はほとんどそのまま保持されていることを示唆している。この結果、本実験条件下での含浸・重合は非晶領域で生起していると考えられる。 It can be seen that the crystallinity of the PP substrate increases with scCO 2 treatment (PP (scCO 2 )) under impregnation and polymerization conditions. Moreover, although the crystallinity of scCO 2 Blend varies with respect to the PMMA content, it suggests that the crystal region of PP is almost retained. As a result, it is considered that the impregnation and polymerization under the experimental conditions occur in the amorphous region.

図30にこれらの含浸条件(40℃、5minおよび1h)で調製したscCOBlendのSAXSプロファイルを示す。とくに含浸時間1hでは、35℃、5min含浸で調製したscCO Blend のSAXS曲線(Fig.1)とは全く異なり、PP基質で観測されたPPc−PPa層(q=0.5付近)に相当するピークは著しく減少し、広いq値の範囲で極微小なピークがいくつも観測され、また、散乱強度は小角側で急激に増大した。これは、含浸温度の上昇および時間の増加によって、MMAが溶解したscCOがPPc層を保ったまま、ほとんど全てのPPa層にだけ含浸・重合し、生成したPMMAによりPPc−PPa/PMMA繰り返し構造の長周期が増大したことを強く示唆している。 FIG. 30 shows the SAXS profile of scCO 2 Blend prepared under these impregnation conditions (40 ° C., 5 min and 1 h). In particular, at an impregnation time of 1 h, it is completely different from the SAXS curve (Fig. 1) of scCO 2 Blend prepared by impregnation at 35 ° C. for 5 min, and corresponds to a PPc-PPa layer (near q = 0.5) observed with a PP substrate. The number of peaks was significantly reduced, a number of extremely small peaks were observed in a wide q-value range, and the scattering intensity increased rapidly on the small angle side. This is because scCO 2 in which MMA is dissolved is impregnated and polymerized in almost all PPa layers while maintaining the PPc layer by increasing the impregnation temperature and time, and the PPc-PPa / PMMA repeating structure is formed by the generated PMMA. It strongly suggests that the long period increased.

さらに、scCOBlend含浸時間1h 100/143を加熱(190℃、1min)すると微小なピークは僅かに増加するが、PP基質のPPc−PPa層の長周期に相当する明瞭なピークは出現しなかった。 Furthermore, when the scCO 2 Blend impregnation time 1h 100/143 is heated (190 ° C., 1 min), the minute peak slightly increases, but no clear peak corresponding to the long period of the PP substrate PPc-PPa layer appears. It was.

この結果から本含浸条件下で調製したscCOBlendはPP基質の結晶が融解する温度で加熱しても、形成されたナノ構造はほとんどそのまま保持されていることが分かる。すなわち、MMAがscCOの特性によって一つの連続相であるPP基質中のほとんど全てのPPa層に含浸し、その場(in situ)で重合して生成したPMMAはPP基質中で新たな連続相となり、PP/PMMA共連続構造によるIPNが形成し、加熱によるナノ構造の分離崩壊が緩和されたことを示唆している。 From this result, it can be seen that scCO 2 Blend prepared under the present impregnation condition retains the formed nanostructure almost as it is even when heated at a temperature at which the PP substrate crystals melt. That is, MMA is impregnated in almost all PPa layers in a PP substrate which is one continuous phase due to the characteristics of scCO 2 , and PMMA produced by polymerization in situ is a new continuous phase in the PP substrate. Thus, it is suggested that IPN having a PP / PMMA co-continuous structure was formed, and separation and collapse of the nanostructure due to heating was alleviated.

本発明の新規な高分子複合体は、従来のいわゆるポリマーブレンドから予想される物性とは全く異なる熱的、力学的物性を示す。すなわち本発明の高分子複合体は通常熱力学的に分散されない高分子を相互に分子ナノオーダーで分散させたものであることから、全く新たな利用分野を切り開く高分子材料として汎用性化、機能性化が可能である。   The novel polymer composite of the present invention exhibits thermal and mechanical properties that are completely different from those expected from conventional so-called polymer blends. In other words, the polymer composite of the present invention is a polymer material that is not usually thermodynamically dispersed in the order of molecular nanometers. Sexualization is possible.

図1は、LDPE/PMMAscCOblend、HDPE/PMMAscCOblend、LDPE/PMMAxyleneblend、HDPE/PMMAxyleneblendの結晶融解エンタルピー及び計算値を重量分率に対してプロットしたものである。FIG. 1 is a plot of LDPE / PMMAscCO 2 blend, HDPE / PMMAscCO 2 blend, LDPE / PMMA xylene blend, HDPE / PMMA xylene blend and calculated values against weight fraction.

図2は、HDPE、HDPE/PMMA8%hybrid、HDPE/PMMA14%hybrid、HDPE/PMMA20%hybrid、HDPE/PMMA27%hybrid、HDPE/PMMA54%hybrid、HDPE/PMMA102%hybridのTGの結果を示す。FIG. 2 shows TG results of HDPE, HDPE / PMMA 8% hybrid, HDPE / PMMA 14% hybrid, HDPE / PMMA 20% hybrid, HDPE / PMMA 27% hybrid, HDPE / PMMA 54% hybrid, and HDPE / PMMA 102% hybrid.

図3は、LDPE、LDPE/PMMA0.7%hybrid、LDPE/PMMA13%hybrid、LDPE/PMMA33%hybrid、LDPE/PMMA136%hybridのTGの結果を示す。FIG. 3 shows TG results of LDPE, LDPE / PMMA 0.7% hybrid, LDPE / PMMA 13% hybrid, LDPE / PMMA 33% hybrid, and LDPE / PMMA 136% hybrid.

図4は、HDPE、PMMA、HDPE/PMMA50%24時間含浸、HDPE/PMMA95%24時間含浸、HDPE/PMMA102%1時間含浸、HDPE/PMMA95%アニーリング170℃1分、HDPE/PMMA有機溶媒系blendのDMA曲線(昇温レート5℃/分、周波数10Hz)を示す。FIG. 4 shows the impregnation of HDPE / PMMA, HDPE / PMMA 50% for 24 hours, HDPE / PMMA 95% for 24 hours, HDPE / PMMA 102% for 1 hour, HDPE / PMMA 95% annealing at 170 ° C. for 1 minute, HDPE / PMMA organic solvent blend The DMA curve (temperature rising rate 5 ° C./min, frequency 10 Hz) is shown.

図5は、LDPE、PMMA、LDPE/PMMA99%24時間含浸、LDPE/PMMA89%1時間含浸、LDPE/PMMA有機溶媒系blend、LDPE/PMMA105%24時間含浸アニーリング170℃20分、のDMA曲線(昇温レート5℃/分、周波数10Hz)を示す。DMA曲線を示す。FIG. 5 shows a DMA curve of LDPE, PMMA, LDPE / PMMA 99% impregnation for 24 hours, LDPE / PMMA 89% impregnation for 1 hour, LDPE / PMMA organic solvent blend, LDPE / PMMA 105% 24 hours impregnation annealing at 170 ° C. for 20 minutes. Temperature rate 5 ° C./min, frequency 10 Hz). The DMA curve is shown.

図6は、HDPE、HDPE/PMMA有機溶媒系blend170℃20分、HDPE/PMMA115.4%24時間含浸(AIBN0.1mol%)、HDPE/PMMA123.7%24時間含浸(AIBN0.1mol%)、HDPE/PMMA79.7%24時間含浸(AIBN0.1mol%)、HDPE/PMMA50.3%24時間含浸(AIBN1mol%)、HDPE/PMMA77.8%24時間含浸(AIBN1mol%)、HDPE/PMMA109.5%1時間含浸(AIBN1mol%)、のSAXS測定で得られたローレンツ補正Iqのqに対するプロットを示した。FIG. 6 shows HDPE, HDPE / PMMA organic solvent blend at 170 ° C. for 20 minutes, HDPE / PMMA 115.4% impregnation for 24 hours (AIBN 0.1 mol%), HDPE / PMMA 123.7% impregnation for 24 hours (AIBN 0.1 mol%), HDPE / PMMA 79.7% 24 hour impregnation (AIBN 0.1 mol%), HDPE / PMMA 50.3% 24 hour impregnation (AIBN 1 mol%), HDPE / PMMA 77.8% 24 hour impregnation (AIBN 1 mol%), HDPE / PMMA 109.5% 1 A plot of q of Lorentz-corrected Iq 2 obtained by SAXS measurement of time impregnation (AIBN 1 mol%) is shown.

図7は、HDPE/PMMA50.3%24時間含浸(AIBN1mol%)、HDPE/PMMA50.3%24時間含浸(AIBN1mol%)アニ‐リング170℃1分、HDPE/PMMA77.8%24時間含浸(AIBN1mol%)、HDPE/PMMA87.3%24時間含浸(AIBN1mol%)アニ‐リング170℃1分、HDPE/PMMA109.5%1時間含浸(AIBN1mol%)、HDPE/PMMA109.5%1時間含浸(AIBN1mol%)アニ‐リング170℃1分、のSAXS測定で得られたローレンツ補正Iqのqに対するプロットを示した。FIG. 7 shows HDPE / PMMA 50.3% impregnation for 24 hours (AIBN 1 mol%), HDPE / PMMA 50.3% impregnation for 24 hours (AIBN 1 mol%), an annealing 170 ° C. for 1 minute, HDPE / PMMA 77.8% for 24 hours impregnation (AIBN 1 mol) %), HDPE / PMMA 87.3% impregnation for 24 hours (AIBN 1 mol%) Annealing 170 ° C. for 1 minute, HDPE / PMMA 109.5% for 1 hour impregnation (AIBN 1 mol%), HDPE / PMMA 109.5% for 1 hour impregnation (AIBN 1 mol%) ) The plot of Lorentz corrected Iq 2 obtained by SAXS measurement at 170 ° C. for 1 minute at annealing was plotted against q.

図8は、HDPE/PMMA115.4%24時間含浸(AIBN0.1mol%)、HDPE/PMMA115.4%24時間含浸(AIBN0.1mol%)アニ‐リング170℃40分、HDPE/PMMA123.7%24時間含浸(AIBN0.1mol%)、HDPE/PMMA123.7%24時間含浸(AIBN0.1mol%)アニ‐リング170℃5分、HDPE/PMMA79.7%24時間含浸(AIBN0.1mol%)、HDPE/PMMA79.7%24時間含浸(AIBN0.1mol%)アニ‐リング170℃5分、HDPE/PMMA79.7%24時間含浸(AIBN0.1mol%)アニ‐リング170℃40分、のSAXS測定で得られたローレンツ補正Iqのqに対するプロットを示した。FIG. 8 shows HDPE / PMMA 115.4% 24 hour impregnation (AIBN 0.1 mol%), HDPE / PMMA 115.4% 24 hour impregnation (AIBN 0.1 mol%), annealing at 170 ° C. for 40 minutes, HDPE / PMMA 123.7% 24 Time impregnation (AIBN 0.1 mol%), HDPE / PMMA 123.7% 24 hour impregnation (AIBN 0.1 mol%) Annealing 170 ° C. 5 minutes, HDPE / PMMA 79.7% 24 hours impregnation (AIBN 0.1 mol%), HDPE / Obtained by SAXS measurement of PMMA 79.7% 24-hour impregnation (AIBN 0.1 mol%) annealing at 170 ° C for 5 minutes, HDPE / PMMA 79.7% 24-hour impregnation (AIBN 0.1 mol%) annealing at 170 ° C for 40 minutes. The plot of Lorentz correction Iq 2 with respect to q is shown.

