JPWO2004112970A1 - Eddy current type liquid atomization nozzle - Google Patents

Eddy current type liquid atomization nozzle Download PDF

Info

Publication number
JPWO2004112970A1
JPWO2004112970A1 JP2005507192A JP2005507192A JPWO2004112970A1 JP WO2004112970 A1 JPWO2004112970 A1 JP WO2004112970A1 JP 2005507192 A JP2005507192 A JP 2005507192A JP 2005507192 A JP2005507192 A JP 2005507192A JP WO2004112970 A1 JPWO2004112970 A1 JP WO2004112970A1
Authority
JP
Japan
Prior art keywords
liquid
gas
nozzle
fluororesin
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005507192A
Other languages
Japanese (ja)
Other versions
JP4659616B2 (en
Inventor
池田 正明
正明 池田
池田 大祐
大祐 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2004112970A1 publication Critical patent/JPWO2004112970A1/en
Application granted granted Critical
Publication of JP4659616B2 publication Critical patent/JP4659616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/2489Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device an atomising fluid, e.g. a gas, being supplied to the discharge device

Landscapes

  • Nozzles (AREA)

Abstract

前方に気体出口201、側方に気体入口202が開口した中空ボディ2と、ボディ2内に後方から挿着され、前方の液体出口301と後方の液体入口316とを連通する液体通路を内部にもつ中空部材3を備え、ボディ2と部材3間に、気体入口202と出口201を連通する気体通路7が画成され、部材3の前端部外周に、ボディ2と協働して液体出口301の前方に旋回渦流を生成する旋回溝304が形成され、旋回渦流が液体出口301から噴出する液体を破砕微粒化するノズル1で、ボディ2と部材3をフッ素樹脂で構成し、気体入口202と液体入口316にフッ素樹脂製の流路構成部材5,15や4,4Aを嵌合し、該嵌合部を溶着で固定かつ封止し、気体入口202と液体入口316に固着した流路構成部材の内周面15a,403aとノズル1側の気体通路7と液体通路8の内周面7a,8aを面一に連続させる。ノズル1の流体導入路に流体含有物質が付着堆積できる凹部や螺合部がなく、噴霧された液体微粒子中に不純物が混入しない。A hollow body 2 having a gas outlet 201 at the front and a gas inlet 202 at the side, and a liquid passage inserted into the body 2 from the rear and connecting the front liquid outlet 301 and the rear liquid inlet 316 to the inside. A gas passage 7 is formed between the body 2 and the member 3 so as to communicate the gas inlet 202 and the outlet 201, and the liquid outlet 301 cooperates with the body 2 on the outer periphery of the front end portion of the member 3. A swirling groove 304 that generates a swirling vortex is formed in front of the nozzle 1, and the swirling vortex crushes and atomizes the liquid ejected from the liquid outlet 301. The body 2 and the member 3 are made of fluororesin, and the gas inlet 202 A flow path configuration in which fluororesin flow path component members 5, 15, 4, 4 A are fitted to the liquid inlet 316, the fitting portion is fixed and sealed by welding, and is fixed to the gas inlet 202 and the liquid inlet 316. Inner peripheral surface 15a of the member, 03a and the inner peripheral surface 7a of the nozzle 1 side of the gas passage 7 and the liquid passage 8, thereby continuously 8a the flush. There are no recesses or screwed portions in which fluid-containing substances can adhere and accumulate in the fluid introduction path of the nozzle 1, and impurities are not mixed in the sprayed liquid fine particles.

Description

本発明は、液体を微粒化して噴霧吐出するノズルに係り、更に詳細には、半導体製造、薄膜精密コーティング、医療分析、科学分析等に適する渦流式液体微粒化ノズルに関する。  The present invention relates to a nozzle for atomizing and spraying a liquid, and more particularly to a vortex type liquid atomizing nozzle suitable for semiconductor manufacturing, thin film precision coating, medical analysis, scientific analysis and the like.

液体を微粒化して噴霧吐出するノズルは、塗装、造粒、燃焼、窯業における釉薬吹き付け、磁気ディスク等の薄膜精密コーティング等の多種多様な産業分野で使用されてきた。  Nozzles for atomizing and spraying liquids have been used in a wide variety of industrial fields such as painting, granulation, combustion, spraying glaze in the ceramic industry, and thin film precision coatings such as magnetic disks.

特に、特開平4−21551号公報、特開平4−59023号公報等で提案された渦流方式の微粒化ノズル、即ち、ノズル内部に導入された気体に高速の渦流を生ぜしめ、この高速渦流によって液体を粉砕して微粒化するノズルは、精密かつ安定的に、所望の超微粒子を得ることができることから、各産業分野において普及している。  In particular, vortex atomization nozzles proposed in JP-A-4-21551, JP-A-4-59023, etc., that is, a high-speed eddy current is generated in the gas introduced into the nozzle, Nozzles that pulverize and atomize liquids are widely used in various industrial fields because they can obtain desired ultrafine particles precisely and stably.

しかしながら、上記微粒化ノズルにおいては、従来その材質がステンレス、高力黄銅、黄銅等の金属製に限定されていたことから、酸性又はアルカリ性の液体を微粒化する場合では、液体がノズルを通過する過程において、金属イオンが溶出してしまうことが懸念されていた。  However, since the material of the atomizing nozzle has been limited to metal such as stainless steel, high-strength brass, brass, etc., the liquid passes through the nozzle when atomizing an acidic or alkaline liquid. In the process, there was a concern that metal ions would be eluted.

更には、金属製からなる上記従来のノズルは、重量が嵩むため、ノズルを取り付ける各種部材に余分な負荷を与えてしまう等の問題も指摘されており、軽量化も要請されていた。  Furthermore, since the conventional nozzle made of metal is heavy, it has been pointed out that it causes an extra load on various members to which the nozzle is attached, and a reduction in weight has been demanded.

そこで、金属イオンの溶出がなく、更には、耐薬品性、耐熱性の特徴を備えるとともに、軽量化を実現した合成樹脂製の微粒化ノズルを提供し、微粒化特性に優れた渦流式ノズルの汎用性を拡大する上で有意義な微粒化ノズル(下記特許文献1)が提案された。  Therefore, there is no elution of metal ions, and furthermore, there are provided chemical resin atomization nozzles that are characterized by chemical resistance and heat resistance, and have realized weight reduction. A significant atomization nozzle (Patent Document 1 below) has been proposed in order to expand versatility.

これは、図7に示すように、前方に気体噴射口a1が開口し側方に気体導入口a2が開口する中空状の合成樹脂製ノズルボディaと、ノズルボディaの内部に後方から挿着一体化され、前方に前記気体噴射口a1に臨む液体噴出口b1が開口し後方に液体導入口b2が開口する中空状の合成樹脂製液体通路部材bとを備え、液体通路部材bの前端部外周には、ノズルボディaの尖頭部内側領域と協働して、液体噴出口b1の前方に焦点をもつ高速旋回渦流を生成する旋回溝b2が形成されて、液体導入口b1から噴出する液体が気体噴射口a1から噴射する気体の高速旋回渦流cにより破砕されて微粒化される構造となっている。符号dは気体送給用チューブ(エアチューブ)で、気体導入口a2に挿着されたアタッチメントeに接続されている。符号fは液体送給用チューブで、液体導入口b2に挿着されたアタッチメントgに接続されている。
特開平11−66307号(明細書全体、図1から図4)
As shown in FIG. 7, a hollow synthetic resin nozzle body a having a gas injection port a1 opened forward and a gas introduction port a2 opened laterally is inserted into the nozzle body a from the rear. A liquid synthetic resin liquid passage member b that is integrated and has a liquid outlet b1 that opens to the front and faces the gas injection port a1 and a liquid inlet b2 that opens to the rear; and a front end portion of the liquid passage member b A swirling groove b2 that generates a high-speed swirling vortex having a focal point in front of the liquid spout b1 is formed on the outer periphery in cooperation with the inner region of the cusp of the nozzle body a, and is ejected from the liquid inlet b1. The liquid is crushed and atomized by the high-speed swirling vortex c of the gas ejected from the gas ejection port a1. Reference numeral d denotes a gas supply tube (air tube), which is connected to an attachment e inserted into the gas introduction port a2. Reference numeral f denotes a liquid supply tube, which is connected to an attachment g inserted into the liquid introduction port b2.
Japanese Patent Laid-Open No. 11-66307 (whole specification, FIGS. 1 to 4)

しかし、前記したノズルでは、ノズルボディaの気体導入口a2および液体通路部材bの気体導入口b2にはアタッチメントe,gがそれぞれ螺着一体化されているため、ノズル内部に設けられた液体通路および気体通路内には、凹部b3や螺合部b4,a4が露呈した形態となっている。このため、凹部b3や螺合部b4,a4では流れがよどみ、よどみ部に滞留した流体(液体や気体)中の含有物質が凹部b3や螺合部b4,a4に堆積して経年変化(劣化や変性)し、これが噴霧対象液の微粒子中に不純物として混入するおそれがあり、このノズルを例えば半導体製造設備において使用する際には到底採用できないという問題が発生した。  However, in the nozzle described above, since the attachments e and g are screwed and integrated with the gas introduction port a2 of the nozzle body a and the gas introduction port b2 of the liquid passage member b, respectively, the liquid passage provided in the nozzle In the gas passage, the concave portion b3 and the screwing portions b4 and a4 are exposed. For this reason, the flow is stagnation in the recess b3 and the screwed portions b4 and a4, and the contained substances in the fluid (liquid and gas) staying in the stagnation portion accumulate on the recess b3 and the screwed portions b4 and a4 and change over time (deterioration). There is a possibility that this may be mixed as an impurity in the fine particles of the liquid to be sprayed, and there is a problem that this nozzle cannot be employed when used in, for example, a semiconductor manufacturing facility.

本発明は、前記従来技術の問題点に鑑みなされたもので、その目的は、金属イオンの溶出がなく、更には、耐薬品性、耐熱性の特徴を備えるとともに、噴霧対象液の微粒子中に不純物が混入することもなく、軽量化を実現した渦流式液体微粒化ノズルを提供することにある。  The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to prevent elution of metal ions, and further to provide chemical resistance and heat resistance characteristics, and in the fine particles of the liquid to be sprayed. An object of the present invention is to provide a vortex type liquid atomization nozzle that is light in weight without being mixed with impurities.

上記目的を達成するために、請求項1に係る渦流式微粒化ノズルでは、前方に気体噴射口が開口し側方に気体導入口が開口する中空状の合成樹脂製ノズルボディと、
前記ノズルボディの内部に後方から封止手段を介在させて挿着一体化され、前方に前記気体噴射口に臨む液体噴出口が開口し後方に液体導入口が開口する液体通路を内部に形成した中空状の合成樹脂製液体通路部材とを備え、
前記ノズルボディ内側領域と前記液体通路部材間には、前記気体導入口に導入された気体を前記気体噴射口に導く気体通路が画成されるとともに、前記液体通路部材の前端部外周には、前記ノズルボディの尖頭部内側領域と協働して、前記液体噴出口の前方に焦点をもつ高速旋回渦流を生成する旋回溝が形成されて、前記液体噴出口から噴出する液体が前記気体噴射口から噴射する高速旋回渦流により破砕されて微粒化される渦流式液体微粒化ノズルにおいて、
前記ノズルボディおよび前記液体通路部材をフッ素樹脂で構成し、
前記気体導入口および液体導入口には、フッ素樹脂で構成された筒状の流体送給路構成部材をそれぞれ嵌合し、さらに該嵌合部をそれぞれ溶着により固定かつ封止した構造で、
前記気体導入口および液体導入口にそれぞれ固着した流体送給路構成部材の内周面と前記ノズル側の気体通路または液体通路の内周面とがそれぞれ面一に連続するように構成した。
In order to achieve the above object, in the vortex atomization nozzle according to claim 1, a hollow synthetic resin nozzle body having a gas injection port opened forward and a gas introduction port opened laterally;
The nozzle body is inserted and integrated into the nozzle body from behind, and a liquid passage is formed in the liquid passage in which the liquid jet opening facing the gas jet opening is opened forward and the liquid inlet opening is opened in the rear. A hollow synthetic resin liquid passage member,
Between the nozzle body inner region and the liquid passage member, a gas passage for guiding the gas introduced into the gas introduction port to the gas injection port is defined, and the front end portion outer periphery of the liquid passage member is A swirling groove that generates a high-speed swirling vortex having a focal point in front of the liquid ejection port is formed in cooperation with the inner region of the cusp of the nozzle body, and the liquid ejected from the liquid ejection port is the gas ejection In the vortex type liquid atomization nozzle that is crushed and atomized by the high-speed swirling vortex jetted from the mouth,
The nozzle body and the liquid passage member are made of fluororesin,
Each of the gas inlet and the liquid inlet is fitted with a cylindrical fluid feed path constituent member made of fluororesin, and the fitting portion is fixed and sealed by welding, respectively.
The inner peripheral surface of the fluid feed path constituent member fixed to the gas inlet and the liquid inlet, respectively, and the inner peripheral surface of the gas passage or liquid passage on the nozzle side are configured to be flush with each other.

(作用)ノズルボディと液体通路部材間の挿着部がOリングやシートパッキンや溶着等の封止手段により封止されるとともに、気体導入口および液体導入口とそれぞれの流体送給路構成部材との嵌合部がそれぞれ溶着により固定かつ封止されて、ノズルの気体導入口および液体導入口の気密性が確保されている。  (Operation) The insertion portion between the nozzle body and the liquid passage member is sealed by a sealing means such as an O-ring, sheet packing, or welding, and the gas introduction port and the liquid introduction port and the respective fluid supply path constituent members Are fixed and sealed by welding, respectively, and the gas tightness of the gas inlet and the liquid inlet of the nozzle is secured.

ノズルボディ,液体通路部材およびそれぞれの流体送給路構成部材をフッ素樹脂で構成したので、ノズルを含むノズル周辺全体を軽量化できるとともに、従来の金属製ノズルの場合のように、微粒化対象である液体中に金属イオンを溶出させてしまうこともなく、耐薬品製や耐医薬性に優れ、半導体製造業、医薬製造、薬品製造、医療機器、科学分析等の分野でも使用することができる。  Since the nozzle body, liquid passage member and each fluid supply path component are made of fluororesin, the entire area around the nozzle including the nozzle can be reduced in weight, and as with conventional metal nozzles, It does not elute metal ions in a certain liquid, has excellent chemical resistance and drug resistance, and can be used in the fields of semiconductor manufacturing, pharmaceutical manufacturing, chemical manufacturing, medical equipment, scientific analysis and the like.

また、気体導入口および液体導入口にそれぞれ固定された流体送給路構成部材の内周面とノズル側の気体通路または液体通路の内周面はそれぞれ面一に連続し、気体導入口における気体導入路および液体導入口における液体導入路には、従来技術において見られるように、流れがよどむ原因となりかつよどみ部に集まった流体中の含有物質が付着堆積し易い凹部や螺合部が存在しない。このため、流体送給路構成部材からノズルの気体導入口および液体導入口に導入された気体および液体の流れは、気体導入口や液体導入口においてよどむことなく、ノズル内の気体通路および液体通路を介して気体噴射口および液体噴出口にそれぞれスムーズに導かれて、噴霧された液体微粒子中に液体や気体中の含有物質が経年変化(劣化や変性)したものが不純物として混入することがない。  In addition, the inner peripheral surface of the fluid feed path constituent member fixed to the gas inlet and the liquid inlet, respectively, and the inner peripheral surface of the nozzle-side gas passage or liquid passage are flush with each other, and the gas at the gas inlet As seen in the prior art, the introduction path and the liquid introduction path at the liquid introduction port do not have a concave portion or a threaded portion that causes a stagnation and in which the contained substances in the fluid collected in the stagnation portion are liable to adhere and accumulate. . For this reason, the flow of the gas and the liquid introduced from the fluid supply path constituting member to the gas inlet and the liquid inlet of the nozzle does not stagnate at the gas inlet and the liquid inlet, and the gas passage and the liquid passage in the nozzle. The liquid and the contained substances in the gas are not mixed as impurities in the sprayed liquid fine particles that are smoothly guided to the gas injection port and the liquid injection port via the .

なお、ノズルボディと液体通路部材間の挿着部には螺合部や嵌合部といった部位が設けられており、これらがノズルの気体通路内に露呈することになるが、液体(含有物質)と比べてほとんど粘性のない気体(含有物質)はこれらの部位に付着堆積しにくいし、さらにこれらの部位(螺合部や嵌合部)は気体導入口を挟んだ気体噴射口と反対側の気体通路としてほとんど機能しない位置にあるため、ノズルボディと液体通路部材間の挿着部における螺合部や嵌合部に気体含有物質が付着堆積するおそれはほとんどない。  The insertion portion between the nozzle body and the liquid passage member is provided with a portion such as a screwing portion or a fitting portion, which is exposed in the gas passage of the nozzle. Gas (containing material) that is almost non-viscous compared to, is less likely to adhere and accumulate on these parts, and these parts (screwed part and fitting part) are on the opposite side of the gas injection port across the gas inlet Since it is in a position that hardly functions as a gas passage, there is almost no possibility that the gas-containing substance adheres to and accumulates on the screwed portion or the fitting portion in the insertion portion between the nozzle body and the liquid passage member.

また、請求項2では、請求項1に記載の流体送給路構成部材をフッ素樹脂製の流体送給用チューブで構成したものである。すなわち、請求項2では、請求項1に記載の渦流式微粒化ノズルにおいて、前記気体導入口には、気体供給源から供給される加圧気体を送給するフッ素樹脂製チューブを直接固着(嵌合かつ溶着固定)し、前記液体導入口には、液体供給源から供給される液体を送給するフッ素樹脂製チューブを直接固着(嵌合かつ溶着固定)するように構成した。  According to a second aspect of the present invention, the fluid supply path constituting member according to the first aspect is constituted by a fluororesin fluid supply tube. That is, in claim 2, in the vortex atomization nozzle according to claim 1, a fluororesin tube for feeding pressurized gas supplied from a gas supply source is directly fixed (fitted) to the gas inlet. And a fluororesin tube for feeding the liquid supplied from the liquid supply source is directly fixed (fitted and welded fixed) to the liquid inlet.

(作用)ノズルの気体導入口および液体導入口のみならず、気体供給源から供給される加圧気体を気体導入口に送給する送給路(気体送給用チューブ)および液体供給源から供給される液体を液体導入口に送給する送給路(液体送給用チューブ)においても、流体中の含有物質が付着堆積する部位が存在しないので、ノズルから噴霧された液体微粒子中に液体や気体中の含有物質が経年変化(劣化や変性)したものが不純物として混入することが全くない。  (Operation) Not only the gas inlet and liquid inlet of the nozzle, but also the supply path (gas supply tube) for supplying the pressurized gas supplied from the gas supply source to the gas inlet and the liquid supply source Even in the supply path (liquid supply tube) for supplying the liquid to be supplied to the liquid inlet, there is no portion where the contained substance in the fluid adheres and accumulates. What has changed over time (deteriorated or denatured) in the gas is never mixed in as impurities.

また、請求項3、4では、請求項1に記載の一方の流体送給路構成部材をフッ素樹脂製の流体送給用チューブで構成し、他方の流体送給路構成部材を、フッ素樹脂製の流体送給用チューブを挿脱着可能に接続したフッ素樹脂製アタッチメントで構成したものである。すなわち、請求項3では、請求項1に記載の渦流式微粒化ノズルにおいて、前記気体導入口には、気体供給源から供給される加圧気体を送給するフッ素樹脂製チューブを直接固着(嵌合かつ溶着固定)し、前記液体導入口には、フッ素樹脂製の液体送給用チューブを挿脱着可能に接続したフッ素樹脂製アタッチメントを固着(嵌合かつ溶着固定)するように構成した。  Further, in claims 3 and 4, one of the fluid supply path constituting members according to claim 1 is constituted by a fluororesin fluid feed tube, and the other fluid feed path constituting member is made of a fluororesin. It is comprised with the attachment made from a fluororesin which connected the tube for fluid supply of this so that attachment or detachment was possible. That is, in claim 3, in the vortex atomization nozzle according to claim 1, a fluororesin tube for feeding pressurized gas supplied from a gas supply source is directly fixed (fitted) to the gas inlet. And a fluororesin attachment to which a fluororesin liquid feeding tube is detachably connected is fixed (fitted and welded fixed) to the liquid inlet.

(作用)ノズルの液体導入口に固着されているアタッチメントに対し液体送給用チューブを簡単に挿脱着できるので、必要に応じて液体送給用チューブのアタッチメントとの接続を解除して、液体中の含有物質が付着堆積するおそれのあるアタッチメントのチューブ接続部を洗浄することができる。
また、別の液体供給源から延びる他の液体送給用チューブをアタッチメントに接続することで、他の液体を微粒子化できる。
(Operation) Since the liquid feed tube can be easily inserted into and removed from the attachment fixed to the liquid inlet of the nozzle, the connection with the attachment of the liquid feed tube can be released if necessary. It is possible to clean the tube connection portion of the attachment where there is a possibility that the contained material may adhere and accumulate.
Moreover, the other liquid can be atomized by connecting another liquid supply tube extending from another liquid supply source to the attachment.

また、請求項4では、請求項1に記載の渦流式微粒化ノズルにおいて、前記液体導入口には、液体供給源から供給される液体を送給するフッ素樹脂製チューブを直接固着(嵌合かつ溶着固定)し、前記気体導入口には、気体送給用のチューブを挿脱着可能に接続したフッ素樹脂製アタッチメントを固着(嵌合かつ溶着固定)するように構成した。  According to a fourth aspect of the present invention, in the vortex atomization nozzle according to the first aspect, a fluororesin tube for feeding a liquid supplied from a liquid supply source is directly fixed (fitted and fitted) to the liquid inlet. And a fluororesin attachment to which a gas feeding tube is detachably connected is fixed (fitted and welded fixed) to the gas inlet.

(作用)ノズルの気体導入口に固着されているアタッチメントに対し気体送給用チューブを簡単に挿脱着できるので、必要に応じて気体送給用チューブのアタッチメントとの接続を解除して、気体中の含有物質が付着堆積するおそれのあるアタッチメントのチューブ接続部を洗浄することができる。  (Operation) Since the gas supply tube can be easily inserted into and removed from the attachment fixed to the gas inlet of the nozzle, the connection with the attachment of the gas supply tube is released as necessary. It is possible to clean the tube connection portion of the attachment where there is a possibility that the contained material may adhere and accumulate.

また、別の気体供給源から延びる他の気体送給用チューブをアタッチメントに接続することで、他の気体を用いて液体を微粒子化できる。  In addition, by connecting another gas supply tube extending from another gas supply source to the attachment, the liquid can be atomized using another gas.

請求項5においては、請求項1に記載の渦流式微粒化ノズルにおいて、前記気体導入口には、フッ素樹脂製の気体送給用チューブを挿脱着可能に接続したフッ素樹脂製アタッチメントを固着(嵌合かつ溶着固定)し、前記液体導入口には、フッ素樹脂製の液体送給用チューブを挿脱着可能に接続したフッ素樹脂製アタッチメントを固着(嵌合かつ溶着固定)するように構成した。  According to a fifth aspect of the present invention, in the vortex atomization nozzle according to the first aspect, a fluororesin attachment to which a fluororesin gas supply tube is detachably connected is fixedly fitted (fitted) to the gas introduction port. And a fluororesin attachment to which a fluororesin liquid feeding tube is detachably connected is fixed (fitted and welded fixed) to the liquid inlet.

(作用)ノズルに固着されているそれぞれのアタッチメントに対し液体送給用チューブおよび気体送給用チューブを簡単に挿脱着できるので、必要に応じて液体送給用チューブおよび気体送給用チューブのアタッチメントとの接続を解除して、流体中の含有物質が付着堆積するおそれのあるアタッチメントのチューブ接続部を洗浄することができる。  (Operation) Since the liquid feed tube and the gas feed tube can be easily inserted into and removed from each attachment fixed to the nozzle, the attachment of the liquid feed tube and the gas feed tube can be performed as necessary. And the tube connection part of the attachment that may contain and deposit substances contained in the fluid can be cleaned.

また、別の液体供給源から延びる他の液体送給用チューブや別の気体供給源から延びる他の気体送給用チューブをそれぞれのアタッチメントに接続することで、他の液体を微粒子化したり、他の気体を用いて液体を微粒子化できる。  Also, by connecting another liquid supply tube extending from another liquid supply source or another gas supply tube extending from another gas supply source to the respective attachments, other liquids can be made fine or other The liquid can be made into fine particles using this gas.

請求項6においては、請求項1〜5のいずれかに記載の渦流式微粒化ノズルにおいて、前記ノズルボディの後端部に、前記気体噴射口に連通する挿着孔を設け、該挿着孔に、封止手段であるOリングを介して前記液体通路部材を螺着固定するように構成した。  In Claim 6, In the vortex atomization nozzle according to any one of Claims 1 to 5, an insertion hole communicating with the gas injection port is provided at a rear end portion of the nozzle body, and the insertion hole In addition, the liquid passage member is screwed and fixed through an O-ring serving as a sealing means.

(作用)液体通路部材が挿着孔内に挿入される方向にノズルボディと液体通路部材とを螺合することで、ノズルとして簡単に固定一体化できる。液体通路部材を挿着しノズルボディの挿着孔における気密性は、封止手段であるOリングによって確保できる。  (Operation) By simply screwing the nozzle body and the liquid passage member in the direction in which the liquid passage member is inserted into the insertion hole, the nozzle can be easily fixed and integrated as a nozzle. Air tightness in the insertion hole of the nozzle body by inserting the liquid passage member can be secured by an O-ring which is a sealing means.

請求項1によれば、ノズルボディ,液体通路部材およびそれぞれの流体送給路構成部材をフッ素樹脂で構成したので、軽量化によりノズルとしての取り扱いが容易で、微粒化対象である液体中に金属イオンも溶出しないので、半導体製造業、医薬製造、薬品製造、医療機器、科学分析などの広範な分野で広く使用することができる。  According to the first aspect, since the nozzle body, the liquid passage member, and the respective fluid supply path constituent members are made of a fluororesin, it is easy to handle as a nozzle due to weight reduction, and a metal is contained in the liquid to be atomized. Since ions do not elute, they can be widely used in a wide range of fields such as semiconductor manufacturing, pharmaceutical manufacturing, pharmaceutical manufacturing, medical equipment, and scientific analysis.

また、ノズルの気体導入口および液体導入口にそれぞれ導入された気体および液体の流れは、気体導入口や液体導入口においてよどむことなくノズル内の気体通路および液体通路を介して気体噴射口および液体噴射口にそれぞれスムーズに導かれて、ノズルから噴霧された液体微粒子中に液体や気体中の含有物質が経年変化(劣化や変性)したものが不純物として混入することがないので、不純物の混入しない液体の超微粒化が可能となる。  Further, the flow of the gas and liquid introduced into the gas introduction port and the liquid introduction port of the nozzle, respectively, does not stagnate at the gas introduction port and the liquid introduction port, and passes through the gas passage and the liquid passage in the nozzle. Since the liquid fine particles sprayed from the nozzles are smoothly guided to the nozzles, and the substances contained in the liquid or gas are aged (deteriorated or denatured), they do not mix as impurities, so no impurities are mixed. Ultrafine atomization of liquid becomes possible.

請求項2によれば、気体送給用チューブからノズルの気体噴射口に至るまでの気体送給路および液体送給用チューブからノズルの液体噴出口に至るまでの液体送給路には、流体中の含有物質が付着堆積するおそれのある部位が一切存在しないので、不純物が確実に混入しない液体の超微粒子化が可能となる。  According to the second aspect of the present invention, there are fluids in the gas supply path from the gas supply tube to the gas ejection port of the nozzle and the liquid supply path from the liquid supply tube to the liquid ejection port of the nozzle. Since there is no site where the contained material may adhere and deposit, it is possible to make ultrafine particles of the liquid in which impurities are not reliably mixed.

請求項3によれば、液体送給用チューブをアタッチメントから簡単に着脱できるので、液体中の含有物質が付着堆積するおそれのあるアタッチメントのチューブ接続部を適宜洗浄することで、噴霧された液体微粒子中への不純物の混入に対処できるとともに、液体送給用チューブとともに液体供給源を取り替えることで、種々の液体の微粒子化に対応できる。  According to the third aspect, since the liquid supply tube can be easily detached from the attachment, the sprayed liquid fine particles can be appropriately washed by appropriately washing the tube connecting portion of the attachment in which the contained substance in the liquid may adhere and deposit. It is possible to cope with the contamination of impurities into the liquid and to change the liquid supply source together with the liquid supply tube to cope with various liquid fine particles.

請求項4によれば、気体送給用チューブをアタッチメントから簡単に着脱できるので、気体中の含有物質が付着堆積するおそれのあるアタッチメントのチューブ接続部を適宜洗浄することで、噴霧された液体微粒子中への不純物の混入に対処できるとともに、気体送給用チューブとともに気体供給源を取り替えることで、種々の気体を用いた液体の微粒子化に対応できる。  According to the fourth aspect, since the gas supply tube can be easily detached from the attachment, the sprayed liquid fine particles can be appropriately washed by appropriately washing the tube connecting portion of the attachment in which the substance contained in the gas may adhere and deposit. It is possible to cope with the mixing of impurities into the inside, and it is possible to cope with the atomization of liquid using various gases by replacing the gas supply source together with the gas supply tube.

請求項5によれば、液体送給用チューブおよび気体送給用チューブをアタッチメントから簡単に着脱できるので、流体中の含有物質が付着堆積するおそれのあるアタッチメントのチューブ接続部を適宜洗浄することで、不純物の混入に対処できるとともに、液体送給用チューブとともに液体供給源を、また気体送給用チューブとともに気体供給源をそれぞれ取り替えることで、種々の気体を用いた種々の液体の微粒子化に対応できる。  According to the fifth aspect, since the liquid feeding tube and the gas feeding tube can be easily detached from the attachment, by appropriately washing the tube connecting portion of the attachment in which the contained substance in the fluid may adhere and deposit. In addition to coping with impurities, the liquid supply source can be replaced with the liquid supply tube, and the gas supply source can be replaced with the gas supply tube to support the atomization of various liquids using various gases. it can.

請求項6によれば、構成が非常に簡潔な上に、ノズルボディの挿着孔にOリングを介在させて液体通路部材を螺合させることでノズルとして簡単に一体化できるので、ノズルの組み立ても容易である。  According to the sixth aspect of the present invention, since the structure is very simple and the liquid passage member can be screwed together by interposing an O-ring in the insertion hole of the nozzle body, the nozzle can be easily integrated. Is also easy.

次に、本発明の好適な実施形態について、実施例に基づいて説明する。  Next, preferred embodiments of the present invention will be described based on examples.

図1〜4は、本発明の第1の実施例である液体微粒化ノズルを示し、図1は同ノズルの縦断面図、図2は同ノズルの部品構成を示す分解斜視図、図3は高速渦流発生部を形成する液体通路部材上端部(前端部)の構成を示す部分斜視図、図4は同ノズルを使用して液体を微粒化する場合の具体的な実施例を示す、簡略化したレイアウト図である。  1 to 4 show a liquid atomization nozzle according to a first embodiment of the present invention, FIG. 1 is a longitudinal sectional view of the nozzle, FIG. 2 is an exploded perspective view showing a component configuration of the nozzle, and FIG. FIG. 4 is a partial perspective view showing the configuration of the upper end portion (front end portion) of the liquid passage member forming the high-speed vortex generator, and FIG. 4 is a simplified example showing a specific embodiment when the liquid is atomized using the nozzle. FIG.

これらの図において、符号1は、液体微粒化ノズルのノズル本体で、その外観構成は、先細りのテーパー形状の尖頭部203を備えた中空のフッ素樹脂製のノズルボディ2と、該ノズルボディ2の内側に螺着されたフッ素樹脂製の液体通路部材3と、から構成され、ノズルボディ2にはフッ素樹脂製の気体送給用チューブ15が直接接続され、一方、液体通路部材3には、フッ素樹脂製のアタッチメント4を介してフッ素樹脂製の液体送給用チューブ5が接続されている。  In these drawings, reference numeral 1 denotes a nozzle body of a liquid atomizing nozzle, and the external configuration thereof is a hollow fluororesin nozzle body 2 having a tapered tapered point 203 and the nozzle body 2. A fluororesin liquid passage member 3 screwed inside, and a fluororesin gas feed tube 15 is directly connected to the nozzle body 2, while the liquid passage member 3 has A fluororesin liquid feeding tube 5 is connected via a fluororesin attachment 4.

ノズルボディ2は、前後に開口する中空状の外周部207を垂直方向に刳り抜いて形成された気体導入口202と、前記尖頭部203の先端に形成された開口部であって、前記気体導入口202から導入される気体Aを前方外部に噴出する気体噴射口201と、ボディ2の後端に形成された開口部であって、中子状の液体通路部材3を挿着する挿着孔205と、ノズルボディ2の外周部207に対向形成された一対の凹状平坦部204(図2参照)と、から外観上構成されている。尚、上記一対の凹状平坦部204は、微粒化ノズル1を把持部材で挟んで、周辺部材に固定し易くしたり、スパナで把持される部位となってノズルの組立てを容易化したり等するために、設けられたものである。  The nozzle body 2 includes a gas introduction port 202 formed by hollowing out a hollow outer peripheral portion 207 that opens in the front-rear direction, and an opening formed at the tip of the pointed head 203, the gas body A gas injection port 201 for injecting the gas A introduced from the introduction port 202 to the outside of the front, and an opening formed at the rear end of the body 2 for inserting the core-like liquid passage member 3 An outer appearance is configured from the hole 205 and a pair of concave flat portions 204 (see FIG. 2) formed to face the outer peripheral portion 207 of the nozzle body 2. In addition, the pair of concave flat portions 204 sandwich the atomizing nozzle 1 with a gripping member so that it can be easily fixed to a peripheral member, or can be easily gripped by a spanner to facilitate nozzle assembly. Is provided.

次に、図1〜3を参照して、液体通路部材3の外観構成を説明する。  Next, an external configuration of the liquid passage member 3 will be described with reference to FIGS.

液体通路部材3は、上記ノズルボディ2の中空内部に挿着一体化されて、ノズルボディ2の内側と協働して空気通路7を画成するとともに、その内部には、前後に延びる液体通路8が形成されている。  The liquid passage member 3 is inserted and integrated into the hollow interior of the nozzle body 2 to define an air passage 7 in cooperation with the inside of the nozzle body 2. 8 is formed.

即ち、液体通路部材3は、液体Rの通路8となる円筒状の管部305と、該管部305の前端部に開口形成され、液体Rを外部に吐出する液体噴出口301と、該液体噴出口301のやや後方位置に管部305の周方向にリング状に突設され、気体Aを渦流化する複数の渦流形成溝304が設けられたリング部302と、該リング部302で囲まれた内側領域に前記渦流形成溝304と連通するように形成されて、前方に開口するリング状溝部303と、管部305の後方に周設され、ノズルボディ2の挿着孔205の内周に形成された雌ねじ部206に螺合する雄ねじ部308と、該雄ねじ部308の後方に周方向に突設したOリング装着用の段差部310と、該段差部310の更に後方に形成され、ノズルボディ2との間で溶着される部位となるフランジ部312と、最後端部に形成され、液体導入口316が設けられたスパナ把持部314と、から構成されている。符号312aは、フランジ部312の外周面に設けられた平坦なスパナ掛部である。  That is, the liquid passage member 3 includes a cylindrical pipe portion 305 that becomes the passage 8 for the liquid R, an opening formed at the front end portion of the pipe portion 305, and the liquid jet outlet 301 that discharges the liquid R to the outside. Surrounded by the ring portion 302, a ring portion 302 provided with a plurality of vortex forming grooves 304 that vortex the gas A and is provided in a ring shape in the circumferential direction of the tube portion 305 at a position slightly behind the jet nozzle 301. Formed in the inner region so as to communicate with the vortex forming groove 304, and is provided around the ring-shaped groove 303 that opens forward and the rear of the pipe 305, and on the inner periphery of the insertion hole 205 of the nozzle body 2. A male threaded portion 308 screwed into the formed female threaded portion 206, a step portion 310 for mounting an O-ring projecting in the circumferential direction behind the male threaded portion 308, and a nozzle formed further behind the stepped portion 310. Part welded with body 2 And a flange portion 312 formed of, formed in the rearmost end portion, the liquid introduction port 316 is composed of the spanner grip portion 314 provided. Reference numeral 312 a is a flat spanner hanging portion provided on the outer peripheral surface of the flange portion 312.

符号317は、ノズルボディ2と液体通路部材3(の段差部310)間に介装されたOリングで、挿着方向(図1左右方向)に圧縮されることで、両者2,3間の螺合部206、308の圧接力を高めることで両者2,3の相対回動を拘束するとともに、挿着孔205を封止するように作用する。符号318は溶着部で、ノズルボディ2と液体通路部材3間の挿着固定と挿着孔205の封止を確実にするように作用する。なお、ノズルボディ2と液体通路部材3間の固定および挿着孔205の封止は、前記した螺合部206、308とOリング317だけでも十分であることから、この溶着部318は必ずしも必要ではない。  Reference numeral 317 is an O-ring interposed between the nozzle body 2 and the liquid passage member 3 (the step part 310), and is compressed in the insertion direction (left and right direction in FIG. 1), so By increasing the pressure contact force of the threaded portions 206 and 308, the relative rotation of the two and the third is restrained, and the insertion hole 205 is sealed. Reference numeral 318 denotes a welded portion which acts to ensure the insertion and fixation between the nozzle body 2 and the liquid passage member 3 and the sealing of the insertion hole 205. It should be noted that since the fixing between the nozzle body 2 and the liquid passage member 3 and the sealing of the insertion hole 205 are sufficient only by the screwing portions 206 and 308 and the O-ring 317, the welding portion 318 is not necessarily required. is not.

一方、アタッチメント4は、全体が筒形状に形成されて、その内部には、液体通路401形成されており、長手方向中央部のアタッチメント基部402の前方に延出する円筒状前方延出部403と、アタッチメント基部402の後方に延出する円筒状後方延出部404と、後方延出部404内に回り止めされた形態に収容された円筒型のチューブ挿着用スリーブ405と、後方延出部404の外周に設けられた雄ねじ404aに螺合する雌ねじ406aの形成されたナット406で構成されている。  On the other hand, the attachment 4 is formed in a cylindrical shape as a whole, and a liquid passage 401 is formed therein, and a cylindrical front extending portion 403 extending in front of the attachment base portion 402 in the longitudinal center portion. A cylindrical rear extension 404 extending rearward of the attachment base 402, a cylindrical tube insertion sleeve 405 housed in a form that is prevented from rotating in the rear extension 404, and a rear extension 404 It is comprised with the nut 406 in which the internal thread 406a screwed together with the external thread 404a provided in the outer periphery of this was formed.

そして、アタッチメント4の前方状延出部403が液体通路部材3の液体導入口316に嵌合されるとともに、液体導入口316の周縁部が溶着されて、液体通路部材3にアタッチメント4が固定されかつ嵌合部(液体導入口316)が封止されて、液体通路部材3の液体通路8とアタッチメント4の液体通路401とが連通している。符号410は、溶着部を示す。特に、図1に示すように、アタッチメント4の前方延出部403の内周面(液体通路401の内周面)403aと液体通路部材3の液体通路8の内周面8aは面一に連続するように構成されて、液体導入口316の液体導入路には、従来技術において見られるように、流れがよどむ原因となりかつよどみ部に集まった流体中の含有物質が付着堆積し易い凹部や螺合部が存在しない。このため、アタッチメント4の液体通路401からノズルの液体導入口316に導入された液体は、途中でよどむことなく液体通路8を介して前方の液体噴出口301にスムーズに導かれるので、ノズル1により噴霧された液体微粒子中に液体R中の含有物質が経年変化(劣化や変性)したものが不純物として混入することがない。  Then, the front extension 403 of the attachment 4 is fitted into the liquid introduction port 316 of the liquid passage member 3, and the peripheral portion of the liquid introduction port 316 is welded to fix the attachment 4 to the liquid passage member 3. And the fitting part (liquid inlet 316) is sealed, and the liquid passage 8 of the liquid passage member 3 and the liquid passage 401 of the attachment 4 communicate with each other. Reference numeral 410 indicates a welded portion. In particular, as shown in FIG. 1, the inner peripheral surface 403 a of the front extension 403 of the attachment 4 (the inner peripheral surface of the liquid passage 401) 403 and the inner peripheral surface 8 a of the liquid passage 8 of the liquid passage member 3 are continuous with each other. In the liquid introduction path of the liquid introduction port 316, as seen in the prior art, the flow is caused to stagnate and the contained substances in the fluid collected in the stagnation part are liable to adhere and accumulate. There is no joint. For this reason, the liquid introduced from the liquid passage 401 of the attachment 4 to the liquid inlet 316 of the nozzle is smoothly guided to the front liquid ejection port 301 through the liquid passage 8 without stagnation in the middle. In the sprayed liquid fine particles, the substances contained in the liquid R that are aged (deteriorated or denatured) are not mixed as impurities.

また、チューブ挿着用スリーブ405は、特殊治具を使ってチューブ5の先端部に挿着することができ、挿着されたスリーブ405の内周面とチューブ5の内周面は略面一となる。そして、チューブ5に接続したスリーブ405をアタッチメント4の後方延出部404内に挿入し、ナット406を締め付けることで、図1に示すように、液体送給用チューブ5の先端部をチューブ挿着スリーブ405の外周面と後方延出部404内周面で把持した形態に保持でき、これによって液体送給用チューブ5をアタッチメント4の後端部に接続一体化できる。一方、ナット406を緩めることで、スリーブ405付液体送給用チューブ5の接続を解除することができ、スリーブ405付液体送給用チューブ5をアタッチメント4の後端部から簡単に取り外すことができる。  Further, the tube insertion sleeve 405 can be inserted into the distal end portion of the tube 5 using a special jig, and the inner peripheral surface of the inserted sleeve 405 and the inner peripheral surface of the tube 5 are substantially flush. Become. Then, the sleeve 405 connected to the tube 5 is inserted into the rear extension 404 of the attachment 4, and the nut 406 is tightened, so that the tip of the liquid supply tube 5 is inserted into the tube as shown in FIG. The sleeve can be held in the form gripped by the outer peripheral surface of the sleeve 405 and the inner peripheral surface of the rearward extending portion 404, whereby the liquid supply tube 5 can be connected and integrated with the rear end portion of the attachment 4. On the other hand, by loosening the nut 406, the connection of the liquid supply tube 5 with the sleeve 405 can be released, and the liquid supply tube 5 with the sleeve 405 can be easily removed from the rear end of the attachment 4. .

また、アタッチメント4と液体送給用チューブ5との接続部には、例えばアタッチメント4の液体通路401とスリーブ405の内周面間の段差401a等といった、液体の流れがよどむ原因となる段差部が存在するが、ノズル1に一体化されているアタッチメント4に対し液体送給用チューブ5を簡単に挿脱着できるので、必要に応じてスリーブ付き液体送給用チューブ5のアタッチメント4との接続を解除して、液体中の含有物質が付着堆積するおそれのあるアタッチメント4のチューブ接続部を洗浄すればよい。  Further, the connection portion between the attachment 4 and the liquid supply tube 5 has a step portion that causes a stagnation of the liquid flow, such as a step 401 a between the liquid passage 401 of the attachment 4 and the inner peripheral surface of the sleeve 405. Although it exists, the liquid supply tube 5 can be easily inserted into and removed from the attachment 4 integrated with the nozzle 1, so that the connection of the sleeve-equipped liquid supply tube 5 with the attachment 4 is released as necessary. And what is necessary is just to wash | clean the tube connection part of the attachment 4 in which the containing substance in a liquid may adhere and deposit.

また、ノズルボディ2の気体導入口202には、図1に示すように、フッ素樹脂製の気体送給用チューブ15が直接固着されている。すなわち、気体供給源から延びる気体送給用チューブ15の先端部が気体導入口202に嵌合され、該嵌合部が溶着により固定かつ封止されて、気体送給用チューブ15内と気体導入口202とが連通するとともに、気体導入口202の気密性が確保されている。符号320は、溶着部を示す。特に、気体送給用チューブ15の内周面15aとノズル1側の気体通路7の内周面7aは面一に連続するように構成されて、気体導入口202の気体導入路には、従来技術において見られるように、流れがよどむ原因となりかつよどみ部に集まった気体中の含有物質が付着堆積し易い凹部や螺合部が存在しない。このため、気体送給用チューブ15からノズルの気体導入口202に導入された気体は、途中でよどむことなく気体通路7を介して前方の気体噴射口201にスムーズに導かれるので、ノズル1により噴霧された液体微粒子中に気体A中の含有物質が経年変化(劣化や変性)したものが不純物として混入することがない。  Further, as shown in FIG. 1, a gas feeding tube 15 made of a fluororesin is directly fixed to the gas introduction port 202 of the nozzle body 2. That is, the distal end portion of the gas supply tube 15 extending from the gas supply source is fitted into the gas introduction port 202, and the fitting portion is fixed and sealed by welding, so that the gas introduction tube 15 and the gas introduction are introduced. The port 202 communicates with the gas inlet port 202 and the gas tightness of the gas inlet port 202 is ensured. Reference numeral 320 indicates a welded portion. In particular, the inner peripheral surface 15a of the gas supply tube 15 and the inner peripheral surface 7a of the gas passage 7 on the nozzle 1 side are configured to be flush with each other. As can be seen in the art, there are no recesses or screwed portions that cause the stagnation of the flow and in which the contained substances in the gas collected in the stagnation portion tend to adhere and accumulate. For this reason, the gas introduced into the gas inlet port 202 of the nozzle from the gas supply tube 15 is smoothly guided to the front gas injection port 201 through the gas passage 7 without stagnation in the middle. What is contained in the gas A in the sprayed liquid fine particles that is aged (deteriorated or denatured) is not mixed as an impurity.

なお、気体通路7内には、ノズルボディ2と液体通路部材3間の螺合部206、308が露呈しているが、液体(含有物質)と比べて粘性のほとんどない気体(含有物質)はこれらの部位に付着堆積しにくいし、しかも螺合部206、308は気体導入口202を挟んだ気体噴射口201と反対側であって気体通路7としてほとんど機能しない位置にあるため、螺合部206、308に気体含有物質が付着堆積するおそれはほとんどない。したがって、螺合部206、308の存在が、噴霧された液体微粒子中に気体A中の含有物質が経年変化したものが不純物として混入する要因となることはない。  The screw passages 206 and 308 between the nozzle body 2 and the liquid passage member 3 are exposed in the gas passage 7, but the gas (containing material) having almost no viscosity compared to the liquid (containing material) is present. The screwing portions 206 and 308 are unlikely to adhere to and accumulate on these portions, and the screwing portions 206 and 308 are on the opposite side of the gas injection port 201 with the gas introduction port 202 interposed therebetween and are in a position that hardly functions as the gas passage 7. There is almost no possibility that a gas-containing substance adheres to and accumulates on 206 and 308. Therefore, the presence of the screwing portions 206 and 308 does not cause a contamination of the sprayed liquid fine particles as the impurities contained in the gas A are aged.

前記したようにノズル1を構成するノズルボディ2と液体通路部材3に加えて、アタッチメント4,液体送給用チューブ5および気体送給用チューブ15もフッ素樹脂で構成されて、微粒化対象の液体Rに金属イオン(例えば、鉄イオン,銅イオン,アルミニウムイオンなど)を溶出させないことは勿論、ノズル本体1を含めたノズル周辺領域全体が軽量化されるとともに、耐薬品性、耐医薬性耐薬品製や耐医薬性に優れ、半導体製造業、医薬製造、薬品製造、医療機器、科学分析等の分野でも広く使用することができる。  As described above, in addition to the nozzle body 2 and the liquid passage member 3 constituting the nozzle 1, the attachment 4, the liquid feeding tube 5 and the gas feeding tube 15 are also made of a fluororesin, so that the liquid to be atomized In addition to not eluting metal ions (for example, iron ions, copper ions, aluminum ions, etc.) into R, the entire area around the nozzle including the nozzle body 1 is reduced in weight, as well as chemical resistance and pharmaceutical resistance. It has excellent manufacturing and drug resistance and can be widely used in the fields of semiconductor manufacturing, pharmaceutical manufacturing, pharmaceutical manufacturing, medical equipment, scientific analysis, and the like.

さらに、スリーブ付液体送給用チューブ5の着脱が簡単なことから、別の液体供給源から延びるスリーブ付液体送給用チューブをアタッチメント4に接続することで、他の液体の微粒子化にも簡単に対応できる。  Furthermore, since the sleeve-equipped liquid delivery tube 5 is easy to attach and detach, connecting the sleeve-provided liquid delivery tube extending from another liquid supply source to the attachment 4 makes it easy to atomize other liquids. It can correspond to.

ここで、本実施例に係る微粒化ノズル1の内部構成について、図1,3に基づき説明する。  Here, the internal structure of the atomization nozzle 1 according to the present embodiment will be described with reference to FIGS.

ノズルボディ2の内周壁205と、液体通路部材3の管部305で囲まれた領域は、気体導入孔202から導入された気体Aが通過する気体通路7を形成し、該気体通路7を通って、気体Aは前方(図3では上方)へ向かい、下記する高速渦流発生部Wを経て、高速渦流気体(T)とされる。  A region surrounded by the inner peripheral wall 205 of the nozzle body 2 and the pipe portion 305 of the liquid passage member 3 forms a gas passage 7 through which the gas A introduced from the gas introduction hole 202 passes, and passes through the gas passage 7. Thus, the gas A moves forward (upward in FIG. 3) and is converted into a high-speed vortex gas (T) through a high-speed vortex generator W described below.

この高速渦流発生部Wは、液体通路部材3のリング部302に形成された渦流形成溝304と、該渦流形成溝304に連通するリング状溝部303と、このリング状溝部303から気体噴射口201へ至る領域と、ノズルボディ2の尖頭部203の内周壁と、から構成され、これらの部材等及び領域が協働して高速渦流気体Tを発生させる。  The high-speed eddy current generating portion W includes a vortex forming groove 304 formed in the ring portion 302 of the liquid passage member 3, a ring-shaped groove portion 303 communicating with the vortex flow forming groove 304, and the gas injection port 201 from the ring-shaped groove portion 303. And the inner peripheral wall of the pointed head 203 of the nozzle body 2, and these members and the region cooperate to generate the high-speed vortex gas T.

渦流形成溝304は、リング部302にスパイラル状に溝切りされて形成されており、本実施例では、計6カ所、等間隔に形成されている。  The eddy current forming grooves 304 are formed by being spirally cut in the ring portion 302. In this embodiment, the eddy current forming grooves 304 are formed at a regular interval of six places.

この渦流形成溝304の形状特性によって、気体通路7(図3参照)内を進行(図3では上昇)してきた気体Aは、上記高速渦流発生部Wにおいて、平均化された気流へ整流されながら前方(図3では上方)へ向かう(先細りの)略円錐状の高速渦流気体Tに変換され、気体噴射口201から噴出される。  Due to the shape characteristics of the vortex forming groove 304, the gas A that has traveled (ascended in FIG. 3) in the gas passage 7 (see FIG. 3) is rectified into an averaged air flow in the high-speed vortex generator W. It is converted into a high-speed vortex gas T having a substantially conical shape (tapered) going forward (upward in FIG. 3) and ejected from the gas ejection port 201.

そして、図1に示す焦点Fの位置で、液体噴出口301から吐出されてくる液体Rが高速渦流気体Tと接触して破砕され、微粒化液体Rmとされて前方へ噴霧される。  Then, at the position of the focal point F shown in FIG. 1, the liquid R discharged from the liquid outlet 301 is crushed in contact with the high-speed vortex gas T to be atomized liquid Rm and sprayed forward.

以下、図4を参照して、本実施例の微粒化ノズル1を使用して液体Rを微粒化する場合において、液体R、気体Aのそれぞれを、ノズル1に送り込む方法の実施例について説明する。  Hereinafter, with reference to FIG. 4, in the case of atomizing the liquid R using the atomizing nozzle 1 of the present embodiment, an embodiment of a method of feeding each of the liquid R and the gas A into the nozzle 1 will be described. .

まず、液体送給用チューブ5からノズル1に送り込まれる微粒化対象の液体(純水)Rは、液体タンク504に、必要量貯めておく。そして、液体(純水)Rは、該タンク504からストレーナ503で濾過した後、液送ポンプ502による圧力によって、液体送量調整バルブ(オリフィス又は電磁バルブなど)501で送量調整を行いノズル1へ送り込む。尚、符号505は、液体送量調整過程で、余分な液体(純水)Rを再び液体タンク504に戻す返送管を示している。  First, a necessary amount of the liquid (pure water) R to be atomized sent from the liquid supply tube 5 to the nozzle 1 is stored in the liquid tank 504. Then, the liquid (pure water) R is filtered from the tank 504 by the strainer 503, and then the amount of liquid (pure water) R is adjusted by the liquid feed adjustment valve (orifice or electromagnetic valve) 501 by the pressure of the liquid feed pump 502. To send. Reference numeral 505 denotes a return pipe that returns excess liquid (pure water) R to the liquid tank 504 again in the liquid feed adjustment process.

一方、液体(純水)を微粒化するための気体(空気)Aは、エアーコンプレサ903からオンオバルブ902及び圧力微調整用バルブ901を経て、ノズル1の気体導入孔202からノズル1内部へ送り込まれる。  On the other hand, the gas (air) A for atomizing the liquid (pure water) is sent from the air compressor 903 through the on-off valve 902 and the pressure fine adjustment valve 901 into the nozzle 1 through the gas introduction hole 202 of the nozzle 1. .

尚、液体(純水)Rおよび気体(空気)Aのそれぞれを、ノズル1に送り込む方法は、上記実施形態に限定するものではなく、液体タンク504をエアーコンプレッサ903から導入される気体で加圧し、圧力調整弁を介して液体をノズル1に送り込む、タンク加圧方式等も採用し得る。  The method of feeding each of the liquid (pure water) R and the gas (air) A to the nozzle 1 is not limited to the above embodiment, and the liquid tank 504 is pressurized with the gas introduced from the air compressor 903. Also, a tank pressurization system or the like in which liquid is sent to the nozzle 1 via a pressure regulating valve can be adopted.

図5は、本発明の第2の実施例である液体微粒化ノズルの縦断面図である。
前記した第1の実施例では、ノズル1の気体導入口202に直接、気体送給用チューブ15が溶着により固定され、ノズル1の液体導入口316に溶着により固定されたアタッチメント4に、液体送給用チューブ5が挿脱着できるように接続されているが、この第2の実施例では、ノズル1の気体導入202に固定されたフッ素樹脂製のアタッチメント4Aに、フッ素樹脂製の気体送給用チューブ15が挿脱着できるように接続されている。符号320は溶着部を示す。
FIG. 5 is a longitudinal sectional view of a liquid atomizing nozzle according to the second embodiment of the present invention.
In the first embodiment described above, the gas supply tube 15 is directly fixed to the gas inlet 202 of the nozzle 1 by welding, and the liquid supply is supplied to the attachment 4 fixed to the liquid inlet 316 of the nozzle 1 by welding. Although the supply tube 5 is connected so as to be inserted and removed, in this second embodiment, the fluororesin attachment 4A fixed to the gas introduction 202 of the nozzle 1 is used for gas supply made of fluororesin. The tube 15 is connected so that it can be inserted and removed. Reference numeral 320 indicates a welded portion.

即ち、アタッチメント4Aは、直角に屈曲して貫通する気体通路401Aと、アタッチメント基部402Aの前方に延出する円筒状前方延出部403Aと、アタッチメント基部402Aの側方に延出する円筒状側方延出部404Aと、側方延出部404Aの内側に回り止めされた形態に収容されたチューブ挿着用スリーブ405Aと、側方延出部404Aの外周に設けられた雄ねじ404aに螺合する雌ねじ406aの形成されたナット406Aで構成されている。  That is, the attachment 4A includes a gas passage 401A that is bent and penetrated at a right angle, a cylindrical front extension 403A that extends forward of the attachment base 402A, and a cylindrical side that extends to the side of the attachment base 402A. The extension portion 404A, the tube insertion sleeve 405A housed in a form that is prevented from rotating inside the side extension portion 404A, and the female screw that is screwed into the male screw 404a provided on the outer periphery of the side extension portion 404A It is composed of a nut 406A formed with 406a.

そして、アタッチメント4Aの前方延出部403Aが気体導入口202に嵌合されるとともに、気体導入口202の周縁部が溶着されて、嵌合部が固定されかつ封止されて、アタッチメント4Aの気体通路401Aとノズル1の気体通路7とが連通している。特に、アタッチメント4Aの前方延出部403Aの内周面(気体通路401Aの内周面)403aとノズル1の気体通路7内周面7aは面一に連続するように構成されて、アタッチメント4Aの気体通路401Aからノズル1の気体通路7に導かれ気体は、途中でよどむことなく前方の気体噴射口201にスムーズに導かれる。  Then, the front extension portion 403A of the attachment 4A is fitted into the gas introduction port 202, the peripheral portion of the gas introduction port 202 is welded, the fitting portion is fixed and sealed, and the gas of the attachment 4A The passage 401A communicates with the gas passage 7 of the nozzle 1. In particular, the inner peripheral surface 403a of the front extension 403A of the attachment 4A (the inner peripheral surface of the gas passage 401A) 403 and the inner peripheral surface 7a of the gas passage 7 of the nozzle 1 are configured to be flush with each other. The gas guided from the gas passage 401A to the gas passage 7 of the nozzle 1 is smoothly guided to the front gas injection port 201 without stagnation in the middle.

また、特殊治具を使って気体送給用チューブ15の先端にチューブ挿着用スリーブ405Aを挿着一体化して、チューブ15の内周面とスリーブ405の内周面とを略面一とした上で、スリーブ405Aをアタッチメント4Aの後方延出部404A内に挿入し、ナット406Aを締め付けることで、図5に示すように、気体送給用チューブ15の先端部をチューブ挿着スリーブ405Aの外周面と後方延出部404A内周面で把持した形態に保持でき、これによって気体送給用チューブ15をアタッチメント4Aの後端部に接続一体化できる。  Further, a tube insertion sleeve 405A is inserted and integrated with the tip of the gas supply tube 15 using a special jig, so that the inner peripheral surface of the tube 15 and the inner peripheral surface of the sleeve 405 are substantially flush with each other. Then, the sleeve 405A is inserted into the rear extension 404A of the attachment 4A and the nut 406A is tightened, so that the distal end of the gas supply tube 15 is attached to the outer peripheral surface of the tube insertion sleeve 405A as shown in FIG. In this way, the gas feeding tube 15 can be connected and integrated with the rear end portion of the attachment 4A.

一方、ナット406Aを緩めることで、スリーブ付気体送給用チューブ15の接続を解除することができ、スリーブ付気体送給用チューブ15をアタッチメント4Aの後端部から簡単に取り外すことができる。このため、アタッチメント4Aと気体送給用チューブ15との接続部には、例えばアタッチメント4Aの気体通路401Aとスリーブ405Aの内周面間の段差401b等といった、気体の流れがよどむ原因となる段差部が存在するが、必要に応じてスリーブ付気体送給用チューブ15のアタッチメント4Aとの接続を解除して、気体中の含有物質が付着堆積するおそれのあるアタッチメント4Aのチューブ接続部を洗浄すればよい。  On the other hand, by loosening the nut 406A, the connection of the sleeve-fitted gas supply tube 15 can be released, and the sleeve-fitted gas supply tube 15 can be easily removed from the rear end of the attachment 4A. For this reason, the connecting portion between the attachment 4A and the gas supply tube 15 has a step portion that causes a stagnation of the gas flow, such as a step 401b between the gas passage 401A of the attachment 4A and the inner peripheral surface of the sleeve 405A. However, if necessary, the connection with the attachment 4A of the sleeve-fitted gas supply tube 15 is released, and the tube connection part of the attachment 4A where the contained substance in the gas may adhere and accumulate is washed. Good.

また、アタッチメント4Aに対しスリーブ付気体送給用チューブ15を簡単に挿脱着できるので、スリーブ付気体送給用チューブ15を別の気体供給源から延びる他の気体送給用チューブに取り替えることで、他の気体を用いて液体を微粒子化することもできる。  Further, since the sleeve-fitted gas supply tube 15 can be easily inserted into and detached from the attachment 4A, by replacing the sleeve-fitted gas supply tube 15 with another gas supply tube extending from another gas supply source, Other gases can be used to atomize the liquid.

また、この第2の実施例では、前記第1の実施例で設けられている溶着部318が設けられておらず、ノズルボディ2と液体通路部材3間の固定および封止は、ノズルボディ2と液体通路部材3間の螺合部206,308とOリング317だけで構成されている。  Further, in the second embodiment, the welded portion 318 provided in the first embodiment is not provided, and the fixing and sealing between the nozzle body 2 and the liquid passage member 3 are performed in the nozzle body 2. And the threaded portions 206 and 308 between the liquid passage member 3 and the O-ring 317.

その他は前記した第1の実施例と同一であり、同一の符号を付すことで、その重複した説明は省略する。  Others are the same as those in the first embodiment described above, and the same reference numerals are given to omit redundant description.

図6は、本発明の第3の実施例である液体微粒化ノズルの縦断面図である。  FIG. 6 is a longitudinal sectional view of a liquid atomizing nozzle according to a third embodiment of the present invention.

前記した第1,第2の実施例では、ノズルボディ2と液体通路部材3間挿着部の固定手段が少なくとも螺合部206,308とOリング317で構成されているが、この第3の実施例では、ノズルボディ2と液体通路部材3間挿着部が溶着部312だけで固定かつ封止された構造となっている。  In the first and second embodiments described above, the fixing means for the insertion portion between the nozzle body 2 and the liquid passage member 3 is composed of at least the screwing portions 206 and 308 and the O-ring 317. In the embodiment, the insertion portion between the nozzle body 2 and the liquid passage member 3 is fixed and sealed only by the welding portion 312.

即ち、ノズルボディ2の内周面および液体通路部材3の外周面には、雌ねじ部206,雄ねじ部308に相当するものがなく、互いに軸方向に係合する段差部209,309だけが設けられている。  That is, the inner peripheral surface of the nozzle body 2 and the outer peripheral surface of the liquid passage member 3 are not provided with the female screw portion 206 and the male screw portion 308, and only the step portions 209 and 309 that are axially engaged with each other are provided. ing.

さらに、前記した第1の実施例では、ノズル1の気体導入口202に直接、気体送給用チューブ15が固定され、ノズル1の液体導入口316に固定されたアタッチメント4に対し液体送給用チューブ5が挿脱着できるように接続されているが、この第3の実施例では、ノズル1の液体導入口316にも直接、液体送給用チューブ5が固定されている。  Furthermore, in the first embodiment described above, the gas feeding tube 15 is directly fixed to the gas inlet 202 of the nozzle 1, and is used for liquid feeding to the attachment 4 fixed to the liquid inlet 316 of the nozzle 1. Although the tube 5 is connected so that it can be inserted and removed, in the third embodiment, the liquid supply tube 5 is also directly fixed to the liquid inlet 316 of the nozzle 1.

即ち、液体供給源から延びるフッ素樹脂製の液体送給用チューブ5の先端部が液体導入口316に嵌合され、該嵌合部が溶着により固定かつ封止されて、液体送給用チューブ5内と液体導入口316とが連続するとともに、液体導入口316の気密性が確保されている。特に、液体送給用チューブ5の内周面5aとノズル1側の液体通路8の内周面8aは面一に連続するように構成されて、液体送給用チューブ5からノズル1側の液体通路8に導かれた液体は、途中でよどむことなく前方の液体噴出口301にスムーズに導かれる。  That is, the distal end portion of the liquid supply tube 5 made of fluororesin extending from the liquid supply source is fitted into the liquid inlet 316, and the fitting portion is fixed and sealed by welding, so that the liquid supply tube 5 The inside and the liquid inlet 316 are continuous, and the air tightness of the liquid inlet 316 is secured. In particular, the inner peripheral surface 5a of the liquid supply tube 5 and the inner peripheral surface 8a of the liquid passage 8 on the nozzle 1 side are configured to be flush with each other, so that the liquid on the nozzle 1 side from the liquid supply tube 5 is configured. The liquid guided to the passage 8 is smoothly guided to the front liquid outlet 301 without stagnation on the way.

その他は、前記した第1の実施例と同一であり、同一の符号を付すことで、その重複した説明は省略する。  Others are the same as those in the first embodiment described above, and the same reference numerals are given to omit redundant description.

[図1]本発明の第1の実施例である液体微粒化ノズルの縦断面図である。
[図2]同微粒化ノズルの部品構成を示す分解斜視図である。
[図3]高速渦流発生部を形成する液体通路部材上端部(前端部)の構成を示す部分斜視図である。
[図4]同ノズルを使用して液体を微粒化する場合の具体的な実施例を示す、簡略化したレイアウト図である。
[図5]本発明の第2の実施例である液体微粒化ノズルの縦断面図である。
[図6]本発明の第3の実施例である液体微粒化ノズルの縦断面図である。
[図7]従来の液体微粒化ノズルの縦断面図である。
FIG. 1 is a longitudinal sectional view of a liquid atomizing nozzle according to a first embodiment of the present invention.
FIG. 2 is an exploded perspective view showing a component configuration of the atomization nozzle.
FIG. 3 is a partial perspective view showing a configuration of an upper end portion (front end portion) of a liquid passage member that forms a high-speed vortex generator.
FIG. 4 is a simplified layout diagram showing a specific embodiment when the liquid is atomized using the nozzle.
FIG. 5 is a longitudinal sectional view of a liquid atomizing nozzle according to a second embodiment of the present invention.
FIG. 6 is a longitudinal sectional view of a liquid atomizing nozzle according to a third embodiment of the present invention.
FIG. 7 is a longitudinal sectional view of a conventional liquid atomizing nozzle.

符号の説明Explanation of symbols

1 微粒化ノズル本体
2 ノズルボディ
3 液体通路部材
4 液体送給用チューブ接続用アタッチメント
4A 気体送給用チューブ接続用アタッチメント
5 液体送給用チューブ
5a 液体送給用チューブの内周面
7 気体通路
7a 気体通路の内周面
8 液体通路
8a 液体通路の内周面
15 気体送給用チューブ
15a 気体送給用チューブの内周面
201 気体噴射口
202 気体導入孔
203 尖頭部
206,308 ノズルボディと液体通路部材間の固定手段である螺合部
301 液体噴出口
309 液体通路管
316 液体導入口
317 ノズルボディと液体通路部材間の封止手段であるOリング
318、320、410 溶着部
W 高速渦流発生部
403a 気体(液体)送給用チューブ接続用アタッチメントの気体(液体)通路の内周面
504 液体供給源である液体タンク
903 気体供給源であるエアコンプレッサ
DESCRIPTION OF SYMBOLS 1 Atomization nozzle body 2 Nozzle body 3 Liquid passage member 4 Attachment for connection of liquid supply tube 4A Attachment for connection of gas supply tube 5 Liquid supply tube 5a Inner peripheral surface of liquid supply tube 7 Gas passage 7a Inner peripheral surface of gas passage 8 Liquid passage 8a Inner peripheral surface of liquid passage 15 Gas supply tube 15a Inner peripheral surface of gas supply tube 201 Gas injection port 202 Gas introduction hole 203 Pointed head 206, 308 Nozzle body Threaded portion 301 which is a fixing means between the liquid passage members 301 Liquid ejection port 309 Liquid passage pipe 316 Liquid inlet 317 O-ring 318, 320, 410 which is a sealing means between the nozzle body and the liquid passage member W High-speed vortex Generator 403a Gas (liquid) inner peripheral surface 50 of the gas (liquid) passage tube attachment for attachment Air compressor is a liquid tank 903 the gas source is a liquid source

【0003】
前記ノズルボディの内部に後方から封止手段を介在させて挿着一体化され、前方に前記気体噴射口に臨む液体噴出口が開口し後方に液体導入口が開口する液体通路を内部に形成した中空状の合成樹脂製液体通路部材とを備え、
前記ノズルボディ内側領域と前記液体通路部材間には、前記気体導入口に導入された気体を前記気体噴射口に導く気体通路が画成されるとともに、前記液体通路部材の前端部外周には、前記ノズルボディの尖頭部内側領域と協働して、前記液体噴出口の前方に焦点をもつ高速旋回渦流を生成する旋回溝が形成されて、前記液体噴出口から噴出する液体が前記気体噴射口から噴射する高速旋回渦流により破砕されて微粒化される渦流式液体微粒化ノズルにおいて、
前記ノズルボディおよび前記液体通路部材をフッ素樹脂で構成し、
前記気体導入口および液体導入口には、フッ素樹脂で構成した筒状の流体送給路構成部材をそれぞれの先端部が突き当たる位置まで挿入して嵌合させるとともに、該嵌合部をそれぞれ溶着により固定かつ封止した構造で、
前記気体導入口および液体導入口にそれぞれ固着した流体送給路構成部材の内周面と前記ノズル側の気体通路または液体通路の内周面とがそれぞれ面一に連続するように構成した。
【0011】 (作用)ノズルボディと液体通路部材間の挿着部がOリングやシートパッキンや溶着等の封止手段により封止されるとともに、気体導入口および液体導入口とそれぞれの流体送給路構成部材との嵌合部がそれぞれ溶着により固定かつ封止されて、ノズルの気体導入口および液体導入口の気密性が確保されている。
【0012】 ノズルボディ,液体通路部材およびそれぞれの流体送給路構成部材をフッ素樹脂で構成したので、ノズルを含むノズル周辺全体を軽量化できるとともに、従来の金属製ノズルの場合のように、微粒化対象である液体中に金属イオンを溶出させてしまうこともなく、耐薬品製や耐医薬性に優れ、半導体製造業、医薬製造、薬品製造、医療機器、科学分析等の分野でも使用することができる。
【0013】 また、気体導入口および液体導入口にそれぞれ固定された流体送給路構成部材の内周面とノズル側の気体通路または液体通路の内周面はそれぞれ面一に連続し、気体導入口における気体導入路および液体導入口における液体導入路には、従
[0003]
The nozzle body is inserted and integrated into the nozzle body from behind, and a liquid passage is formed in the liquid passage in which the liquid jet opening facing the gas jet opening is opened forward and the liquid inlet opening is opened in the rear. A hollow synthetic resin liquid passage member,
Between the nozzle body inner region and the liquid passage member, a gas passage for guiding the gas introduced into the gas introduction port to the gas injection port is defined, and the front end portion outer periphery of the liquid passage member is A swirling groove that generates a high-speed swirling vortex having a focal point in front of the liquid ejection port is formed in cooperation with the inner region of the cusp of the nozzle body, and the liquid ejected from the liquid ejection port is the gas ejection In the vortex type liquid atomization nozzle that is crushed and atomized by the high-speed swirling vortex jetted from the mouth,
The nozzle body and the liquid passage member are made of fluororesin,
The gas introduction port and the liquid introduction port are inserted and fitted with cylindrical fluid supply path constituting members made of fluororesin to the positions where the respective leading ends abut against each other, and the fitting portions are respectively welded. With a fixed and sealed structure,
The inner peripheral surface of the fluid feed path constituent member fixed to the gas inlet and the liquid inlet, respectively, and the inner peripheral surface of the gas passage or liquid passage on the nozzle side are configured to be flush with each other.
(Operation) The insertion portion between the nozzle body and the liquid passage member is sealed by a sealing means such as an O-ring, sheet packing, or welding, and the gas introduction port and the liquid introduction port are supplied with respective fluids. The fitting part with the path constituent member is fixed and sealed by welding, respectively, and the gas tightness of the gas inlet and the liquid inlet of the nozzle is ensured.
Since the nozzle body, the liquid passage member, and the respective fluid supply path constituent members are made of fluororesin, the entire periphery of the nozzle including the nozzle can be reduced in weight and, as in the case of a conventional metal nozzle, fine particles It does not elute metal ions into the liquid that is the target of conversion, has excellent chemical resistance and drug resistance, and is used in the fields of semiconductor manufacturing, pharmaceutical manufacturing, chemical manufacturing, medical equipment, scientific analysis, etc. Can do.
In addition, the inner peripheral surface of the fluid feed path constituting member fixed to the gas inlet and the liquid inlet, respectively, and the inner peripheral surface of the nozzle-side gas passage or the liquid passage are continuous with each other, and the gas introduction The gas inlet path at the mouth and the liquid inlet path at the liquid inlet

Claims (6)

前方に気体噴射口が開口し側方に気体導入口が開口する中空状の合成樹脂製ノズルボディと、
前記ノズルボディの内部に後方から封止手段を介在させて挿着一体化され、前方に前記気体噴射口に臨む液体噴出口が開口し後方に液体導入口が開口する液体通路を内部に形成した中空状の合成樹脂製液体通路部材とを備え、
前記ノズルボディ内側領域と前記液体通路部材間には、前記気体導入口に導入された気体を前記気体噴射口に導く気体通路が画成されるとともに、前記液体通路部材の前端部外周には、前記ノズルボディの尖頭部内側領域と協働して、前記液体噴出口の前方に焦点をもつ高速旋回渦流を生成する旋回溝が形成されて、前記液体噴出口から噴出する液体が前記気体噴射口から噴射する高速旋回渦流により破砕されて微粒化される渦流式液体微粒化ノズルにおいて、
前記ノズルボディおよび前記液体通路部材がフッ素樹脂で構成され、
前記気体導入口および液体導入口には、フッ素樹脂で構成された筒状の流体送給路構成部材がそれぞれ嵌合され、さらに該嵌合部がそれぞれ溶着により固定かつ封止された構造で、
前記気体導入口および液体導入口にそれぞれ固着された流体送給路構成部材の内周面と前記ノズル側の気体通路または液体通路の内周面とがそれぞれ面一に連続することを特徴とする渦流式微粒化ノズル。
A hollow synthetic resin nozzle body in which a gas injection port is opened forward and a gas introduction port is opened laterally;
The nozzle body is inserted and integrated into the nozzle body from behind, and a liquid passage is formed in the liquid passage in which the liquid jet opening facing the gas jet opening is opened forward and the liquid inlet opening is opened in the rear. A hollow synthetic resin liquid passage member,
Between the nozzle body inner region and the liquid passage member, a gas passage for guiding the gas introduced into the gas introduction port to the gas injection port is defined, and the front end portion outer periphery of the liquid passage member is A swirling groove that generates a high-speed swirling vortex having a focal point in front of the liquid ejection port is formed in cooperation with the inner region of the cusp of the nozzle body, and the liquid ejected from the liquid ejection port is the gas ejection In the vortex type liquid atomization nozzle that is crushed and atomized by the high-speed swirling vortex jetted from the mouth,
The nozzle body and the liquid passage member are made of fluororesin,
Each of the gas inlet and the liquid inlet is fitted with a cylindrical fluid supply path constituting member made of fluororesin, and the fitting portion is fixed and sealed by welding, respectively.
The inner peripheral surface of the fluid feed path constituting member fixed to the gas inlet and the liquid inlet, respectively, and the inner peripheral surface of the gas passage or the liquid passage on the nozzle side are continuous with each other. Vortex atomization nozzle.
前記気体導入口には、気体供給源から供給される加圧気体を送給するフッ素樹脂製チューブが直接固着され、前記液体導入口には、液体供給源から供給される液体を送給するフッ素樹脂製チューブが直接固着されたことを特徴とする請求項1に記載の渦流式微粒化ノズル。A fluororesin tube for feeding pressurized gas supplied from a gas supply source is directly fixed to the gas introduction port, and fluorine for feeding liquid supplied from a liquid supply source is attached to the liquid introduction port. The vortex atomization nozzle according to claim 1, wherein the resin tube is directly fixed. 前記気体導入口には、気体供給源から供給される加圧気体を送給するフッ素樹脂製チューブが直接固着され、前記液体導入口には、フッ素樹脂製の液体送給用チューブを挿脱着可能に接続したフッ素樹脂製アタッチメントが固着されたことを特徴とする請求項1に記載の渦流式微粒化ノズル。A fluororesin tube for feeding pressurized gas supplied from a gas supply source is directly fixed to the gas inlet, and a fluororesin liquid feed tube can be inserted into and removed from the liquid inlet. The vortex atomization nozzle according to claim 1, wherein a fluororesin attachment connected to the nozzle is fixed. 前記液体導入口には、液体供給源から供給される液体を送給するフッ素樹脂製チューブが直接固着され、前記気体導入口には、気体送給用のチューブを挿脱着可能に接続したフッ素樹脂製アタッチメントが固着されたことを特徴とする請求項1に記載の渦流式微粒化ノズル。A fluororesin tube for feeding a liquid supplied from a liquid supply source is directly fixed to the liquid introduction port, and a fluororesin is connected to the gas introduction port so that a gas feeding tube can be inserted and removed. The vortex atomization nozzle according to claim 1, wherein a manufactured attachment is fixed. 前記気体導入口には、フッ素樹脂製の気体送給用チューブを挿脱着可能に接続したフッ素樹脂製アタッチメントが固着され、前記液体導入口には、フッ素樹脂製の液体送給用チューブを挿脱着可能に接続したフッ素樹脂製アタッチメントが固着されたことを特徴とする請求項1に記載の渦流式微粒化ノズル。A fluorine resin attachment is connected to the gas introduction port so that a gas supply tube made of fluororesin can be inserted and removed, and a liquid supply tube made of fluororesin is inserted into and removed from the liquid introduction port. The vortex atomizing nozzle according to claim 1, wherein a fluorine resin attachment that can be connected is fixed. 前記ノズルボディの後端部には、前記気体通路に連通する挿着孔が設けられ、該挿着孔に、封止手段であるOリングを介して前記液体通路部材が螺着固定されたことを特徴とする請求項1〜5のいずれかに記載の微粒化ノズル。An insertion hole communicating with the gas passage is provided at a rear end portion of the nozzle body, and the liquid passage member is screwed and fixed to the insertion hole via an O-ring serving as a sealing means. The atomization nozzle in any one of Claims 1-5 characterized by these.
JP2005507192A 2003-06-23 2004-05-28 Eddy current type liquid atomization nozzle Expired - Lifetime JP4659616B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003178318 2003-06-23
JP2003178318 2003-06-23
PCT/JP2004/007369 WO2004112970A1 (en) 2003-06-23 2004-05-28 Swirl type fluid atomizing nozzle

Publications (2)

Publication Number Publication Date
JPWO2004112970A1 true JPWO2004112970A1 (en) 2006-07-27
JP4659616B2 JP4659616B2 (en) 2011-03-30

Family

ID=33534979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005507192A Expired - Lifetime JP4659616B2 (en) 2003-06-23 2004-05-28 Eddy current type liquid atomization nozzle

Country Status (2)

Country Link
JP (1) JP4659616B2 (en)
WO (1) WO2004112970A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313049A (en) * 2004-04-28 2005-11-10 Atomakkusu:Kk Particulate injection device
SG128596A1 (en) * 2005-06-13 2007-01-30 Victaulic Co Of America High velocity low pressure emitter
JP5638826B2 (en) * 2010-03-31 2014-12-10 株式会社吉野工業所 Powder inhalation device
CN103846172B (en) * 2012-11-28 2016-05-18 山东中烟工业有限责任公司青岛卷烟厂 The two medium atomization nozzles of exterior mixing
CN103657913A (en) * 2013-11-30 2014-03-26 无锡大阿福信息科技有限公司 Sprayer nozzle structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357831B2 (en) * 1985-04-27 1991-09-03 Kimitoshi Mato
JPH0492121U (en) * 1990-12-20 1992-08-11
JPH06296937A (en) * 1993-04-13 1994-10-25 Kimitoshi Mato Bubbling cleaner
JPH08128389A (en) * 1994-11-01 1996-05-21 Hitachi Ltd Method and apparatus for controllably driving valve and fluid supply controller
JPH1152392A (en) * 1997-08-08 1999-02-26 Toshiba Electron Eng Corp Apparatus for production of liquid crystal display device
JP2000254554A (en) * 1999-03-12 2000-09-19 Kimitoshi Mato Atomizing nozzle
JP2001137747A (en) * 1999-11-17 2001-05-22 Kimitoshi Mato Atomizing nozzle
JP2004008877A (en) * 2002-06-05 2004-01-15 Kimitoshi Mato Method for micronizing liquid and apparatus therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357831B2 (en) * 1985-04-27 1991-09-03 Kimitoshi Mato
JPH0492121U (en) * 1990-12-20 1992-08-11
JPH06296937A (en) * 1993-04-13 1994-10-25 Kimitoshi Mato Bubbling cleaner
JPH08128389A (en) * 1994-11-01 1996-05-21 Hitachi Ltd Method and apparatus for controllably driving valve and fluid supply controller
JPH1152392A (en) * 1997-08-08 1999-02-26 Toshiba Electron Eng Corp Apparatus for production of liquid crystal display device
JP2000254554A (en) * 1999-03-12 2000-09-19 Kimitoshi Mato Atomizing nozzle
JP2001137747A (en) * 1999-11-17 2001-05-22 Kimitoshi Mato Atomizing nozzle
JP2004008877A (en) * 2002-06-05 2004-01-15 Kimitoshi Mato Method for micronizing liquid and apparatus therefor

Also Published As

Publication number Publication date
WO2004112970A1 (en) 2004-12-29
JP4659616B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US4442003A (en) Filter assembly
US4537357A (en) Spray guns
JP4865765B2 (en) Spray gun
US9352341B2 (en) Methods and systems for delivering fluid through horns for applying multiple component material
EP2736651B2 (en) Spray head assembly with integrated air cap/nozzle for a liquid spray gun
JP2005000913A (en) Adjustable adapter
JPS61178054A (en) Jet gun of painting material
US7575182B2 (en) Nozzle structure
US4657184A (en) Fluid tip and air cap assembly
US20060283985A1 (en) Ultra-fine spray-jetting nozzle
JP4659616B2 (en) Eddy current type liquid atomization nozzle
JP2000254554A (en) Atomizing nozzle
JP5021925B2 (en) Vortex atomization nozzle capable of various mixed atomization of powder and liquid
JPH078850A (en) Fluid spray gun
JP4914089B2 (en) Liquid feed rod insertion type vortex atomization nozzle
JP2001046920A (en) Spraying device
SE504838C2 (en) Device at a spray nozzle
JP2017087131A (en) Painting spray gun
JP4778212B2 (en) Three fluid nozzle
KR102220995B1 (en) spray nozzle
CN212143105U (en) Spraying equipment
JP5232267B2 (en) Spray gun for liquid honing
JPH0459023B2 (en)
GB2119288A (en) Air spray gun
JP2008023465A (en) Spray gun

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4659616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250