JP4566624B2 - Method for producing particles for image display medium - Google Patents

Method for producing particles for image display medium Download PDF

Info

Publication number
JP4566624B2
JP4566624B2 JP2004165605A JP2004165605A JP4566624B2 JP 4566624 B2 JP4566624 B2 JP 4566624B2 JP 2004165605 A JP2004165605 A JP 2004165605A JP 2004165605 A JP2004165605 A JP 2004165605A JP 4566624 B2 JP4566624 B2 JP 4566624B2
Authority
JP
Japan
Prior art keywords
image display
particles
display medium
resin
yellow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004165605A
Other languages
Japanese (ja)
Other versions
JP2005345778A (en
Inventor
英敏 平岡
逸夫 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004165605A priority Critical patent/JP4566624B2/en
Publication of JP2005345778A publication Critical patent/JP2005345778A/en
Application granted granted Critical
Publication of JP4566624B2 publication Critical patent/JP4566624B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、少なくとも一方が透明な対向する基板間に画像表示媒体を封入し、画像表示媒体に電界を与えて、画像表示媒体を移動させて画像を表示する画像表示装置に用いる画像表示媒体を構成する画像表示媒体用粒子の製造方法に関するものである。   The present invention relates to an image display medium used in an image display apparatus that encloses an image display medium between opposing substrates at least one of which is transparent, applies an electric field to the image display medium, and moves the image display medium to display an image. The present invention relates to a method for producing a constituent particle for an image display medium.

従来より、液晶(LCD)に代わる画像表示装置として、電気泳動方式、エレクトロクロミック方式、サーマル方式、2色粒子回転方式等の技術を用いた画像表示装置が提案されている。   2. Description of the Related Art Conventionally, image display devices using techniques such as an electrophoresis method, an electrochromic method, a thermal method, and a two-color particle rotation method have been proposed as image display devices that can replace liquid crystal (LCD).

これら従来技術は、LCDと比較すると、通常の印刷物に近い広い視野角が得られる、消費電力が小さい、メモリー機能を有している等のメリットがあることから、次世代の安価な画像表示装置に使用可能な技術として考えられており、携帯端末用画像表示、電子ペーパー等への展開が期待されている。特に最近では、分散粒子と着色溶液から成る分散液をマイクロカプセル化し、これを対向する基板間に配置して成る電気泳動方式が提案され、期待が寄せられている。   Compared to LCDs, these conventional technologies have advantages such as a wide viewing angle close to that of ordinary printed materials, low power consumption, and a memory function. It is considered as a technology that can be used for mobile phones, and is expected to expand to image display for mobile terminals, electronic paper, and the like. Particularly recently, an electrophoretic method in which a dispersion liquid composed of dispersed particles and a colored solution is encapsulated and disposed between opposing substrates has been proposed and is expected.

しかしながら、電気泳動方式では、液中を粒子が泳動するために液の粘性抵抗により応答速度が遅くなるという問題がある。さらに、低比重の溶液中に酸化チタン等の高比重の粒子を分散させているため沈降しやすくなっており、分散状態の安定性維持が難しく、画像繰り返し安定性に欠けるという問題を抱えている。また、マイクロカプセル化にしても、セルサイズをマイクロカプセルレベルにして、見かけ上、上述した欠点が現れにくくしているだけであって、本質的な問題は何ら解決されていない。   However, the electrophoresis method has a problem that the response speed becomes slow due to the viscous resistance of the liquid because the particles migrate in the liquid. Furthermore, since particles with high specific gravity such as titanium oxide are dispersed in a solution with low specific gravity, it is easy to settle, and it is difficult to maintain the stability of the dispersed state, and there is a problem of lack of image repetition stability. . Even when microencapsulation is performed, the cell size is set to the microcapsule level, and the above-described drawbacks are hardly made to appear, and the essential problems are not solved at all.

一方、溶液中での挙動を利用する電気泳動方式に対し、溶液を使わず、導電性粒子と電荷輸送層とを基板の一部に組み入れる方式も提案され始めている(例えば、非特許文献1参照)。しかし、電荷輸送層、さらには電荷発生層を配置するために構造が複雑化するとともに、導電性粒子に電荷を一定に注入することは難しいため、安定性に欠けるという問題もある。   On the other hand, a method in which conductive particles and a charge transport layer are incorporated into a part of a substrate without using a solution is proposed instead of an electrophoresis method using behavior in a solution (see, for example, Non-Patent Document 1). ). However, the structure is complicated because the charge transport layer and further the charge generation layer are arranged, and it is difficult to inject the charges into the conductive particles.

上述した種々の問題を解決するための一方法として、少なくとも一方が透明な対向する基板間に画像表示媒体を封入し、画像表示媒体に電界を与えて、画像表示媒体を移動させた画像を表示する画像表示装置が知られている。
趙 国来、外3名、“新しいトナーディスプレイデバイス(I)”、1999年7月21日、日本画像学会年次大会(通算83回)“Japan Hardcopy’99”論文集、p.249-252
As a method for solving the various problems described above, an image display medium is sealed between opposing substrates, at least one of which is transparent, and an electric field is applied to the image display medium to display an image obtained by moving the image display medium. An image display device is known.
趙 Kuniori and three others, “New Toner Display Device (I)”, July 21, 1999, Annual Meeting of the Imaging Society of Japan (83 times in total) “Japan Hardcopy'99” Proceedings, p.249-252

上述した画像表示装置に用いる画像表示媒体としては、例えばスチレンアクリル、スチレンブタジエン等の熱可塑性樹脂を用いた粒子からなる粒子群またはその粒子を利用した粉流体を使用している。これらの画像表示媒体では、得られた画像表示媒体をそのまま画像表示装置で使用した場合、耐熱信頼性や長期反転時の経時変化などに問題があった。   As the image display medium used in the above-described image display device, for example, a particle group composed of particles using a thermoplastic resin such as styrene acrylic or styrene butadiene or a powder fluid using the particles is used. In these image display media, when the obtained image display media is used in an image display device as it is, there are problems in heat resistance reliability, change with time during long-time inversion, and the like.

本発明の目的は上述した問題点を解消して、高い耐熱性及び強度を粒子に与えることができ、良好な耐熱信頼性や長期反転時の良好な経時変化を得ることのできる画像表示媒体用粒子の製造方法を提供しようとするものである。   An object of the present invention is for an image display medium that can solve the above-mentioned problems, can give high heat resistance and strength to particles, and can obtain good heat reliability and good temporal change at the time of long-term inversion. An object is to provide a method for producing particles.

本発明の画像表示媒体用粒子の製造方法は、少なくとも一方が透明な対向する基板間に画像表示媒体を封入し、画像表示媒体に電界を与えて、画像表示媒体を移動させて画像を表示する画像表示装置に用いる画像表示媒体用粒子の製造方法において、未硬化の粒子に対して電子線照射を行い、後架橋させて画像表示媒体用粒子とすることを特徴とするものである。 In the method for producing particles for an image display medium of the present invention, an image display medium is sealed between opposing substrates at least one of which is transparent, an electric field is applied to the image display medium, and the image display medium is moved to display an image. In the method for producing particles for an image display medium used in an image display device, the uncured particles are irradiated with an electron beam and post-crosslinked to obtain particles for an image display medium .

また、本発明の画像表示媒体用粒子の製造方法の好適例としては、画像表示媒体が粒子群であること、及び、画像表示媒体が粉流体であること、がある。   Moreover, as a suitable example of the manufacturing method of the particle | grains for image display media of this invention, there exist that an image display medium is a particle group and an image display medium is a powder fluid.

本発明によれば、画像表示媒体用粒子を電子線(EB)により後架橋させることで、画像表示媒体用粒子に耐熱性、強度を持たせることができる。また、画像表示媒体用粒子として、表面に微小粒子が付着した複合粒子を電子線架橋する場合は、付着した微小粒子をさらに強固に母体粒子に固定することができる。画像表示媒体用粒子を電子線架橋することにより、繰り返し反転表示を行っても、画像表示媒体用粒子に添加された外添剤が画像表示媒体用粒子に埋め込まれたり、移行したりするのを防ぐことができる。更に、予め粒子に架橋剤を含ませておくことで、より架橋率を高めることもできる。   According to the present invention, the image display medium particles can be given heat resistance and strength by post-crosslinking the image display medium particles with an electron beam (EB). Further, when the composite particles having fine particles attached to the surface are subjected to electron beam crosslinking as the particles for the image display medium, the attached fine particles can be more firmly fixed to the base particles. By cross-linking the image display medium particles with an electron beam, the external additive added to the image display medium particles can be embedded in or transferred to the image display medium particles even when reversal display is performed repeatedly. Can be prevented. Furthermore, the crosslinking rate can be further increased by adding a crosslinking agent to the particles in advance.

まず、本発明の粒子を画像表示媒体(粒子群または粉流体)を構成する粒子として利用する画像表示装置が備える画像表示用パネルの基本的な構成について説明する。本発明で用いる画像表示用パネルでは、対向する2枚の基板間に封入した画像表示媒体に電界が付与される。付与された電界方向にそって、高電位側に向かっては低電位に帯電した画像表示媒体が電界による力やクーロン力などによって引き寄せられ、また、低電位側に向かっては高電位に帯電した画像表示媒体が電界による力やクーロン力などによって引き寄せられ、それら画像表示媒体が電位の切替による電界方向の変化によって往復運動することにより、画像表示がなされる。従って、画像表示媒体が、均一に移動し、かつ、繰り返し時あるいは保存時の安定性を維持できるように、画像表示用パネルを設計する必要がある。ここで、画像表示媒体を構成する粒子にかかる力は、粒子同士のクーロン力により引き付けあう力の他に、電極や基板との電気影像力、分子間力、液架橋力、重力などが考えられる。   First, a basic configuration of an image display panel provided in an image display device that uses the particles of the present invention as particles constituting an image display medium (particle group or powder fluid) will be described. In the image display panel used in the present invention, an electric field is applied to an image display medium sealed between two opposing substrates. Along with the applied electric field direction, the image display medium charged at a low potential toward the high potential side is attracted by the force of the electric field or the Coulomb force, and is charged at a high potential toward the low potential side. The image display medium is attracted by an electric field force, a Coulomb force, or the like, and the image display medium is reciprocated by a change in the electric field direction due to the potential switching, thereby displaying an image. Therefore, it is necessary to design the image display panel so that the image display medium moves uniformly and can maintain stability during repetition or storage. Here, as the force applied to the particles constituting the image display medium, in addition to the force attracted by the Coulomb force between the particles, the electric image force with the electrode and the substrate, the intermolecular force, the liquid cross-linking force, gravity and the like can be considered. .

本発明の製造方法の対象となる粒子を使用する画像表示装置で用いる画像表示用パネルの例を、図1(a)、(b)〜図3(a)、(b)に基づき説明する。
図1(a)、(b)に示す例では、2種以上の色と帯電特性の異なる画像表示媒体3(ここでは白色粒子3Wと黒色粒子3Bを示す)を、基板1、2の外部から加えられる電界に応じて、基板1、2と垂直に移動させ、黒色粒子3Bを観察者に視認させて黒色の表示を行うか、あるいは、白色粒子3Wを観察者に視認させて白色の表示を行っている。なお、図1(b)に示す例では、図1(a)に示す例に加えて、基板1、2との間に例えば格子状に隔壁4を設け表示セルを画成している。
図2(a)、(b)に示す例では、2種以上の色と帯電特性の異なる画像表示媒体3(ここでは白色粒子3Wと黒色粒子3Bを示す)を、基板1に設けた電極5と基板2に設けた電極6との間に電圧を印加することにより発生する電界に応じて、基板1、2と垂直に移動させ、黒色粒子3Bを観察者に視認させて黒色の表示を行うか、あるいは、白色粒子3Wを観察者に視認させて白色の表示を行っている。なお、図2(b)に示す例では、図2(a)に示す例に加えて、基板1、2との間に例えば格子状に隔壁4を設け表示セルを画成している。
図3(a)、(b)に示す例では、1種の色の帯電性をもつ画像表示媒体3(ここでは白色粒子3W)を、基板1上に設けた電極5と電極6との間に電圧を印加させることにより発生する電界に応じて、基板1、2と平行方向に移動させ、白色粒子3Wを観察者に視認させて白色表示を行うか、あるいは、電極6または基板1の色を観察者に視認させて電極6または基板1の色の表示を行っている。なお、図3(b)に示す例では、図3(a)に示す例に加えて、基板1、2との間に例えば格子状に隔壁4を設け表示セルを画成している。
以上の説明は、白色粒子3Wを白色粉流体に、黒色粒子3Bを黒色粉流体に、それぞれ置き換えた場合も同様に適用することが出来る。
An example of an image display panel used in an image display device that uses particles that are targets of the production method of the present invention will be described with reference to FIGS. 1 (a), (b) to 3 (a), (b).
In the example shown in FIGS. 1A and 1B, an image display medium 3 having two or more colors and different charging characteristics (here, white particles 3W and black particles 3B are shown) from the outside of the substrates 1 and 2 is used. Depending on the applied electric field, the substrate is moved perpendicularly to the substrates 1 and 2 and the black particles 3B are visually recognized by the observer to display black, or the white particles 3W are visually recognized by the observer to display white. Is going. In the example shown in FIG. 1B, in addition to the example shown in FIG. 1A, partition walls 4 are provided, for example, in a lattice shape between the substrates 1 and 2 to define display cells.
In the example shown in FIGS. 2A and 2B, an electrode 5 in which an image display medium 3 (here, white particles 3 W and black particles 3 B are shown) having two or more colors and different charging characteristics is provided on the substrate 1. And the electrode 6 provided on the substrate 2 are moved perpendicularly to the substrates 1 and 2 in accordance with an electric field generated by applying a voltage, and the black particles 3B are visually recognized by the observer to display black. Alternatively, white display is performed by making the observer visually recognize the white particles 3W. In the example shown in FIG. 2B, in addition to the example shown in FIG. 2A, partition walls 4 are provided, for example, in a lattice form between the substrates 1 and 2 to define display cells.
In the example shown in FIGS. 3A and 3B, an image display medium 3 (in this case, white particles 3W) having one type of chargeability is placed between the electrode 5 and the electrode 6 provided on the substrate 1. In accordance with the electric field generated by applying a voltage to the substrate 1, it is moved in a direction parallel to the substrates 1 and 2, and the white particles 3W are visually recognized by the observer, or the color of the electrode 6 or the substrate 1 is displayed. The color of the electrode 6 or the substrate 1 is displayed by the observer. In the example shown in FIG. 3B, in addition to the example shown in FIG. 3A, a partition 4 is provided between the substrates 1 and 2 to form a display cell, for example.
The above description can be similarly applied to the case where the white particles 3W are replaced with the white powder fluid and the black particles 3B are replaced with the black powder fluid.

次に、本発明の製造方法で得られる画像表示媒体用粒子について説明する。
図4は本発明の画像表示媒体用粒子の製造方法の一例を説明するための図である。図4に示す例では、画像表示媒体を構成する粒子として、本発明の製造方法により得た画像表示媒体用粒子を用いている。図4に示す例においては、まず、未硬化の粒子11を準備する。その後、準備した未硬化の粒子11に対して電子線照射(EB照射)を行い、粒子11を後架橋させることで、本発明の画像表示媒体用粒子を得ている。本例では、電子線照射により後架橋を行うことにより、粒子11を構成する樹脂において、鎖を切って、ラジカルを発生させ、再結合することで、粒子そのものに耐熱性、強靱性を付与することができ、信頼性の高い粒子を得ることができる。
Next, the particle | grains for image display media obtained by the manufacturing method of this invention are demonstrated.
FIG. 4 is a diagram for explaining an example of a method for producing particles for an image display medium according to the present invention. In the example shown in FIG. 4, the particles for the image display medium obtained by the production method of the present invention are used as the particles constituting the image display medium. In the example shown in FIG. 4, first , uncured particles 11 are prepared. Thereafter, the prepared uncured particles 11 are irradiated with an electron beam (EB irradiation), and the particles 11 are post-crosslinked to obtain particles for an image display medium of the present invention. In this example, post-crosslinking is performed by electron beam irradiation, whereby in the resin constituting the particles 11, the chain is broken, radicals are generated, and recombination is performed, thereby imparting heat resistance and toughness to the particles themselves. And reliable particles can be obtained.

図5は本発明の画像表示媒体用粒子の製造方法の他の例を説明するための図である。図に示す例では、画像表示媒体を構成する粒子として、本発明の製造方法により得た画像表示媒体用粒子を用いている。図5に示す例においては、まず、未硬化の粒子11の外周に微小粒子12を接着した複合粒子13を準備する。その後、準備した複合粒子13に対して電子線照射を行い、粒子11を後架橋させるとともに微小粒子12を粒子11に強固に固着させることで、本発明の画像表示媒体用粒子を得ている。本例では、電子線照射により後架橋を行うことにより、図4に示した例と同様に、粒子11そのものに耐熱性、強靱性を付与することができ、信頼性の高い画像表示媒体用粒子を得ることができる。それに加えて、図6に従来の電子線照射を行わなかった画像表示媒体用粒子の場合を示すように、繰り返し反転表示を行う際に、他の画像表示媒体用粒子や基板との衝突により、微小粒子12の埋め込みや微小粒子12の移行などの繰り返し反転による劣化を防ぐことができる。 FIG. 5 is a diagram for explaining another example of the method for producing particles for an image display medium of the present invention. In the example shown in FIG. 5 , the particles for the image display medium obtained by the production method of the present invention are used as the particles constituting the image display medium. In the example shown in FIG. 5, first , composite particles 13 in which fine particles 12 are bonded to the outer periphery of uncured particles 11 are prepared. Thereafter, the prepared composite particles 13 are irradiated with an electron beam, the particles 11 are post-crosslinked, and the fine particles 12 are firmly fixed to the particles 11 to obtain the particles for an image display medium of the present invention. In this example, post-crosslinking by electron beam irradiation can impart heat resistance and toughness to the particles 11 themselves as in the example shown in FIG. Can be obtained. In addition, as shown in FIG. 6 in the case of particles for image display media that have not been subjected to conventional electron beam irradiation, when performing reversal display repeatedly, due to collision with other particles for image display media and the substrate, Deterioration due to repeated inversion such as embedding of the fine particles 12 and migration of the fine particles 12 can be prevented.