図9は、LDPE、LDPE/PMMA有機溶媒系blend170℃20分、LDPE/PMMA82.2%24時間含浸、LDPE/PMMA84.4%24時間含浸、LDPE/PMMA106.7%1時間含浸、のSAXS測定で得られたローレンツ補正Iqのqに対するプロットを示した。FIG. 9 shows SAXS measurement of LDPE, LDPE / PMMA organic solvent blend 170 ° C. for 20 minutes, LDPE / PMMA 82.2% 24 hours impregnation, LDPE / PMMA 84.4% 24 hours impregnation, LDPE / PMMA 106.7% 1 hour impregnation. The plot of Lorentz correction Iq 2 obtained in step 1 against q is shown.

図10は、LDPE/PMMA82.2%24時間含浸、LDPE/PMMA104.7%24時間含浸アニ‐リング170℃20分、LDPE/PMMA84.4%24時間含浸、LDPE/PMMA84.4%24時間含浸アニ‐リング170℃5分、LDPE/PMMA84.4%24時間含浸アニ‐リング170℃40分、のSAXS測定で得られたローレンツ補正Iqのqに対するプロットを示した。FIG. 10 shows LDPE / PMMA 82.2% 24 hour impregnation, LDPE / PMMA 104.7% 24 hour impregnation annealing 170 ° C. 20 minutes, LDPE / PMMA 84.4% 24 hour impregnation, LDPE / PMMA 84.4% 24 hour impregnation A plot of Lorentz-corrected Iq 2 with respect to q obtained by SAXS measurement of annealing at 170 ° C. for 5 minutes and LDPE / PMMA 84.4% 24 hour impregnation annealing at 170 ° C. for 40 minutes is shown.

図11は、HDPE/PMMA100%有機溶媒系blend170℃20分のTEM(倍率4,000倍)。FIG. 11 is a TEM (magnification: 4,000 times) of HDPE / PMMA 100% organic solvent blend at 170 ° C. for 20 minutes.

図12は、HDPE/PMMA77.8%24時間含浸のTEM(倍率4,000倍)。FIG. 12 is a TEM of HDPE / PMMA 77.8% impregnation for 24 hours (magnification 4,000 times).

図13は、HDPE/PMMA87.3%24時間含浸アニ‐リング170℃1分のTEM(倍率4,000倍)。FIG. 13 is a TEM of HDPE / PMMA 87.3% 24-hour impregnation annealing at 170 ° C. for 1 minute (magnification 4,000 times).

図14は、LDPE/PMMA100%有機溶媒系blend170℃20分のTEM(倍率4,000倍)。FIG. 14 is a TEM of LDPE / PMMA 100% organic solvent blend 170 ° C. for 20 minutes (magnification 4,000 times).

図15は、LDPE/PMMA82.2%24時間含浸のTEM(倍率4,000倍)。FIG. 15 is a TEM of LDPE / PMMA 82.2% 24 hours impregnation (magnification 4,000 times).

図16は、HDPE/PMMA104.7%24時間含浸アニ‐リング170℃20分のTEM(倍率4,000倍)。FIG. 16 shows HDPE / PMMA 104.7% 24-hour impregnation annealing TEM at 170 ° C. for 20 minutes (magnification: 4,000 times).

図17は、sPS基質自体のTEM(倍率7,000倍)を示す。FIG. 17 shows the TEM (magnification 7,000 times) of the sPS substrate itself.

図18は、sPS/PMMA有機溶媒ブレンドのTEM(倍率7,000倍)結果を示す。FIG. 18 shows the TEM (magnification 7,000 times) result of the sPS / PMMA organic solvent blend.

図19は、sPS/PMMA超臨界ブレンドのTEM写真(倍率7,000倍)を示す。FIG. 19 shows a TEM photograph (magnification: 7,000 times) of the sPS / PMMA supercritical blend.

図20は、sPS/PMMA超臨界ブレンドの拡大TEM写真(倍率40,000倍)を示す。FIG. 20 shows an enlarged TEM photograph (magnification 40,000 times) of the sPS / PMMA supercritical blend.

図21は、sPS/PMMA超臨界ブレンドを300℃で1分間アニーリングした結果のTEMを示す。ここで(A)は倍率7,000倍、(B)は倍率40,000倍。FIG. 21 shows a TEM of the result of annealing the sPS / PMMA supercritical blend at 300 ° C. for 1 minute. Here, (A) is a magnification of 7,000 times, and (B) is a magnification of 40,000 times.

図22は、sPS、PMMA、sPS/PMMA(scCOブレンド1:0.8)、sPS/PMMA(有機溶媒ブレンド1:1)の、TGによる分析結果を示す。FIG. 22 shows the results of TG analysis of sPS, PMMA, sPS / PMMA (scCO 2 blend 1: 0.8), and sPS / PMMA (organic solvent blend 1: 1).

図23は、sPS、PMMA、sPS/PMMAscCOブレンド(85wt%)、sPS/PMMAscCOブレンド(290wt%)の、DMA(昇温レート5℃/分、周波数10Hz)による分析結果を示す。FIG. 23 shows the results of analysis of sPS, PMMA, sPS / PMMAscCO 2 blend (85 wt%), and sPS / PMMAscCO 2 blend (290 wt%) by DMA (heating rate 5 ° C./min, frequency 10 Hz).

図24は、sPS、PMMA、sPS/PMMAscCOブレンド(85wt%)、sPS/PMMAscCOブレンド(95wt%、アニーリング、190℃、1min)、sPS/PMMAscCOブレンド(79wt%、アニーリング、190℃、10min)の、DMA(昇温レート5℃/分、周波数10Hz)による分析結果を示す。FIG. 24 shows sPS, PMMA, sPS / PMMAscCO 2 blend (85 wt%), sPS / PMMAscCO 2 blend (95 wt%, annealing, 190 ° C., 1 min), sPS / PMMAscCO 2 blend (79 wt%, annealing, 190 ° C., 10 min) ) Shows the analysis result by DMA (temperature increase rate 5 ° C./min, frequency 10 Hz).

図25は、sPS、sPS/PMMAscCOブレンド(65wt%)、sPS/PMMAscCOブレンド(330wt%)、sPS/PMMA有機溶媒ブレンドの、SAXS測定で得られたローレンツ補正Iqのqに対するプロットを示した。FIG. 25 shows plots of Lorenz corrected Iq 2 obtained by SAXS measurement with respect to q for sPS, sPS / PMMAscCO 2 blend (65 wt%), sPS / PMMAscCO 2 blend (330 wt%), and sPS / PMMA organic solvent blend. It was.

図26は、sPS/PMMAscCOブレンド(65wt%)、sPS/PMMAscCOブレンド(65wt%、アニーリング、190℃、1min)、sPS/PMMAscCOブレンド(96wt%、アニーリング、190℃、5min)、sPS/PMMAscCOブレンド(79wt%、アニーリング、190℃、10min)のSAXS測定で得られたローレンツ補正Iqのqに対するプロットを示した。FIG. 26 shows sPS / PMMAscCO 2 blend (65 wt%), sPS / PMMAscCO 2 blend (65 wt%, annealing, 190 ° C., 1 min), sPS / PMMAscCO 2 blend (96 wt%, annealing, 190 ° C., 5 min), sPS / A plot of Lorentz-corrected Iq 2 obtained by SAXS measurement of PMMAscCO 2 blend (79 wt%, annealing, 190 ° C., 10 min) against q is shown.

図27は、sPS/PMMAscCOブレンド(330wt%)、sPS/PMMAscCOブレンド(330wt%、アニーリング、190℃、1min)のSAXS測定で得られたローレンツ補正Iqのqに対するプロットを示した。FIG. 27 shows a plot of Lorentz-corrected Iq 2 against q obtained by SAXS measurement of sPS / PMMAscCO 2 blend (330 wt%) and sPS / PMMAscCO 2 blend (330 wt%, annealing, 190 ° C., 1 min).

図28は、sPS基質、PMMA、sPS/PMMAscCOブレンド(86wt%)の、引張り試験(応力/歪み)の結果を示す。FIG. 28 shows the results of a tensile test (stress / strain) for an sPS substrate, PMMA, sPS / PMMAscCO 2 blend (86 wt%).

図29は、PP、有機溶媒ブレンド、含浸条件(35℃で5分間)で調製したPP/PMMAのSAXS測定で得られたローレンツ補正Iqのqに対するプロットを示した。FIG. 29 shows a plot of Lorentz-corrected Iq 2 against q obtained by SAXS measurement of PP / PMMA prepared under PP, organic solvent blending and impregnation conditions (35 ° C. for 5 minutes).

図30は、PP、有機溶媒ブレンド、種々の含浸条件(40℃で5分間、1時間)で調製した、PP/PMMAのSAXS測定で得られたローレンツ補正Iqのqに対するプロットを示した。FIG. 30 shows a plot of Lorentz-corrected Iq 2 versus q, obtained from PP / PMMA SAXS measurements, prepared with PP, an organic solvent blend, and various impregnation conditions (5 minutes at 40 ° C.).

Claims (4)

熱力学的に混じり合わない非晶性高分子と結晶性高分子とからなる高分子複合体であり、非晶性高分子であるPMMA系ポリマーが結晶性高分子であるシンジオタクチックポリスチレンの非晶層(球晶間、フィブリルのミクロボイド、及びラメラ構造間の全て)にナノメートルオーダーで分散して共連続相相互進入網目(IPN)を形成していることを特徴とする高分子複合体。 This is a polymer composite consisting of an amorphous polymer and a crystalline polymer that do not mix thermodynamically, and the non-crystalline PMMA polymer is a non-crystalline syndiotactic polystyrene that is a crystalline polymer. A polymer composite comprising a co-continuous interpenetrating network (IPN) dispersed in a nanometer order in crystal layers (all between spherulites, fibril microvoids, and lamella structures). 熱力学的に混じり合わない非晶性高分子と結晶性高分子とからなる高分子複合体であり、非晶性高分子であるPMMA系ポリマーが結晶性高分子であるシンジオタクチックポリスチレンの非晶層(球晶間、フィブリルのミクロボイド、及びラメラ構造間の全て)にナノメートルオーダーで分散して共連続相相互進入網目(IPN)を形成していることを特徴とする高分子複合体の製造方法であって、結晶高分子の結晶構造が崩壊しない条件下で、通常熱力学的に混じり合わない非晶性高分子のモノマーを結晶性高分子基質に含浸し、その含浸させたモノマーを基質内で重合することを特徴とする製造方法。 This is a polymer composite consisting of an amorphous polymer and a crystalline polymer that do not mix thermodynamically, and the non-crystalline PMMA polymer is a non-crystalline syndiotactic polystyrene that is a crystalline polymer. A polymer composite characterized in that a co-continuous interpenetrating network (IPN) is formed by being dispersed in a nanometer order in crystal layers (all between spherulites, fibril microvoids, and lamellar structures). A manufacturing method in which a crystalline polymer substrate is impregnated with a monomer of an amorphous polymer that does not normally mix thermodynamically under a condition that the crystal structure of the crystalline polymer does not collapse, and the impregnated monomer is A production method comprising polymerizing in a substrate. 超臨界流体中で非晶性高分子のモノマーを含浸させ重合させることを特徴とする、請求項2に記載の製造方法。   The production method according to claim 2, wherein the polymerization is performed by impregnating a monomer of an amorphous polymer in a supercritical fluid. 前記超臨界流体が超臨界二酸化炭素である、請求項3に記載の製造方法。   The production method according to claim 3, wherein the supercritical fluid is supercritical carbon dioxide.
JP2004106565A 2004-02-10 2004-03-31 Polymer composite material and manufacturing method thereof Expired - Fee Related JP4714821B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004106565A JP4714821B2 (en) 2004-02-10 2004-03-31 Polymer composite material and manufacturing method thereof
PCT/JP2005/001785 WO2005075570A1 (en) 2004-02-10 2005-02-07 Polymer composite material and process for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004034159 2004-02-10
JP2004034159 2004-02-10
JP2004106565A JP4714821B2 (en) 2004-02-10 2004-03-31 Polymer composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005255964A JP2005255964A (en) 2005-09-22
JP4714821B2 true JP4714821B2 (en) 2011-06-29

Family

ID=34840184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106565A Expired - Fee Related JP4714821B2 (en) 2004-02-10 2004-03-31 Polymer composite material and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4714821B2 (en)
WO (1) WO2005075570A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117718B2 (en) * 2004-03-08 2013-01-16 学校法人日本大学 Porous nanomaterial polymer composite
US8802197B2 (en) * 2006-11-03 2014-08-12 Ptt Holding Aps Method of producing an article comprising an interpenetrating polymer network (IPN) and an article comprising an IPN
WO2008121798A1 (en) * 2007-03-28 2008-10-09 University Of Massachusetts Reinforced polymeric materials, methods of manufacture thereof and articles comprising the same
JP2010006851A (en) * 2008-06-24 2010-01-14 Shiga Pref Gov Composite resin and manufacturing method thereof
JP5590607B2 (en) * 2010-08-31 2014-09-17 国立大学法人 東京大学 Fabrication method of nano-periodic structure by polymer blend system
CN106084448B (en) * 2016-05-13 2018-08-17 宁波大学 A kind of thermal plastic high polymer composition inierpeneirating network structure and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK200301027A (en) * 2003-07-04 2005-01-05 Nkt Res & Innovation As A method of producing interpenetrating polymer networks (IPNs) and applications of IPNs

Also Published As

Publication number Publication date
WO2005075570A1 (en) 2005-08-18
JP2005255964A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP5686229B2 (en) Microporous membrane, method for producing the same, battery separator, and resin composition for non-aqueous electrolyte secondary battery separator
CA2848337C (en) Ncc-based supramolecular materials for thermoplastic and thermoset polymer composites
TW201022350A (en) Flexible acrylic foam composition
JP2008189910A (en) Method for producing polymer microporous body, polymer microporous body and separation membrane
WO2020066704A1 (en) Resin composition and molded body of same
WO2005075570A1 (en) Polymer composite material and process for producing the same
Jin et al. The possible scalability of mesophase separation on macrophase separation and crystallization of iPP/OBC blends
JP6061127B2 (en) Method for producing microporous membrane for non-aqueous electrolyte secondary battery separator and resin composition for non-aqueous electrolyte secondary battery separator
TW201905074A (en) Resin composition and method of producing the same
Mandal et al. Synthesis and characterization of nanocellulose reinforced full‐interpenetrating polymer network based on poly (vinyl alcohol) and polyacrylamide (both crosslinked) composite films
JP6079922B2 (en) Heat resistant sheet and manufacturing method thereof
Perilla et al. Rheological investigation of interactions between sorbitol and polyhedral oligomeric silsesquioxane in development of nanocomposites of isotactic polypropylene
Clapper et al. Compatibilization of immiscible polymer networks through photopolymerization in a lyotropic liquid crystal
Chen et al. Largely improved tensile extensibility of poly (l‐lactic acid) by adding poly (ε‐caprolactone)
Fan et al. Mechanically robust, reprocessable shape memory fluorosilicon materials using β-H elimination reaction and in situ interfacial compatibilization
Gu et al. New driving forces and recent advances in polymerization-induced self-assembly
Wang et al. Preparation and foaming mechanism of foamable polypropylene based on self-assembled nanofibrils from sorbitol nucleating agents
Zhang et al. Crystallization and dynamic mechanical properties of polypropylene/polystyrene blends modified with maleic anhydride and styrene
JP4251641B2 (en) Method for producing polymer composite material
Zhu et al. Fabrication of LDPE/PS interpolymer resin particles through a swelling suspension polymerization approach
WO2021251327A1 (en) Molded body containing side chain crystalline block copolymer and method for producing same
JP2017095683A (en) Reinforcement agent-containing resin composition and molded body comprising the same
Dhandapani et al. Investigation of miscibility, crystallinity and phase morphology of a novel bio based poly (trimethylene terephthalate)/poly (butylene adipate-co-terephthalate) blend
Mittal Functional polymer blends: synthesis and microstructures
John et al. Phase Behavior of NR/PMMA Semi-IPNs and Development of Porous Structures. Polymers 2023, 15, 1353

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees