JP5927556B2 - Gas dissolving device - Google Patents

Gas dissolving device Download PDF

Info

Publication number
JP5927556B2
JP5927556B2 JP2012108920A JP2012108920A JP5927556B2 JP 5927556 B2 JP5927556 B2 JP 5927556B2 JP 2012108920 A JP2012108920 A JP 2012108920A JP 2012108920 A JP2012108920 A JP 2012108920A JP 5927556 B2 JP5927556 B2 JP 5927556B2
Authority
JP
Japan
Prior art keywords
gas
liquid
dissolution tank
tank
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012108920A
Other languages
Japanese (ja)
Other versions
JP2013233526A (en
Inventor
前田 康成
康成 前田
伊藤 良泰
良泰 伊藤
仁史 北村
仁史 北村
恭子 堤
恭子 堤
尚紀 柴田
尚紀 柴田
朋弘 穐田
朋弘 穐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012108920A priority Critical patent/JP5927556B2/en
Publication of JP2013233526A publication Critical patent/JP2013233526A/en
Application granted granted Critical
Publication of JP5927556B2 publication Critical patent/JP5927556B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、気体溶解装置に関する。   The present invention relates to a gas dissolving apparatus.

本出願人は、2つの仕切り壁によって内部が気液混合槽、大泡流出防止槽、気液分離槽に区画された溶解タンクを備えた気体溶解装置を提案している(特許文献1)。   The present applicant has proposed a gas dissolution apparatus including a dissolution tank that is partitioned into a gas-liquid mixing tank, a large bubble outflow prevention tank, and a gas-liquid separation tank by two partition walls (Patent Document 1).

特許文献1の気体溶解装置では、流体の噴出により気液混合槽内に流体を導入している。このとき、流体は、溶解タンクの上壁部や仕切り壁に衝突し、跳ね返り、次第に気液混合槽の底部に溜まっていく。また、上壁部の内面に衝突し、跳ね返る流体は、気液混合槽に貯留する流体の液面に衝突し、流体を攪拌する。このときの攪拌などによって、溶解タンク内に貯留している気体と流体が混合され、また、気液混合流体が噴出するとき、気液混合流体中の気体も合わせて気体と流体が混合され、気体の溶解が促進され、気体が溶解した液体が生成される。これは、流体の攪拌による剪断によって気泡として混合される気体を細分化し、流体と接触する表面積を大きくしたことによる。   In the gas dissolving device of Patent Document 1, fluid is introduced into the gas-liquid mixing tank by ejecting fluid. At this time, the fluid collides with the upper wall and partition walls of the dissolution tank, rebounds, and gradually accumulates at the bottom of the gas-liquid mixing tank. Further, the fluid that collides with the inner surface of the upper wall portion and rebounds collides with the liquid surface of the fluid stored in the gas-liquid mixing tank, and stirs the fluid. The gas and fluid stored in the dissolution tank are mixed by stirring at this time, and when the gas-liquid mixed fluid is ejected, the gas and fluid are mixed together with the gas in the gas-liquid mixed fluid, Dissolution of the gas is promoted, and a liquid in which the gas is dissolved is generated. This is because the gas mixed as bubbles is subdivided by shearing by stirring the fluid, and the surface area in contact with the fluid is increased.

このように特許文献1の気体溶解装置は、気液接触面積を大きくするために多くの流量の流体を必要とする。このため、流量の多い流体に気体を溶解させるには適した装置であるが、低流量の流体に気体を溶解させることは難しい。   Thus, the gas dissolving device of Patent Document 1 requires a large amount of fluid to increase the gas-liquid contact area. For this reason, it is a device suitable for dissolving a gas in a fluid having a high flow rate, but it is difficult to dissolve the gas in a fluid having a low flow rate.

一方、加圧空気導入口および処理水導入口を上部に設けた密閉容器型のベッセルと、このベッセルの中心位置内部に回転可能に軸受された回転板とを備えた加圧式気体混和装置(気体溶解装置)が知られている(特許文献2)。回転板は、その周囲には多数の開口部が形成された有底容器として構成されており、処理水導入口から導入された処理水がこの回転板に供給されるようになっている。回転板に供給された処理水は、回転板の回転による遠心力によってベッセルの内周壁めがけて水滴の形で飛ばされる。ベッセル内は加圧空気導入口から吹き込まれた加圧空気が満たされており、水滴は、この加圧空気内を飛翔して空気が混和される。ベッセルの内周壁に到達した水滴は、水膜として内周壁表面を回りながら流下し、加圧空気と接触し、空気が混和される。   On the other hand, a pressurized gas mixing device (gas) comprising a closed vessel type vessel provided with a pressurized air inlet and a treated water inlet and a rotating plate rotatably supported inside the central position of the vessel. A dissolution apparatus) is known (Patent Document 2). The rotating plate is configured as a bottomed container in which a large number of openings are formed around the rotating plate, and the treated water introduced from the treated water introduction port is supplied to the rotating plate. The treated water supplied to the rotating plate is blown off in the form of water droplets toward the inner peripheral wall of the vessel by the centrifugal force generated by the rotation of the rotating plate. The inside of the vessel is filled with pressurized air blown from the pressurized air inlet, and water droplets fly through the pressurized air to mix the air. The water droplets that have reached the inner peripheral wall of the vessel flow down as a water film around the inner peripheral wall surface, come into contact with the pressurized air, and the air is mixed.

このように特許文献2の加圧式気体混和装置は、処理水を水滴の形でベッセルの内周壁に飛ばし、水膜としてベッセルの内周壁表面を流下させるなどして気液接触面積を大きくしている。このため、処理水が低流量であっても気体を溶解させることは可能であると考えられる。   Thus, the pressurized gas mixing device of Patent Document 2 increases the gas-liquid contact area by flying treated water in the form of water droplets onto the inner peripheral wall of the vessel and flowing down the inner peripheral wall surface of the vessel as a water film. Yes. For this reason, it is considered possible to dissolve the gas even if the treated water has a low flow rate.

特開2010−227782号公報JP 2010-227782 特開平10-235174号公報Japanese Patent Laid-Open No. 10-235174

しかしながら、特許文献2の加圧式気体混和装置は、回転板からの処理水の流出速度によってはベッセルの内周壁に衝突した処理水が跳ね返ってその内周壁表面に水膜を形成しないこともあり、回転板の回転速度の加減が難しいという問題がある。処理水がベッセルの内周壁において跳ね返るような場合、通常、処理水は回転板から高速で流出し、また跳ね返り速度も高速であるため、空気との接触時間は短いものとなり、処理水中に空気を十分に溶解させることができない。   However, in the pressurized gas mixing device of Patent Document 2, the treated water that collides with the inner peripheral wall of the vessel rebounds depending on the outflow speed of the treated water from the rotating plate, and a water film may not be formed on the inner peripheral wall surface. There is a problem that it is difficult to adjust the rotation speed of the rotating plate. When the treated water bounces off the inner wall of the vessel, the treated water usually flows out of the rotating plate at a high speed and the bounce speed is also high, so the contact time with the air is short, and the air is put into the treated water. It cannot be dissolved sufficiently.

本発明は、以上のとおりの事情に鑑みてなされたものであり、低流量の流体でも気体を効率よく溶解させることが可能な気体溶解装置を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and an object thereof is to provide a gas dissolving apparatus capable of efficiently dissolving a gas even with a low flow rate fluid.

上記の課題を解決するために、本発明の気体溶解装置は、円筒状の溶解タンクを備えた気体溶解装置であって、前記溶解タンクは、上下に貫通する孔を有し、前記溶解タンクの内部を上側槽と下側槽に区画する液滴生成部を備え、前記下側槽は、液体取出口を有する流出管接続部が設けられている気体溶解槽であり、前記流出管接続部は、前記液体取出口が前記溶解タンクの底壁部の軸心付近に位置するように、前記底壁部の内側面に沿って横方向に設けられており、前記気体溶解槽には、前記液体取出口の上側に、上下方向に延びる複数の整流板が、溶解タンクの軸心から側壁部に向かって放射状に配置されており、前記液滴生成部の上側から供給された流体が前記液滴生成部の前記孔を通過して液滴が生成され、この液滴は、落下により前記気体溶解槽に供給され、液滴の気液界面を介して気体が液滴中に溶解し、気体が溶解した液体が生成され、この液体は、前記液体取出口から前記流出管接続部を通じて前記気体溶解槽の外部に流出することを特徴としている。 In order to solve the above problems, a gas dissolving apparatus of the present invention is a gas dissolving apparatus provided with a cylindrical dissolution tank, and the dissolution tank has a hole penetrating vertically, A droplet generation unit that divides the inside into an upper tank and a lower tank is provided, and the lower tank is a gas dissolution tank provided with an outflow pipe connection part having a liquid outlet, and the outflow pipe connection part is The liquid outlet is provided laterally along the inner surface of the bottom wall so that the liquid outlet is located in the vicinity of the axial center of the bottom wall of the dissolution tank. On the upper side of the outlet, a plurality of rectifying plates extending in the vertical direction are arranged radially from the axial center of the dissolution tank toward the side wall portion, and the fluid supplied from the upper side of the droplet generation unit is the droplet A droplet is generated by passing through the hole of the generation unit, and this droplet is dropped by The gas is supplied to the gas dissolution tank, and the gas is dissolved in the droplets via the gas-liquid interface of the droplets, and a liquid in which the gas is dissolved is generated. It flows out of the gas dissolution tank.

この気体溶解装置においては、前記液滴生成部は、複数の孔が略等間隔に形成されていることが好ましい。   In this gas dissolving apparatus, it is preferable that the droplet generating unit has a plurality of holes formed at substantially equal intervals.

本発明の気体溶解装置によれば、低流量の流体でも気体を効率よく溶解させることが可能である。   According to the gas dissolving apparatus of the present invention, gas can be efficiently dissolved even with a low flow rate fluid.

本発明の気体溶解装置の一実施形態を示した模式図であり、(a)は正面図であり、(b)は平面図である。It is the schematic diagram which showed one Embodiment of the gas dissolving apparatus of this invention, (a) is a front view, (b) is a top view. 図1(b)に示した気体溶解装置のB−B断面における斜視断面図である。It is a perspective sectional view in the BB section of the gas dissolving device shown in Drawing 1 (b). 図1(a)に示した気体溶解装置のA−A断面図である。It is AA sectional drawing of the gas dissolving apparatus shown to Fig.1 (a).

図1は、本発明の気体溶解装置の一実施形態を示した模式図であり、(a)は正面図であり、(b)は平面図である。図2は、図1(b)に示した気体溶解装置のB−B断面における斜視断面図である。図3は、図1(a)に示した気体溶解装置のA−A断面図である。   FIG. 1 is a schematic view showing an embodiment of the gas dissolving apparatus of the present invention, where (a) is a front view and (b) is a plan view. FIG. 2 is a perspective sectional view of the gas dissolving apparatus shown in FIG. FIG. 3 is a cross-sectional view taken along line AA of the gas dissolving apparatus shown in FIG.

図1−3に示したように、気体溶解装置1は、略円形の上壁部2aとこの上壁部2aに対向する略円形の底壁部2bとこれら上壁部2aおよび底壁部2bの周囲を囲む側壁部2cとを有した、縦長で円筒状の溶解タンク2を備えている。この溶解タンク2内には、後述する気体が溶解した液体において空気などの溶質となる気体が貯留している。
溶解タンク2の内部は、溶解タンク2の軸方向と直交する方向に設けられた板状の隔壁3によって、上側槽4と下側槽5の2つの槽に区画形成されている。下側槽5は気体溶解槽6を構成する。
As shown in FIG. 1-3, the gas dissolving apparatus 1 includes a substantially circular upper wall portion 2a, a substantially circular bottom wall portion 2b opposed to the upper wall portion 2a, and the upper wall portion 2a and the bottom wall portion 2b. And a side wall portion 2c surrounding the periphery of the tank, a vertically long and cylindrical dissolution tank 2 is provided. In the dissolution tank 2, a gas that becomes a solute such as air in a liquid in which a gas to be described later is dissolved is stored.
The inside of the dissolution tank 2 is partitioned into two tanks, an upper tank 4 and a lower tank 5, by plate-like partition walls 3 provided in a direction orthogonal to the axial direction of the dissolution tank 2. The lower tank 5 constitutes a gas dissolution tank 6.

溶解タンク2には、上壁部2aに、その軸心付近に、流体導入口9を有する流入管接続部10が軸方向に設けられている。流入管接続部10には、溶媒となる水などの流体(液体)を送り出す流入管の一端部が接続される。なお、流入管接続部10が設けられる位置は図示の例に限らず、後述する液滴生成部よりも上方の位置であれば適宜の位置に配置することができる。
この流入管接続部10の流体導入口9を通じて溶解タンク2の上側槽4に流体が供給される。流体導入口9から供給される流体の流量は、後述する液滴生成部8において液滴が生成可能な程度の量であればよい。流体は、上側槽4に供給するに先立って、溶解タンク2内に貯留している気体と同じ種類の気体と混合して気液混合流体としておくこともできる。以下、流体単独(液体)および気液混合流体をまとめて「流体」と記載する。
In the dissolution tank 2, an inflow pipe connecting portion 10 having a fluid introduction port 9 is provided in the axial direction near the axial center of the upper wall portion 2 a. One end portion of an inflow pipe that sends out a fluid (liquid) such as water serving as a solvent is connected to the inflow pipe connection portion 10. In addition, the position where the inflow pipe connecting portion 10 is provided is not limited to the example shown in the drawing, and any position can be used as long as it is a position above a droplet generation portion described later.
A fluid is supplied to the upper tank 4 of the dissolution tank 2 through the fluid inlet 9 of the inflow pipe connection 10. The flow rate of the fluid supplied from the fluid introduction port 9 may be an amount that can generate droplets in the droplet generation unit 8 described later. Prior to supplying the fluid to the upper tank 4, the fluid may be mixed with the same type of gas as the gas stored in the dissolution tank 2 to be a gas-liquid mixed fluid. Hereinafter, the fluid alone (liquid) and the gas-liquid mixed fluid are collectively referred to as “fluid”.

隔壁3には上下に貫通する孔7が形成されており、このような隔壁3は液滴生成部8を構成する。上側槽4と気体溶解槽6とはこの孔7を通じて互いに連通している。図2において矢印Pで示すように、上側槽4に供給された流体は孔7を通過して液滴として気体溶解槽6に供給される。上側槽4に供給される流体に圧力を加えて孔7を通りやすくしてもよいが、この場合には、生成された液滴の落下するときの初速度が限りなくゼロとなるように、つまり、自由落下状態で流下するように、流体に加える圧力を低くすることが好ましい。生成された液滴が自由落下で流下すれば、気体溶解槽6における液滴と気体との接触時間をより長くすることができるので望ましい。孔7のサイズや形状は、液滴が生成可能なように適宜設定され、流体の粘度、流体の比重などにより決定される。例えば、流体が水の場合、孔径0.1〜2mmの略円形状を有する孔とすることができる。   The partition wall 3 is formed with a hole 7 penetrating vertically, and the partition wall 3 constitutes a droplet generation unit 8. The upper tank 4 and the gas dissolution tank 6 communicate with each other through this hole 7. As shown by an arrow P in FIG. 2, the fluid supplied to the upper tank 4 passes through the holes 7 and is supplied as droplets to the gas dissolution tank 6. Although pressure may be applied to the fluid supplied to the upper tank 4 to facilitate passage through the holes 7, in this case, the initial velocity when the generated droplets fall is infinitely zero, That is, it is preferable to reduce the pressure applied to the fluid so that it flows down in a free-fall state. It is desirable that the generated droplets flow down by free fall because the contact time between the droplets and the gas in the gas dissolution tank 6 can be extended. The size and shape of the holes 7 are appropriately set so that droplets can be generated, and are determined by the viscosity of the fluid, the specific gravity of the fluid, and the like. For example, when the fluid is water, it can be a hole having a substantially circular shape with a hole diameter of 0.1 to 2 mm.

液滴生成部8においては、孔7は複数有していてもよい。この場合、各孔7は同一サイズおよび同一形状であってもよいし、各孔7で異なっていてもよい。孔7の数は、多いほど液滴の生成数が増え、気体が溶解した液体がより効率よく生成されるので好ましい。孔7の配置は、孔7のサイズや形状に応じて隣接する孔7と孔7との間の間隔を設定すればよい。図1−3に示した例では、隔壁3全面に一様に形成され、液滴同士が流下中に凝集しないように、隣接する孔7と孔7は略等間隔に配置されている。
このような孔7のサイズ、形状、数、配置などは、流体導入口9の位置やこの流体導入口9から上側槽4に流入する流体の流速などを考慮して設定することもできる。
In the droplet generation unit 8, a plurality of holes 7 may be provided. In this case, each hole 7 may have the same size and the same shape, or may be different in each hole 7. The larger the number of holes 7, the more the number of generated droplets increases, and a liquid in which a gas is dissolved is more preferably generated. As for the arrangement of the holes 7, the distance between the adjacent holes 7 may be set according to the size and shape of the holes 7. In the example shown in FIGS. 1-3, the adjacent holes 7 and the holes 7 are arranged at substantially equal intervals so that the droplets are uniformly formed on the entire surface of the partition wall 3 and the droplets do not aggregate during the flow.
The size, shape, number, arrangement and the like of the holes 7 can be set in consideration of the position of the fluid introduction port 9 and the flow velocity of the fluid flowing into the upper tank 4 from the fluid introduction port 9.

液滴生成部8において生成された液滴は、落下により流下し、液滴生成部8の下側に位置する気体溶解槽6に供給される。
流体を液滴とすることで、液相(流体)に対する気相(気体)の比率が高まり、気相と液相との接触面積(気液接触面積)が増加する。流体中には気液界面を介して気体が溶解するので、このような気液接触面積の増加によって、気体の流体への溶解速度が上昇し、気体を効率よく溶解させることができる。液滴生成部8に供給される流体の流量は液滴が生成可能な程度の量であればよいので、本実施形態の気体溶解装置1では低流量の流体でも気体を効率よく溶解させることができる。
The droplets generated in the droplet generation unit 8 flow down by being dropped, and are supplied to the gas dissolution tank 6 positioned below the droplet generation unit 8.
By making the fluid into droplets, the ratio of the gas phase (gas) to the liquid phase (fluid) increases, and the contact area between the gas phase and the liquid phase (gas-liquid contact area) increases. Since the gas dissolves in the fluid through the gas-liquid interface, the increase in the gas-liquid contact area increases the rate of dissolution of the gas into the fluid, thereby efficiently dissolving the gas. Since the flow rate of the fluid supplied to the droplet generation unit 8 may be an amount that can generate droplets, the gas dissolving device 1 of the present embodiment can efficiently dissolve the gas even with a low flow rate fluid. it can.

このように液滴生成部8で生成された液滴は、気体溶解槽6内の気相中を流下し、液滴の気液界面を介して液滴(流体)中に気体が溶解し、気体が溶解された液体が生成される。この液体は、次第に気体溶解槽6の底部に溜まっていく。また、流下する液滴は、貯留する液体の液面に衝突し、液面直下の液体を攪拌する。   Thus, the droplet generated by the droplet generation unit 8 flows down in the gas phase in the gas dissolution tank 6, and the gas is dissolved in the droplet (fluid) via the gas-liquid interface of the droplet, A liquid in which a gas is dissolved is generated. This liquid gradually accumulates at the bottom of the gas dissolution tank 6. In addition, the liquid droplets that flow down collide with the liquid level of the stored liquid, and stir the liquid immediately below the liquid level.

このときの攪拌などによっても、溶解タンク2内に貯留している気体と液体が混合され、気体の溶解が促進される。一方、乱流が発生しやすくもなっており、落下中に液滴同士が凝集し、溶解効率が低下することがある。そこで、本実施形態のように、気体溶解槽6に、整流板11を設けることができる。この整流板11は、上下方向(鉛直方向)に延び、後述する液体取出口12の上側に設けられる。気体溶解槽6に貯留する液体の液面以下の位置に設けられてもよい。この整流板11によって、液体の液面直下に生じる液体の流れが整流され、図2において矢印Qで示すように、流れの向きが上下方向に一様となる。また、液滴の凝集を抑えることができ、その結果、溶解効率の低下を抑制することができる。   The gas and the liquid stored in the dissolution tank 2 are also mixed by stirring at this time, and the dissolution of the gas is promoted. On the other hand, turbulent flow is also likely to occur, and droplets may aggregate while falling, resulting in a decrease in dissolution efficiency. Therefore, the current plate 11 can be provided in the gas dissolution tank 6 as in the present embodiment. The current plate 11 extends in the vertical direction (vertical direction), and is provided on the upper side of the liquid outlet 12 described later. You may provide in the position below the liquid level of the liquid stored in the gas dissolution tank 6. FIG. The flow of the liquid generated just below the liquid level is rectified by the flow straightening plate 11, and the flow direction becomes uniform in the vertical direction as indicated by an arrow Q in FIG. Moreover, aggregation of droplets can be suppressed, and as a result, a decrease in dissolution efficiency can be suppressed.

整流板11は、液体の流れの圧力損失の原因となることもあるので、圧力損失を極力低く抑えるために、その厚みを薄いものにすることが好ましい。一方、上下方向の長さについては、長いほど液体の整流に寄与し、液体の流れの方向を制御することができる。また、液体をより効果的に整流する上では整流板11の数は多いほど好ましい。このような観点から、本実施形態のように、溶解タンク2の軸心から側壁部2cに向かって複数の整流板11を放射状に配置することが望ましい。   Since the rectifying plate 11 may cause a pressure loss of the liquid flow, it is preferable to make the thickness thin in order to suppress the pressure loss as low as possible. On the other hand, with respect to the length in the vertical direction, the longer the length, the more it contributes to liquid rectification, and the liquid flow direction can be controlled. Further, in order to rectify the liquid more effectively, the number of rectifying plates 11 is preferably as large as possible. From such a viewpoint, it is desirable to arrange the plurality of rectifying plates 11 radially from the axial center of the dissolution tank 2 toward the side wall 2c as in the present embodiment.

気体溶解槽6には、溶解タンク2の底壁部2bに、液体取出口12を有する流出管接続部13が設けられている。この流出管接続部13は、液体取出口12が底壁部2bの軸心付近に位置するように底壁部2bの内側面に沿って横方向に設けられている。流出管接続部13には、気体溶解槽6で生成した、気体が溶解した液体を浴槽などの供給部に送り出す流出管の一端部が接続される。
このように溶解タンク2の底壁部2bに流出管接続部13が設けられているので、未溶解の気体による気泡が液体中に混合されていたとしても、液面付近に存在する大きな気泡の流出を抑制することができる。気泡は、上側ほど密に存在し、液面付近の大きな気泡は、液面から離れた底部付近にはあまり存在しない。液体は、気体溶解槽6の底部から流出管接続部13の液体取出口12を通じて気体溶解槽6の外部に流出し、取り出されるため、大きな気泡の流出が抑制される。
The gas dissolution tank 6 is provided with an outflow pipe connection portion 13 having a liquid outlet 12 on the bottom wall portion 2 b of the dissolution tank 2. The outflow pipe connecting portion 13 is provided in the lateral direction along the inner surface of the bottom wall portion 2b so that the liquid outlet 12 is located in the vicinity of the axial center of the bottom wall portion 2b. The outflow pipe connecting portion 13 is connected to one end portion of an outflow pipe that sends out the gas-dissolved liquid generated in the gas dissolution tank 6 to a supply section such as a bathtub.
Since the outflow pipe connecting portion 13 is provided in the bottom wall portion 2b of the dissolution tank 2 in this way, even if bubbles due to undissolved gas are mixed in the liquid, large bubbles existing near the liquid surface Outflow can be suppressed. Bubbles are densely present on the upper side, and large bubbles near the liquid surface do not exist so much near the bottom away from the liquid surface. Since the liquid flows out from the bottom of the gas dissolving tank 6 to the outside of the gas dissolving tank 6 through the liquid outlet 12 of the outflow pipe connecting portion 13 and is taken out, the outflow of large bubbles is suppressed.

以上のとおり本発明の気体溶解装置は、流体を液滴にして気相と液相との接触面積を大きくし、気体溶解槽内の気相中において高い溶解効率で流体中に気体を溶解している。低流量の流体でも液滴とすることができるので、本発明の気体溶解装置は、低流量の流体でも気体を効率よく溶解させることができる。また、特別な駆動装置や動力源などを要せずに液滴の生成や液滴への気体溶解が可能であるなど、省エネルギー化が実現されており、しかもメンテナンス性に優れ、取扱いが容易な簡単な構造である。   As described above, the gas dissolving apparatus of the present invention uses fluid as droplets to increase the contact area between the gas phase and the liquid phase, and dissolves gas in the fluid with high dissolution efficiency in the gas phase in the gas dissolving tank. ing. Since even a low flow rate fluid can be formed into droplets, the gas dissolving device of the present invention can efficiently dissolve a gas even with a low flow rate fluid. In addition, energy saving has been realized, such as the generation of droplets and gas dissolution in droplets without requiring a special drive or power source, etc., and excellent maintenance and easy handling. It is a simple structure.

1 気体溶解装置
6 気体溶解槽
7 孔
8 液滴生成部
11 整流板
12 液体取出口
DESCRIPTION OF SYMBOLS 1 Gas dissolving apparatus 6 Gas dissolving tank 7 Hole 8 Droplet production | generation part 11 Current plate 12 Liquid outlet

Claims (2)

円筒状の溶解タンクを備えた気体溶解装置であって、
前記溶解タンクは、上下に貫通する孔を有し、前記溶解タンクの内部を上側槽と下側槽に区画する液滴生成部を備え、
前記下側槽は、液体取出口を有する流出管接続部が設けられている気体溶解槽であり、
前記流出管接続部は、前記液体取出口が前記溶解タンクの底壁部の軸心付近に位置するように、前記底壁部の内側面に沿って横方向に設けられており、
前記気体溶解槽には、前記液体取出口の上側に、上下方向に延びる複数の整流板が、溶解タンクの軸心から側壁部に向かって放射状に配置されており、
前記液滴生成部の上側から供給された流体が前記液滴生成部の前記孔を通過して液滴が生成され、この液滴は、落下により前記気体溶解槽に供給され、液滴の気液界面を介して気体が液滴中に溶解し、気体が溶解した液体が生成され、この液体は、前記液体取出口から前記流出管接続部を通じて前記気体溶解槽の外部に流出することを特徴とする気体溶解装置。
A gas dissolving device comprising a cylindrical dissolution tank,
The dissolution tank has a hole that penetrates up and down, and includes a droplet generation unit that divides the inside of the dissolution tank into an upper tank and a lower tank,
The lower tank is a gas dissolution tank provided with an outflow pipe connection having a liquid outlet,
The outflow pipe connecting portion is provided in a lateral direction along the inner surface of the bottom wall portion so that the liquid outlet is located near the axis of the bottom wall portion of the dissolution tank,
In the gas dissolution tank, on the upper side of the liquid outlet, a plurality of rectifying plates extending in the vertical direction are arranged radially from the axial center of the dissolution tank toward the side wall,
The fluid supplied from the upper side of the droplet generation unit passes through the hole of the droplet generation unit to generate a droplet. The droplet is supplied to the gas dissolution tank by dropping, and the droplet gas is discharged. The gas is dissolved in the liquid droplets through the liquid interface, and a liquid in which the gas is dissolved is generated, and the liquid flows out of the gas dissolution tank from the liquid outlet through the outflow pipe connection portion. Gas dissolving device.
前記液滴生成部は、複数の孔が略等間隔に形成されていることを特徴とする請求項1に記載の気体溶解装置。   The gas dissolving device according to claim 1, wherein the droplet generation unit has a plurality of holes formed at substantially equal intervals.
JP2012108920A 2012-05-10 2012-05-10 Gas dissolving device Expired - Fee Related JP5927556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012108920A JP5927556B2 (en) 2012-05-10 2012-05-10 Gas dissolving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012108920A JP5927556B2 (en) 2012-05-10 2012-05-10 Gas dissolving device

Publications (2)

Publication Number Publication Date
JP2013233526A JP2013233526A (en) 2013-11-21
JP5927556B2 true JP5927556B2 (en) 2016-06-01

Family

ID=49760081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012108920A Expired - Fee Related JP5927556B2 (en) 2012-05-10 2012-05-10 Gas dissolving device

Country Status (1)

Country Link
JP (1) JP5927556B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA793185B (en) * 1978-08-30 1981-02-25 Dorr Oliver Inc Apparatus and process for dissolution of gases in liquid
JP3149238B2 (en) * 1991-12-19 2001-03-26 有限会社ヤマヱ Oxygen replenishment equipment for fishponds
JP2003071450A (en) * 2001-09-06 2003-03-11 Toto Ltd Functional water making apparatus
US7159854B2 (en) * 2003-08-21 2007-01-09 Glr Solutions Ltd. Apparatus and method for producing small gas bubbles in liquids
CN1326601C (en) * 2004-02-16 2007-07-18 大荣株式会社 Gas dissolving device
JP4859457B2 (en) * 2005-12-28 2012-01-25 有限会社ヤマヱ Liquid purification device

Also Published As

Publication number Publication date
JP2013233526A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP6118544B2 (en) Fine bubble generating nozzle and fine bubble generating device
BRPI0716552B1 (en) Process for mixing a liquid or mixture of a fine particulate liquid and solid
JP2012250138A (en) Microbubble generation nozzle and microbubble generator
JP2011183328A (en) Aerator
KR101385163B1 (en) Cyclone pressing tank and micro bubble generating system having the same
JP5927556B2 (en) Gas dissolving device
JP5024144B2 (en) Gas dissolver
JP2019188317A (en) Reaction device and agent addition method
JP6189202B2 (en) Stirrer
JP5547157B2 (en) Stirrer
JP2017113687A (en) Gas-liquid mixer
JP2011183350A (en) Gas-liquid mixing apparatus
JP5501028B2 (en) Rotary blade type bubble generator
KR102305212B1 (en) Bubble generator
JP2014069134A (en) Gas dissolving apparatus
JP2012091153A (en) Fine-air-bubble generator
JP5787573B2 (en) Gas-liquid separator
JP5464479B2 (en) Mist generator
JP7105446B2 (en) Reactor
JP2020138171A (en) Gas-liquid dissolution tank
JP5914802B2 (en) Gas dissolving device
JP5975382B2 (en) Gas dissolution tank and gas dissolution apparatus equipped with the same
KR101864500B1 (en) Nano-bubble generator
KR101437513B1 (en) bubble generating apparatus
JP7090287B2 (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141009

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160323

R151 Written notification of patent or utility model registration

Ref document number: 5927556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees