JPWO2004092071A1 - Method for producing barium titanate powder - Google Patents

Method for producing barium titanate powder Download PDF

Info

Publication number
JPWO2004092071A1
JPWO2004092071A1 JP2005505443A JP2005505443A JPWO2004092071A1 JP WO2004092071 A1 JPWO2004092071 A1 JP WO2004092071A1 JP 2005505443 A JP2005505443 A JP 2005505443A JP 2005505443 A JP2005505443 A JP 2005505443A JP WO2004092071 A1 JPWO2004092071 A1 JP WO2004092071A1
Authority
JP
Japan
Prior art keywords
barium
compound
titanium
barium titanate
titanate powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005505443A
Other languages
Japanese (ja)
Other versions
JP4643443B2 (en
Inventor
松秀 堀川
松秀 堀川
英樹 堺
英樹 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Publication of JPWO2004092071A1 publication Critical patent/JPWO2004092071A1/en
Application granted granted Critical
Publication of JP4643443B2 publication Critical patent/JP4643443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

誘電体を形成した際の誘電損失また温度特性などの誘電特性に優れたチタン酸バリウム粉末の、より簡易な製造方法である。チタン化合物とバリウム化合物とを接触させて得た固形物を800〜1100℃で加熱処理して固体反応物を形成し、その後前記固体反応物を水洗する。This is a simpler method for producing barium titanate powder having excellent dielectric characteristics such as dielectric loss and temperature characteristics when a dielectric is formed. A solid substance obtained by bringing the titanium compound and the barium compound into contact with each other is heated at 800 to 1100 ° C. to form a solid reactant, and then the solid reactant is washed with water.

Description

本発明は、チタン酸バリウム粉末の製造方法に係り、とくに、粒径が1μm以下の高結晶性ペロブスカイト構造を有する誘電体材料に適したチタン酸バリウム粉末の製造技術に関する。  The present invention relates to a method for producing a barium titanate powder, and more particularly to a technique for producing a barium titanate powder suitable for a dielectric material having a highly crystalline perovskite structure having a particle size of 1 μm or less.

積層セラミックコンデンサに用いられる誘電体材料としては、高誘電率で温度特性がよいこと、およびバイアス依存性が小さく、耐電圧性に優れていることが要求されることから、従来からチタン酸バリウム系の組成物が幅広く用いられている。
一般に、積層セラミックコンデンサは、以下のように製造される。すなわち、チタン酸バリウムなどの誘電体粉末を有機バインダーと混合し懸濁させ、これをドクターブレード法によりシート状に成形して誘電体グリーンシートを作成する。次に、内部電極用の金属粉末を有機溶剤、可塑剤、有機バインダーなどの有機化合物と混合して金属粉末ペーストを形成し、これを上記グリーンシート上にスクリーン印刷法で印刷する。その後、これらを乾燥し、互い違いに積層して圧着し、大気中で300℃程度で加熱処理にて有機成分を除去してから、1000℃以上の温度で焼結する。最後に、誘電体セラミック層の両端に外部電極を焼き付けて積層セラミックコンデンサを得る。この焼結温度は一般に鉛系では1000℃前後であるが、チタン酸バリウム系の誘電体磁器組成物では、焼結特性の違いから1300℃前後、またはこれ以上と高い温度で行う必要がある。このように、積層セラミックコンデンサの製造では、誘電体層と内部電極金属層を同時に焼結する。
このように、積層セラミックコンデンサを構成する内部電極金属層に使用する金属には、従来から、銀、パラジウム、白金、金などの貴金属粉末、あるいはニッケル、コバルト、鉄、モリブデン、タングステンなどの卑金属粉末が用いられているが、最近はより安価な電子材料が要求されているため、上記卑金属粉末を利用した積層セラミックコンデンサの開発が盛んに行われており、その中でも金属ニッケル粉末がとくに注目されている。上記の積層セラミックコンデンサを製造する工程のうち、焼結は、貴金属粉末を内部電極に用いる場合には酸素雰囲気で行うこともできる。しかしながら、ニッケルのような卑金属を用いる場合には、高温大気中の酸化雰囲気では酸化物が絶縁性に富むおそれがある。したがって、この場合には、水素ガスなどの還元性雰囲気で焼結を行う必要がある。
上記のように積層セラミックコンデンサの製造工程においては、有機成分を除去するため大気中で加熱処理を行うことにより、またニッケル電極の場合は還元性雰囲気で焼結を行うことにより酸化還元反応が起こり、金属粉末に膨張・収縮による体積変化が生じる。一方、誘電体自身も焼結により体積変化が生じるが、誘電体と金属粉末という異なった物質を同時に焼結するため、焼結過程でのそれぞれの物質の膨張・収縮の体積変化などの焼結挙動が異なる。このため、金属ペースト層に歪みが生じ、結果としてクラックまたは剥離などのデラミネーションといわれる層状構造体が破壊される構造欠陥が発生するという問題があった。したがって、誘電体材料はできるだけ低温で焼結が可能な材料が要求されていた。
さらに、誘電体材料は酸化物であるので、従来は大気中の酸素と平衡状態を保つような材料が用いられていた。しかしながら、上述したようなニッケル電極の積層セラミックコンデンサの製造に際しては、還元性雰囲気で焼結が施される。このため、この場合に使用する誘電体材料としては、酸素分圧の低い状態において還元され、半導体化せずに安定した耐還元性を有するものが必要である。
このため、従来から、このような必要性に鑑み、数多くの非還元性誘電体磁器組成物が検討されている。例えば、チタン酸バリウムを主成分として、これに、副成分としてイットリウムなどの希土類原子や、マグネシウム、マンガン、ケイ素などの酸化物を配合し焼成したものが、積層セラミックコンデンサの誘電体として利用されている。
このような積層セラミックコンデンサに関する従来技術においては、誘電体材料の耐還元性、低温焼結性が改善されているとともに、X7R特性が満足され、さらには高温負荷特性やバイアス特性などにおいて相当の効果が奏されている。しかしながら、近年の携帯電話あるいはパソコンなどの顕著な小型化および大容量化の要求に伴い、積層セラミックコンデンサの誘電体層の薄層化が要求されるようになり、現在その要求厚さは10μm以下と益々薄層化が進んでいる。しかしながら、誘電体層を薄くすると一対の内部電極間の絶縁耐圧が低下するという問題があった。さらに、省エネルギーの観点から省電力であることが求められるが、そのために室温以上で誘電損失が少なくかつ発熱の少ない誘電体材料が望まれている。
また、積層セラミックコンデンサでは、セラミック誘電体層を薄層化させることで、小型化および大容量化が急速に進んでおり、この場合、耐電圧特性が良好で、誘電体材料自身の粒径が小さく、層の密度が均一となり、さらにコンデンサの容量が十分に確保される必要がある。
このような近年における要求特性を満足すべく、積層セラミックコンデンサの材料においては、種々の開発技術が提案されており、とくに、その原料となるチタン酸バリウム粉末については、数々の製造方法が知られている。チタン酸バリウム粉末の製造方法は、チタン化合物とバリウム化合物とを混合焼成する固相反応法と、水溶性チタン化合物と水溶性バリウム化合物とを液相で反応させる液相反応法とに大きく分類される。上記固相反応法については、化合物を高温で反応させるため、得られるチタン酸バリウム粉末は、粒径が比較的大きく、粒度分布が広く、かつ形状が一定でないことから、スラリー化した際の分散性に劣るという問題がある。この問題を解決するため、比表面積が10m/g以下のBaCO粉末および比表面積が15m/g以上のTiO粉末を選択する選択工程と、これらのBaCO粉末とTiO粉末を混合する混合工程と、得られた混合物を焼成する焼成工程とを備えたことを特徴とするチタン酸バリウム粉末の製造方法が開示されている(例えば、特開平10−338524号公報(特許文献1)参照。)。
また、液相反応法としては、含水酸化チタン、バリウム塩化物と硝酸塩の少なくとも一方、ならびにバリウム塩化物および/または硝酸塩1molに対して2.1〜5molのアルカリ金属水酸化物とを、チタン換算で120〜10000倍モルの水の存在下において60〜110℃で反応させる製造方法(例えば、特公平5−73695号公報(特許文献2)参照。)や、含水酸化チタン、水酸化バリウムおよびアルカリ金属水酸化物を、チタン換算で120〜10000倍モルの水の存在下において60〜110℃で反応させる製造方法(例えば、特公平5−73696号公報(特許文献3)参照。)や、チタン化合物の加水分解生成物と水溶性バリウム塩とを、強アルカリ水溶液中で反応させる製造方法(例えば、特公平3−39014号公報(特許文献4)参照。)が開示されている。また、チタン塩化物を水溶液中で加水分解した後、該水溶液を一旦アルカリ性に戻して塩素イオンを除去し、引き続きバリウムの水溶性塩のうち一つを加え、強アルカリ性水溶液中で反応させる製造方法(例えば、特公平6−649号公報(特許文献5)参照。)や、四塩化チタンなどのチタン化合物とバリウム塩とが共存する混合水溶液を、70〜100℃に予熱したアルカリ水溶液と接触させほぼ球状の結晶性ペロブスカイトを得る方法(例えば、特開平7−232923号公報(特許文献6)参照。)も開示されている。さらに、チタン化合物の水溶液と、バリウム化合物のアルカリ水溶液とを、チタン化合物/バリウム化合物のモル比を0.8〜1.2に制御しながら撹拌下に接触させることを特徴とするチタン酸バリウム粉末の製造方法が開示されている(例えば、国際公開WO99/59919号公報(特許文献7)参照。)。さらに、液相反応法で得られ

Figure 2004092071
とするペロブスカイト型化合物微粉末の製造方法が開示されている(例えば、特許第2999821号公報(特許文献8)参照)。
しかしながら、上記特許文献1〜7に記載した各技術では、従来から問題となっていた耐電圧特性、焼成後における粒子の非凝集特性、層密度の均一特性およびコンデンサの容量の十分な確保等に関する特性がある程度は改善されているものの、誘電体を形成した際の誘電損失または温度特性などの誘電特性を、近年における積層セラミックコンデンサの誘電体層の薄層化による小型化や大容量化に見合う程度に満足させるに至るものではない。
Figure 2004092071
合物粉末を酸溶液で洗浄するため、チタン酸バリウムの場合、バリウム成分が過剰に溶出してしまい、バリウム原子とチタン原子の比を100分の1〜1000分の1の精度でコントロールすることは難しい。
本発明は、上述した特許文献1〜8に記載されたチタン酸バリウム粉末に付随する課題、すなわち、誘電体を形成した際の誘電損失また温度特性などの誘電特性に優れたチタン酸バリウム粉末の、より簡易な製造方法を提供することを目的としている。As dielectric materials used for multilayer ceramic capacitors, high dielectric constant, good temperature characteristics, low bias dependency, and excellent withstand voltage are required. These compositions are widely used.
Generally, a multilayer ceramic capacitor is manufactured as follows. That is, a dielectric powder such as barium titanate is mixed and suspended with an organic binder, and this is formed into a sheet by a doctor blade method to produce a dielectric green sheet. Next, the metal powder for the internal electrode is mixed with an organic compound such as an organic solvent, a plasticizer, and an organic binder to form a metal powder paste, which is printed on the green sheet by a screen printing method. Thereafter, they are dried, alternately laminated and pressure-bonded, and after removing organic components by heat treatment at about 300 ° C. in the atmosphere, sintering is performed at a temperature of 1000 ° C. or higher. Finally, external electrodes are baked on both ends of the dielectric ceramic layer to obtain a multilayer ceramic capacitor. This sintering temperature is generally about 1000 ° C. in the case of lead, but it is necessary to perform the barium titanate-based dielectric ceramic composition at a temperature as high as about 1300 ° C. or higher due to the difference in sintering characteristics. Thus, in the manufacture of the multilayer ceramic capacitor, the dielectric layer and the internal electrode metal layer are sintered simultaneously.
As described above, the metal used for the internal electrode metal layer constituting the multilayer ceramic capacitor has conventionally been noble metal powders such as silver, palladium, platinum and gold, or base metal powders such as nickel, cobalt, iron, molybdenum and tungsten. Recently, however, cheaper electronic materials have been demanded, so the development of multilayer ceramic capacitors using the above base metal powder has been actively carried out, and among these, metallic nickel powder has received particular attention. Yes. Of the steps for producing the above multilayer ceramic capacitor, sintering can also be performed in an oxygen atmosphere when noble metal powder is used for the internal electrode. However, in the case where a base metal such as nickel is used, there is a possibility that the oxide is rich in insulation in an oxidizing atmosphere in high-temperature air. Therefore, in this case, it is necessary to perform sintering in a reducing atmosphere such as hydrogen gas.
As described above, in the manufacturing process of the multilayer ceramic capacitor, a redox reaction occurs by performing heat treatment in the air to remove organic components, and in the case of a nickel electrode, sintering in a reducing atmosphere. The volume change occurs due to expansion and contraction of the metal powder. On the other hand, the dielectric itself also undergoes volume changes due to sintering, but because different materials, dielectric and metal powder, are sintered at the same time, sintering such as volume changes of expansion and contraction of each material during the sintering process. The behavior is different. For this reason, the metal paste layer is distorted, and as a result, there is a problem that a structural defect is generated in which a layered structure called cracking or delamination is destroyed. Therefore, a dielectric material that can be sintered at the lowest possible temperature has been required.
Furthermore, since the dielectric material is an oxide, conventionally, a material that maintains equilibrium with oxygen in the atmosphere has been used. However, when manufacturing the above-described nickel electrode multilayer ceramic capacitor, sintering is performed in a reducing atmosphere. For this reason, the dielectric material used in this case needs to be reduced in a state where the oxygen partial pressure is low and have a stable reduction resistance without becoming a semiconductor.
For this reason, many non-reducing dielectric ceramic compositions have been studied in view of such necessity. For example, barium titanate as the main component and rare earth atoms such as yttrium as an accessory component and oxides such as magnesium, manganese and silicon are used as dielectrics for multilayer ceramic capacitors. Yes.
In the prior art related to such a multilayer ceramic capacitor, the reduction resistance and low temperature sintering property of the dielectric material are improved, the X7R characteristic is satisfied, and further, the high temperature load characteristic and the bias characteristic have a considerable effect. Is played. However, along with the recent demand for miniaturization and large capacity of cellular phones or personal computers, it has been required to reduce the dielectric layer of the multilayer ceramic capacitor, and the required thickness is currently 10 μm or less. Thinning is progressing more and more. However, when the dielectric layer is thinned, there is a problem that the withstand voltage between the pair of internal electrodes decreases. Further, from the viewpoint of energy saving, it is required to save electric power. For this reason, a dielectric material with low dielectric loss and low heat generation at room temperature or higher is desired.
In multilayer ceramic capacitors, the ceramic dielectric layer is thinned to rapidly reduce the size and increase the capacity. In this case, the withstand voltage characteristics are good and the particle size of the dielectric material itself is small. Small, uniform layer density, and sufficient capacitance of the capacitor must be secured.
In order to satisfy these recent required characteristics, various development techniques have been proposed for the materials of multilayer ceramic capacitors, and in particular, a number of manufacturing methods are known for the barium titanate powder used as the raw material. ing. The production method of barium titanate powder is roughly classified into a solid phase reaction method in which a titanium compound and a barium compound are mixed and fired, and a liquid phase reaction method in which a water-soluble titanium compound and a water-soluble barium compound are reacted in a liquid phase. The For the above solid-phase reaction method, since the compound is reacted at a high temperature, the resulting barium titanate powder has a relatively large particle size, a wide particle size distribution, and a non-constant shape. There is a problem of inferiority. In order to solve this problem, a selection step of selecting a BaCO 3 powder having a specific surface area of 10 m 2 / g or less and a TiO 2 powder having a specific surface area of 15 m 2 / g or more, and mixing these BaCO 3 powder and TiO 2 powder And a method for producing a barium titanate powder characterized by comprising a firing step for firing the resulting mixture (for example, Japanese Patent Laid-Open No. 10-338524 (Patent Document 1)). reference.).
Further, as a liquid phase reaction method, hydrous titanium oxide, barium chloride and / or nitrate, and 2.1 to 5 mol of alkali metal hydroxide with respect to 1 mol of barium chloride and / or nitrate, titanium conversion In the presence of 120 to 10,000 moles of water at 60 to 110 ° C. (see, for example, Japanese Patent Publication No. 5-73695 (Patent Document 2)), hydrous titanium oxide, barium hydroxide and alkali. A production method in which a metal hydroxide is reacted at 60 to 110 ° C. in the presence of 120 to 10000 times moles of water in terms of titanium (see, for example, Japanese Patent Publication No. 5-73696 (Patent Document 3)), or titanium. A production method in which a hydrolysis product of a compound and a water-soluble barium salt are reacted in a strong alkaline aqueous solution (for example, JP-B-3-3901). (Patent Document 4) reference.) Is disclosed. In addition, after the titanium chloride is hydrolyzed in an aqueous solution, the aqueous solution is once returned to alkalinity to remove chloride ions, and subsequently one of the water soluble salts of barium is added and reacted in a strong alkaline aqueous solution. (See, for example, Japanese Patent Publication No. 6-649 (Patent Document 5)) and a mixed aqueous solution in which a titanium compound such as titanium tetrachloride and a barium salt coexist with an alkaline aqueous solution preheated to 70 to 100 ° C. A method for obtaining a substantially spherical crystalline perovskite (see, for example, JP-A-7-232923 (Patent Document 6)) is also disclosed. Further, an aqueous solution of a titanium compound and an alkaline aqueous solution of a barium compound are brought into contact with stirring while controlling the molar ratio of the titanium compound / barium compound to 0.8 to 1.2. (For example, refer to International Publication WO99 / 59919 (Patent Document 7)). Furthermore, obtained by liquid phase reaction method
Figure 2004092071
A method for producing a perovskite type compound fine powder is disclosed (for example, see Japanese Patent No. 2999821 (Patent Document 8)).
However, each of the techniques described in Patent Documents 1 to 7 relates to the withstand voltage characteristics, the non-aggregation characteristics of the particles after firing, the uniform characteristics of the layer density, and the sufficient capacity of the capacitor. Although the characteristics have been improved to some extent, the dielectric characteristics such as dielectric loss or temperature characteristics when the dielectric is formed are commensurate with the recent downsizing and larger capacity of the multilayer ceramic capacitor due to the thinner dielectric layers. It does not lead to satisfaction.
Figure 2004092071
Since the compound powder is washed with an acid solution, in the case of barium titanate, the barium component elutes excessively, and the ratio of barium atoms to titanium atoms should be controlled with an accuracy of 1/100 to 1/1000. Is difficult.
The present invention relates to the problem associated with the barium titanate powders described in Patent Documents 1 to 8, that is, the barium titanate powder having excellent dielectric characteristics such as dielectric loss and temperature characteristics when a dielectric is formed. An object of the present invention is to provide a simpler manufacturing method.

本発明者らは、上記目的を達成し得る製造方法を鋭意検討した結果、固相反応法や液相反応法で得られたチタン酸バリウム粉末を加熱処理し、その後水洗することによって、誘電体磁器組成物を形成した際に誘電特性などが優れたチタン酸バリウム粉末が得られることを見出し、本発明を完成するに至った。
すなわち、本発明のチタン酸バリウム粉末の製造方法は、チタン化合物とバリウム化合物とを接触させて得た固形物を800〜1100℃で加熱処理して固体反応物を形成し、その後前記固体反応物を水洗することを特徴としている。本発明によれば、固相反応法または液相反応法で得られたチタン酸バリウム粉末を加熱処理した後に水洗することによって、誘電体磁器組成物を形成した際に誘電特性などが優れたチタン酸バリウム粉末が得ることができる。
また、本発明のチタン酸バリウムの製造方法においては、上記水洗を20〜80℃、好ましくは30〜70℃、より好ましくは40〜60℃の温度範囲で行うと、洗浄効率が向上し、効果的である。
このようなチタン酸バリウム粉末の製造方法においては、固体反応物を、チタン化合物水溶液とバリウム化合物とをアルカリ存在下で接触させて得た固形物を800〜1100℃で加熱処理して形成することができる。また、固体反応物を、アルカリ水溶液にチタン化合物水溶液とバリウム化合物のアルカリ水溶液とを加えて得た固形物を800〜1100℃で加熱処理して形成することもできる。さらには、固体反応物を、酸化チタンと炭酸バリウムとを混合して接触させた後、800〜1100℃で加熱処理して形成することもできる。
このようなチタン酸バリウム粉末の製造方法においては、チタン化合物およびバリウム化合物を、それぞれ、酸化物、ハロゲン化物、水酸化物、硝酸塩、硫酸塩、酢酸塩、過塩素酸塩、シュウ酸塩、炭酸塩、およびアルコキシドの少なくとも1種類とすることができ、例えば、チタン化合物を、四塩化チタンとし、またバリウム化合物を、塩化バリウムと水酸化バリウムとのうちの少なくとも1種類とすることができる。
さらに、このようなチタン酸バリウム粉末の製造方法においては、固体反応物のバリウム原子とチタン原子との比が1.001〜1.010、好ましくは1.003〜1.006であることが、チタン酸バリウム粉末の製造上反応が均一に起こり易くなり、チタン酸バリウム粉末の均一性が向上する点で望ましい。さらに加熱処理した後、粉砕処理を行うことがさらに望ましい。さらにまた、積層セラミックコンデンサの高積層化、薄層化に伴い誘電体材料の小粒径化が必要であり、そのためチタン酸バリウム粉末の平均粒径は、0.5μm以下にすることが望ましい。
As a result of earnestly examining the manufacturing method that can achieve the above-mentioned object, the present inventors have heat-treated the barium titanate powder obtained by the solid-phase reaction method or the liquid-phase reaction method, and then washed with water. It has been found that when a porcelain composition is formed, a barium titanate powder having excellent dielectric properties can be obtained, and the present invention has been completed.
That is, in the method for producing barium titanate powder of the present invention, a solid product obtained by bringing a titanium compound and a barium compound into contact with each other is heated at 800 to 1100 ° C. to form a solid reactant, and then the solid reactant is obtained. It is characterized by washing with water. According to the present invention, titanium having excellent dielectric properties when a dielectric ceramic composition is formed by heat-treating barium titanate powder obtained by a solid-phase reaction method or a liquid-phase reaction method and then washing with water. Barium acid powder can be obtained.
Moreover, in the manufacturing method of the barium titanate of this invention, when the said water washing is performed in the temperature range of 20-80 degreeC, Preferably 30-70 degreeC, More preferably, 40-60 degreeC, cleaning efficiency will improve and an effect. Is.
In such a method for producing barium titanate powder, a solid reaction product is formed by heat-treating a solid product obtained by contacting a titanium compound aqueous solution and a barium compound in the presence of an alkali at 800 to 1100 ° C. Can do. Alternatively, a solid reaction product can be formed by heating a solid product obtained by adding a titanium compound aqueous solution and an alkali aqueous solution of a barium compound to an alkaline aqueous solution at 800 to 1100 ° C. Furthermore, the solid reactant can be formed by mixing titanium oxide and barium carbonate and bringing them into contact with each other, followed by heat treatment at 800 to 1100 ° C.
In such a method for producing a barium titanate powder, a titanium compound and a barium compound are respectively converted into an oxide, a halide, a hydroxide, a nitrate, a sulfate, an acetate, a perchlorate, an oxalate, and a carbonic acid. For example, the titanium compound may be titanium tetrachloride, and the barium compound may be at least one of barium chloride and barium hydroxide.
Furthermore, in such a method for producing a barium titanate powder, the ratio of barium atoms to titanium atoms in the solid reactant is 1.001 to 1.010, preferably 1.003 to 1.006. In the production of barium titanate powder, the reaction tends to occur uniformly, which is desirable in terms of improving the uniformity of the barium titanate powder. It is further desirable to perform a pulverization treatment after the heat treatment. Furthermore, it is necessary to reduce the particle size of the dielectric material as the multilayer ceramic capacitor becomes higher and thinner, so that the average particle size of the barium titanate powder is desirably 0.5 μm or less.

第1図は、実施例及び比較例についての、比誘電率と温度との関係を示すグラフである。
第2図は、常温洗浄と温水(60℃)洗浄を施した場合の、Ba/Ti原子比と洗浄回数との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between relative permittivity and temperature for Examples and Comparative Examples.
FIG. 2 is a graph showing the relationship between the Ba / Ti atomic ratio and the number of cleanings when normal temperature cleaning and warm water (60 ° C.) cleaning are performed.

以下に、本発明の実施形態を具体的に説明する。
本発明において、チタン化合物としては、酸化物、ハロゲン化物、水酸化物、硝酸塩、硫酸塩、酢酸塩、過塩素酸塩、シュウ酸塩、炭酸塩、およびアルコキシドの少なくとも1種が用いられる。具体的な化合物としては、酸化チタン、水酸化チタン、四塩化チタン、三塩化チタン、水酸化チタン、硫酸チタニルなどが好適であり、これらの中でも酸化チタン、四塩化チタンがとくに好適である。
バリウム化合物としては、酸化物、ハロゲン化物、水酸化物、硝酸塩、硫酸塩、酢酸塩、過塩素酸塩、シュウ酸塩、炭酸塩、およびアルコキシドの少なくとも1種類が用いられる。具体的な化合物としては、炭酸バリウム、塩化バリウム、水酸化バリウム、硝酸バリウム、硫酸バリウム、酢酸バリウムなどが好適であり、この中でも炭酸バリウム、塩化バリウム、水酸化バリウムがとくに好適である。また、塩化バリウムなどのハロゲン化物、硝酸塩、硫酸塩、酢酸塩などのバリウム塩化合物にNaOHやKOHなどのアルカリ金属の水酸化物を予め接触反応させ、水酸化バリウムを生成させ、これを用いることもできる。
上記のチタン化合物とバリウム化合物を接触させて固形物を形成させる方法については、従来の液相反応法を採用することができる。また液相反応法で調製する場合には、チタン化合物とバリウム化合物とを室温から200℃の液相で反応させてチタン酸バリウム得る。この場合に得られるチタン酸バリウムは立方晶(あるいは擬似立方晶)である。このようにして得られたチタン酸バリウムである固形物を800〜1100℃で加熱処理することによって固体反応物を得るが、この際、結晶系は正方晶に変換する。このように加熱処理して結晶系を正方晶としたチタン酸バリウムを誘電体材料として用いることによって、高い誘電特性が得られる。また上記のチタン化合物とバリウム化合物を接触させ、800〜1100℃で加熱処理し固体反応物を形成させる方法については、従来の固相反応法を採用することができる。チタン化合物とバリウム化合物とを固相反応法で調製する場合には、加熱処理により、チタン化合物とバリウム化合物とが反応し、正方晶で結晶性の高いチタン酸バリウムが生成する。
次に、具体的な反応法における効果について述べる。
固相反応法では、原料のチタン化合物としては酸化チタンを用い、またバリウム化合物としては炭酸バリウム、水酸化バリウムまたは酸化バリウムを用いることが好ましい。ここで用いられる酸化チタンは、通常BETによる比表面積が1〜100m/gであるが、より微粒のチタン酸バリウムを得るためには上記比表面積が10〜100m/gのものが好適である。また、チタン化合物とバリウム化合物とを、得られる固体反応物中のバリウム原子とチタン原子との比が1.000〜1.005になるように配合する。このチタン化合物とバリウム化合物とを混合、接触させ固形物を得、これを800〜1100℃で加熱処理(焼成)し、反応させ固体反応物を得る。得られた固体反応物は必要に応じてボールミルなどで粉砕して粒度を調整する。
一方、液相反応法では、従来の水熱法、低温液相反応法、シュウ酸法、アルコキシド法などが用いられる。上記のチタン化合物およびバリウム化合物のうち、水溶性の化合物を用いることが好ましく、それぞれ少なくとも1種を組合せて用い、これらの水溶液を接触させ固形物をまず調製する。その組合せは任意であるが、以下に好適な組合せを示す。
(1)四塩化チタンおよび塩化バリウム
(2)四塩化チタンおよび水酸化バリウム
(3)四塩化チタン、塩化バリウムおよび水酸化バリウム
(4)四塩化チタン、三塩化チタンおよび塩化バリウム
(5)四塩化チタン、三塩化チタン、塩化バリウムおよび水酸化バリウム
上記の中でもより微粒のチタン酸バリウム粉末を得るためには、液相反応法を採用することが好ましく、以下により好ましい方法を列挙する。
チタン化合物水溶液(以下「水溶液(I)」ということがある。)とバリウム化合物水溶液(以下「水溶液(II)」ということがある。)とを接触させて、まず固形物を得るが、この際、水溶液(I)および水溶液(II)はアルカリ性状態で接触させることが望ましい。具体的には、以下の方法を採用することができる。
(1)水溶液(I)と水溶液(II)とをアルカリ水溶液中に加えて接触させる。
(2)水溶液(I)と水溶液(II)とを混合し、この混合液をアルカリ水溶液と接触させる。
(3)水溶液(I)とバリウム化合物のアルカリ水溶液とを接触させる。
(4)水溶液(I)とバリウム化合物のアルカリ水溶液とを、アルカリ水溶液中に加えて接触させる。
上記の中でも、生産性および反応の均一性を考慮すると、上記(3)および(4)のように、バリウム化合物をアルカリ水溶液として予め調製したものを用いる方法が好ましい。この場合、アルカリ源としては、NaOHやKOHのようなアルカリ金属の水酸化物が用いられる。塩化バリウムのようなバリウム塩は、とくに酸性状態での溶解度が低く、四塩化チタンのような酸性のチタン化合物とバリウム塩の混合水溶液とを出発原料液とした場合、その混合水溶液の調製が困難であり、とくに混合水溶液中のチタン化合物およびバリウム塩の濃度には限界がある。具体的には、四塩化チタンと塩化バリウム混合水溶液とを調製した場合、金属イオンの合計濃度は、1.2mol/l程度であり、生産性に限度がある。
ここで、バリウム化合物を予めアルカリ化合物と接触させることによって、例えば塩化バリウムなどのハロゲン化物、硝酸塩、硫酸塩、酢酸塩などのバリウム塩化合物を、一旦水酸化バリウムに変換し、これをチタン化合物の水溶液(I)と接触させて反応させる。例えば、四塩化チタン水溶液と塩化バリウム水溶液とをアルカリ水溶液中に同時に接触させる方法や、四塩化チタンと塩化バリウムとの混合水溶液をアルカリ水溶液中に加えて接触反応させる方法では、得られる固形物中に塩素分が残留し易い。しかしながら、バリウム化合物を予めアルカリ水溶液とし、バリウム化合物を水酸化物に予め変換することによって、チタン化合物との反応がより均一に進行し、塩素分の少ないより高純度のチタン酸バリウムである固形物を得ることができる。
また、チタン化合物水溶液とバリウム化合物水溶液とを接触させる際には、チタン化合物とバリウム化合物とのモル比を0.8〜1.2に制御しながら接触させて固形物を調製することが望ましい。このように供給するチタン化合物とバリウム化合物とのモル比を制御することによって、チタン酸バリウム粉末の製造上反応が均一に起こり易くなることから、チタン酸バリウム粉末の均一性が向上する点で好ましい。
以下に、チタン酸バリウム粉末である固形物の調製方法の具体例として、液相反応法による好適な態様を説明する。この例は、チタン化合物としては四塩化チタン水溶液を用い、バリウム化合物のアルカリ水溶液を用いた例である。
四塩化チタンの濃度は0.1mol/l以上が適当であり、0.3mol/l以上とすると好ましく、0.4〜3.0mol/lとするとさらに好ましい。一方、バリウムイオンの濃度は0.05mol/l以上が適当であり、0.1〜2.0mol/lとすると好ましい。これらの好適範囲濃度の四塩化チタン水溶液(I)とバリウム化合物のアルカリ水溶液(II)と接触させる。バリウム化合物のアルカリ水溶液のアルカリ源としてはNaOHやKOHのようなアルカリ金属の水酸化物が用いられ、その濃度は、通常0.2〜15mol/lであり、上記のバリウム化合物を水酸化物に変換するのに十分な濃度、即ち、バリウムイオンの濃度以上の濃度とすることが好ましい。
次に、接触時および反応時のpHは13以上が適当であり、13.5以上とすると好ましく、13.8以上とするさらに好ましい。水溶液(II)のアルカリ濃度は、このような好適範囲の水素イオン濃度に保持されるよう調整しておく。反応中、このようにpHを所定値に保持するため、別系統からNaOH水溶液などのアルカリ水溶液を必要量供給することもできる。また、反応容器に所定濃度に調整したアルカリ水溶液を予め注入し、このアルカリ水溶液中に、上記水溶液(I)および水溶液(II)を加えて接触させる。この際のアルカリ水溶液は、水溶液(I)および水溶液(II)を加えた後、所定の反応温度となるように高目に加熱しておくことが望ましい。このように、反応中pHを一定値に保持することによって、均一な反応が確保され、結果としてバリウム原子とチタン原子との比が好適に制御される結果、均一なチタン酸バリウムである固形物を調製することができる。
さらに、水溶液(I)と水溶液(II)とを接触させて反応させる際には、チタン化合物とバリウム化合物とのモル比を0.8〜1.2に制御することが望ましい。このようにすることで、チタン化合やバリウム化合物の反応系内における絶対濃度を反応初期から反応終了まで、一定に保つことができ、これにより均一な反応を行うことができる。
また、水溶液(I)と水溶液(II)とを接触させて反応させる際の温度は、80〜100℃が適当であり、85〜95℃とするとより好ましい。なお、設定温度は、この好適温度範囲において、±1℃の範囲内で一定にすることが望ましい。反応容器内で水溶液(I)と水溶液(II)とを接触させ、撹拌を例えば数秒〜20分間の十分な時間行うことにより粒子状の固形物が生成する。この固形物の主な成分は、チタン酸バリウムである。生成した固形物は、反応中にスラリー状に連続的に抜き出すこともでき、または反応容器で一旦反応を終了した後、抜き出すこともできる。
このように生成した固形物を分離して800〜1100℃で加熱処理(焼成)を施して、固体反応物を得る。上記固体反応物をボールミルなどで粉砕して粒度を調製することが望ましく、粉砕して微粒にすることにより、この後の水洗処理の際、固体反応物が水によく分散され、均一に水洗されバリウム成分を除去することができる。
かくして得られた固体反応物を水洗し、製品であるチタン酸バリウム粉末を得ることができるが、水洗に用いる水は、溶存する炭酸ガスや酸素、また不純物成分を除去した純水が好ましい。水洗方法は種々の方法を採用することができる。例えば、攪拌機付の容器、またはボールミルや振動ミルなどで粉砕しながら洗浄することが好適であり、デカンテーションやろ過により数回水洗を行うことがより好ましい。このように本発明の方法では、上記固体反応物の表面に存在する未反応のバリウム化合物や余分なバリウム分を除去するように水洗する。しかしながら、過度な水洗により、固体反応物の内部のバリウム成分まで余分に除去してしまい、最終製品のBa/Tiが1以下と極端に低下した場合、結果として誘電体を形成した際の誘電特性を低下させるおそれがある。したがって、本発明の方法では、固体反応物中のバリウム成分の1〜10000ppm、好ましくは10〜5000ppm、特に好ましくは100〜3000ppmを水洗により除去することが望ましい。また、Ba/Tiが1.010に近くバリウム成分の比較的多い固体反応物の場合は、Ba/Tiが1.001付近になるように洗浄を行い、バリウム成分を除去する。Ba/Tiの比較的小さい固体反応物の場合は、洗浄によりバリウム成分を除去し過ぎBa/Tiが1以下にならないよう注意する。このようにして得られたチタン酸バリウム粉末は、必要に応じて乾燥する。このように粒子表面のバリウム成分を除去することによって、誘電体磁器組成物を形成する際、他の金属成分と均一に混合分散され、結果として誘電特性が向上する。
水洗する際の温度は、20〜80℃、好ましくは30〜70℃、より好ましくは40〜60℃の温度範囲である。水洗温度を40〜60℃にすることによって、未反応分のバリウムム化合物や余分なバリウム分をより効率的に除去することができる。
また、水洗する際のpHを10以下にすることによって、水中におけるチタン酸バリウム粉末の沈降速度が増加し、洗浄効率を向上させることができる。さらには、水洗する際の酸化チタン濃度は40wt%以下であり、好ましくは10〜30wt%、より好ましくは10〜20wt%である。このように酸化チタン濃度範囲を特定することによって、洗浄水する際のpHを10以下に保持することができ、より効率的に洗浄することができる。
本発明では、上記のようにして得られたチタン酸バリウム粉末を炭酸で処理することも好ましい態様である。炭酸処理の方法としては、(1)チタン化合物とバリウム化合物とを接触させて得た固形物を800〜1100℃で加熱処理して固体反応物を形成し、その後前記固体反応物を水洗し、その後固体反応物の水懸濁液中に所定量の炭酸ガスあるいは炭酸水溶液を投入し、炭酸を固体反応物に接触させ処理する方法、または(2)チタン化合物とバリウム化合物とを接触させて得た固形物を800〜1100℃で加熱処理して固体反応物を形成し、その後前記固体反応物を水洗し、その後乾燥し、必要に応じて粉砕し、その後炭酸ガスを乾燥した固体反応物に接触させ処理する方法、などが挙げられる。このような炭酸処理によって、得られたチタン酸バリウム粉末中にバリウム成分が安定化し、チタン酸バリウム粉末を積層セラミックコンデンサの誘電材料として使用するために水に分散させたりあるいはペーストにする際にバリウム原子とチタン原子の比が変化せず、結果として特性の優れた積層セラミックコンデンサをえることができる。
このようにして製造したチタン酸バリウム粉末は、粒径が1.0ミクロン以下であるが、粒径が0.05〜0.5μmであることが好ましく、0.05〜0.3μmであればさらに好ましい。またこのようなチタン酸バリウム粉末は上記粒径と相まって粒度分布が狭いので、結晶性も良好である。また、バリウム原子とチタン原子との比は0.990〜1.010とすることができ、1.003〜1.005とするとより好ましい。
上記のように本発明の方法で得られたチタン酸バリウム粉末は、誘電体材料に用いた際、比誘電率が高く、しかも誘電損失が少なく、さらには温度特性が良好である。したがって、このチタン酸バリウム粉末は、積層セラミックコンデンサ用の誘電体材料として好適である。
Embodiments of the present invention will be specifically described below.
In the present invention, as the titanium compound, at least one of oxide, halide, hydroxide, nitrate, sulfate, acetate, perchlorate, oxalate, carbonate, and alkoxide is used. Specific examples of the compound include titanium oxide, titanium hydroxide, titanium tetrachloride, titanium trichloride, titanium hydroxide, and titanyl sulfate. Among these, titanium oxide and titanium tetrachloride are particularly preferable.
As the barium compound, at least one of oxide, halide, hydroxide, nitrate, sulfate, acetate, perchlorate, oxalate, carbonate, and alkoxide is used. Specific examples of the compound include barium carbonate, barium chloride, barium hydroxide, barium nitrate, barium sulfate, and barium acetate. Among these, barium carbonate, barium chloride, and barium hydroxide are particularly preferable. In addition, barium salt compounds such as NaOH and KOH are previously contacted with halides such as barium chloride, barium salt compounds such as nitrates, sulfates and acetates to generate barium hydroxide, which is used. You can also.
A conventional liquid phase reaction method can be adopted as a method for forming the solid by bringing the titanium compound and the barium compound into contact with each other. Moreover, when preparing by a liquid phase reaction method, a titanium compound and a barium compound are made to react in the liquid phase of room temperature to 200 degreeC, and barium titanate is obtained. The barium titanate obtained in this case is cubic (or pseudo-cubic). The solid material obtained as described above is heat-treated at 800 to 1100 ° C. to obtain a solid reaction product. At this time, the crystal system is converted to tetragonal crystal. By using barium titanate whose crystal system is tetragonal by heat treatment as described above, a high dielectric characteristic can be obtained. Moreover, the conventional solid-phase reaction method can be employ | adopted about the method of making said titanium compound and a barium compound contact and heat-processing at 800-1100 degreeC, and forming a solid reactant. When a titanium compound and a barium compound are prepared by a solid phase reaction method, the titanium compound and the barium compound react with each other by heat treatment, and tetragonal and highly crystalline barium titanate is generated.
Next, the effect in a specific reaction method will be described.
In the solid phase reaction method, it is preferable to use titanium oxide as the raw material titanium compound and to use barium carbonate, barium hydroxide or barium oxide as the barium compound. The titanium oxide used here usually has a specific surface area by BET of 1 to 100 m 2 / g, but in order to obtain a finer barium titanate, the specific surface area of 10 to 100 m 2 / g is suitable. is there. Moreover, a titanium compound and a barium compound are mix | blended so that the ratio of the barium atom and titanium atom in a solid reaction material obtained may be 1.000-1.005. The titanium compound and the barium compound are mixed and contacted to obtain a solid, which is heated (baked) at 800 to 1100 ° C. and reacted to obtain a solid reactant. The obtained solid reactant is pulverized with a ball mill or the like as necessary to adjust the particle size.
On the other hand, in the liquid phase reaction method, a conventional hydrothermal method, a low temperature liquid phase reaction method, an oxalic acid method, an alkoxide method, or the like is used. Of the above titanium compounds and barium compounds, it is preferable to use water-soluble compounds, and at least one of them is used in combination, and these aqueous solutions are brought into contact with each other to first prepare a solid. Although the combination is arbitrary, the suitable combination is shown below.
(1) Titanium tetrachloride and barium chloride (2) Titanium tetrachloride and barium hydroxide (3) Titanium tetrachloride, barium chloride and barium hydroxide (4) Titanium tetrachloride, titanium trichloride and barium chloride (5) Tetrachloride Titanium, titanium trichloride, barium chloride, and barium hydroxide Among these, in order to obtain a finer barium titanate powder, it is preferable to adopt a liquid phase reaction method, and more preferable methods are listed below.
A titanium compound aqueous solution (hereinafter sometimes referred to as “aqueous solution (I)”) and a barium compound aqueous solution (hereinafter sometimes referred to as “aqueous solution (II)”) are contacted to obtain a solid first. The aqueous solution (I) and the aqueous solution (II) are preferably contacted in an alkaline state. Specifically, the following method can be employed.
(1) The aqueous solution (I) and the aqueous solution (II) are added and brought into contact with an alkaline aqueous solution.
(2) The aqueous solution (I) and the aqueous solution (II) are mixed, and this mixed solution is brought into contact with an alkaline aqueous solution.
(3) The aqueous solution (I) is brought into contact with an alkaline aqueous solution of a barium compound.
(4) The aqueous solution (I) and the alkaline aqueous solution of barium compound are added to the alkaline aqueous solution and brought into contact with each other.
Among these, in consideration of productivity and reaction uniformity, a method using a barium compound prepared in advance as an alkaline aqueous solution as in (3) and (4) above is preferable. In this case, an alkali metal hydroxide such as NaOH or KOH is used as the alkali source. Barium salts such as barium chloride have a particularly low solubility in an acidic state, and when a mixed aqueous solution of an acidic titanium compound such as titanium tetrachloride and a barium salt is used as a starting raw material liquid, it is difficult to prepare the mixed aqueous solution. In particular, the concentration of titanium compound and barium salt in the mixed aqueous solution is limited. Specifically, when a titanium tetrachloride and barium chloride mixed aqueous solution is prepared, the total concentration of metal ions is about 1.2 mol / l, and productivity is limited.
Here, by previously bringing the barium compound into contact with an alkali compound, for example, a barium salt compound such as a halide such as barium chloride, nitrate, sulfate or acetate is converted into barium hydroxide, and this is converted into a titanium compound. The reaction is brought into contact with the aqueous solution (I). For example, in a method in which an aqueous solution of titanium tetrachloride and an aqueous solution of barium chloride are simultaneously brought into contact with an alkaline aqueous solution, or a method in which a mixed aqueous solution of titanium tetrachloride and barium chloride is added to an aqueous alkaline solution to cause a contact reaction, Chlorine tends to remain on the surface. However, by converting the barium compound into an alkaline aqueous solution in advance and converting the barium compound into a hydroxide in advance, the reaction with the titanium compound proceeds more uniformly, and the solid matter is a higher-purity barium titanate with less chlorine content. Can be obtained.
Further, when the titanium compound aqueous solution and the barium compound aqueous solution are brought into contact with each other, it is desirable to prepare a solid by bringing them into contact with each other while controlling the molar ratio of the titanium compound and the barium compound to 0.8 to 1.2. By controlling the molar ratio of the titanium compound and barium compound to be supplied in this way, the reaction in the production of the barium titanate powder is likely to occur uniformly, which is preferable in terms of improving the uniformity of the barium titanate powder. .
Below, the suitable aspect by a liquid phase reaction method is demonstrated as a specific example of the preparation method of the solid substance which is a barium titanate powder. In this example, a titanium tetrachloride aqueous solution is used as the titanium compound, and an alkaline aqueous solution of a barium compound is used.
The concentration of titanium tetrachloride is suitably 0.1 mol / l or more, preferably 0.3 mol / l or more, and more preferably 0.4 to 3.0 mol / l. On the other hand, the concentration of barium ions is suitably 0.05 mol / l or more, preferably 0.1 to 2.0 mol / l. The titanium tetrachloride aqueous solution (I) having a suitable range of concentration is brought into contact with an alkaline aqueous solution (II) of a barium compound. An alkali metal hydroxide such as NaOH or KOH is used as the alkali source of the aqueous alkali solution of the barium compound, and its concentration is usually 0.2 to 15 mol / l, and the barium compound is converted into a hydroxide. It is preferable that the concentration is sufficient for conversion, that is, a concentration equal to or higher than that of barium ions.
Next, the pH at the time of contact and reaction is suitably 13 or more, preferably 13.5 or more, and more preferably 13.8 or more. The alkali concentration of the aqueous solution (II) is adjusted so that the hydrogen ion concentration is maintained in such a preferable range. In order to maintain the pH at a predetermined value during the reaction, a necessary amount of an aqueous alkali solution such as an aqueous NaOH solution can be supplied from another system. In addition, an aqueous alkali solution adjusted to a predetermined concentration is poured into the reaction vessel in advance, and the aqueous solution (I) and the aqueous solution (II) are added and brought into contact with the alkaline aqueous solution. In this case, the aqueous alkali solution is preferably heated to a predetermined reaction temperature after adding the aqueous solution (I) and the aqueous solution (II). Thus, by maintaining the pH at a constant value during the reaction, a uniform reaction is ensured, and as a result, the ratio of barium atoms to titanium atoms is suitably controlled, resulting in a solid material that is uniform barium titanate. Can be prepared.
Furthermore, when making aqueous solution (I) and aqueous solution (II) contact and react, it is desirable to control the molar ratio of a titanium compound and a barium compound to 0.8-1.2. By doing in this way, the absolute concentration in the reaction system of a titanium compound or a barium compound can be kept constant from the initial stage of the reaction to the end of the reaction, whereby a uniform reaction can be performed.
Moreover, 80-100 degreeC is suitable for the temperature at the time of making aqueous solution (I) and aqueous solution (II) contact, and it is more preferable to set it as 85-95 degreeC. It is desirable that the set temperature be constant within a range of ± 1 ° C. within this preferred temperature range. By bringing the aqueous solution (I) and the aqueous solution (II) into contact with each other in the reaction vessel and stirring for a sufficient time, for example, several seconds to 20 minutes, a particulate solid is generated. The main component of this solid is barium titanate. The produced solid matter can be continuously extracted in the form of a slurry during the reaction, or can be extracted after the reaction is once completed in the reaction vessel.
The solid thus produced is separated and subjected to heat treatment (baking) at 800 to 1100 ° C. to obtain a solid reactant. It is desirable to prepare the particle size by pulverizing the solid reactant with a ball mill or the like. The barium component can be removed.
The solid reaction product thus obtained can be washed with water to obtain a product barium titanate powder, but the water used for washing is preferably pure water from which dissolved carbon dioxide, oxygen, and impurity components have been removed. Various methods can be adopted as the water washing method. For example, it is preferable to wash while pulverizing with a container equipped with a stirrer, a ball mill, a vibration mill or the like, and it is more preferable to wash with water several times by decantation or filtration. Thus, in the method of the present invention, washing is performed so as to remove unreacted barium compounds and excess barium present on the surface of the solid reactant. However, excessive washing with water removes even the barium component inside the solid reaction product, and if the final product Ba / Ti is extremely reduced to 1 or less, the resulting dielectric characteristics when the dielectric is formed. May be reduced. Therefore, in the method of the present invention, it is desirable to remove 1 to 10,000 ppm, preferably 10 to 5000 ppm, particularly preferably 100 to 3000 ppm of the barium component in the solid reactant by washing with water. Further, in the case of a solid reaction product having a Ba / Ti value close to 1.010 and a relatively large amount of barium component, the barium component is removed by washing so that the Ba / Ti value is about 1.001. In the case of a solid reactant having a relatively small Ba / Ti, care should be taken that the barium component is not excessively removed by washing so that the Ba / Ti does not become 1 or less. The barium titanate powder thus obtained is dried as necessary. By removing the barium component on the particle surface in this manner, when the dielectric ceramic composition is formed, it is uniformly mixed and dispersed with other metal components, resulting in improved dielectric properties.
The temperature at the time of washing with water is 20 to 80 ° C, preferably 30 to 70 ° C, more preferably 40 to 60 ° C. By setting the washing temperature to 40 to 60 ° C., the unreacted barium compound and excess barium can be more efficiently removed.
Moreover, by setting the pH when washing with water to 10 or less, the sedimentation rate of the barium titanate powder in water can be increased, and the washing efficiency can be improved. Furthermore, the titanium oxide concentration at the time of washing with water is 40 wt% or less, preferably 10 to 30 wt%, more preferably 10 to 20 wt%. By specifying the titanium oxide concentration range in this way, the pH at the time of washing water can be maintained at 10 or less, and washing can be performed more efficiently.
In the present invention, it is also a preferred embodiment to treat the barium titanate powder obtained as described above with carbonic acid. As a carbonic acid treatment method, (1) a solid obtained by contacting a titanium compound and a barium compound is heated at 800 to 1100 ° C. to form a solid reactant, and then the solid reactant is washed with water, Thereafter, a predetermined amount of carbon dioxide gas or an aqueous solution of carbonic acid is introduced into the aqueous suspension of the solid reactant, and the carbon dioxide is brought into contact with the solid reactant for treatment, or (2) the titanium compound and the barium compound are brought into contact with each other. The solid product is heat-treated at 800 to 1100 ° C. to form a solid reactant, then the solid reactant is washed with water, then dried, pulverized as necessary, and then carbon dioxide gas is converted into a dried solid reactant. The method of making it contact is mentioned. By such carbonic acid treatment, the barium component is stabilized in the obtained barium titanate powder. When the barium titanate powder is dispersed in water or used as a paste for use as a dielectric material of a multilayer ceramic capacitor, barium is used. The ratio of atoms to titanium atoms does not change, and as a result, a multilayer ceramic capacitor having excellent characteristics can be obtained.
The barium titanate powder thus produced has a particle size of 1.0 microns or less, preferably 0.05 to 0.5 μm, and 0.05 to 0.3 μm. Further preferred. In addition, such a barium titanate powder has a narrow particle size distribution coupled with the above particle size, and therefore has good crystallinity. The ratio of barium atoms to titanium atoms can be 0.990 to 1.010, more preferably 1.003 to 1.005.
As described above, the barium titanate powder obtained by the method of the present invention has a high relative dielectric constant, low dielectric loss, and good temperature characteristics when used as a dielectric material. Therefore, this barium titanate powder is suitable as a dielectric material for a multilayer ceramic capacitor.

以下、実施例により本発明を具体的に説明する。  Hereinafter, the present invention will be described specifically by way of examples.

撹拌装置を備えた2リットルのSUS製反応容器に、0.92規定のNaOH水溶液を注入し、90℃に保持した。次いで、40℃に加熱保持したTiCl水溶液(TiCl濃度:0.472モル/l)と、95℃に保持したBaCl/NaOH水溶液(BaCl濃度:0.278モル/l、NaOH濃度:2.73モル/l)とを、TiCl水溶液:77cc/分、BaCl/NaOH水溶液:154cc/分の流量で、反応容器内に連続的に供給し、撹拌しながら90℃に保持した。供給したBaCl/TiClのモル比は1.180であった。
次いで、生成したチタン酸バリウムを含むスラリーを熟成槽に移送し、撹拌下、90℃で60分間保持した。この後、デカンテーションを施して上澄みを沈殿物から除去し、さらに遠心分離を行い、チタン酸バリウム粉末を回収した。次に、回収したチタン酸バリウム粉末を常温にて水で洗浄し、その後、真空雰囲気下において200℃で加熱することにより乾燥し、バリウム原子とチタン原子との比が1.005の未焼成チタン酸バリウム粉末を得た。
上記未焼成チタン酸バリウム粉末を1000℃で1.5時間加熱処理した後、ボールミルによって加熱処理したチタン酸バリウム粉末300gに、純水700mlを加え、30分粉砕後、常温でデカンテーションを繰り返し施して上澄みを除去し、固形物を回収してスプレードライ乾燥機にて乾燥した。
A 0.92 N aqueous NaOH solution was poured into a 2 liter SUS reaction vessel equipped with a stirrer and maintained at 90 ° C. Next, a TiCl 4 aqueous solution (TiCl 4 concentration: 0.472 mol / l) held at 40 ° C. and a BaCl 2 / NaOH aqueous solution (BaCl 2 concentration: 0.278 mol / l, NaOH concentration: 95 ° C.) 2.73 mol / l) was continuously fed into the reaction vessel at a flow rate of TiCl 4 aqueous solution: 77 cc / min and BaCl 2 / NaOH aqueous solution: 154 cc / min, and maintained at 90 ° C. with stirring. The fed BaCl 2 / TiCl 4 molar ratio was 1.180.
Next, the produced slurry containing barium titanate was transferred to an aging tank, and kept at 90 ° C. for 60 minutes with stirring. Thereafter, decantation was performed to remove the supernatant from the precipitate, and further centrifugation was performed to recover barium titanate powder. Next, the recovered barium titanate powder is washed with water at room temperature, and then dried by heating at 200 ° C. in a vacuum atmosphere, whereby unburned titanium having a ratio of barium atoms to titanium atoms of 1.005 Barium acid powder was obtained.
After heat-treating the unfired barium titanate powder at 1000 ° C. for 1.5 hours, 700 ml of pure water is added to 300 g of the barium titanate powder heat-treated by a ball mill, pulverized for 30 minutes, and repeatedly decanted at room temperature. The supernatant was removed, and the solid was collected and dried with a spray dryer.

実施例1同様に未焼成チタン酸バリウムを1000℃で1.5時間加熱処理した後、ボールミルで粉砕した後、実施例1では常温で行ったデカンテーションを60℃で実施して上澄みを除去し、固形物を回収してスプレードライ乾燥機にて乾燥した。
[比較例1]
ビーズミルによって加熱処理後したチタン酸バリウム粉末を粉砕後、デカンテーションを施さず、そのままスプレードライ乾燥機にて乾燥した以外は実施例1と同様の方法でチタン酸バリウム粉末を得た。
[比較例2]
攪拌装置を備えた2リットルのSUS製反応容器に0.92規定のNaOH水溶液を注入し、90℃に保持した。
一方、40℃に加熱保持したTiCl水溶液と予め未溶解分を除去したBaCl水溶液とを混合し、BaCl/TiClのモル比が1.180のTiCl/BaCl混合水溶液を調整した。次いで、この混合水溶液をポンプにより77cc/minの流量で反応容器に連続的に供給した。その際、反応容器内の混合水溶液の温度を約90℃で一定とした。次いで、生成したチタン酸バリウムを含むスラリーを実施例同様に熟成、洗浄、乾燥させて未焼成チタン酸バリウム粉末を得た。
上記未焼成チタン酸バリウムを1000℃で1.5時間加熱処理した後、ボールミルによって加熱処理したチタン酸バリウム粉末300gに純水700mlを加え60℃に保持し、10質量%酢酸水溶液を添加してpHを約8.0に調整し約1時間保持した。この後、固形物を回収してスプレードライ乾燥機にて乾燥した。
このようにして得られた上記実施例および比較例にかかるチタン酸バリウム粉末につき、それらの平均粒径、バリウム原子とチタン原子との比、および誘電特性を測定した。具体的には、チタン酸バリウム粉末の平均粒径はBET法により求めた。また、バリウム原子とチタン原子との比(Ba/Ti比)は蛍光X線分析により求めた。さらに、平均粒径は、電子顕微鏡写真によって測定して求めた。
また、実施例1、2については、ボールミルで粉砕処理した後のデカンテーションを繰り返した回数、すなわち洗浄回数と、そのときのBa/Ti原子比を求めた。
一方、誘電特性についての評価は以下のように実施した。
チタン酸バリウム粉末100モルに対し、酸化マグネシウム2モル、酸化ディスプロシウム2モル、炭酸バリウム5モル、炭酸カルシウム4モル、酸化ケイ素3モル、炭酸マンガン0.4モル、酸化バナジウム0.05モルおよび酸化モリブデン0.1モルを秤量し、これらの粉末を、ジルコニアボールを用いたボールミルにて16時間湿式混合粉砕して得られた混合粉砕品を成形し、還元雰囲気で1300℃で2時間焼成して厚さ1.14mmの成形体を作製した。その後焼成した成形体について比誘電率、誘電損失(tanδ)および温度特性(TCC)を測定した。
(1)比誘電率、誘電損失(tanδ)については、LCRメーター(1KHz、1V)により測定した。
(2)容量の温度特性(TCC)については、LCRメーターにより、−55〜125℃について測定電圧1Vで容量を測定し、容量変化率が±15%以内(基準温度25℃)を満足するか否かを調べた(X7R特性)。上記した各評価事項、すなわち、平均粒径、バリウム原子とチタン原子との比、および誘電特性の結果を第1表および第2表、ならびに第1図及び第2図に示す。なお、第1表の実施例1および実施例2のBa/Ti原子比は、デカンテーション回数3回のときの値である。

Figure 2004092071
Figure 2004092071
第1表によれば、実施例のチタン酸バリウム粉末は、Ba/Ti原子比がより1.000に近く、余分なバリウム分が除去されていることがわかる。酸洗浄を施した比較例2のチタン酸バリウム粉末はBa/Ti原子比が1.000以下となり、バリウム分が過剰に溶出していることがわかる。第1表および第2図より、水洗(デカンテーション)を高温で実施することにより、過剰なバリウム分がより効率的に除去されていることがわかる。また、第2表および第1図より、実施例1のチタン酸バリウム粉末は、比較例のチタン酸バリウム粉末に比べ比誘電率に優れていることが確認された。In the same manner as in Example 1, unbaked barium titanate was heat-treated at 1000 ° C. for 1.5 hours and then pulverized by a ball mill. In Example 1, decantation performed at room temperature was performed at 60 ° C. to remove the supernatant. The solid was collected and dried with a spray dryer.
[Comparative Example 1]
A barium titanate powder was obtained in the same manner as in Example 1 except that the barium titanate powder subjected to the heat treatment by the bead mill was pulverized and then decanted and directly dried in a spray dryer.
[Comparative Example 2]
A 0.92 N aqueous NaOH solution was poured into a 2 liter SUS reaction vessel equipped with a stirrer and maintained at 90 ° C.
On the other hand, a TiCl 4 aqueous solution heated to 40 ° C. and a BaCl 2 aqueous solution from which undissolved components had been removed were mixed to prepare a TiCl 4 / BaCl 2 mixed aqueous solution having a BaCl 2 / TiCl 4 molar ratio of 1.180. . Subsequently, this mixed aqueous solution was continuously supplied to the reaction vessel at a flow rate of 77 cc / min by a pump. At that time, the temperature of the mixed aqueous solution in the reaction vessel was kept constant at about 90 ° C. Next, the produced slurry containing barium titanate was aged, washed and dried in the same manner as in Example to obtain an unfired barium titanate powder.
After heat-treating the unfired barium titanate at 1000 ° C. for 1.5 hours, 700 ml of pure water was added to 300 g of the barium titanate powder heat-treated by a ball mill and maintained at 60 ° C., and a 10% by mass acetic acid aqueous solution was added. The pH was adjusted to about 8.0 and held for about 1 hour. Thereafter, the solid matter was collected and dried with a spray dryer.
The barium titanate powders according to the above Examples and Comparative Examples thus obtained were measured for their average particle size, ratio of barium atoms to titanium atoms, and dielectric properties. Specifically, the average particle size of the barium titanate powder was determined by the BET method. The ratio of barium atoms to titanium atoms (Ba / Ti ratio) was determined by fluorescent X-ray analysis. Furthermore, the average particle diameter was determined by measuring with an electron micrograph.
For Examples 1 and 2, the number of times the decantation after pulverizing with a ball mill was repeated, that is, the number of washings and the Ba / Ti atomic ratio at that time were obtained.
On the other hand, the dielectric properties were evaluated as follows.
For 100 mol of barium titanate powder, 2 mol of magnesium oxide, 2 mol of dysprosium oxide, 5 mol of barium carbonate, 4 mol of calcium carbonate, 3 mol of silicon oxide, 0.4 mol of manganese carbonate, 0.05 mol of vanadium oxide and 0.1 mol of molybdenum oxide is weighed, and a mixed pulverized product obtained by wet mixing and pulverizing these powders with a ball mill using zirconia balls for 16 hours is formed and fired at 1300 ° C. for 2 hours in a reducing atmosphere. Thus, a molded body having a thickness of 1.14 mm was produced. Then, the relative permittivity, dielectric loss (tan δ) and temperature characteristic (TCC) of the fired molded body were measured.
(1) The relative dielectric constant and dielectric loss (tan δ) were measured with an LCR meter (1 KHz, 1 V).
(2) Regarding the temperature characteristics of the capacity (TCC), whether the capacity change rate is within ± 15% (reference temperature 25 ° C.) when the capacity is measured with a measurement voltage of 1 V at −55 to 125 ° C. using an LCR meter. Whether or not (X7R characteristic) was investigated. The above evaluation items, that is, the average particle diameter, the ratio of barium atoms to titanium atoms, and the results of dielectric properties are shown in Tables 1 and 2, and FIGS. 1 and 2. The Ba / Ti atomic ratios of Example 1 and Example 2 in Table 1 are values when the number of decantations is three.
Figure 2004092071
Figure 2004092071
According to Table 1, it can be seen that the barium titanate powder of the example has a Ba / Ti atomic ratio closer to 1.000, and excess barium content is removed. It can be seen that the barium titanate powder of Comparative Example 2 subjected to the acid cleaning has a Ba / Ti atomic ratio of 1.000 or less, and the barium content is excessively eluted. From Table 1 and FIG. 2, it can be seen that the excess barium content is more efficiently removed by carrying out water washing (decantation) at a high temperature. Further, from Table 2 and FIG. 1, it was confirmed that the barium titanate powder of Example 1 was superior in relative dielectric constant compared to the barium titanate powder of the comparative example.

Claims (11)

チタン化合物とバリウム化合物とを接触させて得た固形物を800〜1100℃で加熱処理して固体反応物を形成し、その後前記固体反応物を水洗することを特徴とするチタン酸バリウム粉末の製造方法。Production of barium titanate powder characterized in that a solid product obtained by contacting a titanium compound and a barium compound is heated at 800 to 1100 ° C. to form a solid reaction product, and then the solid reaction product is washed with water. Method. 前記水洗を20〜80℃の範囲で実施することを特徴とする請求項1に記載のチタン酸バリウムの製造方法。The method for producing barium titanate according to claim 1, wherein the washing with water is carried out in a range of 20 to 80 ° C. 前記固体反応物を、チタン化合物水溶液とバリウム化合物とをアルカリ存在下で接触させて得た固形物を800〜1100℃で加熱処理して形成することを特徴とする請求項1に記載のチタン酸バリウム粉末の製造方法。2. The titanic acid according to claim 1, wherein the solid reactant is formed by heat-treating a solid obtained by contacting a titanium compound aqueous solution and a barium compound in the presence of an alkali at 800 to 1100 ° C. 3. Production method of barium powder. 前記固体反応物を、アルカリ水溶液にチタン化合物水溶液とバリウム化合物のアルカリ水溶液とを加えて得た固形物を800〜1100℃で加熱処理して形成することを特徴とする請求項1に記載のチタン酸バリウム粉末の製造方法。2. The titanium according to claim 1, wherein the solid reactant is formed by heat-treating a solid obtained by adding an aqueous titanium compound solution and an aqueous alkaline solution of a barium compound to an alkaline aqueous solution at 800 to 1100 ° C. 3. Method for producing barium acid powder. 前記チタン化合物およびバリウム化合物が、それぞれ、酸化物、ハロゲン化物、水酸化物、硝酸塩、硫酸塩、酢酸塩、過塩素酸塩、シュウ酸塩、炭酸塩、およびアルコキシドの少なくとも1種類であることを特徴とする請求項1〜4のいずれかに記載のチタン酸バリウム粉末の製造方法。The titanium compound and the barium compound are each at least one of oxide, halide, hydroxide, nitrate, sulfate, acetate, perchlorate, oxalate, carbonate, and alkoxide. The manufacturing method of the barium titanate powder in any one of Claims 1-4 characterized by the above-mentioned. 前記チタン化合物が、四塩化チタンであることを特徴とする請求項5に記載のチタン酸バリウム粉末の製造方法。6. The method for producing barium titanate powder according to claim 5, wherein the titanium compound is titanium tetrachloride. 前記バリウム化合物が、塩化バリウムと水酸化バリウムとのうちの少なくとも1種類であることを特徴とする請求項5または6に記載のチタン酸バリウム粉末の製造方法。The method for producing barium titanate powder according to claim 5 or 6, wherein the barium compound is at least one of barium chloride and barium hydroxide. 前記固体反応物を、酸化チタンと炭酸バリウムとを混合して接触させた後、800〜1100℃で加熱処理して形成することを特徴とする請求項1に記載のチタン酸バリウム粉末の製造方法。2. The method for producing barium titanate powder according to claim 1, wherein the solid reactant is formed by mixing titanium oxide and barium carbonate and bringing them into contact with each other, and then heat-treating at 800 to 1100 ° C. 3. . 前記固体反応物のバリウム原子とチタン原子との比が1.001〜1.010であることを特徴とする請求項1〜8のいずれかに記載のチタン酸バリウム粉末の製造方法。The method for producing barium titanate powder according to any one of claims 1 to 8, wherein a ratio of barium atoms to titanium atoms in the solid reactant is 1.001 to 1.010. 加熱処理した後、粉砕処理を行うことを特徴とする請求項1〜9のいずれかに記載のチタン酸バリウム粉末の製造方法。The method for producing a barium titanate powder according to any one of claims 1 to 9, wherein a pulverization treatment is performed after the heat treatment. 平均粒径が0.5μm以下であることを特徴とする請求項1〜10のいずれかに記載のチタン酸バリウム粉末の製造方法。The method for producing barium titanate powder according to any one of claims 1 to 10, wherein the average particle size is 0.5 µm or less.
JP2005505443A 2003-04-17 2004-04-15 Method for producing barium titanate powder Expired - Fee Related JP4643443B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003112704 2003-04-17
JP2003112704 2003-04-17
PCT/JP2004/005377 WO2004092071A1 (en) 2003-04-17 2004-04-15 Method for producing barium titanate powder

Publications (2)

Publication Number Publication Date
JPWO2004092071A1 true JPWO2004092071A1 (en) 2006-07-06
JP4643443B2 JP4643443B2 (en) 2011-03-02

Family

ID=33296063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005505443A Expired - Fee Related JP4643443B2 (en) 2003-04-17 2004-04-15 Method for producing barium titanate powder

Country Status (3)

Country Link
JP (1) JP4643443B2 (en)
TW (1) TW200424129A (en)
WO (1) WO2004092071A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637502A1 (en) * 2004-09-14 2006-03-22 Kerr-McGee Pigments GmbH Finely divided earth alkali metal titanates and method for their production using particles of titanium oxide hydrate
JP5423303B2 (en) * 2009-10-09 2014-02-19 株式会社村田製作所 Method for producing dielectric ceramic composition
JP5663907B2 (en) * 2010-03-09 2015-02-04 株式会社村田製作所 Manufacturing method of barium titanate ceramic
CN101921106B (en) * 2010-06-29 2012-11-14 上海大学 Preparation method of (Ba, Sr)TiO3 nanometer/micrometer/nanometer laminated structure ceramics
JP6502092B2 (en) * 2014-12-26 2019-04-17 太陽誘電株式会社 Multilayer ceramic capacitor
JP2022181541A (en) * 2021-05-26 2022-12-08 Tdk株式会社 Dielectric composition and laminated ceramic electronic component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112424A (en) * 1986-10-30 1988-05-17 Taiyo Yuden Co Ltd Production of fine powder of barium titanate crystal
JPH0339014B2 (en) * 1982-08-25 1991-06-12 Sony Corp
JPH0573696B2 (en) * 1984-12-21 1993-10-14 Asahi Chemical Ind
JPH10338524A (en) * 1997-06-06 1998-12-22 Taiyo Yuden Co Ltd Production of barium titanate powder
JP2002211926A (en) * 2000-11-13 2002-07-31 Toda Kogyo Corp Spherical barium titanate particulate powder and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073696B2 (en) * 2009-02-26 2012-11-14 東京エレクトロン株式会社 Processing equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339014B2 (en) * 1982-08-25 1991-06-12 Sony Corp
JPH0573696B2 (en) * 1984-12-21 1993-10-14 Asahi Chemical Ind
JPS63112424A (en) * 1986-10-30 1988-05-17 Taiyo Yuden Co Ltd Production of fine powder of barium titanate crystal
JPH10338524A (en) * 1997-06-06 1998-12-22 Taiyo Yuden Co Ltd Production of barium titanate powder
JP2002211926A (en) * 2000-11-13 2002-07-31 Toda Kogyo Corp Spherical barium titanate particulate powder and method for producing the same

Also Published As

Publication number Publication date
WO2004092071A1 (en) 2004-10-28
JP4643443B2 (en) 2011-03-02
TW200424129A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
JP4310318B2 (en) Method for producing dielectric ceramic powder, and multilayer ceramic capacitor produced using the ceramic powder
KR100845216B1 (en) Spherical tetragonal barium titanate particles and process for producing the same
JP4522025B2 (en) Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component
JP4096152B2 (en) Dielectric composition
JP4552419B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP4582973B2 (en) Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component
JP3804474B2 (en) Method for producing ceramic raw material powder
JP2008105870A (en) Barium titanate powder, dielectric porcelain composition and electronic component
KR20210078011A (en) Manufacturing method of dielectric ceramic composition and dielectric ceramic composition manufactured by the same
JP5573729B2 (en) Method for producing perovskite complex oxide
JP4862501B2 (en) Dielectric ceramic, manufacturing method thereof and multilayer ceramic capacitor
JP4643443B2 (en) Method for producing barium titanate powder
JP2012517955A (en) Sintered precursor powder for dielectric production and method for producing the same
JP5423303B2 (en) Method for producing dielectric ceramic composition
KR101142251B1 (en) Barium titanate powder coated oxide layer and method for fabricating the same
JP2012206890A (en) Semiconductor ceramic, and multilayer semiconductor ceramic capacitor
JP2007261912A (en) Barium titanate powder and its manufacture process
KR101318855B1 (en) Method for manufacturing composite oxide powder
JPH0660721A (en) Dielectric porcelain and its manufacture
KR102548437B1 (en) Complex perovskite metal oxide nanopowder and dielectric ceramics using the same
JP2006206363A (en) Barium titanate powder and method for manufacturing the same
JP2002134350A (en) Laminated ceramic capacitor and its manufacturing method
JP4441306B2 (en) Method for producing calcium-doped barium titanate
KR100555400B1 (en) The Preparation of Barium Titanate based powder with dielective composition by oxalate snythesis
JP2001335805A (en) Coated metal powder, its production method, coated metal powder paste and ceramic multilayer parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees