JPWO2004107031A1 - Display driving method and image display apparatus - Google Patents

Display driving method and image display apparatus Download PDF

Info

Publication number
JPWO2004107031A1
JPWO2004107031A1 JP2005506493A JP2005506493A JPWO2004107031A1 JP WO2004107031 A1 JPWO2004107031 A1 JP WO2004107031A1 JP 2005506493 A JP2005506493 A JP 2005506493A JP 2005506493 A JP2005506493 A JP 2005506493A JP WO2004107031 A1 JPWO2004107031 A1 JP WO2004107031A1
Authority
JP
Japan
Prior art keywords
voltage
driving method
display
display driving
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005506493A
Other languages
Japanese (ja)
Inventor
土江 周平
周平 土江
二瓶 則夫
則夫 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of JPWO2004107031A1 publication Critical patent/JPWO2004107031A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell

Abstract

少なくとも一方が透明な対向する基板間に粒子群または粉流体を封入し、電位の異なる2種類の電極から粒子群または粉流体に電界を与えて、粒子または粉流体を飛翔移動させ画像を表示する画像表示装置における表示駆動方法であって、電極間に、一方の電極を接地電位とし、もう一方の電極に、時間とともに少なくとも増大過程で電圧値が徐々に変化する交番電圧または片極性電圧を印加する方法で電圧を印加して、画像を表示する。A particle group or powdered fluid is sealed between opposing substrates at least one of which is transparent, an electric field is applied to the particle group or powdered fluid from two types of electrodes having different potentials, and the particles or powdered fluid fly and move to display an image. A display driving method for an image display device, in which one electrode is set to a ground potential between electrodes, and an alternating voltage or unipolar voltage whose voltage value gradually changes over time is applied to the other electrode at least over time. A voltage is applied by the method to display an image.

Description

本発明は、クーロン力等による粒子群の飛翔移動または粉流体の移動を利用することで画像表示を繰り返し行うことができる可逆性画像表示装置に用いられる画像の表示駆動方法及び画像表示装置に関するものである。  The present invention relates to an image display driving method and an image display device used in a reversible image display device capable of repeatedly performing image display by utilizing flying movement of particle groups or movement of powdered fluid by Coulomb force or the like. It is.

従来より、液晶(LCD)に代わる画像表示装置として、電気泳動方式、エレクトロクロミック方式、サーマル方式、2色粒子回転方式などの技術を用いた画像表示装置(ディスプレイ)が提案されている。  2. Description of the Related Art Conventionally, image display devices (displays) using techniques such as electrophoresis, electrochromic, thermal, and two-color particle rotation have been proposed as image display devices that replace liquid crystal (LCD).

これらの画像表示装置は、LCDに比べて、通常の印刷物に近い広い視野角が得られる、消費電力が小さい、メモリー機能を有している等のメリットから、次世代の安価な表示装置として考えられ、携帯端末用表示、電子ペーパー等への展開が期待されている。  These image display devices are considered as next-generation inexpensive display devices because of their advantages such as a wide viewing angle close to that of ordinary printed materials, low power consumption, and memory function compared to LCDs. Therefore, it is expected to expand to displays for portable terminals, electronic paper, and the like.

最近、分散粒子と着色溶液からなる分散液をマイクロカプセル化し、これを対向する基板間に配置する電気泳動方式が提案されている。しかしながら、電気泳動方式では、低比重の溶液中に酸化チタンなどの高比重の粒子を分散させているために、沈降しやすく、分散状態の安定性維持が難しく、また、色をつけるために溶液に染料等を添加しているために長期保存性に難があり、画像繰り返し安定性に欠けるという問題を抱えている。マイクロカプセル化にしても、セルサイズをマイクロカプセルレベルにし、見かけ上、このような欠点が現れ難くしているだけで、本質的な問題は何ら解決されていない。  Recently, an electrophoretic method has been proposed in which a dispersion composed of dispersed particles and a colored solution is microencapsulated and disposed between opposing substrates. However, in the electrophoresis method, particles of high specific gravity such as titanium oxide are dispersed in a solution of low specific gravity, so that it is easy to settle, it is difficult to maintain the stability of the dispersed state, and the solution is used for coloring. Since dyes and the like are added to the toner, there is a problem in long-term storage stability and lack of image repetition stability. Even with microencapsulation, the cell size is reduced to the microcapsule level, and such defects are hardly made to appear, and the essential problems are not solved.

一方、溶液中での粒子挙動を利用した電気泳動方式に対し、溶液を全く使わない方式も提案されている(例えば、趙 国来、外3名、“新しいトナーディスプレイデバイス(I)”、1999年7月21日、日本画像学会年次大会(通算83回)“Japan Hardcopy’99”論文集、p.249−252参照)。この方式は、粒子と基板から成る気体中での粒子挙動を利用した方式である。この方式では、溶液を全く用いないために、電気泳動方式で問題となっていた粒子の沈降、凝集の問題は解決される。  On the other hand, a method that does not use a solution at all has been proposed in contrast to an electrophoresis method that utilizes particle behavior in a solution (for example, Kuniori Tsuji, three others, “New Toner Display Device (I)”, 1999). July 21, 2009, Annual Meeting of the Imaging Society of Japan (83 times in total), “Japan Hardcopy '99” Proceedings, p. 249-252). This method uses particle behavior in a gas composed of particles and a substrate. In this method, since no solution is used, the problem of sedimentation and aggregation of particles, which has been a problem in the electrophoresis method, is solved.

しかしながら、上記のような乾式の画像表示用パネルにおいては、画像表示のため粒子群等に電界を与えるために電極間に印加する駆動電圧として、ある時点で電圧値が一瞬のうちに上昇/下降するパルス状の矩形波を利用していた。近年になって、この矩形波により駆動して画像を表示すると、パネル表示特性が悪化し、反転回数寿命、コントラストに悪影響を及ばすことがわかってきた。  However, in the dry image display panel as described above, as a drive voltage applied between the electrodes for applying an electric field to the particle group for image display, the voltage value rises / falls instantaneously at a certain point in time. A pulsed rectangular wave was used. In recent years, it has been found that when an image is displayed by driving with this rectangular wave, the panel display characteristics are deteriorated, and the life of inversion and the contrast are adversely affected.

本発明の目的は上述した課題を解消して、パネル表示特性が悪化せず、反転回数寿命、コントラストに悪影響を及ぼすことのない表示駆動方法及び画像表示装置を提供しようとするものである。  An object of the present invention is to solve the above-described problems, and to provide a display driving method and an image display device that do not deteriorate the panel display characteristics and do not adversely affect the inversion life and contrast.

本発明の表示駆動方法の第1発明は、少なくとも一方が透明な対向する基板間に粒子群を封入し、電位の異なる2種類の電極から粒子群に電界を与えて、粒子を飛翔移動させ画像を表示する画像表示装置における表示駆動方法であって、一方の電極電位を接地電位とし、もう一方の電極に、時間とともに少なくとも増大過程で電圧値が徐々に変化する交番電圧または片極性電圧を印加する方法で電圧を印加して、画像を表示することを特徴とするものである。  According to a first aspect of the display driving method of the present invention, a particle group is enclosed between opposing substrates at least one of which is transparent, an electric field is applied to the particle group from two types of electrodes having different potentials, and the particles fly and move. A display driving method in an image display device that displays one of the electrodes, wherein one electrode potential is a ground potential, and an alternating voltage or a unipolar voltage whose voltage value gradually changes over time is applied to the other electrode. An image is displayed by applying a voltage by the method described above.

また、本発明の表示駆動方法の第2発明は、少なくとも一方が透明な対向する基板間に粉流体を封入し、電位の異なる2種類の電極から粉流体に電界を与えて、粉流体を移動させ画像を表示する画像表示装置における表示駆動方法であって、一方の電極電位を接地電位とし、もう一方の電極に、時間とともに少なくとも増大過程で電圧値が徐々に変化する交番電圧または片極性電圧を印加する方法で電圧を印加して、画像を表示することを特徴とするものである。  Further, the second invention of the display driving method of the present invention moves the powder fluid by enclosing the powder fluid between the opposing substrates at least one of which is transparent, and applying an electric field to the powder fluid from two types of electrodes having different potentials. A display driving method in an image display device for displaying an image, wherein one electrode potential is a ground potential, and the other electrode is an alternating voltage or a unipolar voltage whose voltage value gradually changes over time with at least an increasing process. An image is displayed by applying a voltage by a method of applying.

本発明の表示駆動方法の第1発明及び第2発明においては、一方の電極電位を接地電位とし、もう一方の電極に、時間とともに少なくとも増大過程で電圧値が徐々に変化する交番電圧または片極性電圧を印加する方法で電圧を印加して、画像を表示することで、パネル表示特性が悪化せず、反転回数寿命、コントラストに悪影響を及ぼすことのない表示駆動方法及び画像表示装置を得ることができる。  In the first and second inventions of the display driving method of the present invention, one electrode potential is set to the ground potential, and the other electrode has an alternating voltage or unipolarity whose voltage value gradually changes at least in the increasing process with time. A display driving method and an image display device that do not deteriorate the panel display characteristics and do not adversely affect the life of the number of inversions and the contrast by displaying an image by applying a voltage by applying a voltage can be obtained. it can.

本発明の表示駆動方法の第1発明及び第2発明の好適例としては、交番電圧または片極性電圧が、Sin波の形状で時間とともに少なくとも増大過程で電圧値が徐々に変化すること、及び、交番電圧または片極性電圧が、台形波の形状または階段波の形状で時間とともに少なくとも増大過程で電圧値が徐々に変化すること、及び、交番電圧または片極性電圧が、三角波の形状またはランプ波の形状で時間とともに少なくとも増大過程で電圧値が徐々に変化することがある。いずれの場合も、本発明をさらに好適に実施することができる。  As a preferred example of the first and second inventions of the display driving method of the present invention, the alternating voltage or the unipolar voltage gradually changes in voltage value at least in the increasing process with time in the form of a sine wave, and The alternating voltage or unipolar voltage is a trapezoidal wave or staircase wave, and the voltage value gradually changes over time, and the alternating voltage or unipolar voltage is a triangular wave or ramp wave. Depending on the shape, the voltage value may gradually change over time, at least in the course of increasing. In either case, the present invention can be more suitably implemented.

また、本発明の画像表示装置は、上述した表示駆動方法に従って画像を表示することを特徴とするものである。  The image display device of the present invention displays an image according to the display driving method described above.

[図1]図1は、本発明の画像表示装置における表示方式の一例を示す図である。
[図2]図2は、本発明の画像表示装置における表示方式の他の例を示す図である。
[図3]図3(a)〜(f)は、それぞれ従来例及び本発明例の表示駆動方法の一例を説明するための図である。
[図4]図4は、従来例と本発明例について、同じ周波数で白表示と黒表示を繰り返し、その濃度と反転回数との関係を求めた結果の一例を示すグラフである。
[図5]図5は、従来例と本発明例について、同じ周波数で白表示と黒表示を繰り返し、その白黒表示時の濃度差と反転回数との関係を求めた結果の一例を示すグラフである。
[図6]図6は、従来例と本発明例について、同じ周波数で白表示と黒表示を繰り返し、その白黒表示時の濃度差と反転回数との関係を求めた結果の他の例を示すグラフである。
[図7]図7は、従来例と本発明例について、同じ周波数で白表示と黒表示を繰り返し、その白黒表示時の濃度差と反転回数との関係を求めた結果のさらに他の例を示すグラフである。
[図8]図8(a)〜(f)は、それぞれ従来例及び本発明例の表示駆動方法の他の例を説明するための図である。
[図9]図9(a)〜(f)は、それぞれ本発明例の表示駆動方法のさらに他の例を説明するための図である。
[図10]図10は、本発明の画像表示装置における隔壁の形状の一例を示す図である。
FIG. 1 is a diagram showing an example of a display method in an image display apparatus of the present invention.
FIG. 2 is a diagram showing another example of the display method in the image display apparatus of the present invention.
[FIG. 3] FIGS. 3A to 3F are diagrams for explaining an example of a display driving method of a conventional example and an example of the present invention, respectively.
[FIG. 4] FIG. 4 is a graph showing an example of a result obtained by repeating white display and black display at the same frequency for a conventional example and an example of the present invention and obtaining a relationship between the density and the number of inversions.
[FIG. 5] FIG. 5 is a graph showing an example of a result obtained by repeating white display and black display at the same frequency for the conventional example and the example of the present invention, and obtaining the relationship between the density difference and the number of inversions during the monochrome display. is there.
[FIG. 6] FIG. 6 shows another example of the result obtained by repeating the white display and the black display at the same frequency for the conventional example and the example of the present invention, and obtaining the relationship between the density difference and the number of inversions during the monochrome display. It is a graph.
[FIG. 7] FIG. 7 shows still another example of the result obtained by repeating the white display and the black display at the same frequency for the conventional example and the example of the present invention, and obtaining the relationship between the density difference and the number of inversions during the monochrome display. It is a graph to show.
[FIG. 8] FIGS. 8A to 8F are diagrams for explaining another example of the display driving method of the conventional example and the example of the present invention, respectively.
[FIG. 9] FIGS. 9A to 9F are diagrams for explaining still another example of the display driving method of the present invention.
FIG. 10 is a diagram showing an example of the shape of the partition wall in the image display device of the present invention.

本発明の第1発明及び第2発明の対象となる画像表示用パネルでは、対向する基板間に少なくとも2種以上の粒子群または粉流体を封入した表示用パネルに電極を通じてその基板内に電荷が付与される。高電位電極側に向かっては低電位に帯電した粒子群または粉流体がクーロン力などによって引き寄せられ、また低電位電極側に向かっては高電位に帯電した粒子群または粉流体がクーロン力などによって引き寄せられ、それら粒子群または粉流体が電極間を往復運動することにより、画像表示がなされる。従って、粒子群または粉流体が、均一に移動し、かつ、繰り返し時あるいは保存時の安定性を維持できるように、表示用パネルを設計する必要がある。  In the image display panel that is the subject of the first and second inventions of the present invention, electric charges are introduced into the substrate through the electrodes in the display panel in which at least two kinds of particle groups or powder fluid are sealed between the opposing substrates. Is granted. Towards the high potential electrode side, particles or powder fluid charged at a low potential are attracted by Coulomb force, and toward the low potential electrode side, particles or powder fluid charged at a high potential are attracted by Coulomb force. The particles are attracted and the group of particles or powder fluid reciprocates between the electrodes, thereby displaying an image. Therefore, it is necessary to design the display panel so that the particle group or the powder fluid can move uniformly and maintain the stability during repetition or storage.

図1及び図2はそれぞれ本発明の対象となる画像表示用パネルの一例の構成を示す図である。図1に示す本発明の対象となる画像表示用パネルでは、帯電特性及び光学的反射率の異なる2種類の粒子群(ここでは白色粒子群3Wと黒色粒子群3B)を、基板1、2間に封入し、封入した粒子群3に基板上に設けた電極5、6から電界を与えて、基板1、2と垂直方向に移動させることで画像表示を行っている。この方式では、図2に示すように、基板1、2間の空隙を隔壁4で区切って複数のセルを持った構造とし、その中に粒子群3を封入して画像表示用パネルを構成することもできる。基板上に設ける電極は基板の内外いずれの側でも良く、基板内部に埋め込んでも良い。また、以上の構成は、粒子群の代わりに粉流体を使用しても同じである。  FIG. 1 and FIG. 2 are diagrams each showing a configuration of an example of an image display panel that is an object of the present invention. In the image display panel shown in FIG. 1, the two types of particle groups (in this case, the white particle group 3W and the black particle group 3B) having different charging characteristics and optical reflectance are arranged between the substrates 1 and 2. An image is displayed by applying an electric field to the enclosed particle group 3 from the electrodes 5 and 6 provided on the substrate and moving the particles in a direction perpendicular to the substrates 1 and 2. In this method, as shown in FIG. 2, a structure having a plurality of cells is formed by dividing a gap between the substrates 1 and 2 by a partition wall 4, and a particle group 3 is enclosed in the structure to constitute an image display panel. You can also The electrode provided on the substrate may be on either the inside or outside of the substrate, or may be embedded in the substrate. The above configuration is the same even when a powder fluid is used instead of the particle group.

本発明の特徴は、上述した構成の画像表示パネルにおける画像の表示駆動方法にある。すなわち、上述した構成の画像表示パネルにおいて、粒子群を利用した例でも粉流体を利用した例でも、電極5、6の一方を接地電位とし、もう一方に、時間とともに少なくとも増大過程で電圧値が徐々に変化する交番電圧または片極性電圧を印加する方法で電極5、6間に電圧を印加して、画像を表示することを特徴としている。なお、本発明において、印加する電圧を「時間とともに少なくとも増大過程で電圧値が徐々に変化する交番電圧または片極性電圧」と定義したのは、従来のパルス状の矩形波のように、ある時点で電圧値が一瞬のうちに上昇/下降する形状、特に一瞬のうちに上昇(増大)する形状の電圧を除外するためである。また、交番電圧とは、GNDを交差する電圧のことをいい、片極性電圧とは、GNDを交差しない電圧のことをいう。  A feature of the present invention is an image display driving method in the image display panel having the above-described configuration. That is, in the image display panel having the above-described configuration, in either the example using the particle group or the example using the powder fluid, one of the electrodes 5 and 6 is set to the ground potential, and the voltage value is increased at least in an increasing process with time. An image is displayed by applying a voltage between the electrodes 5 and 6 by applying a gradually changing alternating voltage or unipolar voltage. In the present invention, the voltage to be applied is defined as “alternating voltage or unipolar voltage whose voltage value gradually changes at least over time”. This is to exclude a voltage having a shape in which the voltage value increases / decreases in an instant, particularly a shape in which the voltage value increases / increases in an instant. An alternating voltage refers to a voltage that crosses GND, and a unipolar voltage refers to a voltage that does not cross GND.

図3(a)〜(f)はそれぞれ従来例及び本発明例の表示駆動方法の一例を説明するための図である。図3(a)〜(f)においては、いずれの例においても電極6の電位を接地電位としている。ここで、図3(a)に示す従来例では、パルス状の矩形波からなる交番電圧を電極5に印加している。これに対し、図3(b)に示す本発明例では、Sin波からなる交番電圧を電極5に印加している。また、図3(c)に示す本発明例では、台形波からなる交番電圧を電極5に印加している。さらに、図3(d)に示す本発明例では、階段波からなる交番電圧を電極5に印加している。さらにまた、図3(e)に示す本発明例では、ランプ波からなる交番電圧を電極5に印加している。また、図3(f)に示す本発明例では、三角波からなる交番電圧を電極5に印加している。  FIGS. 3A to 3F are diagrams for explaining an example of the display driving method of the conventional example and the example of the present invention, respectively. 3A to 3F, the potential of the electrode 6 is the ground potential in any of the examples. Here, in the conventional example shown in FIG. 3A, an alternating voltage composed of a pulsed rectangular wave is applied to the electrode 5. In contrast, in the example of the present invention shown in FIG. 3B, an alternating voltage composed of a sine wave is applied to the electrode 5. In the example of the present invention shown in FIG. 3C, an alternating voltage composed of a trapezoidal wave is applied to the electrode 5. Further, in the example of the present invention shown in FIG. 3 (d), an alternating voltage consisting of a staircase wave is applied to the electrode 5. Furthermore, in the example of the present invention shown in FIG. 3E, an alternating voltage composed of a ramp wave is applied to the electrode 5. In the example of the present invention shown in FIG. 3F, an alternating voltage composed of a triangular wave is applied to the electrode 5.

以上の図3(a)〜(f)に示す従来例及び本発明例の表示駆動方法のうち、図3(a)に示す従来例のパルス状の矩形波からなる交番電圧の場合と、図3(b)に示す本発明例のSin波からなる交番電圧の場合とについて、同じ周波数で白表示と黒表示を繰り返し、その濃度と反転回数との関係を求めた。結果を図4に示す。図4の結果から、本発明例のSin波で駆動すると黒表示、白表示のいずれにおいても反転を繰り返すことによる濃度低下が小さいのに対し、従来例の矩形波では反転を繰り返すにつれて濃度低下が大きくなり、特に、黒濃度の低下が顕著であることがわかる。なお、図5に、図4と同様の例において、反転回数と白黒表示時の濃度差との関係を示す。これから、本発明例のSin波では反転を繰り返し行っても白黒表示時の濃度差の低下が小さいのに対し、従来例の矩形波では反転の繰り返しに従って白黒表示時の濃度差が大きく低下することがわかる。  Among the display driving methods of the conventional example and the example of the present invention shown in FIGS. 3A to 3F, the case of the alternating voltage composed of pulsed rectangular waves of the conventional example shown in FIG. In the case of the alternating voltage consisting of the Sin wave of the example of the present invention shown in FIG. 3B, white display and black display were repeated at the same frequency, and the relationship between the density and the number of inversions was obtained. The results are shown in FIG. From the result of FIG. 4, when driven by the sine wave of the present invention example, the density drop due to repeated inversion in both black display and white display is small, whereas in the rectangular wave of the conventional example, the density drop decreases as the inversion is repeated. It can be seen that the decrease in black density is particularly significant. FIG. 5 shows the relationship between the number of inversions and the density difference during monochrome display in the same example as in FIG. From this, in the Sin wave of the present invention, the decrease in density difference during black and white display is small even when the inversion is repeated, whereas in the rectangular wave of the conventional example, the density difference during black and white display greatly decreases as the reversal is repeated. I understand.

次に、図3(a)〜(f)に示す従来例及び本発明例の表示駆動方法に従って、同じ周波数で白表示と黒表示を繰り返した場合の濃度差を測定した結果を、図6及び図7に示す。図6及び図7の結果からわかるように、本発明例はSin波のみならず台形波、階段波、及び、ランプ波、三角波の例でも、反転繰り返しによる白黒表示時の濃度差の低下が小さいのに対し、従来例の矩形波では反転の繰り返しに従って白黒表示時の濃度差が大きく低下することがわかる。また、本発明例のなかでは、Sin波と台形波、階段波、ランプ波、三角波とで特に大きな違いはないことがわかる。  Next, according to the display driving method of the conventional example and the example of the present invention shown in FIGS. 3A to 3F, the results of measuring the density difference when white display and black display are repeated at the same frequency are shown in FIG. As shown in FIG. As can be seen from the results of FIGS. 6 and 7, the present invention has a small decrease in density difference during black and white display due to repeated inversion not only in the Sin wave but also in the trapezoidal wave, staircase wave, ramp wave, and triangular wave example. On the other hand, in the rectangular wave of the conventional example, it can be seen that the density difference at the time of black and white display greatly decreases as the inversion is repeated. Further, it can be seen that there is no significant difference between the Sin wave, the trapezoidal wave, the staircase wave, the ramp wave, and the triangular wave among the examples of the present invention.

図8(a)〜(f)及び図9(a)〜(f)はそれぞれ従来例及び本発明例の表示駆動方法の他の例を説明するための図である。ここで、図8(a)に示す従来例では、パルス状の矩形波からなる片極性電圧を一方の電極5に印加するとともに他方の電極6をGNDに接続した例を、図8(b)に示す従来例では、図8(a)に示す例と電極に印加する電圧を反転した例を示す。また、図8(c)に示す本発明例では、Sin波からなる片極性電圧を一方の電極5に印加するとともに他方の電極6をGNDに接続した例を、図8(d)に示す本発明例では、図8(c)に示す例と電極に印加する電圧を反転した例を示す。さらに、図8(e)に示す本発明例では、台形波からなる片極性電圧を一方の電極5に印加するとともに他方の電極6をGNDに接続した例を、図8(f)に示す本発明例では、図8(e)に示す例と電極に印加する電圧を反転した例を示す。  FIGS. 8A to 8F and FIGS. 9A to 9F are diagrams for explaining other examples of the display driving method of the conventional example and the example of the present invention, respectively. Here, in the conventional example shown in FIG. 8A, an example in which a unipolar voltage composed of a pulsed rectangular wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. The conventional example shown in FIG. 8 shows an example in which the voltage applied to the electrode is reversed from the example shown in FIG. Further, in the example of the present invention shown in FIG. 8C, an example in which a unipolar voltage composed of a Sin wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. In the invention example, the example shown in FIG. 8C and the example in which the voltage applied to the electrode is reversed are shown. Further, in the example of the present invention shown in FIG. 8 (e), an example in which a unipolar voltage composed of a trapezoidal wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. 8 (f). The invention example shows an example in which the voltage applied to the electrode is reversed from the example shown in FIG.

同様に、図9(a)に示す本発明例では、階段波からなる片極性電圧を一方の電極5に印加するとともに他方の電極6をGNDに接続した例を、図9(b)に示す本発明例では、図9(a)に示す例と電極に印加する電圧を反転した例を示す。また、図9(c)に示す本発明例では、ランプ波からなる片極性電圧を一方の電極5に印加するとともに他方の電極6をGNDに接続した例を、図9(d)に示す本発明例では、図9(c)に示す例と電極に印加する電圧を反転した例を示す。さらに、図9(e)に示す本発明例では、三角波からなる片極性電圧を一方の電極5に印加するとともに他方の電極6をGNDに接続した例を、図9(f)に本発明例では、図9(e)に示す例と電極に印加する電圧を反転した例を示す。  Similarly, in the example of the present invention shown in FIG. 9A, an example in which a unipolar voltage composed of a staircase wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. 9B. In the example of the present invention, the example shown in FIG. 9A and the example in which the voltage applied to the electrode is reversed are shown. Further, in the present invention example shown in FIG. 9C, an example in which a unipolar voltage composed of a ramp wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. 9D. In the example of the invention, an example in which the voltage applied to the electrode is reversed from the example shown in FIG. Further, in the example of the present invention shown in FIG. 9 (e), an example in which a unipolar voltage consisting of a triangular wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. 9 (f). FIG. 9E shows an example in which the voltage applied to the electrode is reversed.

ここでも、上述した例と同様に、図8(a)〜(f)及び図9(a)〜(f)に示す従来例及び本発明例の表示駆動方法に従って、同じ周波数で白表示と黒表示を繰り返した結果、図8(c)、(d)及び図9(a)〜(f)に示す本発明例では反転繰り返しによる白黒表示時の濃度差の低下が小さいのに対し、従来例では反転の繰り返しに従って白黒表示時の濃度差が大きく低下することがわかった。また、反転の繰り返しによる白黒表示時の濃度差の低下度合は、交番電圧と片極性電圧ともほぼ同じであった。  Again, as in the example described above, white display and black at the same frequency are performed according to the display driving method of the conventional example and the example of the present invention shown in FIGS. 8 (a) to 8 (f) and FIGS. 9 (a) to 9 (f). As a result of repeating the display, in the examples of the present invention shown in FIGS. 8C and 8D and FIGS. 9A to 9F, the decrease in density difference during monochrome display due to repetitive inversion is small, whereas the conventional example. Then, it was found that the density difference at the time of black and white display greatly decreases as the inversion is repeated. Further, the degree of decrease in density difference during black and white display due to repeated reversal was almost the same for both alternating voltage and unipolar voltage.

以上の結果から、本発明の表示駆動方法によれば、パネル表示特性が悪化せず、反転回数寿命、コントラストに悪影響を及ぼすことのないことがわかった。そのため、本発明の表示駆動方法を利用することで、好ましい特性の画像表示装置を得ることができる。  From the above results, it was found that according to the display driving method of the present invention, the panel display characteristics are not deteriorated, and the life of the number of inversions and the contrast are not adversely affected. Therefore, an image display device having preferable characteristics can be obtained by using the display driving method of the present invention.

以下、本発明の画像表示装置の各構成部分について、粒子、粉流体、共通の構成部分の順に、詳細に説明する。  Hereinafter, each component of the image display device of the present invention will be described in detail in the order of particles, powdered fluid, and common components.

先ず、本発明の第1発明に用いる粒子について述べる。  First, the particles used in the first invention of the present invention will be described.

粒子の作製は、必要な樹脂、荷電制御剤、着色剤、その他添加剤を混練り粉砕しても、あるいはモノマーから重合しても、あるいは既存の粒子を樹脂、荷電制御剤、着色剤、その他添加剤でコーティングしても良い。  Particles can be produced by kneading and pulverizing the necessary resins, charge control agents, colorants, and other additives, or by polymerizing from monomers, or using existing particles as resins, charge control agents, colorants, etc. You may coat with an additive.

以下に、樹脂、荷電制御剤、着色剤、その他添加剤を例示する。  Examples of resins, charge control agents, colorants, and other additives will be given below.

樹脂の例としては、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、ウレタン変性アクリル樹脂、シリコーン樹脂、ナイロン樹脂、エポキシ樹脂、スチレン樹脂、ブチラール樹脂、塩化ビニリデン樹脂、メラミン樹脂、フェノール樹脂、フッ素樹脂などが挙げられ、2種以上混合することもでき、特に、基板との付着力を制御する上から、ポリエステル樹脂、アクリルウレタン樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、ウレタン樹脂、フッ素樹脂が好適である。  Examples of the resin include urethane resin, acrylic resin, polyester resin, urethane-modified acrylic resin, silicone resin, nylon resin, epoxy resin, styrene resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, fluorine resin, etc. Two or more types can be mixed, and polyester resin, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluororesin, urethane resin, fluororesin are particularly suitable for controlling the adhesion with the substrate. .

荷電制御剤の例としては、正電荷付与の場合には、4級アンモニウム塩系化合物、ニグロシン染料、トリフェニルメタン系化合物、イミダゾール誘導体などが挙げられ、負電荷付与の場合には、含金属アゾ染料、サリチル酸金属錯体、ニトロイミダゾール誘導体などが挙げられる。  Examples of charge control agents include quaternary ammonium salt compounds, nigrosine dyes, triphenylmethane compounds, imidazole derivatives and the like in the case of imparting positive charges, and metal-containing azo compounds in the case of imparting negative charges. Examples thereof include dyes, salicylic acid metal complexes, and nitroimidazole derivatives.

着色剤の例としては、塩基性、酸性などの染料が挙げられ、ニグロシン、メチレンブルー、キノリンイエロー、ローズベンガルなどが例示される。  Examples of the colorant include basic and acidic dyes such as nigrosine, methylene blue, quinoline yellow, and rose bengal.

無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭酸カルシウム、鉛白、タルク、シリカ、ケイ酸カルシウム、アルミナホワイト、カドミウムイエロー、カドミウムレッド、カドミウムオレンジ、チタンイエロー、紺青、群青、コバルトブルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフェライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。  Examples of inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, cadmium orange, titanium yellow, Examples include bitumen, ultramarine blue, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, and aluminum powder.

また、ここで繰り返し耐久性を更に向上させるためには、該粒子を構成する樹脂の安定性、特に、吸水率と溶剤不溶率を管理することが効果的である。  Further, in order to further improve the repeated durability here, it is effective to manage the stability of the resin constituting the particles, particularly the water absorption rate and the solvent insolubility rate.

基板間に封入する粒子を構成する樹脂の吸水率は、3重量%以下、特に2重量%以下とすることが好ましい。なお、吸水率の測定は、ASTM D570に準じて行い、測定条件は23℃で24時間とする。  The water absorption of the resin constituting the particles to be sealed between the substrates is preferably 3% by weight or less, particularly preferably 2% by weight or less. The water absorption is measured according to ASTM D570, and the measurement conditions are 23 ° C. and 24 hours.

該粒子を構成する樹脂の溶剤不溶率に関しては、下記関係式で表される粒子の溶剤不溶率を50%以上、特に70%以上とすることが好ましい。
溶剤不溶率(%)=(B/A)×100
(但し、Aは樹脂の溶剤浸漬前重量、Bは良溶媒中に樹脂を25℃で24時間浸漬した後の重量を示す)
Regarding the solvent insolubility of the resin constituting the particles, the solvent insolubility of the particles represented by the following relational formula is preferably 50% or more, particularly 70% or more.
Solvent insolubility (%) = (B / A) × 100
(However, A represents the weight of the resin before dipping in the solvent, and B represents the weight after dipping the resin in a good solvent at 25 ° C. for 24 hours.)

この溶剤不溶率が50%未満では、長期保存時に粒子表面にブリードが発生し、粒子との付着力に影響を及ぼし粒子の移動の妨げとなり、画像表示耐久性に支障をきたす場合がある。  If the solvent insolubility is less than 50%, bleeding may occur on the particle surface during long-term storage, affecting the adhesion with the particle and hindering the movement of the particle, which may impair the image display durability.

なお、溶剤不溶率を測定する際の用の溶剤(良溶媒)としては、フッ素樹脂ではメチルエチルケトン等、ポリアミド樹脂ではメタノール等、アクリルウレタン樹脂ではメチルエチルケトン、トルエン等、メラミン樹脂ではアセトン、イソプロパノール等、シリコーン樹脂ではトルエン等が好ましい。  The solvent (good solvent) for measuring the solvent insolubility is methyl ethyl ketone, etc. for fluororesins, methanol, etc. for polyamide resins, methyl ethyl ketone, toluene, etc. for acrylic urethane resins, acetone, isopropanol, etc. for melamine resins, silicone As the resin, toluene or the like is preferable.

また、粒子は球形であることが好ましい。  The particles are preferably spherical.

本発明では、各粒子の粒子径分布に関して、下記式に示される粒子径分布Spanを5未満、好ましくは3未満とする。
Span=(d(0.9)−d(0.1))/d(0.5)
(但し、d(0.5)は粒子の50%がこれより大きく、50%がこれより小さいという粒子径をμmで表した数値、d(0.1)はこれ以下の粒子の比率が10%である粒子径をμmで表した数値、d(0.9)はこれ以下の粒子が90%である粒子径をμmで表した数値である。)
In the present invention, regarding the particle size distribution of each particle, the particle size distribution Span represented by the following formula is set to less than 5, preferably less than 3.
Span = (d (0.9) −d (0.1)) / d (0.5)
(However, d (0.5) is a numerical value expressed in μm that the particle diameter is 50% larger than this and 50% smaller than this, and d (0.1) is the ratio of particles smaller than 10%. % Is a numerical value expressing the particle diameter in μm, and d (0.9) is a numerical value expressing the particle diameter in which 90% or less of the particles are less than this in μm.)

Spanを5以下の範囲に納めることにより、各粒子のサイズが揃い、均一な粒子移動が可能となる。  By keeping Span within a range of 5 or less, the size of each particle is uniform, and uniform particle movement becomes possible.

さらに、各粒子の平均粒子径d(0.5)を、0.1〜50μmとすることが好ましい。この範囲より大きいと表示上の鮮明さに欠け、この範囲より小さいと粒子同士の凝集力が大きすぎるために粒子の移動に支障をきたすようになる。  Furthermore, the average particle diameter d (0.5) of each particle is preferably 0.1 to 50 μm. If it is larger than this range, the sharpness on the display is lacking, and if it is smaller than this range, the cohesive force between the particles is too large, which hinders the movement of the particles.

さらにまた、各粒子の相関について、使用した粒子の内、最大径を有する粒子のd(0.5)に対する最小径を有する粒子のd(0.5)の比を50以下、好ましくは10以下とすることが肝要である。  Furthermore, regarding the correlation of each particle, the ratio of the d (0.5) of the particle having the minimum diameter to the d (0.5) of the particle having the maximum diameter among the used particles is 50 or less, preferably 10 or less. Is important.

たとえ粒子径分布Spanを小さくしたとしても、互いに帯電特性の異なる粒子が互いに反対方向に動くので、互いの粒子サイズが近く、互いの粒子が当量づつ反対方向に容易に移動できるようにするのが好適であり、それがこの範囲となる。  Even if the particle size distribution Span is reduced, particles having different charging properties move in opposite directions, so that the particle sizes of the particles are close to each other, and each particle can be easily moved in the opposite direction by an equivalent amount. This is within this range.

なお、上記の粒子径分布および粒子径は、レーザー回折/散乱法などから求めることができる。測定対象となる粒子にレーザー光を照射すると空間的に回折/散乱光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があることから、粒子径および粒子径分布が測定できる。  The particle size distribution and the particle size can be obtained from a laser diffraction / scattering method or the like. When laser light is irradiated onto particles to be measured, a light intensity distribution pattern of diffracted / scattered light is spatially generated, and this light intensity pattern has a corresponding relationship with the particle diameter, so that the particle diameter and particle diameter distribution can be measured. .

本発明における粒子径および粒子径分布は、体積基準分布から得られたものである。具体的には、Mastersizer2000(Malvern Instruments Ltd.)の測定機を用いて、窒素気流中に粒子を投入し、付属の解析ソフト(Mie理論を用いた体積基準分布を基本としたソフト)にて、粒子径および粒子径分布の測定を行なうことができる。  The particle size and particle size distribution in the present invention are obtained from a volume-based distribution. Specifically, using a measuring machine of Mastersizer 2000 (Malvern Instruments Ltd.), particles were introduced into a nitrogen stream, and attached analysis software (software based on volume reference distribution using Mie theory) The particle size and particle size distribution can be measured.

次に、本発明の第2発明で用いる粉流体について説明する。  Next, the powder fluid used in the second invention of the present invention will be described.

本発明における「粉流体」は、気体の力も液体の力も借りずに、自ら流動性を示す、流体と粒子の特性を兼ね備えた両者の中間状態の物質である。例えば、液晶は液体と固体の中間的な相と定義され、液体の特徴である流動性と固体の特徴である異方性(光学的性質)を有するものである(平凡社:大百科事典)。一方、粒子の定義は、無視できるほどの大きさであっても有限の質量をもった物体であり、重力の影響を受けるとされている(丸善:物理学事典)。ここで、粒子でも、気固流動層体、液固流動体という特殊状態があり、粒子に底板から気体を流すと、粒子には気体の速度に対応して上向きの力が作用し、この力が重力とつりあう際に、流体のように容易に流動できる状態になるものを気固流動層体と呼び、同じく、流体により流動化させた状態を液固流動体と呼ぶとされている(平凡社:大百科事典)。このように気固流動層体や液固流動体は、気体や液体の流れを利用した状態である。本発明では、このような気体の力も、液体の力も借りずに、自ら流動性を示す状態の物質を、特異的に作り出せることが判明し、これを粉流体と定義した。  The “powder fluid” in the present invention is a substance in an intermediate state of both fluid and particle characteristics that exhibits fluidity by itself without borrowing the force of gas or liquid. For example, liquid crystal is defined as an intermediate phase between a liquid and a solid, and has fluidity that is a characteristic of liquid and anisotropy (optical properties) that is a characteristic of solid (Heibonsha: Encyclopedia) . On the other hand, the definition of particle is an object with a finite mass even if it is negligible, and is said to be affected by gravity (Maruzen: Physics Encyclopedia). Here, even in the case of particles, there are special states of gas-solid fluidized bed and liquid-solid fluids. When gas is flowed from the bottom plate to the particles, upward force is applied to the particles according to the velocity of the gas. Is a gas-solid fluidized bed that is in a state where it can easily flow when it balances with gravity, and it is also called a liquid-solid fluidized state that is fluidized by a fluid (ordinary) Company: Encyclopedia). As described above, the gas-solid fluidized bed body and the liquid-solid fluid are in a state of using a gas or liquid flow. In the present invention, it has been found that a substance in a state of fluidity can be produced specifically without borrowing the force of such gas and liquid, and this is defined as powder fluid.

すなわち、本発明における粉流体は、液晶(液体と固体の中間相)の定義と同様に、粒子と液体の両特性を兼ね備えた中間的な状態で、先に述べた粒子の特徴である重力の影響を極めて受け難く、高流動性を示す特異な状態を示す物質である。このような物質はエアロゾル状態、すなわち気体中に固体状もしくは液体状の物質が分散質として安定に浮遊する分散系で得ることができ、本発明の画像表示装置で固体状物質を分散質とするものである。  That is, the pulverulent fluid in the present invention is in an intermediate state having both the characteristics of particles and liquid, as in the definition of liquid crystal (liquid and solid intermediate phase), and is the characteristic of the above-mentioned particles. It is a substance that is extremely unaffected and exhibits a unique state with high fluidity. Such a substance can be obtained in an aerosol state, that is, a dispersion system in which a solid or liquid substance is stably suspended as a dispersoid in a gas, and the solid substance is used as a dispersoid in the image display device of the present invention. Is.

本発明の対象となる画像表示装置は、少なくとも一方が透明な、対向する基板間に、気体中に固体粒子が分散質として安定に浮遊するエアロゾル状態で高流動性を示す粉流体を封入するものであり、このような粉流体は、低電圧の印加でクーロン力などにより容易に安定して移動させることができる。  An image display device that is an object of the present invention encloses a powder fluid that exhibits high fluidity in an aerosol state in which solid particles are stably suspended as a dispersoid in a gas between opposing substrates, at least one of which is transparent Such a powder fluid can be easily and stably moved by a Coulomb force or the like by applying a low voltage.

粉流体とは、先に述べたように、気体の力も液体の力も借りずに、自ら流動性を示す、流体と粒子の特性を兼ね備えた両者の中間状態の物質である。この粉流体は、特にエアロゾル状態とすることができ、本発明の画像表示装置では、気体中に固体状の物質が分散質として比較的安定に浮遊する状態で用いられる。  As described above, the powdered fluid is a substance in an intermediate state between the fluid and the particle, which exhibits fluidity by itself without borrowing the force of gas or liquid. This powder fluid can be in an aerosol state in particular, and in the image display device of the present invention, a solid substance is used in a state of relatively stably floating as a dispersoid in the gas.

エアロゾル状態の範囲は、粉流体の最大浮遊時の見かけ体積が未浮遊時の2倍以上であることが好ましく、更に好ましくは2.5倍以上、特に好ましくは3倍以上である。上限は特に限定されないが、12倍以下であることが好ましい。  The range of the aerosol state is preferably such that the apparent volume of the pulverized fluid when it is floated is twice or more that when it is not suspended, more preferably 2.5 times or more, and particularly preferably 3 times or more. Although an upper limit is not specifically limited, It is preferable that it is 12 times or less.

粉流体の最大浮遊時の見かけ体積が未浮遊時の2倍より小さいと表示上の制御が難しくなり、また、12倍より大きいと粉流体を装置内に封入する際に舞い過ぎてしまうなどの取扱い上の不便さが生じる。なお、最大浮遊時の見かけ体積は次のようにして測定される。すなわち、粉流体が透過して見える密閉容器に粉流体を入れ、容器自体を振動或いは落下させて、最大浮遊状態を作り、その時の見かけ体積を容器外側から測定する。具体的には、直径(内径)6cm、高さ10cmのポリプロピレン製の蓋付き容器(商品名アイボーイ:アズワン(株)製)に、未浮遊時の粉流体として1/5の体積相当の粉流体を入れ、振とう機に容器をセットし、6cmの距離を3往復/secで3時間振とうさせる。振とう停止直後の見かけ体積を最大浮遊時の見かけ体積とする。  If the apparent volume of the pulverized fluid is less than twice that of the unfloating state, it is difficult to control the display, and if it is more than 12 times, the powder fluid will be overloaded when sealed in the device. Inconvenience in handling occurs. The apparent volume at the maximum floating time is measured as follows. That is, the powdered fluid is put into a closed container that allows the powdered fluid to permeate, and the container itself is vibrated or dropped to create a maximum floating state, and the apparent volume at that time is measured from the outside of the container. Specifically, in a container with a lid (trade name: iBoy: manufactured by ASONE Co., Ltd.) having a diameter (inner diameter) of 6 cm and a height of 10 cm, a powder fluid equivalent to 1/5 of the volume as a powder fluid when not floating. And set the container on a shaker, and shake at a distance of 6 cm at 3 reciprocations / sec for 3 hours. The apparent volume immediately after stopping shaking is the apparent volume at the maximum floating time.

また、本発明の画像表示装置は、粉流体の見かけ体積の時間変化が次式を満たすものが好ましい。
10/V>0.8
ここで、Vは最大浮遊時から5分後の見かけ体積(cm)、V10は最大浮遊時から10分後の見かけ体積(cm)を示す。なお、本発明の画像表示装置は、粉流体の見かけ体積の時間変化V10/Vが0.85よりも大きいものが好ましく、0.9よりも大きいものが特に好ましい。V10/Vが0.8以下の場合は、通常のいわゆる粒子を用いた場合と同様となり、本発明のような高速応答、耐久性の効果が確保できなくなる。
In addition, the image display device of the present invention preferably has a temporal change in the apparent volume of the powder fluid that satisfies the following formula.
V 10 / V 5 > 0.8
Here, V 5 represents an apparent volume (cm 3 ) 5 minutes after the maximum floating time, and V 10 represents an apparent volume (cm 3 ) 10 minutes after the maximum floating time. In the image display device of the present invention, the apparent volumetric change V 10 / V 5 of the powder fluid is preferably larger than 0.85, and more preferably larger than 0.9. When V 10 / V 5 is 0.8 or less, it becomes the same as when ordinary so-called particles are used, and it becomes impossible to ensure the effect of high-speed response and durability as in the present invention.

また、粉流体を構成する粒子物質の平均粒子径(d(0.5))は、好ましくは0.1〜20μm、更に好ましくは0.5〜15μm、特に好ましくは0.9〜8μmである。0.1μmより小さいと表示上の制御が難しくなり、20μmより大きいと、表示はできるものの隠蔽率が下がり装置の薄型化が困難となる。なお、粉流体を構成する粒子物質の平均粒子径(d(0.5))は、次の粒子径分布Spanにおけるd(0.5)と同様である。  Moreover, the average particle diameter (d (0.5)) of the particulate material constituting the powder fluid is preferably 0.1 to 20 μm, more preferably 0.5 to 15 μm, and particularly preferably 0.9 to 8 μm. . If it is smaller than 0.1 μm, it is difficult to control the display, and if it is larger than 20 μm, it is possible to display but the concealment rate is lowered and it is difficult to make the device thin. The average particle diameter (d (0.5)) of the particulate material constituting the powder fluid is the same as d (0.5) in the next particle diameter distribution Span.

粉流体を構成する粒子物質は、下記式に示される粒子径分布Spanが5未満であることが好ましく、更に好ましくは3未満である。
粒子径分布Span=(d(0.9)−d(0.1))/d(0.5)
ここで、d(0.5)は粉流体を構成する粒子物質の50%がこれより大きく、50%がこれより小さいという粒子径をμmで表した数値、d(0.1)はこれ以下の粉流体を構成する粒子物質の比率が10%である粒子径をμmで表した数値、d(0.9)はこれ以下の粉流体を構成する粒子物質が90%である粒子径をμmで表した数値である。粉流体を構成する粒子物質の粒子径分布Spanを5以下とすることにより、サイズが揃い、均一な粉流体移動が可能となる。
The particle substance constituting the powder fluid preferably has a particle size distribution span shown by the following formula of less than 5, more preferably less than 3.
Particle size distribution Span = (d (0.9) -d (0.1)) / d (0.5)
Here, d (0.5) is a numerical value expressed in μm of the particle diameter that 50% of the particulate material constituting the powder fluid is larger than this and 50% is smaller than this, and d (0.1) is less than this. A numerical value in which the ratio of the particle substance constituting the powder fluid is 10%, expressed in μm, and d (0.9) is the particle diameter in which the particulate substance constituting the powder fluid is 90% μm It is a numerical value expressed by By setting the particle size distribution Span of the particulate material constituting the powder fluid to 5 or less, the sizes are uniform and uniform powder fluid movement is possible.

なお、以上の粉流体を構成する粒子物質の粒子径分布および粒子径は、レーザー回折/散乱法などから求めることができる。測定対象となる粉流体にレーザー光を照射すると空間的に回折/散乱光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があることから、粒子径および粒子径分布が測定できる。この粒子径および粒子径分布は、体積基準分布から得られる。具体的には、Mastersizer2000(Malvern Instruments Ltd.)測定機を用いて、窒素気流中に粉流体を投入し、付属の解析ソフト(Mie理論を用いた体積基準分布を基本としたソフト)にて、測定を行うことができる。  The particle size distribution and particle size of the particulate material constituting the above powder fluid can be obtained from a laser diffraction / scattering method or the like. When laser light is irradiated to the powder fluid to be measured, a light intensity distribution pattern of diffracted / scattered light is generated spatially, and this light intensity pattern has a corresponding relationship with the particle diameter, so the particle diameter and particle diameter distribution are measured. it can. This particle size and particle size distribution are obtained from a volume-based distribution. Specifically, using a Mastersizer 2000 (Malvern Instruments Ltd.) measuring machine, a powdered fluid was introduced into a nitrogen stream, and attached analysis software (software based on volume reference distribution using Mie theory) Measurements can be made.

粉流体の作製は、必要な樹脂、荷電制御剤、着色剤、その他添加剤を混練り粉砕しても、モノマーから重合しても、既存の粒子を樹脂、荷電制御剤、着色剤、その他添加剤でコーティングしても良い。以下、粉流体を構成する樹脂、荷電制御剤、着色剤、その他添加剤を例示する。  Preparation of powder fluid can be done by kneading and pulverizing the necessary resin, charge control agent, colorant, and other additives, or by polymerization from monomers, and adding existing particles to resin, charge control agent, colorant, and other It may be coated with an agent. Hereinafter, the resin, charge control agent, colorant, and other additives constituting the powder fluid will be exemplified.

樹脂の例としては、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、ウレタン変性アクリル樹脂、シリコーン樹脂、ナイロン樹脂、エポキシ樹脂、スチレン樹脂、ブチラール樹脂、塩化ビニリデン樹脂、メラミン樹脂、フェノール樹脂、フッ素樹脂などが挙げられ、2種以上混合することもでき、特に、基板との付着力を制御する上から、アクリルウレタン樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、ウレタン樹脂、フッ素樹脂が好適である。  Examples of the resin include urethane resin, acrylic resin, polyester resin, urethane-modified acrylic resin, silicone resin, nylon resin, epoxy resin, styrene resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, and fluorine resin. Two or more types can also be mixed. In particular, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluororesin, urethane resin, and fluororesin are preferable from the viewpoint of controlling the adhesive force with the substrate.

荷電制御剤の例としては、正電荷付与の場合には、4級アンモニウム塩系化合物、ニグロシン染料、トリフェニルメタン系化合物、イミダゾール誘導体などが挙げられ、負電荷付与の場合には、含金属アゾ染料、サリチル酸金属錯体、ニトロイミダゾール誘導体などが挙げられる。  Examples of charge control agents include quaternary ammonium salt compounds, nigrosine dyes, triphenylmethane compounds, imidazole derivatives and the like in the case of imparting positive charges, and metal-containing azo compounds in the case of imparting negative charges. Examples thereof include dyes, salicylic acid metal complexes, and nitroimidazole derivatives.

着色剤の例としては、塩基性、酸性などの染料が挙げられ、ニグロシン、メチレンブルー、キノリンイエロー、ローズベンガルなどが例示される。  Examples of the colorant include basic and acidic dyes such as nigrosine, methylene blue, quinoline yellow, and rose bengal.

無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭酸カルシウム、鉛白、タルク、シリカ、ケイ酸カルシウム、アルミナホワイト、カドミウムイエロー、カドミウムレッド、カドミウムオレンジ、チタンイエロー、紺青、群青、コバルトブルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、銅粉、アルミニウム粉などが挙げられる。  Examples of inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, cadmium orange, titanium yellow, Examples include bitumen, ultramarine, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, copper powder, and aluminum powder.

しかしながら、このような材料を工夫無く混練り、コーティングなどを施しても、エアロゾル状態を示す粉流体を作製することはできない。エアロゾル状態を示す粉流体の決まった製法は定かではないが、例示すると次のようになる。  However, even if such a material is kneaded and coated without any ingenuity, a powder fluid that shows an aerosol state cannot be produced. The production method of the powder fluid showing the aerosol state is not clear, but is exemplified as follows.

まず、粉流体を構成する粒子物質の表面に、平均粒子径が20〜100nm、好ましくは20〜80nmの無機微粒子を固着させることが適当である。更に、その無機微粒子がシリコーンオイルで処理されていることが適当である。ここで、無機微粒子としては、二酸化珪素(シリカ)、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化セリウム、酸化鉄、酸化銅等が挙げられる。この無機微粒子を固着させる方法が重要であり、例えば、ハイブリダイザー(奈良機械製作所(株)製)やメカノフュージョン(ホソカワミクロン(株)製)などを用いて、ある限定された条件下(例えば処理時間)で、エアロゾル状態を示す粉流体を作製することができる。  First, it is appropriate to fix inorganic fine particles having an average particle diameter of 20 to 100 nm, preferably 20 to 80 nm, to the surface of the particulate material constituting the powder fluid. Furthermore, it is appropriate that the inorganic fine particles are treated with silicone oil. Here, examples of the inorganic fine particles include silicon dioxide (silica), zinc oxide, aluminum oxide, magnesium oxide, cerium oxide, iron oxide, and copper oxide. The method of fixing the inorganic fine particles is important. For example, using a hybridizer (manufactured by Nara Machinery Co., Ltd.) or mechanofusion (manufactured by Hosokawa Micron Co., Ltd.) or the like, under certain limited conditions (for example, processing time) ), A powder fluid showing an aerosol state can be produced.

ここで繰り返し耐久性を更に向上させるためには、粉流体を構成する樹脂の安定性、特に、吸水率と溶剤不溶率を管理することが効果的である。基板間に封入する粉流体を構成する樹脂の吸水率は、3重量%以下、特に2重量%以下とすることが好ましい。なお、吸水率の測定は、ASTM−D570に準じて行い、測定条件は23℃で24時間とする。粉流体を構成する樹脂の溶剤不溶率に関しては、下記関係式で表される粉流体の溶剤不溶率を50%以上、特に70%以上とすることが好ましい。
溶剤不溶率(%)=(B/A)×100
(但し、Aは樹脂の溶剤浸漬前重量、Bは良溶媒中に樹脂を25℃で24時間浸漬した後の重量を示す)
Here, in order to further improve the repeated durability, it is effective to manage the stability of the resin constituting the powder fluid, particularly the water absorption rate and the solvent insolubility rate. The water absorption rate of the resin constituting the powder fluid to be sealed between the substrates is preferably 3% by weight or less, particularly preferably 2% by weight or less. The water absorption is measured according to ASTM-D570, and the measurement condition is 23 ° C. for 24 hours. Regarding the solvent insolubility of the resin constituting the powder fluid, the solvent insolubility of the powder fluid represented by the following relational expression is preferably 50% or more, particularly 70% or more.
Solvent insolubility (%) = (B / A) × 100
(However, A represents the weight of the resin before dipping in the solvent, and B represents the weight after dipping the resin in a good solvent at 25 ° C. for 24 hours.)

この溶剤不溶率が50%未満では、長期保存時に粉流体を構成する粒子物質表面にブリードが発生し、粉流体との付着力に影響を及ぼし粉流体の移動の妨げとなり、画像表示耐久性に支障をきたす場合がある。なお、溶剤不溶率を測定する際の溶剤(良溶媒)としては、フッ素樹脂ではメチルエチルケトン等、ポリアミド樹脂ではメタノール等、アクリルウレタン樹脂では、メチルエチルケトン、トルエン等、メラミン樹脂ではアセトン、イソプロパノール等、シリコーン樹脂ではトルエン等が好ましい。  If this solvent insolubility is less than 50%, bleeding occurs on the surface of the particulate material that constitutes the powder fluid during long-term storage, which affects the adhesion with the powder fluid and hinders the movement of the powder fluid, resulting in improved image display durability. May cause problems. The solvent (good solvent) for measuring the solvent insolubility is methyl ethyl ketone, etc. for fluororesins, methanol, etc. for polyamide resins, methyl ethyl ketone, toluene, etc. for acrylic urethane resins, acetone, isopropanol, etc. for melamine resins, silicone resins, etc. In this case, toluene or the like is preferable.

また、粒子群または粉流体の充填量については、粒子群または粉流体の体積占有率が、対向する基板間の空隙部分の5〜70vol%、好ましくは5〜60vol%、更に好まくは5〜55vol%になるように調整することが好ましい。粒子群または粉流体の体積占有率が、5vol%より小さいと鮮明な画像表示が行えなくなり、70vol%より大きいと粒子群または粉流体が移動しにくくなる。ここで、空間体積とは、対向する基板1、基板2に挟まれる部分から、隔壁4の占有部分、装置シール部分を除いた、いわゆる粒子群または粉流体を充填可能な体積を指すものとする。  Moreover, about the filling amount of a particle group or powder fluid, the volume occupation rate of a particle group or powder fluid is 5-70 vol% of the space | gap part between opposing board | substrates, Preferably it is 5-60 vol%, More preferably, it is 5 It is preferable to adjust so that it may become 55 vol%. When the volume occupancy of the particle group or the powder fluid is less than 5 vol%, a clear image display cannot be performed, and when it is greater than 70 vol%, the particle group or the powder fluid is difficult to move. Here, the spatial volume refers to a volume capable of being filled with a so-called particle group or powder fluid excluding the occupied portion of the partition wall 4 and the device seal portion from the portion sandwiched between the opposing substrate 1 and substrate 2. .

次に、基板について述べる。  Next, the substrate will be described.

基板1、基板2の少なくとも一方は装置外側から粒子または粉流体の色が確認できる透明基板であり、可視光の透過率が高くかつ耐熱性の良い材料が好適である。可とう性の有無は用途により適宜選択され、例えば、電子ペーパー等の用途には可とう性のある材料、携帯電話、PDA、ノートパソコン類の携帯機器表示等の用途には可とう性のない材料が用いられる。  At least one of the substrate 1 and the substrate 2 is a transparent substrate capable of confirming the color of particles or powder fluid from the outside of the apparatus, and a material having high visible light transmittance and good heat resistance is preferable. The presence or absence of flexibility is appropriately selected depending on the application. For example, it is not flexible for applications such as materials that are flexible for applications such as electronic paper, mobile phones, PDAs, and portable devices such as notebook computers. Material is used.

基板材料を例示すると、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリエチレン、ポリカーボネートなどのポリマーシートや、ガラス、石英などの無機シートが挙げられる。  Examples of the substrate material include polymer sheets such as polyethylene terephthalate, polyethersulfone, polyethylene, and polycarbonate, and inorganic sheets such as glass and quartz.

基板厚みは、2〜5000μm、好ましくは5〜1000μmが好適であり、薄すぎると、強度、基板間の間隔均一性を保ちにくくなり、厚すぎると、表示機能としての鮮明さ、コントラストの低下が発生し、特に、電子ペーパー用途の場合には可とう性に欠ける。  The substrate thickness is suitably 2 to 5000 μm, preferably 5 to 1000 μm. If it is too thin, it will be difficult to maintain strength and spacing uniformity between the substrates, and if it is too thick, the display function will be sharp and the contrast will decrease. Especially in the case of electronic paper applications.

基板に設ける電極の電極形成材料としては、アルミニウム、銀、ニッケル、銅、金等の金属類やITO、酸化インジウム、導電性酸化錫、導電性酸化亜鉛等の導電金属酸化物類、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子類が例示され、適宜選択して用いられる。電極の形成方法としては、上記例示の材料をスパッタリング法、真空蒸着法、CVD(化学蒸着)法、塗布法等で薄膜状に形成する方法や、導電剤を溶媒や合成樹脂バインダーに混合して塗布したりする方法が用いられる。視認側基板に設ける電極は透明である必要があるが、背面側基板に設ける電極は透明である必要がない。いずれの場合もパターン形成可能である導電性である上記材料を好適に用いることができる。  Electrode forming materials for electrodes provided on the substrate include metals such as aluminum, silver, nickel, copper, and gold, conductive metal oxides such as ITO, indium oxide, conductive tin oxide, and conductive zinc oxide, polyaniline, and polypyrrole. Examples thereof include conductive polymers such as polythiophene, which are appropriately selected and used. As a method for forming an electrode, a method of forming the above-described materials into a thin film by sputtering, vacuum deposition, CVD (chemical vapor deposition), coating, or the like, or mixing a conductive agent with a solvent or a synthetic resin binder. The method of apply | coating is used. The electrode provided on the viewing side substrate needs to be transparent, but the electrode provided on the back side substrate does not need to be transparent. In any case, the above-mentioned material that is conductive and capable of pattern formation can be suitably used.

次に、隔壁について説明する。  Next, the partition will be described.

本発明の隔壁の形状は、表示にかかわる粒子のサイズあるいは粉流体のサイズにより適宜最適設定され、一概には限定されないが、隔壁の幅は10〜1000μm、好ましくは10〜500μmに、隔壁の高さは10〜500μm、好ましくは10〜200μmに調整される。  The shape of the partition wall of the present invention is appropriately set appropriately depending on the size of the particles involved in the display or the size of the powder fluid, and is not generally limited, but the partition wall width is 10 to 1000 μm, preferably 10 to 500 μm. The thickness is adjusted to 10 to 500 μm, preferably 10 to 200 μm.

また、隔壁を形成するにあたり、対向する両基板の各々にリブを形成した後に接合する両リブ法と、片側の基板上にのみリブを形成する片リブ法が考えられるが、本発明はどちらにも適用できる。  Further, in forming the partition wall, a both-rib method in which ribs are formed after forming ribs on both opposing substrates and a one-rib method in which ribs are formed only on one substrate can be considered. Is also applicable.

これらリブからなる隔壁により形成される表示セルは、図10に示すごとく、基板平面方向からみて四角状、三角状、ライン状、円形状、六角状が例示され、配置としては格子状やハニカム状や網目状が例示される。表示側から見える隔壁断面部分に相当する部分(表示セルの枠部の面積)はできるだけ小さくした方が良く、画像表示の鮮明さが増す。ここで、隔壁の形成方法を例示すると、スクリーン印刷法、サンドブラスト法、フォトリソ法、アディティブ法が挙げられる。このうち、レジストフィルムを用いるフォトリソ法が好適に用いられる。  As shown in FIG. 10, the display cells formed by the ribs are exemplified by a square shape, a triangular shape, a line shape, a circular shape, and a hexagonal shape as viewed from the plane of the substrate. And a mesh shape. It is better to make the portion corresponding to the cross section of the partition wall visible from the display side (the area of the frame portion of the display cell) as small as possible, and the sharpness of the image display increases. Here, examples of the method for forming the partition include a screen printing method, a sand blast method, a photolithography method, and an additive method. Of these, the photolithography method using a resist film is preferably used.

本発明の画像表示装置は、ノートパソコン、PDA、携帯電話、ハンディターミナル等のモバイル機器の表示部、電子ブック、電子新聞等の電子ペーパー、看板、ポスター、黒板等の掲示板、電卓、家電製品、自動車用品等の表示部、ポイントカード、ICカード等のカード表示部、電子広告、電子POP、電子値札、電子楽譜、RF−ID機器の表示部等に好適に用いられる。  The image display device of the present invention includes a display unit of a mobile device such as a notebook computer, a PDA, a mobile phone, and a handy terminal, an electronic paper such as an electronic book and an electronic newspaper, a signboard, a poster, a bulletin board such as a blackboard, a calculator, a household appliance, It is suitably used for display parts for automobile goods, card display parts such as point cards and IC cards, electronic advertisements, electronic POPs, electronic price tags, electronic musical scores, and display parts for RF-ID devices.

Claims (9)

少なくとも一方が透明な対向する基板間に粒子群を封入し、電位の異なる2種類の電極から粒子群に電界を与えて、粒子を飛翔移動させ画像を表示する画像表示装置における表示駆動方法であって、一方の電極電位を接地電位とし、もう一方の電極に、時間とともに少なくとも増大過程で電圧値が徐々に変化する交番電圧または片極性電圧を印加する方法で電圧を印加して、画像を表示することを特徴とする表示駆動方法。This is a display driving method in an image display device in which a particle group is enclosed between opposing substrates at least one of which is transparent, an electric field is applied to the particle group from two types of electrodes having different potentials, and the particles are moved by flying. One electrode potential is set to the ground potential, and an image is displayed by applying a voltage to the other electrode by applying an alternating voltage or a unipolar voltage whose voltage value gradually changes over time. And a display driving method. 前記交番電圧または片極性電圧が、Sin波の形状で時間とともに少なくとも増大過程で電圧値が徐々に変化する請求項1記載の表示駆動方法。The display driving method according to claim 1, wherein the alternating voltage or the unipolar voltage has a sine wave shape and the voltage value gradually changes at least in the course of increasing with time. 前記交番電圧または片極性電圧が、台形波の形状または階段波の形状で時間とともに少なくとも増大過程で電圧値が徐々に変化する請求項1記載の表示駆動方法。The display driving method according to claim 1, wherein the alternating voltage or the unipolar voltage has a trapezoidal wave shape or a staircase wave shape, and the voltage value gradually changes in at least an increasing process with time. 前記交番電圧または片極性電圧が、三角波の形状またはランプ波の形状で時間とともに少なくとも増大過程で電圧値が徐々に変化する請求項1記載の表示駆動方法。The display driving method according to claim 1, wherein the alternating voltage or the unipolar voltage has a triangular wave shape or a ramp wave shape, and the voltage value gradually changes at least in an increasing process with time. 少なくとも一方が透明な対向する基板間に粉流体を封入し、電位の異なる2種類の電極から粉流体に電界を与えて、粉流体を移動させ画像を表示する画像表示装置における表示駆動方法であって、一方の電極電位を接地電位とし、もう一方の電極に、時間とともに少なくとも増大過程で電圧値が徐々に変化する交番電圧または片極性電圧を印加する方法で電圧を印加して、画像を表示することを特徴とする表示駆動方法。This is a display driving method in an image display device in which a powder fluid is sealed between opposing substrates, at least one of which is transparent, an electric field is applied to the powder fluid from two types of electrodes having different potentials, and the powder fluid is moved to display an image. One electrode potential is set to the ground potential, and an image is displayed by applying a voltage to the other electrode by applying an alternating voltage or a unipolar voltage whose voltage value gradually changes over time. And a display driving method. 前記交番電圧または片極性電圧が、Sin波の形状で時間とともに少なくとも増大過程で電圧値が徐々に変化する請求項5記載の表示駆動方法。6. The display driving method according to claim 5, wherein the voltage value of the alternating voltage or unipolar voltage gradually changes in the form of a sine wave and increases at least with time. 前記交番電圧または片極性電圧が、台形波の形状または階段波の形状で時間とともに少なくとも増大過程で電圧値が徐々に変化する請求項5記載の表示駆動方法。The display driving method according to claim 5, wherein the alternating voltage or the unipolar voltage has a trapezoidal wave shape or a staircase wave shape, and the voltage value gradually changes in at least an increasing process with time. 前記交番電圧または片極性電圧が、三角波の形状またはランプ波の形状で時間とともに少なくとも増大過程で電圧値が徐々に変化する請求項5記載の表示駆動方法。The display driving method according to claim 5, wherein the alternating voltage or the unipolar voltage has a triangular wave shape or a ramp wave shape, and the voltage value gradually changes at least in an increasing process with time. 請求項1〜8のいずれか1項に記載の表示駆動方法に従って画像を表示することを特徴とする画像表示装置。An image display device that displays an image according to the display driving method according to claim 1.
JP2005506493A 2003-05-27 2004-05-27 Display driving method and image display apparatus Withdrawn JPWO2004107031A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003148900 2003-05-27
JP2003148900 2003-05-27
PCT/JP2004/007265 WO2004107031A1 (en) 2003-05-27 2004-05-27 Display drive method and image display unit

Publications (1)

Publication Number Publication Date
JPWO2004107031A1 true JPWO2004107031A1 (en) 2006-07-20

Family

ID=33487134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005506493A Withdrawn JPWO2004107031A1 (en) 2003-05-27 2004-05-27 Display driving method and image display apparatus

Country Status (2)

Country Link
JP (1) JPWO2004107031A1 (en)
WO (1) WO2004107031A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080024482A1 (en) 2002-06-13 2008-01-31 E Ink Corporation Methods for driving electro-optic displays
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
JP4929650B2 (en) * 2005-08-23 2012-05-09 富士ゼロックス株式会社 Image display device and image display method
US10319313B2 (en) 2007-05-21 2019-06-11 E Ink Corporation Methods for driving video electro-optic displays
JP5300519B2 (en) * 2009-02-16 2013-09-25 セイコーエプソン株式会社 Display device, electronic device, and driving method of display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196531B2 (en) * 2000-09-08 2008-12-17 富士ゼロックス株式会社 Driving method of display medium
JP2003091023A (en) * 2001-09-19 2003-03-28 Bridgestone Corp Electrostatic image display device

Also Published As

Publication number Publication date
WO2004107031A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP5097807B2 (en) Manufacturing method of image display device
WO2004059379A1 (en) Image display
JP4565864B2 (en) Manufacturing method of image display panel
JP2005321769A (en) Information display panel
JPWO2004107031A1 (en) Display driving method and image display apparatus
JP5129919B2 (en) Driving method of image display device
JP2005241779A (en) Particle, powder and granular material, used for picture display device, and picture display device using them
JP4679511B2 (en) Information display panel
JP4925608B2 (en) Information display panel and information display device
JP2006113267A (en) Particles for display medium to be used for information display panel
JP4758231B2 (en) Information display device
JP4651992B2 (en) Electronic book display device
JPWO2005076064A1 (en) Information display device
JP4484446B2 (en) Image display device
JP4587682B2 (en) Manufacturing method of image display panel
JP4737921B2 (en) Preprocessing method for image display device
JP4484589B2 (en) Method for producing particles for image display medium
JP4566624B2 (en) Method for producing particles for image display medium
JP4597569B2 (en) Image display panel and image display apparatus using the same
JP4763985B2 (en) Image display device
JP5134775B2 (en) Particles for display media and information display panels
JP4863762B2 (en) Particles for display media and information display panels
JP2006023541A (en) Panel for image display, and method for manufacturing the same
JP2005091442A (en) Image display device and its manufacturing method
JP2005352145A (en) Method of manufacturing image display panel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060626

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807