JPWO2005077503A1 - Gas dissolving device - Google Patents

Gas dissolving device Download PDF

Info

Publication number
JPWO2005077503A1
JPWO2005077503A1 JP2005517888A JP2005517888A JPWO2005077503A1 JP WO2005077503 A1 JPWO2005077503 A1 JP WO2005077503A1 JP 2005517888 A JP2005517888 A JP 2005517888A JP 2005517888 A JP2005517888 A JP 2005517888A JP WO2005077503 A1 JPWO2005077503 A1 JP WO2005077503A1
Authority
JP
Japan
Prior art keywords
water
container body
gas
supply pipe
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005517888A
Other languages
Japanese (ja)
Inventor
通夫 森田
通夫 森田
奥田 正明
正明 奥田
Original Assignee
大栄株式会社
株式会社セイワ・プロ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大栄株式会社, 株式会社セイワ・プロ filed Critical 大栄株式会社
Publication of JPWO2005077503A1 publication Critical patent/JPWO2005077503A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2322Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles using columns, e.g. multi-staged columns
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/70Spray-mixers, e.g. for mixing intersecting sheets of material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)

Abstract

本発明は、処理能力が高く、水に気体を効率的に溶解させることができる気体溶解装置に関する。気体溶解装置1は、密閉空間を有する容器体2と、容器体2内に接続した供給管3bを備え、供給管3bを介し容器体2内に気体を供給して、容器体2内部の気体圧力を大気圧以上に加圧する気体供給機構3と、容器体2内に接続した給水管4a,4bを備え、給水管4a,4bを介し容器体2内に水を供給する水供給機構4と、容器体2の底部に貯留された気体溶存水を外部へ排水する排水管5とを備え、容器体2内部で水と気体とを気液接触させることにより、水に気体を溶解させるように構成される。給水管4aは、容器体2内で上下方向に配置されて、上端面に開口した吐出口4cを備え、吐出口4cから容器体2の天井方向に向けて水を吐出するように構成される。供給管3bは、給水管4aに接続し、給水管4aを介して気体を容器体2内に供給する。The present invention relates to a gas dissolving apparatus having a high processing capacity and capable of efficiently dissolving a gas in water. The gas dissolving apparatus 1 includes a container body 2 having a sealed space, and a supply pipe 3b connected to the container body 2, and supplies gas into the container body 2 through the supply pipe 3b. A water supply mechanism 4 that includes a gas supply mechanism 3 that pressurizes the pressure above atmospheric pressure, and water supply pipes 4 a and 4 b connected to the inside of the container body 2, and supplies water into the container body 2 through the water supply pipes 4 a and 4 b; And a drain pipe 5 for draining the gas-dissolved water stored at the bottom of the container body 2 to the outside so that water and gas are brought into gas-liquid contact inside the container body 2 so that the gas is dissolved in water. Composed. The water supply pipe 4a is arranged vertically in the container body 2 and includes a discharge port 4c that opens at the upper end surface, and is configured to discharge water from the discharge port 4c toward the ceiling of the container body 2. . The supply pipe 3b is connected to the water supply pipe 4a and supplies gas into the container body 2 through the water supply pipe 4a.

Description

本発明は、水に気体を溶解させる気体溶解装置に関する。  The present invention relates to a gas dissolving apparatus for dissolving a gas in water.

湖沼や河川の水域では、その周辺地域に建設された工場や事業所などの各種施設から排出される産業排水や一般家庭から排出される生活排水が流れ込み、この排水に含まれるリン化合物や窒素化合物などの有機物によって当該水域が汚染される水質汚染が問題となっている。
そこで、このように汚染された水の水質を改善する方法として、近年、有機物を分解する微生物を用いて、汚染された水(被浄化水)から過剰な有機物を除去又は低減する方法が提案されている。具体的には、被浄化水中の微生物(好気性微生物)に酸素を供給して微生物を活性化させ、このように微生物を活性化させることにより有機物の分解を促進して、被浄化水を浄化する。また、酸素の供給により微生物を増殖させ、その分解能力を高める。
かかる微生物への酸素の供給は、以下に説明する酸素溶解装置を用いて、処理対象の湖沼や河川などからの取水に酸素を溶解させ、この酸素が溶解した水を再び湖沼や河川などに戻すことによって行われる(特開平6−23387号公報(図3,図5など)、特開平9−899号公報(図2,図3など)、特開2000−317479号公報(段落
In the waters of lakes and rivers, industrial wastewater discharged from various facilities such as factories and business establishments constructed in the surrounding area and domestic wastewater discharged from ordinary households flow in. Phosphorus compounds and nitrogen compounds contained in this wastewater Water pollution, in which the water area is contaminated by organic matter such as, is a problem.
Therefore, as a method for improving the water quality of such contaminated water, a method for removing or reducing excess organic substances from contaminated water (purified water) using microorganisms that decompose organic substances in recent years has been proposed. ing. Specifically, oxygen is supplied to microorganisms (aerobic microorganisms) in the water to be purified to activate the microorganisms, and the microorganisms are activated in this way, thereby promoting the decomposition of organic matter and purifying the water to be purified. To do. In addition, the supply of oxygen increases the ability of microorganisms to grow and decompose.
The supply of oxygen to such microorganisms is accomplished by dissolving oxygen in the water taken from the lake or river to be treated using an oxygen dissolver described below, and returning the dissolved water to the lake or river again. (Japanese Patent Laid-Open No. 6-23387 (FIGS. 3 and 5 etc.), Japanese Patent Laid-Open No. 9-899 (FIGS. 2 and 3 etc.), Japanese Patent Laid-Open No. 2000-317479 (paragraph)

,図3など)参照)。
この酸素溶解装置100は、第12図に示すように、耐圧性及び気密性を備えた円筒状の部材からなり、下面が取付部材109上に載置,支持される容器体102と、容器体102内に酸素を供給する酸素供給機構103と、容器体102内に水(被浄化水)を供給する水供給機構104と、容器体102内の水を排水する排水管105と、容器体102内の上部に配設された拡散板106,107と、容器体102内の水位を検出する水位検出機構108とを備える。尚、第12図は、従来例に係る酸素溶解装置の概略構成を示した断面図である。
前記酸素供給機構103は、酸素を供給する酸素供給源103aと、一端側が酸素供給源103aに接続し、他端側が容器体102の上部に接続した供給管103bと、供給管103bを介して酸素供給源103aから容器体102内に供給される酸素流量を調整する供給弁103cとからなり、容器体102内に酸素を供給して、容器体102内部の酸素圧力を大気圧以上に加圧する。
前記水供給機構104は、水を供給するポンプ装置104aと、一端側がポンプ装置104aに接続し、他端側が容器体102の上部中央に接続した給水管104bとからなる。
前記排水管105は、給水管104bの内径と略同径の部材から構成され、容器体102にその上部側から接続して下端部が容器体102の底部に向けて延設されており、容器体102の底部に貯留した水を、当該容器体102内の酸素圧力により、容器体102外に排出する。
前記拡散板106,107は、所定間隔を隔てて上下に対向配置された平板状の部材からなり、表裏に貫通した小径且つ複数の貫通孔106a,107aを備えている。尚、各貫通孔106aと各貫通孔107aとは、互いに水平方向に位置ずれした位置に形成されている。
前記水位検出機構108は、長手方向が上下方向に沿って容器体102の外周面に付設された導入管108aと、導入管108a内に配置され、当該導入管108a内を昇降可能となったフロート(図示せず)と、導入管108aの上部側近傍及び下部側近傍の容器体102外周面にそれぞれ付設され、フロート(図示せず)を検出する検出器108b,108cとからなる。
前記導入管108aは、ガラス管や塩ビ管から構成され、その上端部及び下端部が容器体102内と連通しており、前記フロート(図示せず)が、容器体102内の水位に応じて昇降するようになっている。
この酸素溶解装置100によれば、まず、酸素供給機構103によって容器体102内に酸素が供給され、容器体102内の酸素圧力が大気圧以上に加圧される。
ついで、水供給機構104により、被浄化水(酸素溶解前の水)が給水管104bから容器体102内に供給され、供給された水は、拡散板106に衝突し、その各貫通孔106aを通過して多数の水滴となって当該拡散板106から滴下する。この後、滴下した水は、拡散板107に衝突し、同様にその各貫通孔107aを通過して更に細かな多数の水滴となって当該拡散板107から滴下する。
このように、水が細かな滴状とされることで、酸素との接触面積が大きくなり、当該水の落下過程において、酸素が効率的に溶解する。また、容器体102内部の酸素圧力が高められていることによっても、水に酸素が効率的に溶解する。
そして、酸素雰囲気中を落下した水は、容器体102の底部に貯留され、貯留された水(酸素溶解後の水)は、容器体102内の酸素圧力によって、排水管105から排出される。
尚、容器体102内に貯留された水の水位は、その上限又は下限を超えると、これが水位検出機構108によって検出される。具体的には、水位が上昇してフロート(図示せず)が上昇すると、これが上側の検出器108bによって検出され、水位が下降してフロート(図示せず)が下降すると、これが下側の検出器108cによって検出される。
このようにして、水位が一定限度を超えたことが検出器108b,108cによって検出されると、供給弁103cの開度が調整されて酸素供給量が調整され、これにより、容器体102内部の酸素圧力が調整されて排水量が調整され、容器体102内部の酸素と水との割合が一定の範囲内に維持される。
ところが、上記従来の酸素溶解装置100では、拡散板106,107の各貫通孔106a,107aから水が滴化して(水滴となって)落下するように構成されているので、言い換えれば、拡散板106,107の各貫通孔106a,107aによりその流量が極僅かに制限されているので、処理能力が低い(容器体102から排出される酸素溶解水の水量が少ない)という問題があった。
また、拡散板106,107によって制限された水が、当該拡散板106と拡散板107との間や、拡散板107と容器体102の天井面との間に充満すると、拡散板106,107より下方の空間に酸素を供給することができなくなるため、当該空間内の酸素濃度が低くなって、水の酸素溶解量が低下するという問題もある。特に、上述した産業排水や生活排水には、ゴミなどの異物が含まれているため、この異物によって拡散板106,107の各貫通孔106a,107aが詰まり易く、上記のような問題を生じ易い。
また、貫通孔106a,107aに異物が詰まると、容器体102を分解して詰まった異物を除去する作業が必要であり、このために装置の維持コストが高くなるという問題や、異物を除去できる程度に、容器体102を分解可能な構成にすると、その構造が複雑になって、製造コストが高くなったり、容器体102の気密性が不十分になるという問題もある。
また、給水管104b及び排水管105の内径が略同径であるため、給水量と排水量とは略等しくなっているが、容器体102内の酸素圧力が何らかの理由によって上昇すると、給水量に比べて排水量の方が多くなり、容器体102内に貯留される水量が少なくなり易いという問題もある。
更に、容器体102内の水位が下降して下限を超え、これが水位検出機構108によって検出されると、供給弁103cの開度が調整されて、排水量が調整されるが、水位の回復には一定の時間を要するため、場合によっては、排水管105の開口部よりも水位が下降して容器体102内の酸素が排水管105から外部に漏れるという問題を生じる。
本発明は、以上の実情に鑑みなされたものであって、水に気体を溶解させるにあたり、従来に比べてその処理能力が高く、しかも溶解をより効率的に行うことができる気体溶解装置の提供をその目的とする。
, FIG. 3 etc.)).
As shown in FIG. 12, the oxygen dissolving apparatus 100 is composed of a cylindrical member having pressure resistance and airtightness, and a container body 102 whose lower surface is placed and supported on a mounting member 109, and a container body An oxygen supply mechanism 103 that supplies oxygen into the 102, a water supply mechanism 104 that supplies water (purified water) into the container body 102, a drain pipe 105 that drains the water in the container body 102, and the container body 102. The diffusing plates 106 and 107 disposed in the upper part of the inside and the water level detecting mechanism 108 for detecting the water level in the container body 102 are provided. FIG. 12 is a cross-sectional view showing a schematic configuration of an oxygen dissolving apparatus according to a conventional example.
The oxygen supply mechanism 103 includes an oxygen supply source 103a for supplying oxygen, a supply pipe 103b having one end connected to the oxygen supply source 103a and the other end connected to the upper portion of the container body 102, and an oxygen supply through the supply pipe 103b. It consists of a supply valve 103c that adjusts the flow rate of oxygen supplied from the supply source 103a into the container body 102, supplies oxygen into the container body 102, and pressurizes the oxygen pressure inside the container body 102 to atmospheric pressure or higher.
The water supply mechanism 104 includes a pump device 104 a that supplies water, and a water supply pipe 104 b that has one end connected to the pump device 104 a and the other end connected to the upper center of the container body 102.
The drain pipe 105 is composed of a member having substantially the same diameter as the inner diameter of the water supply pipe 104b. The drain pipe 105 is connected to the container body 102 from its upper side and has a lower end extending toward the bottom of the container body 102. The water stored at the bottom of the body 102 is discharged out of the container body 102 by the oxygen pressure in the container body 102.
The diffusing plates 106 and 107 are made of flat plate members that are vertically opposed to each other with a predetermined interval, and are provided with a plurality of through holes 106a and 107a having small diameters penetrating the front and back. In addition, each through-hole 106a and each through-hole 107a are formed in the position mutually displaced in the horizontal direction.
The water level detection mechanism 108 includes an introduction pipe 108a attached to the outer peripheral surface of the container body 102 in the longitudinal direction along the vertical direction, and a float that is disposed in the introduction pipe 108a and that can move up and down in the introduction pipe 108a. (Not shown) and detectors 108b and 108c which are attached to the outer peripheral surface of the container body 102 near the upper side and the lower side of the introduction pipe 108a, respectively, and detect floats (not shown).
The introduction pipe 108a is composed of a glass tube or a PVC pipe, and its upper end and lower end communicate with the inside of the container body 102, and the float (not shown) depends on the water level in the container body 102. It is designed to go up and down.
According to the oxygen dissolving apparatus 100, first, oxygen is supplied into the container body 102 by the oxygen supply mechanism 103, and the oxygen pressure in the container body 102 is increased to atmospheric pressure or higher.
Next, the water to be purified (water before oxygen dissolution) is supplied from the water supply pipe 104b into the container body 102 by the water supply mechanism 104, and the supplied water collides with the diffusion plate 106, and passes through each through hole 106a. It passes through and becomes a large number of water droplets and drops from the diffusion plate 106. Thereafter, the dropped water collides with the diffusion plate 107 and similarly passes through the through-holes 107a to form a larger number of fine water droplets and drops from the diffusion plate 107.
As described above, since the water is made into fine droplets, the contact area with oxygen is increased, and oxygen is efficiently dissolved in the process of dropping the water. Moreover, oxygen is efficiently dissolved in water also by increasing the oxygen pressure inside the container body 102.
Then, the water dropped in the oxygen atmosphere is stored at the bottom of the container body 102, and the stored water (water after oxygen dissolution) is discharged from the drain pipe 105 by the oxygen pressure in the container body 102.
When the water level stored in the container body 102 exceeds the upper limit or the lower limit, this is detected by the water level detection mechanism 108. Specifically, when the water level rises and the float (not shown) rises, this is detected by the upper detector 108b, and when the water level falls and the float (not shown) descends, this detects the lower side. Detected by the device 108c.
In this way, when the detectors 108b and 108c detect that the water level has exceeded a certain limit, the opening degree of the supply valve 103c is adjusted to adjust the oxygen supply amount, whereby the inside of the container body 102 is adjusted. The oxygen pressure is adjusted to adjust the amount of drainage, and the ratio of oxygen and water inside the container body 102 is maintained within a certain range.
However, since the conventional oxygen dissolving apparatus 100 is configured such that water drops from the through holes 106a and 107a of the diffusion plates 106 and 107 and falls (in other words, water droplets), in other words, the diffusion plate Since the flow rate is extremely limited by the through holes 106a and 107a of 106 and 107, there is a problem that the processing capacity is low (the amount of oxygen-dissolved water discharged from the container body 102 is small).
Further, when the water restricted by the diffusion plates 106 and 107 is filled between the diffusion plate 106 and the diffusion plate 107 or between the diffusion plate 107 and the ceiling surface of the container body 102, the diffusion plates 106 and 107 Since oxygen cannot be supplied to the lower space, there is also a problem that the oxygen concentration in the space is lowered and the amount of dissolved oxygen in water is reduced. In particular, since the industrial wastewater and domestic wastewater described above contain foreign matters such as dust, the through holes 106a and 107a of the diffusion plates 106 and 107 are easily clogged by the foreign matters, and the above-described problems are likely to occur. .
Further, when the through holes 106a and 107a are clogged with foreign matter, it is necessary to disassemble the container body 102 and remove the clogged foreign matter, which can increase the maintenance cost of the apparatus and remove the foreign matter. If the container body 102 has a structure that can be disassembled to the extent, the structure becomes complicated, and there is a problem that the manufacturing cost increases and the airtightness of the container body 102 becomes insufficient.
Moreover, since the inner diameters of the water supply pipe 104b and the drain pipe 105 are substantially the same diameter, the water supply amount and the drainage amount are substantially equal. However, when the oxygen pressure in the container body 102 rises for some reason, it is compared with the water supply amount. There is also a problem that the amount of drainage increases and the amount of water stored in the container body 102 tends to decrease.
Furthermore, when the water level in the container body 102 falls and exceeds the lower limit, and this is detected by the water level detection mechanism 108, the opening degree of the supply valve 103c is adjusted and the amount of drainage is adjusted. Since a certain amount of time is required, there is a problem that the water level falls below the opening of the drain pipe 105 and oxygen in the container body 102 leaks from the drain pipe 105 to the outside.
The present invention has been made in view of the above circumstances, and provides a gas dissolving device that has a higher processing capacity than conventional ones and can perform dissolution more efficiently in dissolving gas in water. Is the purpose.

上記目的を達成するための本発明は、
密閉空間を有する容器体と、前記容器体内に接続した供給管を備え、該供給管を介し前記容器体内に気体を供給して、該容器体内部の気体圧力を大気圧以上に加圧する気体供給手段と、前記容器体内に接続した給水管を備え、該給水管を介し前記容器体内に水を供給する水供給手段と、前記容器体内に接続して、該容器体の底部に貯留された気体溶存水を排水する排水管とを具備し、前記容器体内部で前記水と気体とを気液接触させることにより、該水に気体を溶解させるように構成された気体溶解装置において、
前記給水管は、その一端側が前記容器体内で上下方向に配置されて、上端面に開口した吐出口を備え、該吐出口から前記容器体の天井方向に向けて前記水を吐出するように構成されてなることを特徴とする気体溶解装置に係る。
この発明によれば、まず、気体供給手段により、供給管を介して容器体内に所定の気体(水に溶解させる気体)が供給され、当該容器体内部の気体圧力が大気圧以上に加圧される。
この後、水供給手段により、給水管内に水(気体溶解前の水)が供給され、供給された水は、当該給水管内を流通した後、その吐出口から容器体内に吐出される。
吐出された水は、天井方向に向けて噴水状(吐出口を中心として放射状)に噴き上げられ、天井面や内周面など容器体の内面に衝突して、当該内面に沿って流動したり、跳ね返って容器体の内部空間中を落下したり、給水管の外周面に沿って流動し、この後、容器体の底部に貯留されるが、この気体雰囲気中の流動過程において、当該水に接触した気体が溶解する。
尚、放射状に噴き上げられた水は、気体との接触面積が大きくなっていることから、当該水により多くの気体が効率的に溶解し、また、容器体内部の気体圧力が高められていることによっても、当該水に気体が効率的に溶解する。
そして、容器体に貯留された水(気体溶解後の水)は、容器体内部の気体圧力によって排水管から容器体外へ排水される。
斯くして、本発明に係る気体溶解装置によれば、水を吐出口から放射状に噴き上げて当該水の気体との接触面積を大きくすることができるので、当該水により多くの気体を効率的に溶解させることができる、即ち、気体が高濃度に溶解した水を生成することができる。
また、上記従来の酸素溶解装置のように、容器体内に拡散板を設けなくても、気体との接触面積を大きくすることができるので、当該拡散板によって水の落下流量が制限されることがなく、多量の水を効率的に処理することができ、更に、拡散板によって制限された水により気体の供給が阻害されることもない。
また、ゴミなどの異物が拡散板に詰まることがないので、異物を除去する作業を行う必要がなく、維持コストを低くすることができるとともに、拡散板を設けたり、異物除去のために容器体を分解可能に構成する必要がないことから、容器体の構成を簡素化して、製造コストを低くし、且つ容器体の気密性を高くすることができる。
尚、前記気体溶解装置は、前記容器体の内面から内側に突出した第1制流部材を更に備えてなり、前記吐出口から前記天井に向けて吐出され、前記容器体の内面を伝って流動する水を、該第1制流部材の突出端から前記容器体の内部空間中に流下させるように構成されていることが好ましい。
このようにすれば、容器体の内面に沿って流動する水の流れを、第1制流部材により制御して、当該第1制流部材の突出端から前記容器体の内部空間中に薄膜状且つ滝状に流下させることができるので、水膜の両面側から気体と接触させて、当該水に更に多くの気体を効率的に溶解させることができる。
また、前記気体溶解装置は、前記給水管の一端側外周面から外側に突出した板状の第2制流部材を更に備えてなり、前記吐出口から前記天井に向けて吐出され、前記給水管の外周面を伝って流動する水を、該第2制流部材の突出端から前記容器体の内部空間中に流下させるように構成されていることが好ましい。
このようにすれば、給水管の外周面に沿って流動する水の流れを、上記と同様に、第2制流部材により制御して、当該第2制流部材の突出端から前記容器体の内部空間中に薄膜状且つ滝状に流下させることができるので、水膜の両面側から気体と接触させて、当該水に更に多くの気体を効率的に溶解させることができる。
また、前記第1制流部材は、前記容器体の内周面から内側に突出した板状の部材から構成されるとともに、その表裏に貫通した複数の貫通穴を備えていることが好ましく、また、前記第2制流部材は、その表裏に貫通した複数の貫通穴を備えていることが好ましい。
このようにすれば、第1制流部材や第2制流部材によって制流される(流れが制御される)水を当該第1制流部材や第2制流部材の突出端からだけでなく、各貫通穴からも流下させることができるので、更に多量の水を効率的に処理することができる。尚、各貫通穴から流下する水は、当該貫通穴の大きさに応じて、多数の水滴状になって落下したり、薄膜状且つ滝状になって流下するので、気体との接触面積が大きくなっており、当該水により多くの気体が効率的に溶解する。
また、前記第1制流部材及び/又は第2制流部材は、その突出した端縁が平面視波状に形成されていることが好ましい。このようにすれば、当該端縁の周長さを長くすることができるので、当該第1制流部材及び/又は第2制流部材の突出端から薄膜状且つ滝状に流下する水の表面積を大きくして気体との接触面積を大きくすることができ、当該水に更に多くの気体を効率的に溶解させることができる。
また、前記容器体は、その前記天井部が外方又は内方に突出する球状の湾曲面に形成されていることが好ましい。このようにすれば、吐出口から吐出され、容器体の天井面に衝突した水を、当該天井面に沿って第1制流部材側に流動させ、第1制流部材により制流して容器体の内部空間中に流下させることができるので、水の気体溶解量を高めることができる。
また、前記排水管は、その内径が前記給水管の内径と同径若しくはそれ以下の小径に構成されていることが好ましい。このようにすれば、容器体内に貯留された水を排水し難くすることができるので、容器体内の気体圧力をより高圧にすることができ、当該気体雰囲気中を流動する水により多くの気体を効率的に溶解させることができる。
また、容器体内の気体圧力が何らかの理由により上昇しても、容器体内の水位が下降し難くなり、当該水位が排水管の開口部よりも下降して容器体内の気体が排水管から外部に漏れるといった不都合を効果的に防止することができる。
また、前記気体供給手段は、その前記供給管が前記給水管に接続されて、該給水管の吐出口から、前記気体を前記水とともに吐出させるように構成されていることが好ましい。
このようにすれば、水と気体とを混合して互いに接触させ、気体を水に溶解させながら、給水管内を吐出口側に向けて流動させることができるので、更に効率的且つ多量に気体を水に溶解させることができる。
また、前記給水管は、その横断面積が前記吐出口によって縮小されていることが好ましい。このようにすれば、吐出時の圧力を高めてその流速を速くすることができるので、吐出口から吐出される水をより広範囲の放射状に噴き上げて、より効率的且つ多量に気体を水に溶解させたり、給水管内で水と混合された気体を当該水に、更に効率的且つ多量に溶解させることができる。
To achieve the above object, the present invention provides:
A gas supply that includes a container body having a sealed space and a supply pipe connected to the container body, supplies gas to the container body through the supply pipe, and pressurizes the gas pressure inside the container body to an atmospheric pressure or higher. Means, a water supply pipe connected to the inside of the container body, water supply means for supplying water into the container body through the water supply pipe, and gas stored in the bottom of the container body connected to the inside of the container body In a gas dissolving apparatus configured to dissolve a gas in the water by having a drain pipe for draining dissolved water, and bringing the water and gas into gas-liquid contact inside the container body,
The water supply pipe is configured such that one end side thereof is arranged vertically in the container body and includes a discharge port opened at an upper end surface, and the water is discharged from the discharge port toward the ceiling of the container body. The present invention relates to a gas dissolving apparatus.
According to this invention, first, a predetermined gas (gas dissolved in water) is supplied into the container body via the supply pipe by the gas supply means, and the gas pressure inside the container body is pressurized to atmospheric pressure or higher. The
Thereafter, water (water before gas dissolution) is supplied into the water supply pipe by the water supply means, and the supplied water is circulated through the water supply pipe and then discharged from the discharge port into the container body.
The discharged water is sprayed in a fountain shape (radial around the discharge port) toward the ceiling, collides with the inner surface of the container body such as the ceiling surface and the inner peripheral surface, and flows along the inner surface, It bounces down and falls in the inner space of the container body, or flows along the outer peripheral surface of the water supply pipe, and is then stored at the bottom of the container body, but in contact with the water in the flow process in this gas atmosphere The dissolved gas dissolves.
In addition, since the water sprayed radially has a large contact area with the gas, a large amount of gas is efficiently dissolved in the water, and the gas pressure inside the container body is increased. The gas is efficiently dissolved in the water.
And the water (water after gas melt | dissolution) stored by the container body is drained out of a container body from a drain pipe with the gas pressure inside a container body.
Thus, according to the gas dissolving device of the present invention, water can be ejected radially from the discharge port to increase the contact area with the water gas, so that more water can be efficiently discharged into the water. It can be dissolved, that is, it can produce water in which the gas is dissolved at a high concentration.
In addition, since the contact area with the gas can be increased without providing a diffusion plate in the container as in the conventional oxygen dissolving device, the flow rate of water can be limited by the diffusion plate. In addition, a large amount of water can be efficiently treated, and further, the gas supply is not hindered by the water limited by the diffusion plate.
In addition, since foreign substances such as dust do not clog the diffusion plate, there is no need to perform the operation of removing the foreign materials, the maintenance cost can be reduced, and a diffusion plate can be provided or the container body for removing foreign materials. Therefore, the structure of the container body can be simplified, the manufacturing cost can be reduced, and the airtightness of the container body can be increased.
The gas dissolving device further includes a first flow restricting member protruding inward from the inner surface of the container body, and is discharged from the discharge port toward the ceiling and flows along the inner surface of the container body. It is preferable that the water to be flowed down from the protruding end of the first flow restricting member into the internal space of the container body.
If it does in this way, the flow of the water which flows along the inner surface of a container body will be controlled by a 1st flow control member, and it will be a thin film form in the internal space of the said container body from the protrusion end of the said 1st flow control member And since it can be made to flow down like a waterfall, it can be made to contact gas from both sides of a water film, and more gas can be efficiently dissolved in the said water.
The gas dissolving device further includes a plate-like second flow restricting member protruding outward from the outer peripheral surface at one end of the water supply pipe, and is discharged from the discharge port toward the ceiling. It is preferable that the water flowing along the outer peripheral surface of the second flow restricting member is caused to flow into the internal space of the container body from the protruding end of the second flow restricting member.
If it does in this way, the flow of the water which flows along the outer peripheral surface of a water supply pipe | tube will be controlled by a 2nd flow control member similarly to the above, and from the protrusion end of the said 2nd flow control member, Since it can be made to flow down into the inner space in a thin film shape and a waterfall shape, more water can be efficiently dissolved in the water by contacting with the gas from both sides of the water film.
The first flow restricting member is preferably composed of a plate-like member protruding inward from the inner peripheral surface of the container body, and preferably includes a plurality of through holes penetrating the front and back surfaces thereof. The second flow restricting member preferably includes a plurality of through holes penetrating the front and back surfaces thereof.
In this way, not only the water controlled (flow is controlled) by the first flow control member or the second flow control member but also from the projecting end of the first flow control member or the second flow control member, Since it can be made to flow down from each through hole, a larger amount of water can be treated efficiently. Incidentally, the water flowing down from each through hole falls in the form of a large number of water droplets depending on the size of the through hole, or flows down in a thin film shape and a waterfall shape. It becomes larger and more gas dissolves efficiently in the water.
Moreover, it is preferable that the protruding edge of the first flow control member and / or the second flow control member is formed in a plan view wave shape. In this way, since the peripheral length of the edge can be increased, the surface area of the water flowing down in the form of a thin film and a waterfall from the protruding end of the first and / or second flow restricting member. Can be increased to increase the contact area with the gas, and more gas can be efficiently dissolved in the water.
Moreover, it is preferable that the said container body is formed in the spherical curved surface from which the said ceiling part protrudes outward or inward. If it does in this way, the water which was discharged from the discharge outlet and collided with the ceiling surface of the container body will flow to the 1st current control member side along the said ceiling surface, and will be controlled by the 1st current control member, and the container body The amount of water dissolved in the gas can be increased.
Moreover, it is preferable that the said drainage pipe is comprised by the small diameter whose inner diameter is the same diameter as the inner diameter of the said water supply pipe, or less. In this way, it is possible to make it difficult to drain the water stored in the container body, so that the gas pressure in the container body can be increased, and more gas can be supplied to the water flowing in the gas atmosphere. It can be dissolved efficiently.
In addition, even if the gas pressure in the container rises for some reason, the water level in the container becomes difficult to fall, and the water level falls below the opening of the drain pipe, and the gas in the container leaks from the drain pipe to the outside. Such inconveniences can be effectively prevented.
Moreover, it is preferable that the said gas supply means is comprised so that the said supply pipe may be connected to the said water supply pipe, and the said gas may be discharged with the said water from the discharge port of this water supply pipe.
In this way, water and gas can be mixed and brought into contact with each other, and the water can be made to flow toward the outlet while the gas is dissolved in water. Can be dissolved in water.
Moreover, it is preferable that the cross-sectional area of the water supply pipe is reduced by the discharge port. In this way, the pressure at the time of discharge can be increased and the flow velocity can be increased, so that water discharged from the discharge port is sprayed radially over a wider range, and more efficiently and a large amount of gas is dissolved in water. The gas mixed with water in the water supply pipe can be dissolved in the water more efficiently and in a large amount.

第1図は、本発明の第1実施形態に係る酸素溶解装置の概略構成を示した断面図であり、第2図は、第1図における矢示A−A方向の断面図であり、第3図は、第1図における矢示B−B方向の断面図であり、第4図は、第1図における矢示C−C方向の断面図であり、第5図は、第1実施形態における水の流れを説明するための説明図である。また、第6図は、本発明の第2実施形態に係る酸素溶解装置の概略構成を示した断面図であり、第7図は、第1図における矢示D−D方向の断面図であり、第8図は、第2実施形態における水の流れを説明するための説明図である。また、第9図は、本発明の他の実施形態に係る第2制流板などの概略構成を示した平面図であり、第10図は、本発明の他の実施形態に係る第2制流板などの概略構成を示した断面図であり、第11図は、本発明の他の実施形態に係る制流部材などの概略構成を示した断面図である。また、第12図は、従来例に係る酸素溶解装置の概略構成を示した断面図である。  FIG. 1 is a cross-sectional view showing a schematic configuration of the oxygen dissolving apparatus according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view in the direction of arrows AA in FIG. 3 is a sectional view in the direction of arrow BB in FIG. 1, FIG. 4 is a sectional view in the direction of arrow CC in FIG. 1, and FIG. 5 is the first embodiment. It is explanatory drawing for demonstrating the flow of the water. 6 is a cross-sectional view showing a schematic configuration of an oxygen dissolving apparatus according to the second embodiment of the present invention, and FIG. 7 is a cross-sectional view in the direction of arrow DD in FIG. FIG. 8 is an explanatory diagram for explaining the flow of water in the second embodiment. FIG. 9 is a plan view showing a schematic configuration of a second flow restricting plate and the like according to another embodiment of the present invention, and FIG. 10 is a second control according to another embodiment of the present invention. FIG. 11 is a cross-sectional view showing a schematic configuration of a flow plate and the like, and FIG. 11 is a cross-sectional view showing a schematic configuration of a flow control member and the like according to another embodiment of the present invention. FIG. 12 is a cross-sectional view showing a schematic configuration of an oxygen dissolving apparatus according to a conventional example.

以下、本発明をより詳細に説明するために、添付図面に基づいてこれを説明する。
(第1実施形態)
まず、本発明の第1実施形態について、第1図乃至第5図を基に説明する。尚、第1図は、本発明の第1実施形態に係る酸素溶解装置の概略構成を示した断面図であり、第2図は、第1図における矢示A−A方向の断面図であり、第3図は、第1図における矢示B−B方向の断面図であり、第4図は、第1図における矢示C−C方向の断面図であり、第5図は、第1実施形態における水の流れを説明するための説明図である。
第1図乃至第4図に示すように、本実施形態に係る酸素溶解装置1は、密閉空間を有する容器体2と、容器体2内に酸素を供給する酸素供給機構3と、容器体2内部の酸素圧力を検出する圧力検出器(図示せず)と、容器体2内に水を供給する水供給機構4と、容器体2内部の水を排水する排水管5と、容器体2内の上部位置に配置された第1,第2及び第3制流板6,7,8と、容器体2内の水位を検出する水位検出機構9とを備える。
前記容器体2は、ステンレス鋼材や硬質合成樹脂(例えば、FRP)などの耐腐食性を備えた材料から円筒状に形成され、下面が取付部材90上に載置,支持されており、内部圧力が大気圧以上に加圧されても破損しないように構成されている。
また、容器体2の天井部は、外方に突出した球状の湾曲面に形成され、当該天井部には、容器体2内部と外部とを連通させる排気管10が接続しており、この排気管10には、通常、閉じた状態に制御される排気弁10aが設けられている。
尚、容器体2の内面には、樹脂コーティングを施しても良く、このようにすれば、耐腐食性を向上させることができる。
前記酸素供給機構3は、酸素を供給する酸素供給源3aと、一端側が酸素供給源3aに接続し、他端側が後述の第1給水管4aに接続した供給管3bと、供給管3bを介して酸素供給源3aから容器体2内に供給される酸素流量を調整する供給弁3cとからなり、供給管3b及び第1給水管4aを介し容器体2内に酸素を供給して、容器体2内部の酸素圧力を大気圧以上に加圧する。
前記酸素供給源3aは、例えば、酸素が充填された高圧酸素ボンベや、空気から酸素を抽出し、抽出した酸素を加圧して供給する酸素生成装置などから構成される。
前記供給弁3cは、その開度が、前記圧力検出器(図示せず)によって検出される圧力値や水位検出機構9によって検出される水位が略一定となるように調整される。
前記供給管3bは、ステンレス鋼材や硬質合成樹脂などから構成され、その外周面には、耐腐食性を向上させるために、樹脂コーティングが施されていることが好ましい。
前記水供給機構4は、軸線が上下方向に沿って設けられるとともに、容器体2と同軸位置に配置され、上端面が容器体2の天井面と所定間隔を隔てて容器体2の上部側に配置される第1給水管4aと、一端側が容器体2の外周面から容器体2内に貫入されて、前記第1給水管4aの上端部と下端部との間に接続した第2給水管4bと、第2給水管4bの他端側に接続し、各給水管4b,4aを介して容器体2内に、湖沼や河川などから取水された水(被浄化水)を供給するポンプ装置4eなどを備える。
前記第1給水管4aは、その上端面に開口し、前記天井方向に向けて水を吐出する吐出口4cを備えており、この吐出口4cの内径は、第1給水管4aの他の部分(内径D1)よりも小径に形成されている。また、第1給水管4aの下端部には、前記供給管3bの他端側が接続され、当該第1給水管4aの下端面は、封止部材4dによって適宜封止されている。
前記第2給水管4bには、図示しない逆止弁が設けられており、この逆止弁(図示せず)によって、容器体2内に供給される水が逆流したり、供給管3bから供給される酸素が外部に漏れるのが防止されている。
前記排水管5は、その一端側が容器体2の底部外周面からその内部に貫入されており、容器体2内部の底部に貯留した水(酸素が溶解した水)を、当該容器体2内部の酸素圧力により、容器体2の外(湖沼や河川など)に排水する。
また、排水管5は、その内径D2が各給水管4a,4bの内径D1と同径若しくはそれ以下の小径に構成されており、前記一端面に開口し、水を排水するための排水口5aを備えている。
尚、前記各給水管4a,4b及び排水管5は、ステンレス鋼材や硬質合成樹脂などの耐腐食性を有する材料から構成され、その内面には、樹脂コーティングが施されていることが好ましく、このようすれば、耐腐食性を向上させることができる。
前記第1,第2及び第3制流板6,7,8は、上下方向に所定間隔を隔てて配置された平板且つ環状の部材から構成されており、第1制流板6は、その外周面が容器体2の上部内周面に嵌挿,固定されるとともに、その内周面が第1給水管4aの上端部に外嵌され、第2制流板7は、その内周面が第1給水管4aの上端部に外嵌,固定されて、第1制流板6よりも下方に配置され、第3制流板8は、その外周面が容器体2の上部内周面に嵌挿,固定されて、第2制流板7よりも下方に配置されている。
また、各制流板6,7,8は、ステンレス鋼材や硬質合成樹脂などから構成され、その表面には、耐腐食性を向上させるために、樹脂コーティングが施されていることが好ましい。
前記第1制流板6は、その表裏に開口した扇状の4つの貫通穴6aを備えており、容器体2の内周面や第1給水管4aの外周面に沿って流動する水、容器体2の天井面に衝突して跳ね返ってきた水を制流して(水の流れを制御して)、当該第1制流板6の各貫通穴6aから容器体2の内部空間中に薄膜状且つ滝状に流下させる。
前記第2制流板7は、その外周面(端縁)がジグザグ状に形成されており、第1制流板6によって制流され流下した水や、第1制流板6の各貫通穴6aを通過した水を制流して、当該第2制流板7の外周部(突出端)から容器体2の内部空間中に薄膜状且つ滝状に流下させる。
前記第3制流板8は、その内周面(端縁)がジグザグ状に形成されており、第1制流板6や第2制流板7によって制流され流下した水や、第1制流板6の各貫通穴6aを通過した水を制流して、当該第3制流板8の内周部(突出端)から容器体2の内部空間中に薄膜状且つ滝状に流下させる。
前記水位検出機構9は、ガラスや樹脂などの光透過性材料からなり、長手方向が上下方向に沿って容器体2の外周面に付設された導入管9aと、導入管9a近傍の容器体2外周面に上下に並設された2つの水位センサ9b,9cとから構成される。
前記導入管9aは、その上端部及び下端部が容器体2内と連通し、当該導入管9a内の液面位置が容器体2内の水位に応じて昇降するようになっており、前記水位センサ9b,9cが前記液面位置を検出する。尚、導入管9aは、その上端部が第1制流板6と第2制流板7との中間位置で容器体2に接続し、その下端部が排水管5の排水口5aよりも上方位置で容器体2に接続している。
斯くして、この水位検出機構9によれば、容器体2内の水位が上昇して導入管9a内の液面位置が上昇し、これが上側の水位センサ9bによって検出されると、容器体2内の水位が上限を超えたと判断されて、供給弁3cの開度が調整され、酸素供給量が増やされる。これにより、容器体2内の酸素圧力が高くなって排水量が多くなり、容器体2内の水位が下降する。
一方、容器体2内の水位が下降して導入管9a内の液面位置が下降し、これが下側の水位センサ9cによって検出されると、容器体2内の水位が下限を超えたと判断されて、供給弁3cの開度が調整され、酸素供給量が減らされる。これにより、容器体2内の酸素圧力が低くなって排水量が少なくなり、容器体2内の水位が上昇する。
以上のように構成された本実施形態の酸素溶解装置1によれば、まず、酸素供給源3aから供給管3b及び第1給水管4aを介して容器体2内に酸素が供給され、容器体2内の酸素圧力が大気圧以上に加圧される。
ついで、ポンプ装置4eにより、被浄化水(酸素溶解前の水)が第2給水管4bに供給されると、供給された水は、第2給水管4b内を流通した後、第1給水管4a内で、供給管3bから供給される酸素と混合されて互いに接触しながら当該第1給水管4a内を流通し、その吐出口4cから酸素とともに吐出される。
吐出された水は、天井方向に向けて噴水状(吐出口4cを中心として放射状)に噴き上げられるが(第5図矢示C1参照)、噴き上げられる水は、吐出口4cの内径が第1給水管4aの他の部分よりも小径に形成されていることから、吐出時の圧力が高められてその流速が速くなり、勢い良く且つより広範囲の放射状に噴き上げられる。
そして、吐出口4cから噴き上げられた水は、容器体2の天井面や内周面に衝突して、当該天井面や内周面に沿って下方に流動したり(矢示C2参照)、跳ね返ったり(図示せず)、第1給水管4aの外周面に沿って下方に流動し(図示せず)、この後、第1制流板6により制流されて、当該第1制流板6の貫通穴6aから容器体2の内部空間中に薄膜状且つ滝状に流下する(矢示C3及びC4参照)。
ついで、第1制流板6により制流され流下した水や、跳ね返って第1制流板6の各貫通穴6aを通過した水は、第2制流板7により制流されて、当該第2制流板7の外周部から容器体2の内部空間中に薄膜状且つ滝状に流下する(矢示C5参照)。
この後、第1制流板6や第2制流板7により制流され流下した水や、跳ね返って第1制流板6の各貫通穴6aを通過した水は、第3制流板8により制流されて、第3制流板8の内周部から容器体2の内部空間中に薄膜状且つ滝状に流下し(矢示C6参照)、容器体2の底部に貯留される。
そして、このような、水の第1給水管4a内及び容器体2内の流動過程において、当該水に接触した酸素が溶解する。このとき、容器体2内部の酸素圧力が高められていることから、当該水に酸素が効率的に溶解する。
この後、容器体2に貯留された水(酸素溶解後の水)は、容器体2内部の酸素圧力により、排水管5から排水される。
容器体2内に貯留された水の水位は、その上限又は下限を超えると、水位検出機構9によって検出されるようになっており、水位が上限を超えた場合には、導入管9a内の液面位置が上側の水位センサ9bによって検出され、水位が下限を超えた場合には、これが下側の水位センサ9cによって検出される。
このようにして、水位が一定限度を超えたことが水位センサ9b,9cによって検出されると、供給弁3cの開度が調整されて、酸素供給量が調整され、これにより、容器体2内の酸素圧力が調整されて排水量が調整され、容器体2内の酸素と水との割合が一定の範囲内に維持される。
尚、各給水管4a,4b及び排水管5は、排水管5の内径D2が各給水管4a,4bの内径D1と同径若しくはそれ以下の小径に形成されているので、容器体2内の水が排水され難くなっており(容器体2内に水が貯留され易くなっており)、容器体2の内部の酸素圧力が、より高圧に高められるようになっている。
また、水に酸素が溶解すると、もともと含まれていた(溶解していた)窒素などの気体が、ヘンリーの法則に従って当該水から放出されるので、容器体2内の酸素濃度が次第に低下して、水の酸素溶解量が低下する。このため、容器体2内の酸素濃度を一定値以上に維持すべく、容器体2内の窒素などの気体を定期的に排出する。
具体的には、まず、供給弁3cを閉じ、容器体2内への酸素供給を停止した後、排気管10の排気弁10aを開いて、容器体2内部と外部とを連通させる。これにより、容器体2内部の気体圧力が大気圧と同等の圧力まで低下し、容器体2内に貯留された水が排水管5から排水されなくなる。
ついで、各給水管4a,4bから容器体2内に水を更に供給して、当該容器体2内の水位を上昇させ、容器体2内の気体を排気管10から容器体2外部に排出する。
このように、本実施形態の酸素溶解装置1によれば、水を吐出口4cから放射状に噴き上げて当該水の酸素との接触面積を大きくすることができるので、当該水により多くの酸素を効率的に溶解させることができる、即ち、酸素が高濃度に溶解した水を生成することができる。
また、上記従来の酸素溶解装置100のように、容器体102内に拡散板106,107を設けなくても、酸素との接触面積を大きくすることができるので、当該拡散板106,107によって水の落下流量が制限されることがなく、多量の水を効率的に処理することができるとともに、窒素などの気体排出時に、容器体2内の水位を迅速に上昇させて当該気体を迅速に排出することができる。更に、拡散板106,107によって制限された水により酸素の供給が阻害されることもない。
また、ゴミなどの異物が拡散板106,107に詰まることがないので、異物を除去する作業を行う必要がなく、維持コストを低くすることができるとともに、拡散板106,107を設けたり、異物除去のために容器体2を分解可能に構成する必要がないことから、容器体2の構成を簡素化して、製造コストを低くし、且つ容器体2の気密性を高くすることができる。
また、各制流板6,7,8により水を制流して、当該各制流板6,7,8から容器体2の内部空間中に薄膜状且つ滝状に流下させるようにしているので、水膜の両面側から酸素と接触させることができ、当該水に更に多くの酸素を効率的に溶解させることができる。
また、複数の制流板6,7,8を設けて、水の制流回数を多くすることにより、水の流動状態を変化させて当該水と酸素との接触回数を多くしているので、このことによっても、より効率的に酸素を溶解させることができる。
また、第2制流板7の外周面及び第3制流板8の内周面を、ジグザグ状に形成しているので、当該外周面及び内周面の周長さを長くして、第2制流板7及び第3制流板8から薄膜状且つ滝状に流下する水の表面積を大きくして酸素との接触面積を大きくすることができ、当該水に更に多くの酸素を効率的に溶解させることができる。
また、容器体2の上部を、外方に突出した球状の湾曲面に形成しているので、吐出口4cから吐出され、容器体2の天井面に衝突した水を、当該天井面に沿わせて第1制流板6側に流動させ、当該第1制流板6により制流して容器体2の内部空間中に流下させることができ、水の酸素溶解量を高めることができる。
また、第1給水管4aの上端面を容器体2内の上部側に配置して、容器体2内の上部側で水を吐出口4cから吐出させるようにしているので、吐出口4cから吐出された後、容器体2の底部に貯留されるまでの水の流動距離を長くすることができ、当該水の酸素溶解量を更に高めることができる。
また、排水管5の内径D2を、各給水管4a,4bの内径D1と同径若しくはそれ以下の小径に構成しているので、容器体2内に貯留される水を排水し難くして、容器体2内の酸素圧力をより高圧にすることができ、当該酸素雰囲気中を流動する水により多くの酸素を効率的に溶解させることができる。
また、容器体2内の酸素圧力が何らかの理由により上昇しても、容器体2内の水位が下降し難くいので、当該水位が排水管5の排水口5aよりも下降して容器体2内の酸素が排水管5から外部に漏れるといった不都合を効果的に防止することができる。
また、水と酸素とを混合して互いに接触させ、酸素を水に溶解させながら、第1給水管4a内を吐出口4c側に向けて流動させているので、更に効率的且つ多量に酸素を水に溶解させることができる。
また、吐出口4cの内径を、第1給水管4aの他の部分よりも小径に構成しているので、吐出時の圧力を高めてその流速を速くすることができ、吐出口4cから吐出される水をより広範囲の放射状に広げて、より効率的且つ多量に酸素を水に溶解させたり、第1給水管4a内で水と混合された酸素を当該水に、更に効率的且つ多量に溶解させることができる。
また、第1給水管4aを容器体2と同軸位置に配置しているので、吐出口4cから吐出された水を、均等に分散させて容器体2内を流下させることができ、当該処理を効率的に行うことができる。
(第2実施形態)
次に、本発明の第2実施形態について、第6図乃至第8図を基に説明する。尚、第6図は、本発明の第2実施形態に係る酸素溶解装置の概略構成を示した断面図であり、第7図は、第1図における矢示D−D方向の断面図であり、第8図は、第2実施形態における水の流れを説明するための説明図である。
第6図に示すように、本実施形態に係る酸素溶解装置20は、上記第1実施形態の酸素溶解装置1における酸素供給機構3、水供給機構4、排水管5及び各制流板6,7,8が異なるものであり、酸素溶解装置1と同じ構成部分については同一の符号を付して、その詳しい説明を省略する。
第6図及び第7図に示すように、本実施形態に係る酸素溶解装置20は、前記容器体2と、容器体2内に酸素を供給する酸素供給機構21と、前記圧力検出器(図示せず)と、容器体2内に水を供給する水供給機構22と、容器体2内の水を排水する排水管23と、容器体2内の上部位置に配置された第1及び第2制流板24,25と、前記水位検出機構9とを備える。
前記酸素供給機構21は、前記酸素供給源3aと、一端側が酸素供給源3aに接続し、他端側が容器体2の上部に接続した供給管21aと、前記供給弁3cと、容器体2内部と外部とを連通させる排気弁21bとからなり、供給弁3cは所定の開度で開いた状態、排気弁21bは閉じた状態に、通常制御されている。
前記水供給機構22は、一端側が容器体2の底部外周面からその内部に貫入され、容器体2内の中央部でL字状に屈曲して当該容器体2の上部側に向けて延設された給水管22aと、給水管22aの他端側に接続した前記ポンプ装置4eなどを備える。
前記給水管22aは、その前記一端(上端)が容器体2内の天井面と所定間隔を隔てて配置され、当該上端面に開口した吐出口22bを備えており、当該吐出口22bは、容器体2内の天井方向を指向して開口し、当該天井方向に向けて水を吐出する。
尚、給水管22aには、図示しない逆止弁が設けられており、この逆止弁(図示せず)によって、容器体2内に供給される水が逆流するのが防止されている。
前記排水管23は、その一端側が容器体2の底部外周面からその内部に貫入され、容器体2内でL字状に屈曲して当該容器体2の底面側に向けて延設されており、容器体2内の底部に貯留した水(酸素が溶解した水)を、当該容器体2内部の酸素圧力により、容器体2の外に排水する。
また、排水管23は、その前記一端(下端)が容器体2の底面と所定間隔を隔てて配置されており、当該下端面に開口し、水を排水するための排水口23aを備えている。また、排水管23は、その内径D2が給水管22aの内径D1と同径若しくはそれ以下の小径に構成されている。
前記第1制流板24は、平板且つ環状の部材から構成され、その外周面が容器体2の上部内周面に嵌挿,固定されて、給水管22aの上端と略同じ高さ位置に配置されており、容器体2の内周面に沿って流動する水や、容器体2の天井面に衝突して跳ね返ってきた水を制流して、当該第1制流板24の内周部から容器体2の内部空間中に薄膜状且つ滝状に流下させる。
前記第2制流板25は、同じく平板且つ環状の部材から構成され、その内周面が給水管22aの上端側外周面に外嵌,固定されて、第1制流板24よりも下方に配置されており、給水管22aの外周面に沿って流動する水や、容器体2の天井面に衝突して跳ね返ってきた水を制流して、当該第2制流板25の外周部から容器体2の内部空間中に薄膜状且つ滝状に流下させる。
以上のように構成された本実施形態の酸素溶解装置20によれば、まず、酸素供給機構21によって容器体2内に酸素が供給され、容器体2内の圧力が大気圧以上に加圧される。
ついで、ポンプ装置4eにより被浄化水(酸素溶解前の水)が給水管22aに供給されると、供給された水は、当該給水管22a内を流通した後、その吐出口22bから容器体2内に吐出される。
吐出された水は、天井方向に向けて噴水状(吐出口22bを中心として放射状)に噴き上げられ(第8図矢示C11参照)、容器体2の天井面や内周面に衝突して、当該天井面や内周面に沿って下方に流動したり(矢示C12参照)、跳ね返ったり(図示せず)、給水管22aの外周面に沿って下方に流動する(矢示C13参照)。
容器体2の内周面に沿って流動する水は、この後、第1制流板24により制流されて、当該第1制流板24の内周部から容器体2の内部空間中に薄膜状且つ滝状に流下し(矢示C14参照)、給水管22aの外周面に沿って流動する水は、第2制流板25により制流されて、当該第2制流板25の外周部から容器体2の内部空間中に薄膜状且つ滝状に流下する(矢示C15参照)。
また、前記跳ね返った水の大部分は、各制流板24,25によって制流されることなく、容器体2の内部空間中を流下する。
そして、酸素雰囲気中を流下した水は、容器体2の底部に貯留され、貯留された水(酸素溶解後の水)は、容器体2内部の酸素圧力により、排水管23から排水される。
このように、本実施形態の酸素溶解装置20によっても、水を吐出口22bから放射状に噴き上げることができるとともに、容器体2の内周面及び給水管22aの外周面に沿って流動する水を各制流板24,25から薄膜状且つ滝状に流下させることができるので、酸素が高濃度に溶解した水を生成することができるなど、上記酸素溶解装置1と同様の効果を得ることができる。
以上、本発明の一実施形態について説明したが、本発明の採り得る具体的な態様は何らこれに限定されるものではない。
例えば、上記第2実施形態において、前記第2制流板25は、第9図及び第10図に示すような第2制流板26として構成されていても良い。
第9図及び第10図に示すように、前記第2制流板26は、平板且つ矩形状に形成されるとともに、その外周面がジグザグ状に形成され、その表裏に貫通した複数の貫通穴26aと、中央部に形成された嵌挿穴26bとを備えており、外周部から水を薄膜状且つ滝状に流下させるとともに、貫通穴26aから水を多数の水滴状にして滴下させる。
前記貫通穴26aは、嵌挿穴26bを中心とした同心円上に形成されており、内側に形成された貫通穴26aと、外側に形成された貫通穴26aとは、周方向に位置ずれしてそれぞれ穿設されている。
また、第2制流板26は、嵌挿穴26bの内周面が給水管22aの上端側外周面に外嵌,固定され、四隅部が容器体2の内周面に支持されて、第1制流板24から所定間隔を隔てた上方位量に配置されており、外周面と容器体2内周面との間には隙間26cが形成されている。
このように構成された第2制流板26及び第1制流板24を備えた酸素溶解装置では、次のようにして水が容器体2内を流動する。
即ち、放射状に噴き上げられた水(矢示C21参照)は、この後、容器体2の天井面や内周面に衝突して、当該天井面や内周面に沿って下方に流動したり(矢示C22参照)、跳ね返ったり(図示せず)、給水管22aの外周面に沿って下方に流動する(矢示C23参照)。
そして、給水管22aの外周面に沿って流動する水や、跳ね返ってきた水は、この後、第2制流板26により制流されて、当該第2制流板26の外周部から薄膜状且つ滝状に流下したり、当該第2制流板26の貫通穴26aから多数の水滴状になって滴下する(矢示C24参照)。
一方、容器体2の内周面に沿って流動する水や、跳ね返って隙間26cを通過した水、第2制流板26により制流され流下した水は、第1制流板24により制流されて、当該第1制流板24の内周部から薄膜状且つ滝状に流下する(矢示C25参照)。
このように各制流板24,26を構成,配置しても、吐出口22bから吐出された水を、各制流板24,26の内周部や外周部から薄膜状且つ滝状に流下させることができるとともに、貫通穴26aから多数の水滴状にして滴下させることができるので、酸素が高濃度に溶解した水を生成することができるなど、上記と同様の効果を得ることができる。
尚、この場合において、前記隙間26cの面積は、前記貫通穴26aの面積の2倍より大きいことが好ましい。また、隙間26cの面積は、容器体2の横断面積の約5%以上に設定することがより好ましく、約10%以上に設定すると、更に好ましい。このようにすれば、隙間26cからゴミなどの異物を通過させて、異物が詰まるのを効果的に防止することができるとともに、当該隙間26cから所定量の水を通過させることができるので、より多量の水を処理することが可能となる。
また、第5図,第8図及び第10図を基に説明した水の流れ(C1〜C6,C11〜C15,C21〜C25)は、一例であり、かかる流れは、水の吐出量や吐出圧力などによって当然に変化する
また、第11図に示すように、前記酸素溶解装置1において、両端面が開口した筒状の制流部材28を、その軸線方向が上下方向に沿うように容器体2の天井面に配設しても、吐出口4cから吐出され、当該天井面に沿って流動する水を、制流部材28により制流して、当該制流部材28の下端部から容器体2の内部空間中に薄膜状且つ滝状に流下させることができる。尚、これは、図示はしないが、前記酸素溶解装置20についても、同様に適用することができる。
また、この場合において、前記制流部材28の内周面を平面視においてジグザグ状に形成すれば、上述のように、当該内周面の周長さを長くし、制流部材28から流下する水の表面積を大きくして酸素との接触面積を大きくすることができ、当該水に更に多くの酸素を効率的に溶解させることができる。
また、上例において、各制流板6,7,8,24,25,26の配置位置は、特に限定されるものではないが、容器体2内の上部位置に配置することが好ましい。例えば、制流板6,25,26を、第1給水管4aや給水管22aの上端に配設したり、吐出口4c,22bの内径を約3倍した値よりも小さい範囲内で、当該上端から下方に下がった位置に配設すると良く、また、制流板8,24を、吐出口4c,22bよりも上方位置に配設すると良い。
このようにすれば、各制流板6,7,8,24,25,26から流下した後、容器体2に貯留された水の水面に到達するまでの落下距離を長くすることができるので、より多くの酸素を水と接触させて水に溶解させることができる。
また、各制流板6,7,8,24,25,26同士の位置関係について、どちらを上方側や下方側に配置しても良く、また、略同じ高さ位置に設けることもできる。
更に、各制流板6,7,8,24,25,26の形状、例えば、外周面や内周面の形状、貫通穴6a,26aの形状や形成位置などについても、特に限定されるものではない。ジグザグ状(鋸刃状)に形成された外周面や内周面の形状は、当該ジグザグ状に代えて、滑らかな曲線状であったり、矩形波状であったり、これら鋸刃状,曲線状及び矩形波状の組み合わせであっても良い。
また、制流板6,7,8,24,25,26の配置数は、何ら限定されるものではなく、当該制流板6,7,8,24,25,26の一部又は全部を設けずに構成したり、上例よりも多段に設けて構成することもできる。
また、給水管4a,22aの上端面は、容器体2内の上部側に設けられていることが好ましく、このようにすれば、容器体2内の上部側で水を吐出させることができるので、吐出口4c,22bから吐出された後、容器体2の底部に貯留されるまでの水の流動距離を長くして、当該水の気体溶解量を更に高めることができる。
また、上例では、容器体2内に1本の給水管4a,4b,32aを設けたが、複数の給水管4a,4b,22aを設けることもできる。また、給水管4a,4b,22aの内径D1は、吐出口4cの部分を除いて一定に形成され、排水管5,23の内径D2は一定に形成されていたが、これらが適宜変化するように形成されていても良い。
また、上例では、容器体2の上部を、外方に突出した球状の湾曲面に形成したが、これに限られるものではなく、図示はしないが、内方に突出した球状の湾曲面に形成しても良い。このようにしても、容器体2の天井面に衝突した水を、当該天井面に沿って容器体2の内周面側、即ち、第1制流板6,24側に流動させ、当該第1制流部材6,24により制流して流下させることができるので、水の気体溶解量を高めることができる。
また、上例では、水に酸素を溶解させるように構成したが、水に溶解させる気体は、窒素やアルゴン、ヘリウムなどの不活性ガスでも良く、特に限定されるものではない。そして、かかる不活性ガスを水に溶解させる場合には、水に溶解した酸素を除去(脱酸素)する不活性ガス溶解装置として気体溶解装置を構成することができる。
この他、酸素に代えて、水(産業排水)にオゾンを溶解させるようにしても良く、このようにすれば、当該産業排水を処理することにより、有害物質(例えば、ダイオキシンなど)を効率的に除去又は低減することができる。
また、上例では、河川や湖沼などの水質を浄化すべく、当該水に酸素を溶解させるように構成したが、これに限られるものではなく、例えば、魚の養殖池や活魚を搬送するトラックに設置された養魚水槽内の水に酸素を溶解させるように構成しても良い。また、この他、当該酸素溶解装置1,20は、産業排水処理、畜産汚水処理、水耕(溶液)栽培などにも使用することもできる。
Hereinafter, the present invention will be described with reference to the accompanying drawings in order to explain the present invention in more detail.
(First embodiment)
First, a first embodiment of the present invention will be described with reference to FIGS. 1 to 5. 1 is a cross-sectional view showing a schematic configuration of the oxygen dissolving apparatus according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view in the direction of arrows AA in FIG. 3 is a cross-sectional view in the direction of arrow BB in FIG. 1, FIG. 4 is a cross-sectional view in the direction of arrow CC in FIG. 1, and FIG. It is explanatory drawing for demonstrating the flow of the water in embodiment.
As shown in FIGS. 1 to 4, an oxygen dissolving apparatus 1 according to this embodiment includes a container body 2 having a sealed space, an oxygen supply mechanism 3 that supplies oxygen into the container body 2, and a container body 2. A pressure detector (not shown) for detecting the internal oxygen pressure, a water supply mechanism 4 for supplying water into the container body 2, a drain pipe 5 for draining the water inside the container body 2, and the container body 2 The first, second and third flow restricting plates 6, 7, and 8 are disposed at the upper position of the, and a water level detection mechanism 9 that detects the water level in the container body 2.
The container body 2 is formed in a cylindrical shape from a material having corrosion resistance such as a stainless steel material or a hard synthetic resin (for example, FRP), and the lower surface is placed and supported on the mounting member 90, and the internal pressure Is configured so as not to be damaged even if it is pressurized to atmospheric pressure or higher.
Moreover, the ceiling part of the container body 2 is formed in the spherical curved surface which protruded outside, and the exhaust pipe 10 which connects the container body 2 inside and the exterior is connected to the said ceiling part. The pipe 10 is provided with an exhaust valve 10a that is normally controlled to be closed.
The inner surface of the container body 2 may be coated with a resin, and in this way, the corrosion resistance can be improved.
The oxygen supply mechanism 3 includes an oxygen supply source 3a for supplying oxygen, a supply pipe 3b having one end connected to the oxygen supply source 3a and the other end connected to a first water supply pipe 4a described later, and a supply pipe 3b. A supply valve 3c that adjusts the flow rate of oxygen supplied from the oxygen supply source 3a into the container body 2, and supplies oxygen into the container body 2 via the supply pipe 3b and the first water supply pipe 4a. 2. The internal oxygen pressure is increased to atmospheric pressure or higher.
The oxygen supply source 3a includes, for example, a high-pressure oxygen cylinder filled with oxygen, an oxygen generator that extracts oxygen from air and supplies the extracted oxygen under pressure.
The opening of the supply valve 3c is adjusted so that the pressure value detected by the pressure detector (not shown) and the water level detected by the water level detection mechanism 9 are substantially constant.
The supply pipe 3b is made of a stainless steel material, a hard synthetic resin, or the like, and its outer peripheral surface is preferably provided with a resin coating in order to improve corrosion resistance.
The water supply mechanism 4 has an axis line provided along the vertical direction, is disposed at a coaxial position with the container body 2, and an upper end surface is spaced from the ceiling surface of the container body 2 by a predetermined distance to the upper side of the container body 2. The 1st water supply pipe 4a arrange | positioned, and the 2nd water supply pipe which the one end side penetrated in the container body 2 from the outer peripheral surface of the container body 2, and was connected between the upper end part of the said 1st water supply pipe | tube 4a, and a lower end part. 4b and a pump device that is connected to the other end of the second water supply pipe 4b and supplies water (purified water) taken from a lake or a river into the container body 2 through the water supply pipes 4b and 4a. 4e and the like.
The first water supply pipe 4a is provided with a discharge port 4c that opens at the upper end surface and discharges water toward the ceiling, and the inner diameter of the discharge port 4c is the other part of the first water supply pipe 4a. It has a smaller diameter than (inner diameter D1). The other end of the supply pipe 3b is connected to the lower end of the first water supply pipe 4a, and the lower end surface of the first water supply pipe 4a is appropriately sealed with a sealing member 4d.
The second water supply pipe 4b is provided with a check valve (not shown), and the check valve (not shown) allows water supplied into the container body 2 to flow backward or to be supplied from the supply pipe 3b. Oxygen that is released is prevented from leaking outside.
One end side of the drainage pipe 5 is penetrated into the inside from the bottom outer peripheral surface of the container body 2, and water stored in the bottom of the container body 2 (water in which oxygen is dissolved) is supplied to the inside of the container body 2. It drains out of the container body 2 (lakes, rivers, etc.) by oxygen pressure.
The drain pipe 5 has an inner diameter D2 that is the same as or smaller than the inner diameter D1 of each of the water supply pipes 4a and 4b. The drain pipe 5 opens to the one end surface and drains water 5a. It has.
Each of the water supply pipes 4a, 4b and the drain pipe 5 is made of a corrosion-resistant material such as a stainless steel material or a hard synthetic resin, and its inner surface is preferably coated with a resin. By doing so, the corrosion resistance can be improved.
The first, second, and third flow control plates 6, 7, and 8 are formed of flat and annular members that are arranged at predetermined intervals in the vertical direction, and the first flow control plate 6 includes The outer peripheral surface is fitted and fixed to the upper inner peripheral surface of the container body 2, and the inner peripheral surface is externally fitted to the upper end of the first water supply pipe 4a. Is fitted and fixed to the upper end of the first water supply pipe 4a, and is disposed below the first baffle plate 6. The third baffle plate 8 has an outer circumferential surface that is the upper inner circumferential surface of the container body 2. The second flow restricting plate 7 is disposed below the second flow restricting plate 7.
Each of the current control plates 6, 7, and 8 is made of stainless steel, hard synthetic resin, or the like, and the surface thereof is preferably coated with resin in order to improve corrosion resistance.
The first flow restricting plate 6 includes four fan-shaped through holes 6a opened on the front and back, and water and containers that flow along the inner peripheral surface of the container body 2 and the outer peripheral surface of the first water supply pipe 4a. The water bounced back by colliding with the ceiling surface of the body 2 is controlled (the flow of the water is controlled), and the thin film is formed in the internal space of the container body 2 from each through hole 6a of the first flow restricting plate 6. And let it flow down like a waterfall.
The second baffle plate 7 has an outer peripheral surface (edge) formed in a zigzag shape, and the water flowed and flowed down by the first baffle plate 6 and each through hole of the first baffle plate 6 The water that has passed through 6a is restricted, and is allowed to flow down from the outer peripheral portion (protruding end) of the second restricting plate 7 into the inner space of the container body 2 in a thin film shape and a waterfall shape.
The inner surface (edge) of the third baffle plate 8 is formed in a zigzag shape, and the first baffle plate 6 and the second baffle plate 7 restrict the water flowing down. The water that has passed through each through hole 6a of the flow restricting plate 6 is restricted and allowed to flow down from the inner peripheral portion (projecting end) of the third flow restricting plate 8 into the inner space of the container body 2 in a thin film shape and a waterfall shape. .
The water level detection mechanism 9 is made of a light-transmitting material such as glass or resin, and the introduction pipe 9a attached to the outer peripheral surface of the container body 2 with the longitudinal direction extending in the vertical direction, and the container body 2 in the vicinity of the introduction pipe 9a. It consists of two water level sensors 9b and 9c arranged in parallel on the outer peripheral surface.
The introduction pipe 9a communicates with the inside of the container body 2 at the upper end and the lower end thereof, and the liquid level in the introduction pipe 9a is raised and lowered according to the water level in the container body 2. Sensors 9b and 9c detect the liquid surface position. The introduction pipe 9 a has an upper end connected to the container body 2 at an intermediate position between the first flow restriction plate 6 and the second flow restriction plate 7, and a lower end of the introduction pipe 9 a above the drain port 5 a of the drain pipe 5. It is connected to the container body 2 at a position.
Thus, according to this water level detection mechanism 9, when the water level in the container body 2 rises and the liquid level in the introduction pipe 9a rises, and this is detected by the upper water level sensor 9b, the container body 2 It is determined that the water level in the tank has exceeded the upper limit, the opening degree of the supply valve 3c is adjusted, and the oxygen supply amount is increased. Thereby, the oxygen pressure in the container body 2 becomes high, the amount of drainage increases, and the water level in the container body 2 falls.
On the other hand, when the water level in the container body 2 is lowered and the liquid level in the introduction pipe 9a is lowered, and this is detected by the lower water level sensor 9c, it is determined that the water level in the container body 2 has exceeded the lower limit. Thus, the opening degree of the supply valve 3c is adjusted, and the oxygen supply amount is reduced. Thereby, the oxygen pressure in the container body 2 becomes low, the amount of drainage decreases, and the water level in the container body 2 rises.
According to the oxygen dissolving apparatus 1 of the present embodiment configured as described above, first, oxygen is supplied into the container body 2 from the oxygen supply source 3a via the supply pipe 3b and the first water supply pipe 4a. The oxygen pressure in 2 is increased to atmospheric pressure or higher.
Next, when purified water (water before oxygen dissolution) is supplied to the second water supply pipe 4b by the pump device 4e, the supplied water flows through the second water supply pipe 4b, and then the first water supply pipe. 4a is mixed with oxygen supplied from the supply pipe 3b and flows through the first water supply pipe 4a while being in contact with each other, and is discharged from the discharge port 4c together with oxygen.
The discharged water is spouted in the form of a fountain (radial centered around the discharge port 4c) toward the ceiling (see C1 in FIG. 5), but the discharged water has an inner diameter of the discharge port 4c as the first water supply. Since it is formed in a smaller diameter than the other part of the tube 4a, the pressure at the time of discharge is increased, the flow velocity is increased, and the air is ejected vigorously and in a wider range radially.
And the water spouted from the discharge outlet 4c collides with the ceiling surface or inner peripheral surface of the container body 2 and flows downward along the ceiling surface or inner peripheral surface (see arrow C2) or rebounds. (Not shown), it flows downward (not shown) along the outer peripheral surface of the first water supply pipe 4a, and then is restricted by the first current restricting plate 6 so that the first current restricting plate 6 From the through-hole 6a, it flows down into the inner space of the container body 2 in a thin film shape and a waterfall shape (see arrows C3 and C4).
Next, the water that has been flown and flown down by the first flow restricting plate 6 or the water that has bounced back and passed through the through holes 6a of the first flow restricting plate 6 is restricted by the second flow restricting plate 7, and the 2 Flows in the form of a thin film and a waterfall from the outer periphery of the flow restricting plate 7 into the internal space of the container body 2 (see arrow C5).
Thereafter, the water that has been flown and flown down by the first baffle plate 6 or the second baffle plate 7, or the water that has bounced back and passed through the through holes 6 a of the first baffle plate 6, , And flows down from the inner peripheral portion of the third baffle plate 8 into the inner space of the container body 2 in a thin film shape and a waterfall shape (see arrow C6) and is stored in the bottom portion of the container body 2.
And in such a flow process in the 1st water supply pipe 4a of water and the container body 2, the oxygen which contacted the said water melt | dissolves. At this time, since the oxygen pressure inside the container body 2 is increased, oxygen is efficiently dissolved in the water.
Thereafter, the water stored in the container body 2 (water after oxygen dissolution) is drained from the drain pipe 5 by the oxygen pressure inside the container body 2.
When the water level stored in the container body 2 exceeds the upper limit or lower limit, the water level detection mechanism 9 detects the water level. When the water level exceeds the upper limit, the water level in the introduction pipe 9a is detected. The liquid level position is detected by the upper water level sensor 9b, and when the water level exceeds the lower limit, this is detected by the lower water level sensor 9c.
In this way, when the water level sensor 9b, 9c detects that the water level has exceeded a certain limit, the opening of the supply valve 3c is adjusted, and the oxygen supply amount is adjusted, whereby the inside of the container body 2 is adjusted. The oxygen pressure is adjusted to adjust the amount of drainage, and the ratio of oxygen and water in the container body 2 is maintained within a certain range.
Each of the water supply pipes 4a, 4b and the drainage pipe 5 is formed so that the inner diameter D2 of the drainage pipe 5 is the same as or smaller than the inner diameter D1 of each of the water supply pipes 4a, 4b. Water is hardly drained (water is easily stored in the container body 2), and the oxygen pressure inside the container body 2 is increased to a higher pressure.
Further, when oxygen is dissolved in water, a gas such as nitrogen originally contained (dissolved) is released from the water according to Henry's law, so that the oxygen concentration in the container body 2 gradually decreases. The amount of dissolved oxygen in water decreases. For this reason, in order to maintain the oxygen concentration in the container body 2 above a certain value, a gas such as nitrogen in the container body 2 is periodically discharged.
Specifically, first, after the supply valve 3c is closed and the supply of oxygen into the container body 2 is stopped, the exhaust valve 10a of the exhaust pipe 10 is opened to allow the inside of the container body 2 to communicate with the outside. Thereby, the gas pressure inside the container body 2 is reduced to a pressure equivalent to the atmospheric pressure, and the water stored in the container body 2 is not drained from the drain pipe 5.
Next, water is further supplied into the container body 2 from each of the water supply pipes 4a and 4b, the water level in the container body 2 is raised, and the gas in the container body 2 is discharged from the exhaust pipe 10 to the outside of the container body 2. .
As described above, according to the oxygen dissolving apparatus 1 of the present embodiment, water can be ejected radially from the discharge port 4c to increase the contact area with the oxygen of the water. Can be dissolved, that is, water in which oxygen is dissolved at a high concentration can be produced.
Further, since the contact area with oxygen can be increased without providing the diffusion plates 106 and 107 in the container body 102 as in the conventional oxygen dissolving apparatus 100 described above, the diffusion plates 106 and 107 allow water to be added. The amount of falling water is not limited, and a large amount of water can be treated efficiently, and when the gas such as nitrogen is discharged, the water level in the container body 2 is quickly raised to quickly discharge the gas. can do. Further, the supply of oxygen is not hindered by the water limited by the diffusion plates 106 and 107.
Further, since foreign substances such as dust do not clog the diffusion plates 106 and 107, there is no need to perform the operation of removing the foreign substances, the maintenance cost can be reduced, and the diffusion plates 106 and 107 can be provided. Since it is not necessary to configure the container body 2 so that it can be disassembled for removal, the structure of the container body 2 can be simplified, the manufacturing cost can be reduced, and the airtightness of the container body 2 can be increased.
In addition, since the water is restricted by the respective restricting plates 6, 7, 8, the water is made to flow down from the respective restricting plates 6, 7, 8 into the inner space of the container body 2 in a thin film shape and a waterfall shape. Further, oxygen can be brought into contact with both sides of the water film, and more oxygen can be efficiently dissolved in the water.
Further, by providing a plurality of flow control plates 6, 7, 8 and increasing the number of times of water control, the number of times of contact between the water and oxygen is increased by changing the flow state of water. Also by this, oxygen can be dissolved more efficiently.
Moreover, since the outer peripheral surface of the second baffle plate 7 and the inner peripheral surface of the third baffle plate 8 are formed in a zigzag shape, the peripheral lengths of the outer peripheral surface and the inner peripheral surface are increased, It is possible to increase the surface area of the water that flows down from the second flow control plate 7 and the third flow control plate 8 in the form of a thin film and a waterfall, thereby increasing the contact area with oxygen, and more oxygen can be efficiently added to the water. Can be dissolved.
Moreover, since the upper part of the container body 2 is formed in the spherical curved surface which protrudes outward, the water discharged from the discharge port 4c and colliding with the ceiling surface of the container body 2 is made to follow the said ceiling surface. Thus, the fluid can flow toward the first flow restricting plate 6 and can be flowed down into the internal space of the container body 2 by the first flow restricting plate 6 so that the amount of dissolved oxygen in water can be increased.
Moreover, since the upper end surface of the 1st water supply pipe | tube 4a is arrange | positioned in the upper part side in the container body 2, and water is discharged from the discharge port 4c in the upper side in the container body 2, it discharges from the discharge port 4c. Then, the flow distance of water until it is stored in the bottom of the container body 2 can be increased, and the amount of dissolved oxygen in the water can be further increased.
Further, since the inner diameter D2 of the drain pipe 5 is configured to have a small diameter equal to or smaller than the inner diameter D1 of each of the water supply pipes 4a and 4b, it is difficult to drain the water stored in the container body 2, The oxygen pressure in the container body 2 can be increased, and more oxygen can be efficiently dissolved in the water flowing in the oxygen atmosphere.
Further, even if the oxygen pressure in the container body 2 rises for some reason, the water level in the container body 2 is difficult to descend, so that the water level falls below the drain port 5a of the drain pipe 5 and the inside of the container body 2 Inconveniences such as leakage of oxygen from the drain pipe 5 to the outside can be effectively prevented.
In addition, since water and oxygen are mixed and brought into contact with each other, and the oxygen is dissolved in water, the inside of the first water supply pipe 4a flows toward the discharge port 4c. Can be dissolved in water.
Further, since the inner diameter of the discharge port 4c is configured to be smaller than the other part of the first water supply pipe 4a, the pressure at the time of discharge can be increased to increase the flow velocity, and the discharge port 4c is discharged from the discharge port 4c. The water is spread more radially and more efficiently and a large amount of oxygen is dissolved in the water, or the oxygen mixed with the water in the first water supply pipe 4a is dissolved in the water more efficiently and in a large amount. Can be made.
Moreover, since the 1st water supply pipe | tube 4a is arrange | positioned in the coaxial position with the container body 2, the water discharged from the discharge port 4c can be disperse | distributed equally, and the inside of the container body 2 can be flowed down, and the said process is carried out. Can be done efficiently.
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. 6 is a cross-sectional view showing a schematic configuration of an oxygen dissolving apparatus according to the second embodiment of the present invention, and FIG. 7 is a cross-sectional view in the direction of arrow DD in FIG. FIG. 8 is an explanatory diagram for explaining the flow of water in the second embodiment.
As shown in FIG. 6, the oxygen dissolving apparatus 20 according to the present embodiment includes an oxygen supply mechanism 3, a water supply mechanism 4, a drain pipe 5, and respective flow control plates 6 in the oxygen dissolving apparatus 1 of the first embodiment. 7 and 8 are different, and the same components as those of the oxygen dissolving apparatus 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
As shown in FIGS. 6 and 7, the oxygen dissolving apparatus 20 according to this embodiment includes the container body 2, an oxygen supply mechanism 21 for supplying oxygen into the container body 2, and the pressure detector (FIG. (Not shown), a water supply mechanism 22 for supplying water into the container body 2, a drain pipe 23 for draining the water in the container body 2, and first and second disposed at the upper position in the container body 2. The flow control plates 24 and 25 and the water level detection mechanism 9 are provided.
The oxygen supply mechanism 21 includes the oxygen supply source 3a, a supply pipe 21a having one end connected to the oxygen supply source 3a and the other end connected to the upper portion of the container body 2, the supply valve 3c, and the container body 2 The exhaust valve 21b communicates with the outside and is normally controlled such that the supply valve 3c is opened at a predetermined opening and the exhaust valve 21b is closed.
One end side of the water supply mechanism 22 penetrates from the outer peripheral surface of the bottom portion of the container body 2, bends in an L shape at the center of the container body 2, and extends toward the upper side of the container body 2. And the pump device 4e connected to the other end of the water supply pipe 22a.
The water supply pipe 22a is provided with a discharge port 22b whose one end (upper end) is disposed at a predetermined interval from the ceiling surface in the container body 2, and is open to the upper end surface. It opens toward the ceiling direction in the body 2 and discharges water toward the ceiling direction.
The water supply pipe 22a is provided with a check valve (not shown), and the check valve (not shown) prevents the water supplied into the container body 2 from flowing back.
One end side of the drainage pipe 23 penetrates into the inside from the outer peripheral surface of the bottom of the container body 2, is bent in an L shape within the container body 2, and extends toward the bottom surface side of the container body 2. The water stored in the bottom of the container body 2 (water in which oxygen is dissolved) is drained out of the container body 2 by the oxygen pressure inside the container body 2.
Further, the drain pipe 23 has one end (lower end) disposed at a predetermined interval from the bottom surface of the container body 2, and has a drain port 23 a that opens to the lower end surface and drains water. . The drain pipe 23 has an inner diameter D2 that is the same as or smaller than the inner diameter D1 of the water supply pipe 22a.
The first flow restricting plate 24 is composed of a flat plate and an annular member, and its outer peripheral surface is fitted and fixed to the upper inner peripheral surface of the container body 2 so that it is at a height position substantially the same as the upper end of the water supply pipe 22a. The inner circumferential portion of the first baffle plate 24 is arranged to restrict the water flowing along the inner peripheral surface of the container body 2 or the water that has bounced off the ceiling surface of the container body 2 and bounced back. To flow into the inner space of the container body 2 in a thin film shape and a waterfall shape.
The second flow restricting plate 25 is similarly composed of a flat plate and an annular member, and the inner peripheral surface thereof is fitted and fixed to the outer peripheral surface of the upper end side of the water supply pipe 22a so as to be lower than the first flow restricting plate 24. It is arranged to control the water flowing along the outer peripheral surface of the water supply pipe 22a and the water bounced back by colliding with the ceiling surface of the container body 2, and the container from the outer peripheral portion of the second flow control plate 25 It flows down into the inner space of the body 2 in the form of a thin film and a waterfall.
According to the oxygen dissolving apparatus 20 of the present embodiment configured as described above, first, oxygen is supplied into the container body 2 by the oxygen supply mechanism 21, and the pressure in the container body 2 is increased to atmospheric pressure or higher. The
Next, when purified water (water before oxygen dissolution) is supplied to the water supply pipe 22a by the pump device 4e, the supplied water circulates in the water supply pipe 22a, and then the container body 2 from the discharge port 22b. It is discharged inside.
The discharged water is spouted in a fountain shape (radial centered around the discharge port 22b) toward the ceiling (see arrow C11 in FIG. 8), and collides with the ceiling surface and inner peripheral surface of the container body 2, It flows downward along the ceiling surface and inner peripheral surface (see arrow C12), rebounds (not shown), and flows downward along the outer peripheral surface of the water supply pipe 22a (see arrow C13).
Thereafter, the water flowing along the inner peripheral surface of the container body 2 is controlled by the first flow restricting plate 24, and enters the internal space of the container body 2 from the inner peripheral portion of the first flow restricting plate 24. The water flowing down in the form of a thin film and a waterfall (see arrow C14) and flowing along the outer peripheral surface of the water supply pipe 22a is controlled by the second flow control plate 25, and the outer periphery of the second flow control plate 25 Flows down into the inner space of the container body 2 in a thin film shape and a waterfall shape (see arrow C15).
Further, most of the bounced water flows down in the internal space of the container body 2 without being restricted by the respective restricting plates 24 and 25.
And the water which flowed down in oxygen atmosphere is stored in the bottom part of the container body 2, and the stored water (water after oxygen dissolution) is drained from the drain pipe 23 by the oxygen pressure inside the container body 2.
As described above, the oxygen dissolving device 20 of the present embodiment can also squirt water radially from the discharge port 22b, and the water flowing along the inner peripheral surface of the container body 2 and the outer peripheral surface of the water supply pipe 22a. Since it can be made to flow down from each of the flow control plates 24 and 25 in a thin film shape and a waterfall shape, it is possible to generate water in which oxygen is dissolved at a high concentration, and the same effect as the oxygen dissolving apparatus 1 can be obtained. it can.
As mentioned above, although one Embodiment of this invention was described, the specific aspect which this invention can take is not limited to this at all.
For example, in the second embodiment, the second flow restricting plate 25 may be configured as a second flow restricting plate 26 as shown in FIGS.
As shown in FIGS. 9 and 10, the second baffle plate 26 is formed into a flat plate and a rectangular shape, and its outer peripheral surface is formed in a zigzag shape. 26a and a fitting insertion hole 26b formed in the center portion, water is allowed to flow down from the outer peripheral portion in a thin film shape and a waterfall shape, and the water is dripped into a large number of water droplets from the through hole 26a.
The through hole 26a is formed on a concentric circle centered on the fitting insertion hole 26b, and the through hole 26a formed on the inner side and the through hole 26a formed on the outer side are displaced in the circumferential direction. Each is drilled.
Further, the second flow restricting plate 26 is fitted and fixed to the outer peripheral surface of the upper end side of the water supply pipe 22a with the inner peripheral surface of the fitting insertion hole 26b, and the four corners are supported by the inner peripheral surface of the container body 2, 1 is arranged in an upper azimuth amount at a predetermined interval from the flow restricting plate 24, and a gap 26 c is formed between the outer peripheral surface and the inner peripheral surface of the container body 2.
In the oxygen dissolving apparatus including the second flow restricting plate 26 and the first flow restricting plate 24 configured as described above, water flows in the container body 2 as follows.
That is, the water sprayed radially (see arrow C21) collides with the ceiling surface and the inner peripheral surface of the container body 2 and flows downward along the ceiling surface and the inner peripheral surface ( Rebound (not shown), or flow downward along the outer peripheral surface of the water supply pipe 22a (see arrow C23).
Then, the water that flows along the outer peripheral surface of the water supply pipe 22a and the water that has bounced back is controlled by the second flow restricting plate 26, and is formed into a thin film from the outer peripheral portion of the second flow restricting plate 26. In addition, it flows down like a waterfall or drops into a large number of water drops from the through holes 26a of the second flow restricting plate 26 (see arrow C24).
On the other hand, the water that flows along the inner peripheral surface of the container body 2, the water that bounces back and passes through the gap 26 c, and the water that is controlled by the second flow control plate 26 and flows down are controlled by the first flow control plate 24. Then, it flows down in a thin film shape and a waterfall shape from the inner peripheral portion of the first baffle plate 24 (see arrow C25).
Even if each of the flow control plates 24 and 26 is configured and arranged in this way, the water discharged from the discharge port 22b flows down from the inner and outer peripheral portions of the flow control plates 24 and 26 in a thin film shape and a waterfall shape. In addition, since it can be dropped in the form of a large number of water droplets from the through hole 26a, the same effect as described above can be obtained, for example, water in which oxygen is dissolved at a high concentration can be generated.
In this case, the area of the gap 26c is preferably larger than twice the area of the through hole 26a. Further, the area of the gap 26c is more preferably set to about 5% or more of the transverse area of the container body 2, and more preferably set to about 10% or more. In this way, it is possible to effectively prevent foreign matter such as dust from passing through the gap 26c and clogging the foreign matter, and to allow a predetermined amount of water to pass through the gap 26c. A large amount of water can be treated.
In addition, the flow of water (C1 to C6, C11 to C15, C21 to C25) described based on FIGS. 5, 8, and 10 is an example, and this flow is based on the discharge amount and discharge of water. Naturally changes depending on pressure, etc.
In addition, as shown in FIG. 11, in the oxygen dissolving apparatus 1, a cylindrical flow restricting member 28 having both end surfaces opened is disposed on the ceiling surface of the container body 2 so that its axial direction is along the vertical direction. Even so, the water discharged from the discharge port 4 c and flowing along the ceiling surface is restricted by the flow restricting member 28, and is formed into a thin film from the lower end portion of the flow restricting member 28 into the internal space of the container body 2. Moreover, it can flow down like a waterfall. Although not shown, this can be applied to the oxygen dissolving apparatus 20 in the same manner.
Further, in this case, if the inner peripheral surface of the flow restricting member 28 is formed in a zigzag shape in plan view, the peripheral length of the inner peripheral surface is lengthened and flows down from the flow restricting member 28 as described above. The surface area of water can be increased to increase the contact area with oxygen, and more oxygen can be efficiently dissolved in the water.
In the above example, the arrangement position of each of the flow control plates 6, 7, 8, 24, 25, 26 is not particularly limited, but is preferably arranged at an upper position in the container body 2. For example, the flow control plates 6, 25, and 26 are disposed at the upper ends of the first water supply pipe 4a and the water supply pipe 22a, or within a range smaller than a value obtained by approximately triple the inner diameter of the discharge ports 4c and 22b. It is good to arrange | position in the position which fell below the upper end, and it is good to arrange | position the baffle plates 8 and 24 in the upper position rather than the discharge ports 4c and 22b.
If it does in this way, after falling from each baffle plate 6,7,8,24,25,26, the fall distance until it reaches the water surface of the water stored in container body 2 can be lengthened. More oxygen can be dissolved in water by contacting with water.
Further, as for the positional relationship between the respective flow control plates 6, 7, 8, 24, 25, 26, any of them may be arranged on the upper side or the lower side, and they can be provided at substantially the same height position.
Further, the shape of each of the flow restricting plates 6, 7, 8, 24, 25, and 26, for example, the shape of the outer peripheral surface and the inner peripheral surface, the shape and formation position of the through holes 6a and 26a, etc. are also particularly limited. is not. The shape of the outer peripheral surface and the inner peripheral surface formed in a zigzag shape (saw blade shape) may be a smooth curved shape, a rectangular wave shape, the saw blade shape, the curved shape and the like, instead of the zigzag shape. A combination of rectangular waves may be used.
Moreover, the number of arrangement | positioning of the baffle plates 6,7,8,24,25,26 is not limited at all, A part or all of the baffle plates 6,7,8,24,25,26 is concerned. It can be configured without being provided, or can be configured with multiple stages as compared with the above example.
Moreover, it is preferable that the upper end surfaces of the water supply pipes 4a and 22a are provided on the upper side in the container body 2, and in this way, water can be discharged on the upper side in the container body 2. Then, after being discharged from the discharge ports 4c and 22b, the flow distance of water until it is stored at the bottom of the container body 2 can be increased to further increase the amount of dissolved gas in the water.
In the above example, one water supply pipe 4a, 4b, 32a is provided in the container body 2, but a plurality of water supply pipes 4a, 4b, 22a may be provided. In addition, the inner diameter D1 of the water supply pipes 4a, 4b, and 22a is formed constant except for the discharge port 4c, and the inner diameter D2 of the drain pipes 5 and 23 is formed constant. It may be formed.
In the above example, the upper portion of the container body 2 is formed as a spherical curved surface projecting outward. However, the present invention is not limited to this. It may be formed. Even in this case, the water that has collided with the ceiling surface of the container body 2 is caused to flow along the ceiling surface to the inner peripheral surface side of the container body 2, that is, the first flow restricting plates 6 and 24 side. Since it can be made to flow down and flow down by the 1 baffle members 6 and 24, the amount of water dissolved in the gas can be increased.
In the above example, oxygen is dissolved in water, but the gas dissolved in water may be an inert gas such as nitrogen, argon, or helium, and is not particularly limited. When such an inert gas is dissolved in water, the gas dissolving device can be configured as an inert gas dissolving device that removes (deoxygenates) oxygen dissolved in water.
In addition, instead of oxygen, ozone may be dissolved in water (industrial wastewater), and in this way, hazardous substances (for example, dioxin) can be efficiently treated by treating the industrial wastewater. Can be removed or reduced.
In the above example, oxygen is dissolved in the water to purify the water quality of rivers and lakes. However, the present invention is not limited to this. You may comprise so that oxygen may be melt | dissolved in the water in the installed fish tank. In addition, the oxygen dissolving devices 1 and 20 can also be used for industrial wastewater treatment, livestock sewage treatment, hydroponics (solution) cultivation, and the like.

以上のように、本発明に係る気体溶解装置は、気体を水に溶解させる際に、好適に用いることができる。  As described above, the gas dissolving apparatus according to the present invention can be suitably used when dissolving gas in water.

Claims (11)

密閉空間を有する容器体と、前記容器体内に接続した供給管を備え、該供給管を介し前記容器体内に気体を供給して、該容器体内部の気体圧力を大気圧以上に加圧する気体供給手段と、前記容器体内に接続した給水管を備え、該給水管を介し前記容器体内に水を供給する水供給手段と、前記容器体内に接続して、該容器体の底部に貯留された気体溶存水を排水する排水管とを具備し、前記容器体内部で前記水と気体とを気液接触させることにより、該水に気体を溶解させるように構成された気体溶解装置において、
前記給水管は、その一端側が前記容器体内で上下方向に配置されて、上端面に開口した吐出口を備え、該吐出口から前記容器体の天井方向に向けて前記水を吐出するように構成されてなることを特徴とする気体溶解装置。
A gas supply that includes a container body having a sealed space and a supply pipe connected to the container body, supplies gas to the container body through the supply pipe, and pressurizes the gas pressure inside the container body to an atmospheric pressure or higher. Means, a water supply pipe connected to the inside of the container body, water supply means for supplying water into the container body through the water supply pipe, and gas stored in the bottom of the container body connected to the inside of the container body In a gas dissolving apparatus configured to dissolve a gas in the water by having a drain pipe for draining dissolved water, and bringing the water and gas into gas-liquid contact inside the container body,
The water supply pipe is configured such that one end side thereof is arranged vertically in the container body and includes a discharge port opened at an upper end surface, and the water is discharged from the discharge port toward the ceiling of the container body. A gas dissolution apparatus characterized by being made.
前記容器体の内面から内側に突出した第1制流部材を更に備えてなり、前記吐出口から前記天井に向けて吐出され、前記容器体の内面を伝って流動する水を、該第1制流部材の突出端から前記容器体の内部空間中に流下させるように構成されてなることを特徴とする請求の範囲第1項記載の気体溶解装置。A first flow control member protruding inward from the inner surface of the container body is further provided, and water discharged from the discharge port toward the ceiling and flowing along the inner surface of the container body is supplied to the first flow control member. The gas dissolving device according to claim 1, wherein the gas dissolving device is configured to flow down from a protruding end of the flow member into the internal space of the container body. 前記給水管の一端側外周面から外側に突出した板状の第2制流部材を更に備えてなり、前記吐出口から前記天井に向けて吐出され、前記給水管の外周面を伝って流動する水を、該第2制流部材の突出端から前記容器体の内部空間中に流下させるように構成されてなることを特徴とする請求の範囲第1項又は第2項記載の気体溶解装置。It further comprises a plate-like second flow restricting member protruding outward from the outer peripheral surface at one end of the water supply pipe, discharged from the discharge port toward the ceiling, and flows along the outer peripheral surface of the water supply pipe. The gas dissolving apparatus according to claim 1 or 2, wherein water is allowed to flow from the protruding end of the second flow restricting member into the internal space of the container body. 前記第1制流部材は、前記容器体の内周面から内側に突出した板状の部材から構成されるとともに、その表裏に貫通した複数の貫通穴を備えてなることを特徴とする請求の範囲第2項記載の気体溶解装置。The first flow restricting member is composed of a plate-like member protruding inward from the inner peripheral surface of the container body, and includes a plurality of through holes penetrating the front and back of the member. The gas dissolving apparatus according to claim 2 in the range. 前記第2制流部材は、その表裏に貫通した複数の貫通穴を備えてなることを特徴とする請求の範囲第3項記載の気体溶解装置。The gas dissolving apparatus according to claim 3, wherein the second flow restricting member includes a plurality of through holes penetrating the front and back surfaces thereof. 前記第1制流部材は、その突出した端縁が平面視波状に形成されてなることを特徴とする請求の範囲第2項又は第4項記載の気体溶解装置。The gas dissolving device according to claim 2 or 4, wherein the protruding end edge of the first flow restricting member is formed in a wave shape in plan view. 前記第2制流部材は、その突出した端縁が平面視波状に形成されてなることを特徴とする請求の範囲第3項又は第5項記載の気体溶解装置。6. The gas dissolving device according to claim 3, wherein the protruding end edge of the second flow restricting member is formed in a wave shape in a plan view. 前記容器体は、その前記天井部が外方又は内方に突出する球状の湾曲面に形成されてなることを特徴とする請求の範囲第1項乃至第7項記載のいずれかの気体溶解装置。The gas dissolving apparatus according to any one of claims 1 to 7, wherein the container body is formed on a spherical curved surface with the ceiling portion protruding outward or inward. . 前記排水管は、その内径が前記給水管の内径と同径若しくはそれ以下の小径に構成されてなることを特徴とする請求の範囲第1項乃至第8項記載のいずれかの気体溶解装置。The gas dissolving apparatus according to any one of claims 1 to 8, wherein the drain pipe has an inner diameter that is the same as or smaller than an inner diameter of the water supply pipe. 前記気体供給手段は、その前記供給管が前記給水管に接続されて、該給水管の吐出口から、前記気体を前記水とともに吐出させるように構成されてなることを特徴とする請求の範囲第1項乃至第9項記載のいずれかの気体溶解装置。The gas supply means is configured so that the supply pipe is connected to the water supply pipe, and the gas is discharged together with the water from an outlet of the water supply pipe. The gas dissolving device according to any one of claims 1 to 9. 前記給水管は、その横断面積が前記吐出口によって縮小されてなることを特徴とする請求の範囲第1項乃至第10項記載のいずれかの気体溶解装置。The gas dissolving device according to any one of claims 1 to 10, wherein a cross-sectional area of the water supply pipe is reduced by the discharge port.
JP2005517888A 2004-02-16 2004-05-19 Gas dissolving device Pending JPWO2005077503A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004038965 2004-02-16
JP2004038965 2004-02-16
PCT/JP2004/007161 WO2005077503A1 (en) 2004-02-16 2004-05-19 Gas dissolving device

Publications (1)

Publication Number Publication Date
JPWO2005077503A1 true JPWO2005077503A1 (en) 2007-10-18

Family

ID=34857829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005517888A Pending JPWO2005077503A1 (en) 2004-02-16 2004-05-19 Gas dissolving device

Country Status (4)

Country Link
JP (1) JPWO2005077503A1 (en)
KR (1) KR100625281B1 (en)
CN (1) CN1326601C (en)
WO (1) WO2005077503A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203217A (en) * 2006-02-02 2007-08-16 Asahi Kogyo Kk Solution tank
JP2008086896A (en) * 2006-09-29 2008-04-17 Daiei Kk Gas dissolving device
KR100983129B1 (en) * 2010-04-21 2010-09-20 김상묵 A gas dissolution control method and device
JP5932263B2 (en) * 2011-07-28 2016-06-08 株式会社大栄製作所 Gas dissolving device
JP5878344B2 (en) * 2011-11-25 2016-03-08 株式会社ガスター PRESSURE CONTAINER AND AIR SOLUTION DEVICE USING THE PRESSURE CONTAINER
JP5865680B2 (en) * 2011-11-25 2016-02-17 株式会社ガスター PRESSURE CONTAINER AND DEVICE WITH FINE BUBBLE GENERATION FUNCTION PROVIDED WITH THE PRESSURE CONTAINER
JP5865681B2 (en) * 2011-11-25 2016-02-17 株式会社ガスター Equipment with fine bubble generation function
JP5927556B2 (en) * 2012-05-10 2016-06-01 パナソニックIpマネジメント株式会社 Gas dissolving device
WO2016113877A1 (en) 2015-01-15 2016-07-21 株式会社大栄製作所 Gas exchange device
JP6727163B2 (en) * 2017-04-17 2020-07-22 レッキス工業株式会社 Gas dissolver
JP7343102B2 (en) * 2020-06-05 2023-09-12 松江土建株式会社 Gas-liquid dissolution equipment
CN116020256B (en) * 2023-03-22 2023-08-18 苏州杰宸环境科技有限公司 Gas-liquid reactor based on carbon neutralization, method and adsorption tower with reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS392679Y1 (en) * 1962-02-12 1964-02-03
JP2003154380A (en) * 2001-11-21 2003-05-27 Sasakura Engineering Co Ltd Water treatment method and apparatus using highly concentrated ozone

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100298855B1 (en) * 1996-08-07 2001-11-14 다나카 쇼소 Gas-liquid dispersion device and gas-liquid contact device and wastewater treatment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS392679Y1 (en) * 1962-02-12 1964-02-03
JP2003154380A (en) * 2001-11-21 2003-05-27 Sasakura Engineering Co Ltd Water treatment method and apparatus using highly concentrated ozone

Also Published As

Publication number Publication date
CN1326601C (en) 2007-07-18
CN1723077A (en) 2006-01-18
WO2005077503A1 (en) 2005-08-25
KR20060025510A (en) 2006-03-21
KR100625281B1 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JPWO2005077503A1 (en) Gas dissolving device
KR100642986B1 (en) Dirty/waste water treatment system using the ozone
US20110168616A1 (en) System and Process for Removing Nitrogen Compounds and Odors from Wastewater and Wastewater Treatment System
WO2014201979A1 (en) Sewage treatment system and method thereof
KR101510416B1 (en) Apparatus And Method For Treating High Concentrated Organic or high salinity waste water
JP2006180829A (en) Apparatus for receiving fish or shellfish
JP2008086896A (en) Gas dissolving device
KR101129407B1 (en) Clarification apparatus for nonpoint source pollutants
KR101844819B1 (en) Convergence floating type water management system
US10040697B2 (en) Method for mixing industrial waste water within a gravity settling tank
KR102416308B1 (en) Deodorizing device
JP2009161601A (en) Organism desulfurization apparatus
JP4859457B2 (en) Liquid purification device
KR101823648B1 (en) System for purifying contaminated water and preventing green or red tide
JP2006181456A (en) Purifier
NL1009892C2 (en) Biological treatment plant for purifying water, contains closed system formed by a sealed reactor tank and a gas recirculation means
CN209797688U (en) Sewage treatment system of saturated filling biofilm reactor
US7160460B2 (en) System and method for treating wastewater using coir filter
KR101071501B1 (en) A purify apparatus of noxious gas
JP3762771B2 (en) Defoaming device and defoaming method for aeration tank
CN215327257U (en) Cathode chemical foil formation wastewater aeration treatment device
CN220460313U (en) Combined deodorizing device
JP5091404B2 (en) Liquid purification device
CN211677059U (en) Laboratory exhaust treatment system
CN107344806A (en) A kind of coal liquifaction RO concentrated waters processing system and its processing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100820