本発明の画像表示媒体用粒子の製造方法において、画像表示媒体用粒子に電子照射を行う装置としては市販のものを使用することができ特に限定しないが、例えば、岩崎電機製EB照射装置(加速電圧:150〜250kV、電子照射幅:15cm、最大照射能力:180Mrad・m/min)を使用することができる。また、電子線照射の条件についても特に限定するものではなく照射する材料によるが、線量率50〜2000kGy/secが好ましく、線量率50〜500kGy/secがより好ましい。線量率が50kGy/secより低いと粒子を硬化させることができないという不都合があり、線量率が2000kGy/secより高いと粒子が溶融したり、分子崩壊したりするという不都合がある。   In the method for producing particles for an image display medium of the present invention, a commercially available apparatus can be used as an apparatus for irradiating the particles for an image display medium with electrons. For example, an EB irradiation apparatus (acceleration made by Iwasaki Electric Co., Ltd.) Voltage: 150 to 250 kV, electron irradiation width: 15 cm, maximum irradiation capacity: 180 Mrad · m / min) can be used. Also, the electron beam irradiation conditions are not particularly limited, and depending on the irradiated material, a dose rate of 50 to 2000 kGy / sec is preferable, and a dose rate of 50 to 500 kGy / sec is more preferable. If the dose rate is lower than 50 kGy / sec, there is an inconvenience that the particles cannot be cured, and if the dose rate is higher than 2000 kGy / sec, there is an inconvenience that the particles are melted or molecularly collapsed.

また、粒子11を構成する樹脂としては、後述する樹脂のいずれをも使用することができるが、電子線照射の効果を好適に得ることができる樹脂としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリアクリレート、ポリビニルクロライド、ポリ酢酸ビニル、ポリジメチルシロキサン、天然ゴム、ポリアミド、ポリビニルアルコールなどが挙げられる。また、架橋しにくい樹脂には、TAIC等のアリル系、TMPTA等のアクリレート系、TMPTMA等のメタクリレート系の架橋性モノマーを入れることもできる。   Moreover, as resin which comprises the particle | grains 11, although all of the resin mentioned later can be used, as resin which can acquire the effect of electron beam irradiation suitably, polystyrene, polyethylene, a polypropylene, polyacrylate, Examples include polyvinyl chloride, polyvinyl acetate, polydimethylsiloxane, natural rubber, polyamide, and polyvinyl alcohol. In addition, an allyl resin such as TAIC, an acrylate resin such as TMPTA, and a methacrylate monomer such as TMPTMA can be added to the resin that is difficult to crosslink.

以下、本発明の製造方法で求めた画像表示媒体用粒子を用いる画像表示装置を構成する各部材について説明する。   Hereinafter, each member which comprises the image display apparatus using the particle | grains for image display media calculated | required with the manufacturing method of this invention is demonstrated.

基板については、少なくとも一方の基板は装置外側から画像表示媒体の色が確認できる透明な基板2であり、可視光の透過率が高くかつ耐熱性の良い材料が好適である。基板1は透明でも不透明でもかまわない。基板材料を例示すると、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリエチレン、ポリカーボネート、ポリイミド、アクリルなどのポリマーシートや、金属シートのように可とう性のあるもの、および、ガラス、石英などの可とう性のない無機シートが挙げられる。基板の厚みは、2〜5000μmが好ましく、さらに5〜2000μmが好適であり、薄すぎると、強度、基板間の間隔均一性を保ちにくくなり、5000μmより厚いと、薄型画像表示装置とする場合に不都合がある。   As for the substrate, at least one of the substrates is a transparent substrate 2 on which the color of the image display medium can be confirmed from the outside of the apparatus, and a material having high visible light transmittance and good heat resistance is preferable. The substrate 1 may be transparent or opaque. Examples of substrate materials include polymer sheets such as polyethylene terephthalate, polyethersulfone, polyethylene, polycarbonate, polyimide, and acrylic, flexible materials such as metal sheets, and flexible materials such as glass and quartz. There are no inorganic sheets. The thickness of the substrate is preferably from 2 to 5000 μm, more preferably from 5 to 2000 μm. If it is too thin, it will be difficult to maintain the strength and the uniform spacing between the substrates, and if it is thicker than 5000 μm, a thin image display device will be obtained. There is an inconvenience.

必要に応じて設ける電極の電極形成材料としては、アルミニウム、銀、ニッケル、銅、金等の金属類やITO、酸化インジウム、導電性酸化錫、導電性酸化亜鉛等の導電金属酸化物類、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子類が例示され、適宜選択して用いられる。電極の形成方法としては、上記例示の材料をスパッタリング法、真空蒸着法、CVD(化学蒸着)法、塗布法等で薄膜状に形成する方法や、導電剤を溶媒や合成樹脂バインダーに混合して塗布したりする方法が用いられる。視認側基板に設ける電極は透明である必要があるが、背面側基板に設ける電極は透明である必要がない。いずれの場合もパターン形成可能である導電性である上記材料を好適に用いることができる。なお、電極厚みは、導電性が確保でき光透過性に支障がなければ良く、3〜1000nm、好ましくは5〜400nmが好適である。背面側基板に設ける電極の材質や厚みなどは上述した視野側基板に設ける電極と同様であるが、透明である必要はない。なお、この場合の外部電圧入力は、直流あるいは交流を重畳しても良い。   Electrode forming materials for electrodes provided as necessary include metals such as aluminum, silver, nickel, copper, and gold, conductive metal oxides such as ITO, indium oxide, conductive tin oxide, and conductive zinc oxide, polyaniline , Conductive polymers such as polypyrrole and polythiophene are exemplified, and are appropriately selected and used. As a method for forming an electrode, a method of forming the above-described materials into a thin film by sputtering, vacuum deposition, CVD (chemical vapor deposition), coating, or the like, or mixing a conductive agent with a solvent or a synthetic resin binder. The method of apply | coating is used. The electrode provided on the viewing side substrate needs to be transparent, but the electrode provided on the back side substrate does not need to be transparent. In any case, the above-mentioned material that is conductive and capable of pattern formation can be suitably used. Note that the electrode thickness is not particularly limited as long as the conductivity can be secured and the light transmittance is not hindered, and is preferably 3 to 1000 nm, preferably 5 to 400 nm. The material and thickness of the electrode provided on the back side substrate are the same as those of the electrode provided on the view side substrate described above, but need not be transparent. In this case, the external voltage input may be superimposed with direct current or alternating current.

必要に応じて設ける隔壁4については、その形状は表示にかかわる画像表示媒体の種類により適宜最適設定され、一概には限定されないが、隔壁の幅は2〜100μm、好ましくは3〜50μmに、隔壁の高さは10〜500μm、好ましくは10〜200μmに調整される。また、隔壁を形成するにあたり、対向する両基板の各々にリブを形成した後に接合する両リブ法、片側の基板上にのみリブを形成する片リブ法が考えられる。本発明では、いずれの方法も好適に用いられる。   The shape of the partition 4 provided as necessary is optimally set according to the type of image display medium involved in the display, and is not limited in general. However, the width of the partition is 2 to 100 μm, preferably 3 to 50 μm. Is adjusted to 10 to 500 μm, preferably 10 to 200 μm. In forming the partition walls, a both-rib method in which ribs are formed on each of the opposing substrates and then bonded, and a one-rib method in which ribs are formed only on one substrate are conceivable. In the present invention, any method is preferably used.

これらのリブからなる隔壁により形成される表示セルは、図7に示すごとく、基板平面方向からみて四角状、三角状、ライン状、円形状、六角状が例示され、配置としては格子状やハニカム状や網目状が例示される。表示側から見える隔壁断面部分に相当する部分(表示セルの枠部の面積)はできるだけ小さくした方が良く、画像表示の鮮明さが増す。ここで、隔壁の形成方法を例示すると、スクリーン印刷法、サンドブラスト法、フォトリソ法、アディティブ法が挙げられる。このうち、レジストフィルムを用いるフォトリソ法が好適に用いられる。   As shown in FIG. 7, the display cells formed by the partition walls made of these ribs are exemplified by a square shape, a triangular shape, a line shape, a circular shape, and a hexagonal shape as viewed from the substrate plane direction. The shape and the mesh shape are exemplified. It is better to make the portion corresponding to the cross section of the partition wall visible from the display side (the area of the frame portion of the display cell) as small as possible, and the sharpness of the image display increases. Here, examples of the method for forming the partition include a screen printing method, a sand blasting method, a photolithography method, and an additive method. Of these, the photolithography method using a resist film is preferably used.

次に、本発明の画像表示媒体用粒子を構成する粒子11について説明する。粒子11は、その主成分となる樹脂に、必要に応じて、従来と同様に、荷電制御剤、着色剤、無機添加剤等を含ますことができる。以下に、樹脂、荷電制御剤、着色剤、その他添加剤を例示する。   Next, the particles 11 constituting the image display medium particles of the present invention will be described. The particles 11 can contain a charge control agent, a colorant, an inorganic additive, and the like, if necessary, in the resin as the main component, as in the conventional case. Examples of resins, charge control agents, colorants, and other additives will be given below.

樹脂の例としては、ウレタン樹脂、ウレア樹脂、アクリル樹脂、ポリエステル樹脂、アクリルウレタン樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、アクリルフッ素樹脂、シリコーン樹脂、アクリルシリコーン樹脂、エポキシ樹脂、ポリスチレン樹脂、スチレンアクリル樹脂、ポリオレフィン樹脂、ブチラール樹脂、塩化ビニリデン樹脂、メラミン樹脂、フェノール樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリスルフォン樹脂、ポリエーテル樹脂、ポリアミド樹脂等が挙げられ、2種以上混合することもできる。特に、基板との付着力を制御する観点から、アクリルウレタン樹脂、アクリルシリコーン樹脂、アクリルフッ素樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、フッ素樹脂、シリコーン樹脂が好適である。   Examples of the resin include urethane resin, urea resin, acrylic resin, polyester resin, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluororesin, acrylic fluororesin, silicone resin, acrylic silicone resin, epoxy resin, polystyrene resin, styrene Acrylic resin, polyolefin resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, fluororesin, polycarbonate resin, polysulfone resin, polyether resin, polyamide resin and the like can be mentioned, and two or more kinds can be mixed. In particular, acrylic urethane resin, acrylic silicone resin, acrylic fluororesin, acrylic urethane silicone resin, acrylic urethane fluororesin, fluororesin, and silicone resin are suitable from the viewpoint of controlling the adhesive force with the substrate.

荷電制御剤としては、特に制限はないが、負荷電制御剤としては例えば、サリチル酸金属錯体、含金属アゾ染料、含金属(金属イオンや金属原子を含む)の油溶性染料、4級アンモニウム塩系化合物、カリックスアレン化合物、含ホウ素化合物(ベンジル酸ホウ素錯体)、ニトロイミダゾール誘導体等が挙げられる。正荷電制御剤としては例えば、ニグロシン染料、トリフェニルメタン系化合物、4級アンモニウム塩系化合物、ポリアミン樹脂、イミダゾール誘導体等が挙げられる。その他、超微粒子シリカ、超微粒子酸化チタン、超微粒子アルミナ等の金属酸化物、ピリジン等の含窒素環状化合物及びその誘導体や塩、各種有機顔料、フッ素、塩素、窒素等を含んだ樹脂等も荷電制御剤として用いることもできる。   The charge control agent is not particularly limited. Examples of the negative charge control agent include salicylic acid metal complexes, metal-containing azo dyes, metal-containing oil-soluble dyes (including metal ions and metal atoms), and quaternary ammonium salt systems. Examples thereof include compounds, calixarene compounds, boron-containing compounds (benzyl acid boron complexes), and nitroimidazole derivatives. Examples of the positive charge control agent include nigrosine dyes, triphenylmethane compounds, quaternary ammonium salt compounds, polyamine resins, imidazole derivatives, and the like. In addition, metal oxides such as ultrafine silica, ultrafine titanium oxide, ultrafine alumina, nitrogen-containing cyclic compounds such as pyridine and derivatives and salts thereof, various organic pigments, resins containing fluorine, chlorine, nitrogen, etc. are also charged. It can also be used as a control agent.

着色剤としては、以下に例示するような、有機または無機の各種、各色の顔料、染料が使用可能である。   As the colorant, various organic or inorganic pigments and dyes as exemplified below can be used.

黒色着色剤としては、カーボンブラック、酸化銅、二酸化マンガン、アニリンブラック、活性炭等がある。
青色着色剤としては、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファーストスカイブルー、インダスレンブルーBC等がある。
赤色着色剤としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パーマネントレッド4R、リソールレッド、ピラゾロンレッド、ウォッチングレッド、カルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミン3B、C.I.ピグメントレッド2等がある。
Examples of the black colorant include carbon black, copper oxide, manganese dioxide, aniline black, activated carbon and the like.
Examples of blue colorants include C.I. I. Pigment blue 15: 3, C.I. I. Pigment Blue 15, Bituminous Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-free Phthalocyanine Blue, Phthalocyanine Blue Partial Chlorides, Fast Sky Blue, Indanthrene Blue BC and the like.
Examples of red colorants include bengara, cadmium red, red lead, mercury sulfide, cadmium, permanent red 4R, risor red, pyrazolone red, watching red, calcium salt, lake red D, brilliant carmine 6B, eosin lake, rhodamine lake B, Alizarin Lake, Brilliant Carmine 3B, C.I. I. Pigment Red 2 etc.

黄色着色剤としては、黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、ミネラルファーストイエロー、ニッケルチタンイエロー、ネーブルイエロー、ナフトールイエローS、ハンザイエローG、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、キノリンイエローレーキ、パーマネントイエローNCG、タートラジンレーキ、C.I.ピグメントイエロー12等がある。
緑色着色剤としては、クロムグリーン、酸化クロム、ピグメントグリーンB、C.I.ピグメントグリーン7、マラカイトグリーンレーキ、ファイナルイエローグリーンG等がある。
橙色着色剤としては、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、インダスレンブリリアントオレンジRK、ベンジジンオレンジG、インダスレンブリリアントオレンジGK、C.I.ピグメントオレンジ31等がある。
紫色着色剤としては、マンガン紫、ファーストバイオレットB、メチルバイオレットレーキ等がある。
白色着色剤としては、亜鉛華、酸化チタン、アンチモン白、硫化亜鉛等がある。
Yellow colorants include chrome yellow, zinc yellow, cadmium yellow, yellow iron oxide, mineral first yellow, nickel titanium yellow, navel yellow, naphthol yellow S, Hansa Yellow G, Hansa Yellow 10G, Benzidine Yellow G, Benzidine Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake, C.I. I. Pigment Yellow 12 etc.
Examples of green colorants include chrome green, chromium oxide, pigment green B, C.I. I. Pigment Green 7, Malachite Green Lake, Final Yellow Green G, etc.
Examples of the orange colorant include red chrome yellow, molybdenum orange, permanent orange GTR, pyrazolone orange, Vulcan orange, indanthrene brilliant orange RK, benzidine orange G, indanthrene brilliant orange GK, C.I. I. Pigment Orange 31 etc.
Examples of purple colorants include manganese purple, first violet B, and methyl violet lake.
Examples of white colorants include zinc white, titanium oxide, antimony white, and zinc sulfide.

体質顔料としては、バライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タルク、アルミナホワイト等がある。また、塩基性、酸性、分散、直接染料等の各種染料として、ニグロシン、メチレンブルー、ローズベンガル、キノリンイエロー、ウルトラマリンブルー等がある。   Examples of extender pigments include barite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white. Examples of various dyes such as basic, acidic, disperse, and direct dyes include nigrosine, methylene blue, rose bengal, quinoline yellow, and ultramarine blue.

無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭酸カルシウム、鉛白、タルク、シリカ、ケイ酸カルシウム、アルミナホワイト、カドミウムイエロー、カドミウムレッド、カドミウムオレンジ、チタンイエロー、紺青、群青、コバルトブルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフェライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。
これらの顔料および無機系添加剤は、単独であるいは複数組み合わせて用いることができる。このうち特に黒色顔料としてカーボンブラックが、白色顔料として酸化チタンが好ましい。
Examples of inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, cadmium orange, titanium yellow, Examples include bitumen, ultramarine blue, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, and aluminum powder.
These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferable as the black pigment, and titanium oxide is preferable as the white pigment.

また、本発明の画像表示媒体を構成する粒子は平均粒子径d(0.5)が、0.1〜50μmの範囲であり、均一で揃っていることが好ましい。平均粒子径d(0.5)がこの範囲より大きいと表示上の鮮明さに欠け、この範囲より小さいと粒子同士の凝集力が大きくなりすぎるために粒子の移動に支障をきたすようになる。   The particles constituting the image display medium of the present invention preferably have an average particle diameter d (0.5) in the range of 0.1 to 50 μm and are uniform and uniform. If the average particle diameter d (0.5) is larger than this range, the display is not clear, and if it is smaller than this range, the cohesive force between the particles becomes too large, which hinders the movement of the particles.

更に本発明では、各粒子の粒子径分布に関して、下記式に示される粒子径分布Spanを5未満、好ましくは3未満とする。
Span=(d(0.9)−d(0.1))/d(0.5)
(但し、d(0.5)は粒子の50%がこれより大きく、50%がこれより小さいという粒子径をμmで表した数値、d(0.1)はこれ以下の粒子の比率が10%である粒子径をμmで表した数値、d(0.9)はこれ以下の粒子が90%である粒子径をμmで表した数値である。)
Spanを5以下の範囲に納めることにより、各粒子のサイズが揃い、均一な粒子移動が可能となる。
Furthermore, in the present invention, regarding the particle size distribution of each particle, the particle size distribution Span represented by the following formula is less than 5, preferably less than 3.
Span = (d (0.9) −d (0.1)) / d (0.5)
(However, d (0.5) is a numerical value expressing the particle diameter in μm that 50% of the particles are larger than this and 50% is smaller than this, and d (0.1) is a particle in which the ratio of the smaller particles is 10%. (Numerical value expressed in μm, and d (0.9) is a numerical value expressed in μm for a particle diameter of 90% or less.)
By keeping Span within a range of 5 or less, the size of each particle is uniform, and uniform particle movement becomes possible.

さらにまた、各粒子の相関について、使用した粒子の内、最大径を有する粒子のd(0.5)に対する最小径を有する粒子のd(0.5)の比を50以下、好ましくは10以下とすることが肝要である。   Furthermore, regarding the correlation between the particles, the ratio of d (0.5) of the particles having the minimum diameter to d (0.5) of the particles having the maximum diameter among the used particles is set to 50 or less, preferably 10 or less. It is essential.

なお、上記の粒子径分布および粒子径は、レーザー回折/散乱法などから求めることができる。測定対象となる粒子にレーザー光を照射すると空間的に回折/散乱光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があることから、粒子径および粒子径分布が測定できる。
ここで、本発明における粒子径および粒子径分布は、体積基準分布から得られたものである。具体的には、Mastersizer2000(Malvern Instruments Ltd.)測定機を用いて、窒素気流中に粒子を投入し、付属の解析ソフト(Mie理論を用いた体積基準分布を基本としたソフト)にて、粒子径および粒子径分布の測定を行なうことができる。
The particle size distribution and the particle size can be obtained from a laser diffraction / scattering method or the like. When laser light is irradiated onto particles to be measured, a light intensity distribution pattern of diffracted / scattered light is spatially generated, and this light intensity pattern has a corresponding relationship with the particle diameter, so that the particle diameter and particle diameter distribution can be measured. .
Here, the particle size and particle size distribution in the present invention are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring instrument, particles are introduced into a nitrogen stream, and the attached analysis software (software based on volume-based distribution using Mie theory) The diameter and particle size distribution can be measured.

次に、本発明の画像表示媒体用粒子を利用した粉流体について説明する。なお、本発明の画像表示媒体用粒子を利用した粉流体の名称については、本出願人が「電子粉流体(登録商標)」の権利を得ている。   Next, the powder fluid using the particles for an image display medium of the present invention will be described. In addition, about the name of the powder fluid using the particle | grains for image display media of this invention, the present applicant has acquired the right of "electronic powder fluid (trademark)."

本発明における「粉流体」は、気体の力も液体の力も借りずに、自ら流動性を示す、流体と粒子の特性を兼ね備えた両者の中間状態の物質である。例えば、液晶は液体と固体の中間的な相と定義され、液体の特徴である流動性と固体の特徴である異方性(光学的性質)を有するものである(平凡社:大百科事典)。一方、粒子の定義は、無視できるほどの大きさであっても有限の質量をもった物体であり、重力の影響を受けるとされている(丸善:物理学事典)。ここで、粒子でも、気固流動層体、液固流動体という特殊状態があり、粒子に底板から気体を流すと、粒子には気体の速度に対応して上向きの力が作用し、この力が重力とつりあう際に、流体のように容易に流動できる状態になるものを気固流動層体と呼び、同じく、流体により流動化させた状態を液固流動体と呼ぶとされている(平凡社:大百科事典)。このように気固流動層体や液固流動体は、気体や液体の流れを利用した状態である。本発明では、このような気体の力も、液体の力も借りずに、自ら流動性を示す状態の物質を、特異的に作り出せることが判明し、これを粉流体と定義した。   The “powder fluid” in the present invention is a substance in an intermediate state of both fluid and particle characteristics that exhibits fluidity by itself without borrowing the force of gas or liquid. For example, liquid crystal is defined as an intermediate phase between a liquid and a solid, and has fluidity that is a characteristic of liquid and anisotropy (optical properties) that is a characteristic of solid (Heibonsha: Encyclopedia) . On the other hand, the definition of particle is an object with a finite mass even if it is negligible, and is said to be affected by gravity (Maruzen: Physics Encyclopedia). Here, even in the case of particles, there are special states of gas-solid fluidized bed and liquid-solid fluids. When gas is flowed from the bottom plate to the particles, upward force is applied to the particles according to the velocity of the gas. Is a gas-solid fluidized bed that is in a state where it can easily flow when it balances with gravity, and it is also called a liquid-solid fluidized state that is fluidized by a fluid (ordinary) Company: Encyclopedia). As described above, the gas-solid fluidized bed body and the liquid-solid fluid are in a state of using a gas or liquid flow. In the present invention, it has been found that a substance in a state of fluidity can be produced specifically without borrowing the force of such gas and liquid, and this is defined as powder fluid.

すなわち、本発明における粉流体は、液晶(液体と固体の中間相)の定義と同様に、粒子と液体の両特性を兼ね備えた中間的な状態で、先に述べた粒子の特徴である重力の影響を極めて受け難く、高流動性を示す特異な状態を示す物質である。このような物質はエアロゾル状態、すなわち気体中に固体状もしくは液体状の物質が分散質として安定に浮遊する分散系で得ることができ、本発明の画像表示装置で固体状物質を分散質とするものである。   That is, the pulverulent fluid in the present invention is in an intermediate state having both the characteristics of particles and liquid, as in the definition of liquid crystal (liquid and solid intermediate phase), and is the characteristic of the above-mentioned particles. It is a substance that is extremely unaffected and exhibits a unique state with high fluidity. Such a substance can be obtained in an aerosol state, that is, a dispersion system in which a solid or liquid substance is stably suspended as a dispersoid in a gas, and the solid substance is used as a dispersoid in the image display device of the present invention. Is.

本発明の対象となる画像表示用パネルは、少なくとも一方が透明な、対向する基板間に、画像表示媒体として例えば気体中に固体粒子が分散質として安定に浮遊するエアロゾル状態で高流動性を示す粉流体を封入するものであり、このような粉流体は、低電圧の印加でクーロン力などにより容易に安定して移動させることができる。
本発明に例えば用いる粉流体とは、先に述べたように、気体の力も液体の力も借りずに、自ら流動性を示す、流体と粒子の特性を兼ね備えた両者の中間状態の物質である。この粉流体は、特にエアロゾル状態とすることができ、本発明の画像表示装置では、気体中に固体状の物質が分散質として比較的安定に浮遊する状態で用いられる。
The image display panel which is the object of the present invention exhibits high fluidity in an aerosol state in which solid particles are stably suspended as a dispersoid as an image display medium, for example, as an image display medium between opposing substrates, at least one of which is transparent. The powder fluid is sealed, and such powder fluid can be easily and stably moved by Coulomb force or the like by applying a low voltage.
As described above, for example, the powder fluid used in the present invention is a substance in an intermediate state between fluid and particles, which exhibits fluidity by itself without borrowing the force of gas or liquid. This powder fluid can be in an aerosol state in particular, and in the image display device of the present invention, a solid substance is used in a state of relatively stably floating as a dispersoid in the gas.

エアロゾル状態の範囲は、粉流体の最大浮遊時の見かけ体積が未浮遊時の2倍以上であることが好ましく、更に好ましくは2.5倍以上、特に好ましくは3倍以上である。上限は特に限定されないが、12倍以下であることが好ましい。
粉流体の最大浮遊時の見かけ体積が未浮遊時の2倍より小さいと表示上の制御が難しくなり、また、12倍より大きいと粉流体を装置内に封入する際に舞い過ぎてしまうなどの取扱い上の不便さが生じる。なお、最大浮遊時の見かけ体積は次のようにして測定される。すなわち、粉流体が透過して見える密閉容器に粉流体を入れ、容器自体を振動或いは落下させて、最大浮遊状態を作り、その時の見かけ体積を容器外側から測定する。具体的には、直径(内径)6cm、高さ10cmのポリプロピレン製の蓋付き容器(商品名アイボーイ:アズワン(株)製)に、未浮遊時の粉流体として1/5の体積相当の粉流体を入れ、振とう機に容器をセットし、6cmの距離を3往復/secで3時間振とうさせる。振とう停止直後の見かけ体積を最大浮遊時の見かけ体積とする。
The range of the aerosol state is preferably such that the apparent volume of the pulverized fluid when it is floated is twice or more that when it is not suspended, more preferably 2.5 times or more, and particularly preferably 3 times or more. Although an upper limit is not specifically limited, It is preferable that it is 12 times or less.
If the apparent volume of the pulverized fluid is less than twice that of the unfloating state, it is difficult to control the display, and if it is more than 12 times, the powder fluid will be overloaded when sealed in the device. Inconvenience in handling occurs. The apparent volume at the maximum floating time is measured as follows. That is, the powdered fluid is put into a closed container that allows the powdered fluid to permeate, and the container itself is vibrated or dropped to create a maximum floating state, and the apparent volume at that time is measured from the outside of the container. Specifically, in a container with a lid (trade name: iBoy: manufactured by ASONE Co., Ltd.) having a diameter (inner diameter) of 6 cm and a height of 10 cm, the powder fluid corresponding to 1/5 of the volume of the fluid when not floating. And set the container on a shaker, and shake at a distance of 6 cm at 3 reciprocations / sec for 3 hours. The apparent volume immediately after stopping shaking is the apparent volume at the maximum floating time.

また、本発明では、粉流体の見かけ体積の時間変化が次式を満たすものが好ましい。
10/V>0.8
ここで、Vは最大浮遊時から5分後の見かけ体積(cm)、V10は最大浮遊時から10分後の見かけ体積(cm)を示す。なお、本発明の画像表示装置は、粉流体の見かけ体積の時間変化V10/Vが0.85よりも大きいものが好ましく、0.9よりも大きいものが特に好ましい。V10/Vが0.8以下の場合は、通常のいわゆる粒子を用いた場合と同様となり、本発明のような高速応答、耐久性の効果が確保できなくなる。
Moreover, in this invention, what the time change of the apparent volume of a powder fluid satisfy | fills following Formula is preferable.
V 10 / V 5 > 0.8
Here, V 5 represents an apparent volume (cm 3 ) 5 minutes after the maximum floating time, and V 10 represents an apparent volume (cm 3 ) 10 minutes after the maximum floating time. In the image display device of the present invention, the apparent volumetric change V 10 / V 5 of the powder fluid is preferably larger than 0.85, and more preferably larger than 0.9. When V 10 / V 5 is 0.8 or less, it becomes the same as when ordinary so-called particles are used, and it becomes impossible to ensure the effect of high-speed response and durability as in the present invention.

また、粉流体を構成する粒子物質の平均粒子径(d(0.5))は、好ましくは0.1〜20μm、更に好ましくは0.5〜15μm、特に好ましくは0.9〜8μmである。0.1μmより小さいと表示上の制御が難しくなり、20μmより大きいと、表示上の鮮明さに欠けるようになる。なお、粉流体を構成する粒子物質の平均粒子径(d(0.5))は、次の粒子径分布Spanにおけるd(0.5)と同様である。   Moreover, the average particle diameter (d (0.5)) of the particulate material constituting the powder fluid is preferably 0.1 to 20 μm, more preferably 0.5 to 15 μm, and particularly preferably 0.9 to 8 μm. . If it is smaller than 0.1 μm, it is difficult to control the display, and if it is larger than 20 μm, the display is not clear. The average particle diameter (d (0.5)) of the particulate material constituting the powder fluid is the same as d (0.5) in the next particle diameter distribution Span.

粉流体を構成する粒子物質は、下記式に示される粒子径分布Spanが5未満であることが好ましく、更に好ましくは3未満である。
粒子径分布Span=(d(0.9)−d(0.1))/d(0.5)
ここで、d(0.5)は粉流体を構成する粒子物質の50%がこれより大きく、50%がこれより小さいという粒子径をμmで表した数値、d(0.1)はこれ以下の粉流体を構成する粒子物質の比率が10%である粒子径をμmで表した数値、d(0.9)はこれ以下の粉流体を構成する粒子物質が90%である粒子径をμmで表した数値である。粉流体を構成する粒子物質の粒子径分布Spanを5以下とすることにより、サイズが揃い、均一な粉流体移動が可能となる。
The particle substance constituting the powder fluid preferably has a particle size distribution Span represented by the following formula of less than 5, more preferably less than 3.
Particle size distribution Span = (d (0.9) -d (0.1)) / d (0.5)
Here, d (0.5) is a numerical value expressed in μm of the particle diameter that 50% of the particulate material constituting the powder fluid is larger than this and 50% is smaller than this, and d (0.1) is less than this. A numerical value in which the ratio of the particle substance constituting the powder fluid is 10%, expressed in μm, and d (0.9) is the particle diameter in which the particulate substance constituting the powder fluid is 90% μm It is a numerical value expressed by By setting the particle size distribution Span of the particulate material constituting the powder fluid to 5 or less, the sizes are uniform and uniform powder fluid movement becomes possible.

なお、以上の粒子径分布および粒子径は、レーザー回折/散乱法などから求めることができる。測定対象となる粉流体にレーザー光を照射すると空間的に回折/散乱光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があることから、粒子径および粒子径分布が測定できる。この粒子径および粒子径分布は、体積基準分布から得られる。具体的には、Mastersizer2000(Malvern Instruments Ltd.)測定機を用いて、窒素気流中に粉流体を投入し、付属の解析ソフト(Mie理論を用いた体積基準分布を基本としたソフト)にて、測定を行うことができる。   The above particle size distribution and particle size can be obtained from a laser diffraction / scattering method or the like. When laser light is irradiated to the powder fluid to be measured, a light intensity distribution pattern of diffracted / scattered light is generated spatially, and this light intensity pattern has a corresponding relationship with the particle diameter, so the particle diameter and particle diameter distribution are measured. it can. This particle size and particle size distribution are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring machine, the powdered fluid was introduced into a nitrogen stream, and the attached analysis software (software based on volume reference distribution using Mie theory) Measurements can be made.

粉流体の作製は、必要な樹脂、荷電制御剤、着色剤、その他添加剤を混練り粉砕しても、モノマーから重合しても、既存の粒子を樹脂、荷電制御剤、着色剤、その他添加剤でコーティングしても良い。以下、粉流体を構成する樹脂、荷電制御剤、着色剤、その他添加剤を例示する。   Preparation of powder fluid can be done by kneading and pulverizing the necessary resin, charge control agent, colorant, and other additives, or by polymerization from monomers, and adding existing particles to resin, charge control agent, colorant, and other It may be coated with an agent. Hereinafter, the resin, charge control agent, colorant, and other additives constituting the powder fluid will be exemplified.

樹脂の例としては、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、ウレタン変性アクリル樹脂、シリコーン樹脂、ナイロン樹脂、エポキシ樹脂、スチレン樹脂、ブチラール樹脂、塩化ビニリデン樹脂、メラミン樹脂、フェノール樹脂、フッ素樹脂などが挙げられ、2種以上混合することもでき、特に、基板との付着力を制御する上から、アクリルウレタン樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、ウレタン樹脂、フッ素樹脂が好適である。   Examples of the resin include urethane resin, acrylic resin, polyester resin, urethane-modified acrylic resin, silicone resin, nylon resin, epoxy resin, styrene resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, fluorine resin, etc. Two or more types can also be mixed. In particular, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluororesin, urethane resin, and fluororesin are preferable from the viewpoint of controlling the adhesive force with the substrate.

荷電制御剤の例としては、正電荷付与の場合には、4級アンモニウム塩系化合物、ニグロシン染料、トリフェニルメタン系化合物、イミダゾール誘導体などが挙げられ、負電荷付与の場合には、含金属アゾ染料、サリチル酸金属錯体、ニトロイミダゾール誘導体などが挙げられる。   Examples of charge control agents include quaternary ammonium salt compounds, nigrosine dyes, triphenylmethane compounds, imidazole derivatives and the like in the case of imparting positive charges, and metal-containing azo compounds in the case of imparting negative charges. Examples thereof include dyes, salicylic acid metal complexes, and nitroimidazole derivatives.

着色剤としては、以下に例示するような、有機または無機の各種、各色の顔料、染料が使用可能である。   As the colorant, various organic or inorganic pigments and dyes as exemplified below can be used.

黒色着色剤としては、カーボンブラック、酸化銅、二酸化マンガン、アニリンブラック、活性炭等がある。
青色着色剤としては、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファーストスカイブルー、インダスレンブルーBC等がある。
赤色着色剤としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パーマネントレッド4R、リソールレッド、ピラゾロンレッド、ウォッチングレッド、カルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミン3B、C.I.ピグメントレッド2等がある。
Examples of the black colorant include carbon black, copper oxide, manganese dioxide, aniline black, activated carbon and the like.
Examples of blue colorants include C.I. I. Pigment blue 15: 3, C.I. I. Pigment Blue 15, Bituminous Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-free Phthalocyanine Blue, Phthalocyanine Blue Partial Chlorides, Fast Sky Blue, Indanthrene Blue BC and the like.
Examples of red colorants include bengara, cadmium red, red lead, mercury sulfide, cadmium, permanent red 4R, risor red, pyrazolone red, watching red, calcium salt, lake red D, brilliant carmine 6B, eosin lake, rhodamine lake B, Alizarin Lake, Brilliant Carmine 3B, C.I. I. Pigment Red 2 etc.

黄色着色剤としては、黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、ミネラルファーストイエロー、ニッケルチタンイエロー、ネーブルイエロー、ナフトールイエローS、ハンザイエローG、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、キノリンイエローレーキ、パーマネントイエローNCG、タートラジンレーキ、C.I.ピグメントイエロー12等がある。
緑色着色剤としては、クロムグリーン、酸化クロム、ピグメントグリーンB、C.I.ピグメントグリーン7、マラカイトグリーンレーキ、ファイナルイエローグリーンG等がある。
橙色着色剤としては、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、インダスレンブリリアントオレンジRK、ベンジジンオレンジG、インダスレンブリリアントオレンジGK、C.I.ピグメントオレンジ31等がある。
紫色着色剤としては、マンガン紫、ファーストバイオレットB、メチルバイオレットレーキ等がある。
白色着色剤としては、亜鉛華、酸化チタン、アンチモン白、硫化亜鉛等がある。
Yellow colorants include chrome yellow, zinc yellow, cadmium yellow, yellow iron oxide, mineral first yellow, nickel titanium yellow, navel yellow, naphthol yellow S, Hansa Yellow G, Hansa Yellow 10G, Benzidine Yellow G, Benzidine Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake, C.I. I. Pigment Yellow 12 etc.
Examples of green colorants include chrome green, chromium oxide, pigment green B, C.I. I. Pigment Green 7, Malachite Green Lake, Final Yellow Green G, etc.
Examples of the orange colorant include red chrome yellow, molybdenum orange, permanent orange GTR, pyrazolone orange, Vulcan orange, indanthrene brilliant orange RK, benzidine orange G, indanthrene brilliant orange GK, C.I. I. Pigment Orange 31 etc.
Examples of purple colorants include manganese purple, first violet B, and methyl violet lake.
Examples of white colorants include zinc white, titanium oxide, antimony white, and zinc sulfide.

体質顔料としては、バライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タルク、アルミナホワイト等がある。また、塩基性、酸性、分散、直接染料等の各種染料として、ニグロシン、メチレンブルー、ローズベンガル、キノリンイエロー、ウルトラマリンブルー等がある。   Examples of extender pigments include barite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white. Examples of various dyes such as basic, acidic, disperse, and direct dyes include nigrosine, methylene blue, rose bengal, quinoline yellow, and ultramarine blue.

無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭酸カルシウム、鉛白、タルク、シリカ、ケイ酸カルシウム、アルミナホワイト、カドミウムイエロー、カドミウムレッド、カドミウムオレンジ、チタンイエロー、紺青、群青、コバルトブルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフェライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。
これらの顔料および無機系添加剤は、単独であるいは複数組み合わせて用いることができる。このうち特に黒色顔料としてカーボンブラックが、白色顔料として酸化チタンが好ましい。
Examples of inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, cadmium orange, titanium yellow, Examples include bitumen, ultramarine blue, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, and aluminum powder.
These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferable as the black pigment, and titanium oxide is preferable as the white pigment.

しかしながら、このような材料を工夫無く混練り、コーティングなどを施しても、エアロゾル状態を示す粉流体を作製することはできない。エアロゾル状態を示す粉流体の決まった製法は定かではないが、例示すると次のようになる。
まず、粉流体を構成する粒子物質の表面に、平均粒子径が20〜100nm、好ましくは20〜80nmの無機微粒子を固着させることが適当である。更に、その無機微粒子がシリコーンオイルで処理されていることが適当である。ここで、無機微粒子としては、二酸化珪素(シリカ)、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化セリウム、酸化鉄、酸化銅等が挙げられる。この無機微粒子を固着させる方法が重要であり、例えば、ハイブリダイザー(奈良機械製作所(株)製)やメカノフュージョン(ホソカワミクロン(株)製)などを用いて、ある限定された条件下(例えば処理時間)で、エアロゾル状態を示す粉流体を作製することができる。
もちろん、本発明の画像表示媒体用粒子を構成する粒子11をそのまま粉流体として用いることができる場合もある。
本発明の画像表示媒体用粒子を、粉流体を構成する粒子物質として利用することにより粉流体とすることができ、このように調整された粉流体を画像表示媒体とすることができる。
However, even if such a material is kneaded and coated without any ingenuity, a powder fluid that shows an aerosol state cannot be produced. The production method of the powder fluid showing the aerosol state is not clear, but is exemplified as follows.
First, it is appropriate to fix inorganic fine particles having an average particle diameter of 20 to 100 nm, preferably 20 to 80 nm, to the surface of the particulate material constituting the powder fluid. Furthermore, it is appropriate that the inorganic fine particles are treated with silicone oil. Here, examples of the inorganic fine particles include silicon dioxide (silica), zinc oxide, aluminum oxide, magnesium oxide, cerium oxide, iron oxide, and copper oxide. The method of fixing the inorganic fine particles is important. For example, using a hybridizer (manufactured by Nara Machinery Co., Ltd.) or mechanofusion (manufactured by Hosokawa Micron Co., Ltd.) or the like, under certain limited conditions (for example, processing time) ), A powder fluid showing an aerosol state can be produced.
Of course, the particles 11 constituting the particles for an image display medium of the present invention may be used as a powder fluid as they are.
The particles for an image display medium of the present invention can be used as a powder fluid by using the particles for the powder fluid, and the powder fluid thus adjusted can be used as an image display medium.

画像表示媒体の帯電量は当然その測定条件に依存するが、画像表示用パネルにおける画像表示媒体の帯電量はほぼ、初期帯電量、隔壁との接触、基板との接触、経過時間に伴う電荷減衰に依存し、特に画像表示媒体の帯電挙動の飽和値が支配因子となっているということが分かった。   The charge amount of the image display medium naturally depends on the measurement conditions, but the charge amount of the image display medium in the image display panel is almost the initial charge amount, the contact with the partition wall, the contact with the substrate, and the charge decay with the elapsed time. In particular, it was found that the saturation value of the charging behavior of the image display medium is the dominant factor.

本発明者らは鋭意検討の結果、ブローオフ法において同一のキャリア粒子を用いて、画像表示媒体の帯電量測定を行うことにより、画像表示媒体の適正な帯電特性値の範囲を評価できることを見出した。   As a result of intensive studies, the present inventors have found that by measuring the charge amount of the image display medium using the same carrier particles in the blow-off method, it is possible to evaluate the range of the appropriate charging characteristic value of the image display medium. .

更に、本発明においては基板間の画像表示媒体を取り巻く空隙部分の気体の管理が重要であり、表示安定性向上に寄与する。具体的には、空隙部分の気体の湿度について、25℃における相対湿度を60%RH以下、好ましくは50%RH以下、更に好ましくは35%RH以下とすることが重要である。
この空隙部分とは、図1(a)、(b)〜図3(a)、(b)において、対向する基板1、基板2に挟まれる部分から、電極5、6、画像表示媒体(粒子群あるいは粉流体3)の占有部分、隔壁4の占有部分(存在する場合)、装置シール部分を除いた、いわゆる画像表示媒体が接する気体部分を指すものとする。
空隙部分の気体は、先に述べた湿度領域であれば、その種類は問わないが、乾燥空気、乾燥窒素、乾燥アルゴン、乾燥ヘリウム、乾燥二酸化炭素、乾燥メタンなどが好適である。この気体は、その湿度が保持されるように装置に封入することが必要であり、例えば、画像表示媒体の充填、基板の組み立てなどを所定湿度環境下にて行い、さらに、外からの湿度侵入を防ぐシール材、シール方法を施すことが肝要である。
Furthermore, in the present invention, it is important to manage the gas in the gap surrounding the image display medium between the substrates, which contributes to improved display stability. Specifically, it is important that the relative humidity at 25 ° C. is 60% RH or less, preferably 50% RH or less, more preferably 35% RH or less with respect to the humidity of the gas in the gap.
1A, 1B, 3A, and 3B, the gap portion is defined by the electrodes 5 and 6 and the image display medium (particles) from the portion sandwiched between the opposing substrate 1 and substrate 2. It refers to the gas portion in contact with the so-called image display medium, excluding the group or powdered fluid 3) occupied portion, the partition 4 occupied portion (if present), and the device seal portion.
The gas in the gap is not limited as long as it is in the humidity region described above, but dry air, dry nitrogen, dry argon, dry helium, dry carbon dioxide, dry methane, and the like are preferable. This gas needs to be sealed in the apparatus so that the humidity is maintained. For example, the image display medium is filled and the substrate is assembled in a predetermined humidity environment. It is important to apply a sealing material and a sealing method to prevent the above.

本発明の画像表示装置が備える画像表示用パネルにおける基板と基板との間隔は、画像表示媒体が移動できて、コントラストを維持できればよいが、通常10〜500μm、好ましくは10〜200μmに調整される。
対向する基板間の空間における画像表示媒体の体積占有率は5〜70%が好ましく、さらに好ましくは5〜60%である。70%を超える場合には画像表示媒体の移動の支障をきたし、5%未満の場合にはコントラストが不明確となり易い。
The distance between the substrates in the image display panel provided in the image display device of the present invention is not limited as long as the image display medium can be moved and the contrast can be maintained, but is usually adjusted to 10 to 500 μm, preferably 10 to 200 μm. .
The volume occupancy of the image display medium in the space between the opposing substrates is preferably 5 to 70%, more preferably 5 to 60%. If it exceeds 70%, the movement of the image display medium is hindered. If it is less than 5%, the contrast tends to be unclear.

本発明の製造方法で得た粒子を用いた画像表示装置は、ノートパソコン、PDA、携帯電話、ハンディターミナル等のモバイル機器の表示部、電子ブック、電子新聞等の電子ペーパー、看板、ポスター、黒板等の掲示板、電卓、家電製品、自動車用品等の表示部、ポイントカード、ICカード等のカード表示部、電子広告、電子POP、電子値札、電子楽譜、RF−ID機器の表示部などに好適に用いられる。   An image display device using particles obtained by the production method of the present invention includes display units of mobile devices such as notebook computers, PDAs, mobile phones, handy terminals, electronic papers such as electronic books and electronic newspapers, signboards, posters, and blackboards. Suitable for bulletin boards such as billboards, calculators, home appliances, automobile supplies, card displays such as point cards and IC cards, electronic advertisements, electronic POPs, electronic price tags, electronic musical scores, and display parts for RF-ID devices Used.

(a)、(b)はそれぞれ本発明の製造方法の対象となる画像表示媒体用粒子を用いる画像表示装置の一例を示す図である。(A), (b) is a figure which shows an example of the image display apparatus using the particle | grains for image display media used as the object of the manufacturing method of this invention, respectively. (a)、(b)はそれぞれ本発明の製造方法の対象となる画像表示媒体用粒子を用いる画像表示装置の他の例を示す図である。(A), (b) is a figure which shows the other example of the image display apparatus using the particle | grains for image display media used as the object of the manufacturing method of this invention, respectively. (a)、(b)はそれぞれ本発明の製造方法の対象となる画像表示媒体用粒子を用いる画像表示装置のさらに他の例を示す図である。(A), (b) is a figure which shows the further another example of the image display apparatus using the particle | grains for image display media used as the object of the manufacturing method of this invention, respectively. 本発明の画像表示媒体用粒子の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the particle | grains for image display media of this invention. 本発明の画像表示媒体用粒子の製造方法の他の例を説明するための図である。It is a figure for demonstrating the other example of the manufacturing method of the particle | grains for image display media of this invention. 比較のため従来の画像表示媒体用粒子の問題点を説明するための図である。It is a figure for demonstrating the problem of the conventional particle | grains for image display media for a comparison. 本発明の製造方法の対象となる画像表示媒体用粒子を使用した画像表示用パネルにおける隔壁の形状の一例を示す図である。It is a figure which shows an example of the shape of the partition in the image display panel using the particle | grains for image display media used as the object of the manufacturing method of this invention.

符号の説明Explanation of symbols

1、2 基板
3 画像表示媒体(粒子群または粉流体)
3W 白色粒子(白色粉流体)
3B 黒色粒子(黒色粉流体)
4 隔壁
5、6 電極
11 粒子
12 微小粒子
13 複合粒子
1, 2 Substrate 3 Image display medium (particle group or powder fluid)
3W white particles (white powder fluid)
3B Black particles (black powder fluid)
4 Partition 5 and 6 Electrode 11 Particle 12 Fine Particle 13 Composite Particle

Claims (3)

少なくとも一方が透明な対向する基板間に画像表示媒体を封入し、画像表示媒体に電界を与えて、画像表示媒体を移動させて画像を表示する画像表示装置に用いる画像表示媒体用粒子の製造方法において、未硬化の粒子に対して電子線照射を行い、後架橋させて画像表示媒体用粒子とすることを特徴とする画像表示媒体用粒子の製造方法。 A method for producing particles for an image display medium used in an image display device in which an image display medium is sealed between opposing substrates at least one of which is transparent, an electric field is applied to the image display medium, and the image display medium is moved to display an image The method for producing particles for an image display medium, wherein the uncured particles are irradiated with an electron beam and post-crosslinked to obtain particles for an image display medium. 画像表示媒体が粒子群である請求項1記載の画像表示媒体用粒子の製造方法。   The method for producing particles for an image display medium according to claim 1, wherein the image display medium is a particle group. 画像表示媒体が粉流体である請求項1記載の画像表示媒体用粒子の製造方法。   The method for producing particles for an image display medium according to claim 1, wherein the image display medium is a powder fluid.
JP2004165605A 2004-06-03 2004-06-03 Method for producing particles for image display medium Expired - Fee Related JP4566624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165605A JP4566624B2 (en) 2004-06-03 2004-06-03 Method for producing particles for image display medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165605A JP4566624B2 (en) 2004-06-03 2004-06-03 Method for producing particles for image display medium

Publications (2)

Publication Number Publication Date
JP2005345778A JP2005345778A (en) 2005-12-15
JP4566624B2 true JP4566624B2 (en) 2010-10-20

Family

ID=35498220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165605A Expired - Fee Related JP4566624B2 (en) 2004-06-03 2004-06-03 Method for producing particles for image display medium

Country Status (1)

Country Link
JP (1) JP4566624B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026702A (en) * 2006-07-24 2008-02-07 Bridgestone Corp Particle for display medium and panel for information display using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003015169A (en) * 2001-06-27 2003-01-15 Fuji Xerox Co Ltd Picture display medium
JP2004004469A (en) * 2002-04-04 2004-01-08 Bridgestone Corp Particle and device for image display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003015169A (en) * 2001-06-27 2003-01-15 Fuji Xerox Co Ltd Picture display medium
JP2004004469A (en) * 2002-04-04 2004-01-08 Bridgestone Corp Particle and device for image display

Also Published As

Publication number Publication date
JP2005345778A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP5097807B2 (en) Manufacturing method of image display device
JPWO2005071480A1 (en) White particles for display medium and information display device using the same
JP4982179B2 (en) Particles for display medium, information display panel using the same, and information display device
JP4565864B2 (en) Manufacturing method of image display panel
JP2005321769A (en) Information display panel
JP4484448B2 (en) Manufacturing method of image display device
JP2005241779A (en) Particle, powder and granular material, used for picture display device, and picture display device using them
JP4614711B2 (en) Manufacturing method of image display panel
JP4484589B2 (en) Method for producing particles for image display medium
JP4566624B2 (en) Method for producing particles for image display medium
JP4758231B2 (en) Information display device
JP2006113267A (en) Particles for display medium to be used for information display panel
JP2006309067A (en) Method for manufacturing information display panel
JP4597569B2 (en) Image display panel and image display apparatus using the same
JP4763985B2 (en) Image display device
JP2005321492A (en) Method for manufacturing image display device
JP2005091442A (en) Image display device and its manufacturing method
JP2006058544A (en) Panel for picture display and method for manufacturing the same
JP4863644B2 (en) Manufacturing method of information display panel
JP2006023541A (en) Panel for image display, and method for manufacturing the same
JP2006058550A (en) Panel for image display, method for manufacturing same, and image display device
JP4632850B2 (en) Manufacturing method of information display panel
JP2005326436A (en) Panel for image display and its manufacturing method
JP2005326446A (en) Panel for image display
JP2008139596A (en) Information display panel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees