JP2004168843A - Organic polymer containing inorganic nanoparticle - Google Patents

Organic polymer containing inorganic nanoparticle Download PDF

Info

Publication number
JP2004168843A
JP2004168843A JP2002334507A JP2002334507A JP2004168843A JP 2004168843 A JP2004168843 A JP 2004168843A JP 2002334507 A JP2002334507 A JP 2002334507A JP 2002334507 A JP2002334507 A JP 2002334507A JP 2004168843 A JP2004168843 A JP 2004168843A
Authority
JP
Japan
Prior art keywords
organic polymer
monomer
inorganic nanoparticles
supercritical fluid
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002334507A
Other languages
Japanese (ja)
Inventor
Takashi Sawaguchi
孝志 澤口
Shoichiro Yano
彰一郎 矢野
Yoshihiro Chishima
好弘 千島
Mitsuko Ito
美津子 伊藤
Toru Hoshi
徹 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2002334507A priority Critical patent/JP2004168843A/en
Publication of JP2004168843A publication Critical patent/JP2004168843A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an organic polymer containing mesoporous inorganic nanoparticles and to obtain the organic polymer produced by the method. <P>SOLUTION: The mesoporous inorganic nanoparticles are immersed in a supercritical fluid containing a monomer and a polymerization initiator and impregnated with the monomer and the polymerization initiator and the monomer is polymerized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はメソポーラスな無機ナノ微粒子を含む有機ポリマーの製造方法、およびそれによって製造される有機ポリマーに関するものである。
【0002】
【従来技術】
一般に、有機ポリマーは熱に弱いが柔軟で、密度が低く、成形性が良いなどの特徴がある。一方、無機化合物はもろくて、成形性が悪い、密度が高いという欠点とともに、強度、弾性率、表面硬度などが高く光学特性に優れているという長所を有している。そこで従来からこれらの材料を複合化することにより両者の特徴を生かした新しい材料を創出する試みがなされている。
例えば、従来、ある基材にモノマーを含浸させ、そのモノマーを重合させてポリマーとする高分子複合材料の製造方法として、合成繊維にモノマー水溶液を付着させた後、密閉系で加熱処理してモノマーを重合させポリマーとする合成繊維の改質方法が記載されている(例えば、特許文献1参照)。しかしながら、こうした水溶液を用いる方法では、充分な量のモノマーが基材に含浸されているとは言い難い。
そこで、充分な量のモノマーが基材に含浸され、かつ該基材の内部や表面で該モノマーを重合し得る全く新しい製造方法が強く望まれている。
【0003】
【特許文献1】
特開昭60−246869号公報
【0004】
【発明が解決しようとする課題】
本発明は、メソポーラスな無機ナノ微粒子を含む有機ポリマーの製造方法、およびそれによって製造される有機ポリマーを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、充分な量の無機ナノ微粒子を含む有機ポリマーを得る方法について鋭意研究し、超臨界流体中で、メソポーラスな無機ナノ微粒子の存在下、モノマーを重合させることにより達成できることを見出し、本発明を完成した。
すなわち、本発明にかかる製造方法は、メソポーラスな無機ナノ微粒子と、モノマーと、重合開始剤とを含む超臨界流体中で、前記モノマーを重合させることを特徴とする、十分な量の無機ナノ微粒子を含む有機ポリマーの製造方法に関する。さらには、かかる本発明の製造方法により得られる無機ナノ微粒子を含む有機ポリマーに関する。
以下、本発明を実施の形態に即して詳細に説明する。
【0006】
【発明の実施の形態】
(製造方法)
本発明にかかる製造方法は、メソポーラスな無機ナノ微粒子と、モノマーと、重合開始剤とを含む超臨界流体中で、前記モノマーを重合させることによることを特徴とする。
【0007】
さらに詳細に説明すると、メソポーラスな無機ナノ微粒子をモノマー及び重合開始剤を含む超臨界流体に浸漬して、前記無機ナノ微粒子に前記モノマー及び前記重合開始剤を含浸させることを特徴とする。無機ナノ微粒子をモノマー及び重合開始剤を含む超臨界流体に浸漬すれば、無機ナノ微粒子の内部(メソポーラス構造のみならず、表面の凹凸等も含む)にまでモノマー及び重合開始剤を含浸させることが可能である。こうした優れた含浸性は、拡散性と溶解性を併せ持つ超臨界流体を用いて初めて実現するものである。優れた含浸性の結果として、無機ナノ微粒子とポリマーが一体化し、優れた物性を発現する有機ポリマーを得ることが可能となり、これらは新規な高分子複合材料として有用な材料として使用可能となる。
【0008】
本発明に用いられるメソポーラスな無機ナノ微粒子は、超臨界流体中で使用可能であれば特に形状(粒状、棒状、針状、板状)に制限はない。どのような形状であっても、超臨界流体を用いれば、前記無機ナノ微粒子の内部にまでモノマー及び重合開始剤を含浸させることが可能である。
また、材質についても超臨界流体中で使用可能であれば特に制限はなく、金属、セラミックス、多孔質シリカやカーボンナノチューブのような無機材質等が挙げられる。これらの中でも、とりわけ多孔質シリカや乾式ナノシリカが好ましく用いられる。これらは市販品を利用することができる。
【0009】
本発明に用いられるモノマーについても特に制限はなく、前記無機ナノ微粒子に含浸し、かつ超臨界流体中(または有機溶媒中、または無溶媒条件)でラジカル重合反応が進行しポリマーを与えるものであればよい。具体例としては、アクリルアミド、アクリル酸、アクリル酸メチル、アクリロニトリル、イソプレン、エチレン、塩化ビニル、クロロプレン、酢酸ビニル、スチレン、ブタジエン、プロピレン、メタクリル酸、メタクリル酸グリシジル、メタクリル酸メチル等が挙げられる。これらの中でも、とりわけ前記無機ナノ微粒子に対する含浸性が優れるという理由から、メタクリル酸メチルが特に好ましく用いられる。
【0010】
本発明に用いられる重合開始剤についても特に制限はなく、超臨界流体中(または有機溶媒中、または無溶媒条件)でラジカル重合反応を進行させるものであればよい。具体例としては、過酸化アセチル、過酸化ラウロイル、過酸化ベンゾイル、クメンヒドロペルオキシド、ジ−tert−ブチルペルオキシド、過硫酸カリウム、過硫酸アンモニウム、過酸化水素、α,α′−アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニル、テトラメチルチウラムジスルフィド、ジベンゾイルジスルフィド、p−トルエンスルフィン酸等が挙げられる。
【0011】
本発明に用いられる超臨界流体とは、臨界点よりも少し高い圧力・温度の流体を指し、液体とも気体とも区別のつかない流体で、各種化合物を溶解する能力に優れているものを意味する。超臨界流体を用いると、通常の有機溶媒を用いる場合に比べて、前記無機ナノ微粒子に対するモノマー及び重合開始剤の含浸性が著しく向上し、その結果優れた性能を発現する高分子複合材料が得られる。
【0012】
本発明に用いられる超臨界流体としては、エタンなどの炭化水素やハロゲン系炭化水素などが挙げられるが、前記無機ナノ微粒子に対するモノマー及び重合開始剤の含浸性が優れるという理由から、超臨界二酸化炭素が好ましく用いられる。ちなみに、超臨界二酸化炭素の臨界圧力は7.38MPa、臨界温度は304.2Kである。
【0013】
本発明では、前記無機ナノ微粒子をモノマー及び重合開始剤を含む超臨界流体に浸漬して前記無機ナノ微粒子にモノマー及び重合開始剤を含浸させる際、加圧を行うことが好ましい。適切な加圧により含浸性が向上する。場合により、低い圧力では、超臨界流体の濃度が低すぎて、前記無機ナノ微粒子を膨潤させることが困難である。高い圧力では、前記無機ナノ微粒子相から超臨界流体相にモノマーの分配が移動してしまう。このため、超臨界流体に依存して最も好ましい圧力を選択することが好ましい(最適含浸圧力)。また、適切な含浸圧力は、モノマーの種類によっても依存する。一般的には超臨界二酸化炭素では、1〜100MPaの範囲内がよく、好ましくは2〜80MPaの範囲内、さらに好ましくは4〜60MPaの範囲内である。含浸圧力が1MPaに満たないか、あるいは100MPaを越えると、前記無機ナノ微粒子に対するモノマー及び重合開始剤の含浸性が不充分になることがある。
【0014】
本発明の製造方法は、まず前記無機ナノ微粒子にモノマー及び重合開始剤を含浸させた後、さらに重合反応を起こしてポリマーを得る。重合反応は、前記無機ナノ微粒子を超臨界流体に浸漬したまま行ってもよいし、前記無機ナノ微粒子を超臨界流体から取り出した後適当な圧力下で適当な溶媒(または無溶媒の条件)中で行ってもよい。望ましいポリマーの含有量に依存して適宜選択できる。
【0015】
本発明では、重合反応の反応温度はモノマーや重合開始剤の種類により変わるが、50〜200℃が好ましく、さらに好ましくは80〜150℃である。
本発明の方法では、重合反応の反応時間はモノマーや重合開始剤の種類により変わるが、1〜48時間が好ましく、さらに好ましくは5〜24時間である。
また、使用可能な有機溶媒としても特に制限はなく、基材を溶解することなくモノマーをラジカル重合させることのできる溶媒であればよい。例えば、エタノール、MEK、トルエンが挙げられる。
【0016】
本発明の製造方法により得られた有機ポリマーは、前記無機ナノ微粒子の外で進行したモノマーの重合生成物と混合していることから、反応後は十分に洗浄することが好ましい。前記無機ナノ微粒子を溶解させることなくポリマーのみを溶解させる種々の溶剤を選択して使用することができる。必要ならば十分な回数還流条件で洗浄することも好ましい。さらに洗浄後、適当な温度で恒量に達するまで乾燥する。
【0017】
(無機ナノ微粒子を含む有機ポリマー)
本発明にかかる方法により製造される有機ポリマーとは、種々の種類の無機ナノ微粒子に、十分な量の種々のモノマーを重合させたポリマーを含有することを特徴とする。すなわち、無機ナノ微粒子に含浸させたモノマーを重合させてポリマーとしたものであり、無機ナノ微粒子とポリマーが一体化している材料であり、新規な特性を有するものである。
本発明の有機ポリマーの、無機ナノ微粒子の種類、ポリマーの種類と量については特に制限はなく、得られる有機ポリマーの使用の目的に応じて適宜選択することができる。特に含有量については、上で説明した重合条件の選択により容易に制御することが可能である。具体的には無機ナノ微粒子100重量%に対して、30〜120重量%の範囲で制御可能である。
【0018】
本発明で得られる有機ポリマーの性質は、公知の種々の測定方法により容易に調べることができる。例えば機械的特性はDMA、TMA、引っ張り試験などの方法で、熱的特性はTG、DSCなどの方法で、また、プロセス性は溶融粘度の方法などである。特にメソポーラス構造を有することから、本発明による製造方法で、モノマーが主にメソポーラス構造部分でポリマーを形成すると考えられる。かかるミクロ構造と物性との関連は公知の物理的測定方法で調べることができる。具体的には、GPCなどによる分子量分布の測定、電子顕微鏡による表面または断面の観測が挙げられる。
【0019】
【実施例】
以下、実施例により本発明をさらに具体的に説明する。なお、本発明は本実施例に限定されるものではない。
本実施例で用いた無機ナノ微粒子、原料モノマー、開始剤、含浸または重合条件、含浸または重合反応前後の無機ナノ微粒子の重量変化については、表1および表2にそれぞれまとめた。なお、本実施例および各表では以下の略号を用いた。
scCO:超臨界二酸化炭素
PMMA:ポリメタクリル酸メチル
AIBN:α,α′−アゾビスイソブチロニトリル
THF:テトラヒドロフラン
MEK:メチルエチルケトン
【0020】
実施例で使用した無機ナノ微粒子は市販の多孔質シリカ(SiO)(洞海化学工業(株)製)、及び乾式ナノシリカ(日本エアロジル(株)製)をそのまま使用した。
【0021】
(実施例1)
超臨界反応容器中(日本分光製SCF−Get型、高圧ステンレス製オートクレーブ、約4cm(直径)×約4cm(高さ)、容器容積50cm)に、以下の表1に示す多孔質シリカ又はエアロジル0.15gと、3gのモノマー(MMA)と、反応開始剤(AIBN 0.0492g)とをそれぞれ採取し、撹拌しながら40℃、CO4MPaで1時間含浸後、80℃で表1に示した圧力で24時間重合させた。
【0022】
【表1】

Figure 2004168843
【0023】
反応終了後、反応混合物をアセトン100mlに溶解し、ヘキサン300mlに滴下し、生じた白色沈殿物をろ別回収し、恒量になるまで減圧乾燥した。得られた有機ポリマーの分析結果を表2にまとめた。
【0024】
(実施例2)
超臨界反応容器中(日本分光製SCF−Get型、高圧ステンレス製オートクレーブ、約4cm(直径)×約4cm(高さ)、容器容積50cm)に、多孔質シリカ又はエアロジル0.15gと、3gのモノマー(MMA)と、反応開始剤(AIBN 0.0492g)と、溶媒としてトルエン10mlとをそれぞれ採取し、窒素雰囲気下、常圧で80℃で24時間重合させた。
【0025】
反応終了後、反応混合物は、ヘキサン200mlに滴下し、生じた白色沈殿物をろ別回収し、恒量になるまで減圧乾燥した。得られた有機ポリマーの分析結果を表2にまとめた。
【表2】
Figure 2004168843
【0026】
図1に、乾式ナノシリカ(RX50)を用いて製造した有機ポリマー(PMMA/SiO(RX50))のTG測定(空気気流中)の結果を示した。RX50は800℃までは重量減少が見られなかった。重量減少開始温度はscCO中で得た有機ポリマーの方が、トルエン溶媒中で製造した有機ポリマーよりも60℃ほど高温側にシフトしたことが分かる。一方、scCO系においては重合圧力による違いが大きくないことが分かった。
TG測定(800℃)から求めたシリカの残存量は、トルエン溶媒中で製造した有機ポリマーで10.6wt%、scCO中では5wt%程度であった。これらの実測値は収率を考慮した計算値とほぼ一致する。このことは、仕込んだシリカが、再沈殿処理をしているにもかかわらず、ほぼ全量が生成した有機ポリマーに取り込まれていることが分かる。
【0027】
図2に、乾式ナノシリカ(RX50)を用いて製造した有機ポリマー(PMMA/SiO(RX50))のDMA測定の結果を示した。scCO中で得た有機ポリマーの方が、トルエン溶媒中で製造した有機ポリマーやシリカ無添加(10MPa)有機ポリマーよりも、ガラス転移温度(Tg)は高温側にシフトし、プレート領域のE′(貯蔵弾性率)値が高くなることが分かる。これはシリカとPMMAの相互作用によりと考えられる。
【0028】
図3には、乾式ナノシリカ(RX50)を用いて異なる製造条件下で得た有機ポリマー(PMMA/SiO(RX50))のDMA測定の結果のまとめを示した。この結果から、シリカを入れないでscCO中で4MPaで製造した得た有機ポリマー(PMMA)、さらに上で得たシリカを入れないでscCO中で4MPaで製造した得た有機ポリマー(PMMA)とシリカを撹拌混合して得た有機ポリマーと、シリカを入れてscCO中で5MPaで製造した得た有機ポリマーであってほぼ同じ分子量を示すものは、この順でより高温側にTgがシフトしていくことが分かる。これはシリカとPMMAの相互作用によりと考えられる。これらの有機ポリマーの引張試験結果を下記表3に示した。同様にシリカとPMMAの相互作用の存在が分かる。
【表3】
Figure 2004168843
【0029】
【発明の効果】
超臨界流体中で、メソポーラスな無機ナノ微粒子の存在下、モノマーを重合させることにより、充分な量の無機ナノ微粒子を含む有機ポリマーを得ることが可能となる。
【図面の簡単な説明】
【図1】乾式ナノシリカ(RX50)を用いて製造した有機ポリマー(PMMA/SiO(RX50))のTG測定(空気気流中)の結果を示す。
【図2】乾式ナノシリカ(RX50)を用いて製造した有機ポリマー(PMMA/SiO(RX50))のDMA測定の結果を示す。
【図3】乾式ナノシリカ(RX50)を用いて異なる製造条件下で得た有機ポリマー(PMMA/SiO(RX50))のDMA測定の結果のまとめを示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an organic polymer containing mesoporous inorganic nanoparticles, and an organic polymer produced thereby.
[0002]
[Prior art]
Generally, organic polymers are weak to heat but flexible, have low density, and have good moldability. On the other hand, inorganic compounds have the disadvantages that they are brittle, have poor moldability, and have high density, and have the advantage of high strength, elastic modulus, surface hardness, etc., and excellent optical properties. Therefore, attempts have conventionally been made to create a new material utilizing the characteristics of both by combining these materials.
For example, conventionally, as a method for producing a polymer composite material in which a certain base material is impregnated with a monomer and the monomer is polymerized to be a polymer, a monomer aqueous solution is attached to synthetic fibers, and then heat-treated in a closed system. A method for modifying a synthetic fiber which is a polymer obtained by polymerizing a polymer is described (for example, see Patent Document 1). However, in the method using such an aqueous solution, it is difficult to say that a sufficient amount of the monomer is impregnated in the base material.
Therefore, there is a strong demand for a completely new production method in which a sufficient amount of the monomer is impregnated into the substrate and the monomer can be polymerized inside or on the surface of the substrate.
[0003]
[Patent Document 1]
JP-A-60-246869
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing an organic polymer containing mesoporous inorganic nanoparticles, and an organic polymer produced thereby.
[0005]
[Means for Solving the Problems]
The present inventor has studied diligently on a method for obtaining an organic polymer containing a sufficient amount of inorganic nanoparticles, and found that the method can be achieved by polymerizing a monomer in a supercritical fluid in the presence of mesoporous inorganic nanoparticles, The present invention has been completed.
That is, the production method according to the present invention is characterized in that, in a supercritical fluid containing mesoporous inorganic nanoparticles, a monomer, and a polymerization initiator, the monomer is polymerized, and a sufficient amount of the inorganic nanoparticles. The present invention relates to a method for producing an organic polymer containing: Furthermore, the present invention relates to an organic polymer containing inorganic nanoparticles obtained by the production method of the present invention.
Hereinafter, the present invention will be described in detail with reference to embodiments.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
(Production method)
The production method according to the present invention is characterized in that the monomer is polymerized in a supercritical fluid containing mesoporous inorganic nanoparticles, a monomer, and a polymerization initiator.
[0007]
More specifically, the present invention is characterized in that mesoporous inorganic nanoparticles are immersed in a supercritical fluid containing a monomer and a polymerization initiator to impregnate the inorganic nanoparticles with the monomer and the polymerization initiator. If the inorganic nanoparticles are immersed in a supercritical fluid containing a monomer and a polymerization initiator, the monomer and the polymerization initiator can be impregnated into the inside of the inorganic nanoparticles (not only the mesoporous structure but also the surface irregularities, etc.). It is possible. Such excellent impregnation is realized only by using a supercritical fluid having both diffusibility and solubility. As a result of the excellent impregnation property, the inorganic nanoparticles and the polymer are integrated, and an organic polymer exhibiting excellent physical properties can be obtained, and these can be used as useful materials as a novel polymer composite material.
[0008]
The shape (granular, rod-like, needle-like, plate-like) of the mesoporous inorganic nanoparticle used in the present invention is not particularly limited as long as it can be used in a supercritical fluid. Regardless of the shape, if a supercritical fluid is used, it is possible to impregnate the inside of the inorganic nanoparticles with the monomer and the polymerization initiator.
The material is not particularly limited as long as it can be used in a supercritical fluid, and examples thereof include metals, ceramics, and inorganic materials such as porous silica and carbon nanotubes. Among these, porous silica and dry nanosilica are particularly preferably used. These can use a commercial item.
[0009]
There is no particular limitation on the monomer used in the present invention, as long as the polymer is obtained by impregnating the inorganic nanoparticles and performing a radical polymerization reaction in a supercritical fluid (or in an organic solvent or under no solvent conditions). Just fine. Specific examples include acrylamide, acrylic acid, methyl acrylate, acrylonitrile, isoprene, ethylene, vinyl chloride, chloroprene, vinyl acetate, styrene, butadiene, propylene, methacrylic acid, glycidyl methacrylate, methyl methacrylate, and the like. Among these, methyl methacrylate is particularly preferably used because of its excellent impregnation property with respect to the inorganic nanoparticles.
[0010]
The polymerization initiator used in the present invention is not particularly limited as long as the radical polymerization reaction proceeds in a supercritical fluid (or in an organic solvent or without solvent). Specific examples include acetyl peroxide, lauroyl peroxide, benzoyl peroxide, cumene hydroperoxide, di-tert-butyl peroxide, potassium persulfate, ammonium persulfate, hydrogen peroxide, α, α′-azobisisobutyronitrile. Azobiscyclohexanecarbonyl, tetramethylthiuram disulfide, dibenzoyl disulfide, p-toluenesulfinic acid and the like.
[0011]
The supercritical fluid used in the present invention refers to a fluid having a pressure and a temperature slightly higher than the critical point, and is a fluid indistinguishable from a liquid and a gas, and means a fluid having excellent ability to dissolve various compounds. . When a supercritical fluid is used, the impregnation of a monomer and a polymerization initiator with respect to the inorganic nanoparticles is significantly improved as compared with a case where a normal organic solvent is used, and as a result, a polymer composite material exhibiting excellent performance is obtained. Can be
[0012]
Examples of the supercritical fluid used in the present invention include hydrocarbons such as ethane and halogenated hydrocarbons.However, supercritical carbon dioxide is used because of its excellent impregnation of the monomer and polymerization initiator with respect to the inorganic nanoparticles. Is preferably used. Incidentally, the supercritical carbon dioxide has a critical pressure of 7.38 MPa and a critical temperature of 304.2K.
[0013]
In the present invention, it is preferable to apply pressure when the inorganic nanoparticles are immersed in a supercritical fluid containing a monomer and a polymerization initiator to impregnate the inorganic nanoparticles with the monomer and the polymerization initiator. Appropriate pressure improves impregnation. In some cases, at low pressures, the concentration of the supercritical fluid is too low, making it difficult to swell the inorganic nanoparticles. At a high pressure, the distribution of the monomer moves from the inorganic nanoparticle phase to the supercritical fluid phase. For this reason, it is preferable to select the most preferable pressure depending on the supercritical fluid (optimum impregnation pressure). The appropriate impregnation pressure also depends on the type of monomer. Generally, for supercritical carbon dioxide, the pressure is preferably in the range of 1 to 100 MPa, preferably in the range of 2 to 80 MPa, and more preferably in the range of 4 to 60 MPa. When the impregnation pressure is less than 1 MPa or exceeds 100 MPa, the impregnation of the monomer and the polymerization initiator with respect to the inorganic nanoparticles may be insufficient.
[0014]
In the production method of the present invention, first, a monomer and a polymerization initiator are impregnated into the inorganic nanoparticles, and then a polymerization reaction is further caused to obtain a polymer. The polymerization reaction may be performed while the inorganic nanoparticles are immersed in a supercritical fluid, or in a suitable solvent (or solvent-free condition) under an appropriate pressure after removing the inorganic nanoparticles from the supercritical fluid. May be performed. It can be appropriately selected depending on the desired polymer content.
[0015]
In the present invention, the reaction temperature of the polymerization reaction varies depending on the type of the monomer and the polymerization initiator, but is preferably from 50 to 200 ° C, more preferably from 80 to 150 ° C.
In the method of the present invention, the reaction time of the polymerization reaction varies depending on the type of the monomer and the polymerization initiator, but is preferably from 1 to 48 hours, more preferably from 5 to 24 hours.
The usable organic solvent is not particularly limited as long as the solvent can radically polymerize the monomer without dissolving the base material. For example, ethanol, MEK, and toluene are mentioned.
[0016]
Since the organic polymer obtained by the production method of the present invention is mixed with the polymerization product of the monomer that has progressed outside the inorganic nanoparticles, it is preferable that the organic polymer be sufficiently washed after the reaction. Various solvents capable of dissolving only the polymer without dissolving the inorganic nanoparticles can be selected and used. If necessary, it is also preferable to wash under reflux conditions a sufficient number of times. After further washing, drying is performed at an appropriate temperature until a constant weight is reached.
[0017]
(Organic polymer containing inorganic nanoparticles)
The organic polymer produced by the method according to the present invention is characterized in that various kinds of inorganic nanoparticles contain a polymer obtained by polymerizing a sufficient amount of various monomers. That is, it is a polymer obtained by polymerizing a monomer impregnated in inorganic nanoparticles and is a material in which the inorganic nanoparticles and the polymer are integrated, and has novel characteristics.
The type of the inorganic nanoparticles and the type and amount of the polymer of the organic polymer of the present invention are not particularly limited, and can be appropriately selected depending on the purpose of use of the obtained organic polymer. In particular, the content can be easily controlled by selecting the polymerization conditions described above. Specifically, it can be controlled in a range of 30 to 120% by weight based on 100% by weight of the inorganic nanoparticles.
[0018]
The properties of the organic polymer obtained in the present invention can be easily examined by various known measuring methods. For example, the mechanical properties are methods such as DMA, TMA and tensile test, the thermal properties are methods such as TG and DSC, and the processability is a method of melt viscosity. In particular, since the polymer has a mesoporous structure, it is considered that the monomer forms a polymer mainly at the mesoporous structure in the production method according to the present invention. The relationship between such microstructure and physical properties can be examined by a known physical measurement method. Specific examples include measurement of molecular weight distribution by GPC or the like, and observation of the surface or cross section by an electron microscope.
[0019]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. Note that the present invention is not limited to the present embodiment.
Tables 1 and 2 summarize the inorganic nanoparticles, raw material monomers, initiators, impregnation or polymerization conditions, and weight changes of the inorganic nanoparticles before and after the impregnation or polymerization reaction used in this example. The following abbreviations were used in this example and each table.
scCO 2 : supercritical carbon dioxide PMMA: polymethyl methacrylate AIBN: α, α'-azobisisobutyronitrile THF: tetrahydrofuran MEK: methyl ethyl ketone
As the inorganic nanoparticles used in the examples, commercially available porous silica (SiO 2 ) (manufactured by Dokai Chemical Industry Co., Ltd.) and dry nanosilica (manufactured by Nippon Aerosil Co., Ltd.) were used as they were.
[0021]
(Example 1)
In a supercritical reaction vessel (SCF-Get type, manufactured by JASCO Corporation, a high-pressure stainless steel autoclave, about 4 cm (diameter) × about 4 cm (height), vessel volume 50 cm 3 ), porous silica or aerogel shown in Table 1 below 0.15 g, 3 g of the monomer (MMA) and the reaction initiator (AIBN 0.0492 g) were collected, respectively, impregnated with stirring at 40 ° C. and 4 MPa of CO 2 for 1 hour, and shown in Table 1 at 80 ° C. The polymerization was carried out for 24 hours at the applied pressure.
[0022]
[Table 1]
Figure 2004168843
[0023]
After the completion of the reaction, the reaction mixture was dissolved in 100 ml of acetone, dropped into 300 ml of hexane, and the resulting white precipitate was collected by filtration and dried under reduced pressure until the weight became constant. Table 2 summarizes the analysis results of the obtained organic polymer.
[0024]
(Example 2)
0.15 g of porous silica or aerosil and 3 g in a supercritical reaction vessel (SCF-Get type manufactured by JASCO Corporation, autoclave made of high-pressure stainless steel, about 4 cm (diameter) x about 4 cm (height), vessel volume 50 cm 3 ) (MMA), a reaction initiator (AIBN 0.0492 g), and 10 ml of toluene as a solvent were respectively collected and polymerized under a nitrogen atmosphere at 80 ° C. under normal pressure for 24 hours.
[0025]
After completion of the reaction, the reaction mixture was dropped into 200 ml of hexane, and the resulting white precipitate was collected by filtration and dried under reduced pressure until the weight became constant. Table 2 summarizes the analysis results of the obtained organic polymer.
[Table 2]
Figure 2004168843
[0026]
FIG. 1 shows the results of TG measurement (in an air stream) of an organic polymer (PMMA / SiO 2 (RX50)) produced using dry nanosilica (RX50). RX50 showed no weight loss up to 800 ° C. It can be seen that the weight loss onset temperature of the organic polymer obtained in scCO 2 shifted to a higher temperature side by about 60 ° C. than that of the organic polymer manufactured in the toluene solvent. On the other hand, it was found that the difference depending on the polymerization pressure was not large in the scCO 2 system.
The residual amount of silica determined by TG measurement (800 ° C.) was about 10.6 wt% for the organic polymer produced in a toluene solvent and about 5 wt% in scCO 2 . These measured values almost agree with the calculated values in consideration of the yield. This indicates that almost all of the charged silica was taken into the produced organic polymer despite the reprecipitation treatment.
[0027]
FIG. 2 shows the results of DMA measurement of an organic polymer (PMMA / SiO 2 (RX50)) manufactured using dry nanosilica (RX50). The glass transition temperature (Tg) of the organic polymer obtained in scCO 2 shifted to a higher temperature side than that of an organic polymer prepared in a toluene solvent or an organic polymer without silica (10 MPa), and the E ′ in the plate region was increased. It can be seen that the (storage modulus) value increases. This is thought to be due to the interaction between silica and PMMA.
[0028]
FIG. 3 shows a summary of the results of DMA measurement of an organic polymer (PMMA / SiO 2 (RX50)) obtained using dry nanosilica (RX50) under different production conditions. From this result, silica not put organic polymer obtained manufactured in 4MPa in scCO 2 (PMMA), further organic polymer obtained manufactured in 4MPa not put silica obtained above in scCO 2 (PMMA) And an organic polymer obtained by stirring and mixing silica and an organic polymer obtained by adding silica and producing the same at 5 MPa in scCO and exhibiting substantially the same molecular weight, the Tg shifts to the higher temperature side in this order. You can see that it goes. This is thought to be due to the interaction between silica and PMMA. The results of the tensile tests of these organic polymers are shown in Table 3 below. Similarly, the existence of interaction between silica and PMMA can be seen.
[Table 3]
Figure 2004168843
[0029]
【The invention's effect】
By polymerizing the monomer in the supercritical fluid in the presence of the mesoporous inorganic nanoparticles, it becomes possible to obtain an organic polymer containing a sufficient amount of the inorganic nanoparticles.
[Brief description of the drawings]
FIG. 1 shows the results of TG measurement (in an air stream) of an organic polymer (PMMA / SiO (RX50)) produced using dry nanosilica (RX50).
FIG. 2 shows the results of a DMA measurement of an organic polymer (PMMA / SiO 2 (RX50)) produced using dry nanosilica (RX50).
FIG. 3 shows a summary of the results of a DMA measurement of an organic polymer (PMMA / SiO 2 (RX50)) obtained using dry nanosilica (RX50) under different manufacturing conditions.

Claims (2)

メソポーラス無機ナノ微粒子と、モノマーと、重合開始剤とを含む超臨界流体中で、前記モノマーを重合させることによる、無機ナノ微粒子を含む有機ポリマーの製造方法。A method for producing an organic polymer containing inorganic nanoparticles by polymerizing the monomer in a supercritical fluid containing mesoporous inorganic nanoparticles, a monomer, and a polymerization initiator. 前記超臨界流体が超臨界二酸化炭素である請求項1に記載の無機ナノ微粒子を含む有機ポリマーの製造方法。The method for producing an organic polymer containing inorganic nanoparticles according to claim 1, wherein the supercritical fluid is supercritical carbon dioxide.
JP2002334507A 2002-11-19 2002-11-19 Organic polymer containing inorganic nanoparticle Pending JP2004168843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334507A JP2004168843A (en) 2002-11-19 2002-11-19 Organic polymer containing inorganic nanoparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334507A JP2004168843A (en) 2002-11-19 2002-11-19 Organic polymer containing inorganic nanoparticle

Publications (1)

Publication Number Publication Date
JP2004168843A true JP2004168843A (en) 2004-06-17

Family

ID=32698865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334507A Pending JP2004168843A (en) 2002-11-19 2002-11-19 Organic polymer containing inorganic nanoparticle

Country Status (1)

Country Link
JP (1) JP2004168843A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085302A1 (en) * 2004-03-08 2005-09-15 Nihon University Porous nanomaterial polymer composite
CN1314722C (en) * 2004-09-30 2007-05-09 中国科学院金属研究所 Method for improving property of thermoplastic polymer material
JP2015078354A (en) * 2013-09-12 2015-04-23 三洋化成工業株式会社 Dispersion and manufacturing method therefor
WO2015087984A1 (en) * 2013-12-11 2015-06-18 三洋化成工業株式会社 Manufacturing method for composite particle, composite particle, and dispersion
JP2016047922A (en) * 2014-08-27 2016-04-07 三洋化成工業株式会社 Composite particle for ink, ink composition and method for producing the same
JP2017001027A (en) * 2015-06-10 2017-01-05 三洋化成工業株式会社 Method for producing composite particles and dispersion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085302A1 (en) * 2004-03-08 2005-09-15 Nihon University Porous nanomaterial polymer composite
CN1314722C (en) * 2004-09-30 2007-05-09 中国科学院金属研究所 Method for improving property of thermoplastic polymer material
JP2015078354A (en) * 2013-09-12 2015-04-23 三洋化成工業株式会社 Dispersion and manufacturing method therefor
WO2015087984A1 (en) * 2013-12-11 2015-06-18 三洋化成工業株式会社 Manufacturing method for composite particle, composite particle, and dispersion
JPWO2015087984A1 (en) * 2013-12-11 2017-03-16 三洋化成工業株式会社 Method for producing composite particles, composite particles and dispersion
JP2016047922A (en) * 2014-08-27 2016-04-07 三洋化成工業株式会社 Composite particle for ink, ink composition and method for producing the same
JP2017001027A (en) * 2015-06-10 2017-01-05 三洋化成工業株式会社 Method for producing composite particles and dispersion

Similar Documents

Publication Publication Date Title
Kong et al. Core-shell latex particles consisting of polysiloxane-poly (styrene-methyl methacrylate-acrylic acid): Preparation and pore generation
Canelas et al. Dispersion polymerizations of styrene in carbon dioxide stabilized with poly (styrene-b-dimethylsiloxane)
JP2021181573A (en) Host-group-containing polymerizable monomer, polymer material, method for producing the same, and clathrate compound and method for producing the same
JP6841530B2 (en) Polymerization composition, its polymer, and method for producing the polymer
Zhang et al. Synthesis and characterization of crosslinkable latex with interpenetrating network structure based on polystyrene and polyacrylate
JP3914489B2 (en) Polymer composite, stretched product thereof, and method for producing polymer composite
Larsson et al. Thermoresponsive cryogels reinforced with cellulose nanocrystals
JP5117718B2 (en) Porous nanomaterial polymer composite
JP2004168843A (en) Organic polymer containing inorganic nanoparticle
Cheng et al. Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites
WO2010005054A1 (en) Modified natural rubber particle, process for producing the modified natural rubber particle, and modified natural rubber latex
Wang et al. Micromorphology and thermal properties of polyurethane/polyacrylate soap-free emulsion in the presence of functional monomers
JP2021175779A (en) Host group-containing polymerizable monomer and method for producing the same, polymer material and precursor for forming polymer material
Saen-Isara et al. Influence of the cross-linking agent on mechanical properties of PMMA powder with compromised particle morphology
US11326038B2 (en) Crushed foam coating
Li et al. Preparation and characterization of tough and highly resilient nanocomposite hydrogels reinforced by surface‐grafted cellulose nanocrystals
JP4251641B2 (en) Method for producing polymer composite material
Minami et al. Preparation of composite polymer particles by seeded dispersion polymerization in ionic liquids
EP0892821A1 (en) Fluorine-containing graft copolymer and its manufacturing method
Gidon et al. Photocrosslinking of styrene-butadiene-styrene (SBS) networks formed by thiol-ene reactions and their influence on cell survival
Tavsanli et al. Butyl rubber as a macro-cross-linker in the preparation of a shape-memory and self-healing polymer
US11155666B2 (en) Block copolymer
Doi et al. Characterization of well‐defined PHEMA‐based bottlebrushes with controlled chain length and grafting density
Rabelero et al. Effects of the functionalizing agent, itaconic acid, on the mechanical properties of microemulsion‐made core/shell polymers
JP2902524B2 (en) Composite composition excellent in transparency and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107