JPWO2004090963A1 - Polishing pad, manufacturing method thereof, and polishing method using the same - Google Patents

Polishing pad, manufacturing method thereof, and polishing method using the same Download PDF

Info

Publication number
JPWO2004090963A1
JPWO2004090963A1 JP2005505261A JP2005505261A JPWO2004090963A1 JP WO2004090963 A1 JPWO2004090963 A1 JP WO2004090963A1 JP 2005505261 A JP2005505261 A JP 2005505261A JP 2005505261 A JP2005505261 A JP 2005505261A JP WO2004090963 A1 JPWO2004090963 A1 JP WO2004090963A1
Authority
JP
Japan
Prior art keywords
polishing
polishing pad
fiber
polished
pad according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005505261A
Other languages
Japanese (ja)
Inventor
鈴木 雅雄
雅雄 鈴木
中川 宏
宏 中川
吉田 誠人
誠人 吉田
西山 雅也
雅也 西山
島村 泰夫
泰夫 島村
平西 智雄
智雄 平西
芳紀 室川
芳紀 室川
保仁 岩月
保仁 岩月
高橋 克治
克治 高橋
政信 向田
政信 向田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2004090963A1 publication Critical patent/JPWO2004090963A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0027Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for by impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

有機繊維を含む繊維と、該繊維を保持しているマトリックス樹脂とからなり、少なくともドレッシング後に、被研磨物側表面に少なくとも有機繊維が露出している研磨パッド。これにより、被研磨物の微細な研磨傷の発生を抑制でき、低荷重で平坦な研磨を行うことができる。また、光学的な手法による被研磨物の研磨状態の検知システムにより、被研磨物の研磨終点を研磨傷なく管理できる。このため、例えば半導体装置の製造工程において、層間絶縁膜への負荷が小さく、かつ平坦性にも優れた研磨が行え、次世代のデュアルダマシン法を容易に実施することが可能となる。A polishing pad comprising a fiber containing organic fibers and a matrix resin holding the fibers, and at least the organic fibers are exposed on the surface of the object to be polished at least after dressing. Thereby, generation | occurrence | production of the fine grinding | polishing damage | wound of a to-be-polished object can be suppressed, and flat grinding | polishing can be performed by low load. Further, the polishing end point of the object to be polished can be managed without polishing scratches by the system for detecting the polishing state of the object to be polished by an optical method. For this reason, for example, in the manufacturing process of a semiconductor device, polishing with a low load on the interlayer insulating film and excellent flatness can be performed, and the next generation dual damascene method can be easily performed.

Description

本発明は、半導体素子製造技術等における化学的機械的研磨(CMP)や、ハードディスク製造技術における精密研磨等に使用される研磨パッドとその製造方法とその研磨パッドを用いた研磨方法に関する。  The present invention relates to a polishing pad used for chemical mechanical polishing (CMP) in semiconductor device manufacturing technology and the like, precision polishing in hard disk manufacturing technology, a manufacturing method thereof, and a polishing method using the polishing pad.

現在の超大規模集積回路では実装密度を高める傾向にあり、種々の微細加工技術が研究開発されている。すでにデザインルールはサブハーフミクロンオーダーになっている。このような厳しい微細化の要求を満足するために開発されている技術のひとつにCMP(ケミカルメカニカルポリッシング)技術がある。この技術は、半導体装置の製造工程において、露光を施す層を完全に平坦化し、露光技術の負担を軽減し、製造歩留まりを高いレベルで安定させることに寄与し、次のような研磨を実施するものである。被研磨物を研磨パッドに押し当て、スラリ状のCMP研磨液を被研磨物と研磨パッドの間に供給しながら、研磨パッドを被研磨物との間で相対的に摺動させることにより、被研磨物表面の膜を所要量だけ、精密に除去する。そのため、たとえば、層間絶縁膜、BPSG膜の平坦化、シャロー・トレンチ分離等を行う際に必須となる技術である。
これらのCMP技術に供される研磨パッドには、発泡あるいは非発泡の有機樹脂製研磨パッドが使用されてきた(日本特表平8−511210号公報、特許請求の範囲及び発明の背景参照)。例えば、同心円状、あるいは格子状の溝を形成した発泡ウレタン樹脂シートが使用されるのが一般的であった。
ここで、砥粒並びに研磨くずによる研磨面への損傷(研磨傷)が問題となっている。通常の発泡あるいは非発泡の有機樹脂製研磨パッドの場合、研磨傷を低減するには研磨パッドの硬度を低くすることが非常に有効である。しかしこの硬度を低くすると研磨速度を低減し、さらに、トレンチ部のディッシングも悪化させる傾向にある。これらを同時に満足することは困難であった。
一方、配線プロセスは初期のAl配線から、現在は配線金属に電気抵抗の低いCu、層間絶縁膜に低誘電率材料を用いるデュアルダマシンによる埋め込み配線が主流となってきている。
かかるデュアルダマシン法において、研磨液の選択に加え研磨パッドの選択はきわめて重要となってきている。特に、層間絶縁膜に比較して金属が化学反応性に富み、かつ柔らかいことから、研磨傷やコロージョンによる欠陥を生じやすいからである。一方、ディッシングは変形しやすさ、すなわち弾性率が小さいものほど大きい。しかし、パッドの弾性率を高めると一般的にパッド硬度が向上するので、上記研磨傷等の欠陥の原因となる。
また、近年進められている低誘電率材料の層間絶縁膜への適用は、絶縁層の機械的特性の低下や金属との密着性の低下を伴い、研磨時の欠陥発生の要因となっているため、より研磨時の機械的負荷の小さい研磨システムが必要となっている。
さらに、これら、シャロー・トレンチ分離工程、デュアルダマシン法における金属配線研磨工程、および層間絶縁膜研磨工程においてはCMP研磨時に、適正な研磨量の管理が必要である。この方法として、厳格な研磨時間の管理の他に、研磨装置を駆動するモータの、研磨時のパッドとウエハの摩擦の変化にともなうトルク変動を検知する方法や、被研磨物の静電容量を測定する方法などもある。しかし、研磨にともなうウエハの表面状態の変化を光学的に検知するセンサーを具備した研磨装置も用いられてきており、研磨装置側から研磨パッドを介してレーザ光もしくは赤外線光をウエハの研磨面に照射し、その反射光を再び研磨パッドを介して研磨装置のセンサーで検知することによりウエハの研磨状態を管理する技術が主流となりつつある。特にシャロー・トレンチ分離工程、デュアルダマシン法などは研磨終点時にウエハ表面にバリア膜が露出することから、適正な波長の光を検出に用いれば、大きな反射率の変化が得られるので、この光学的な手法が有用である。バリア膜をもたない絶縁膜の研磨工程では、ウエハ表面の反射光と絶縁膜下のシリコン層からの反射光との干渉により研磨量を検出することができる。この光学的な手法に用いる研磨パッドの代表的な例として発泡ポリウレタン樹脂板の一部に光を透過する透明な窓材を挿入した研磨パッドが使用されている。また、ポリウレタン、ポリカーボネート、ナイロン、アクリル重合体、ポリエステル等の非発泡樹脂からなる研磨パッドに光を透過させる技術も提案されている(例えば米国特許第5605760号明細書参照。)。しかしながら、これら研磨パッドは光学的に終点を検出すると同時にCMP研磨時に研磨傷の低減や研磨速度の確保といった問題があり、特にダマシン法においては、上述のように研磨傷やコロージョンによる欠陥の発生低減が重要である。
Current ultra-large scale integrated circuits tend to increase packaging density, and various microfabrication technologies are being researched and developed. The design rules are already in the sub-half micron order. One of the techniques that have been developed in order to satisfy such demands for strict miniaturization is a CMP (chemical mechanical polishing) technique. This technique contributes to completely flattening the layer to be exposed in the semiconductor device manufacturing process, reducing the burden of the exposure technique, and stabilizing the manufacturing yield at a high level, and performs the following polishing. Is. The object to be polished is pressed against the polishing pad, and while the slurry-like CMP polishing liquid is supplied between the object to be polished and the polishing pad, the polishing pad is relatively slid between the object to be polished, The required amount of film on the surface of the polished object is precisely removed. For this reason, for example, this technique is indispensable when performing flattening of interlayer insulating films and BPSG films, shallow trench isolation, and the like.
A polishing pad made of foamed or non-foamed organic resin has been used as a polishing pad used for these CMP techniques (refer to Japanese Patent Publication No. 8-511210, claims and background of the invention). For example, a foamed urethane resin sheet in which concentric or lattice-shaped grooves are formed is generally used.
Here, damage (polishing scratches) to the polished surface due to abrasive grains and polishing waste is a problem. In the case of a normal foamed or non-foamed organic resin polishing pad, it is very effective to reduce the hardness of the polishing pad in order to reduce polishing scratches. However, when this hardness is lowered, the polishing rate is reduced, and the dishing of the trench portion tends to deteriorate. It was difficult to satisfy these simultaneously.
On the other hand, from the initial Al wiring, the embedded wiring by dual damascene using Cu having a low electric resistance as a wiring metal and a low dielectric constant material as an interlayer insulating film has become mainstream.
In such a dual damascene method, selection of a polishing pad in addition to selection of a polishing liquid has become extremely important. In particular, the metal is rich in chemical reactivity as compared with the interlayer insulating film and is soft, so that defects due to polishing scratches and corrosion are likely to occur. On the other hand, dishing is more likely to be deformed, that is, the smaller the elastic modulus. However, increasing the elastic modulus of the pad generally increases the pad hardness, which causes defects such as polishing scratches.
In addition, the application of low dielectric constant materials to interlayer insulating films, which has been promoted in recent years, is accompanied by a decrease in the mechanical properties of the insulating layer and a decrease in adhesion to metal, which causes defects during polishing. Therefore, a polishing system with a smaller mechanical load during polishing is required.
Further, in the shallow trench isolation process, the metal wiring polishing process in the dual damascene method, and the interlayer insulating film polishing process, it is necessary to manage an appropriate polishing amount at the time of CMP polishing. In addition to strict polishing time management, this method includes a method of detecting torque fluctuations due to friction between the pad and wafer during polishing of the motor that drives the polishing apparatus, and the capacitance of the object to be polished. There is also a method to measure. However, a polishing apparatus equipped with a sensor that optically detects a change in the surface state of the wafer accompanying polishing has also been used, and laser light or infrared light is applied to the polishing surface of the wafer through a polishing pad from the polishing apparatus side. A technique for managing the polishing state of a wafer by irradiating and detecting the reflected light again through a polishing pad with a sensor of a polishing apparatus is becoming mainstream. In particular, the shallow trench isolation process, dual damascene method, etc. expose a barrier film on the wafer surface at the end of polishing, so if a suitable wavelength of light is used for detection, a large change in reflectance can be obtained. This technique is useful. In the step of polishing the insulating film having no barrier film, the polishing amount can be detected by interference between the reflected light from the wafer surface and the reflected light from the silicon layer under the insulating film. As a typical example of the polishing pad used in this optical method, a polishing pad in which a transparent window material that transmits light is inserted into a part of a polyurethane foam resin plate is used. In addition, a technique for transmitting light to a polishing pad made of a non-foamed resin such as polyurethane, polycarbonate, nylon, acrylic polymer, or polyester has been proposed (see, for example, US Pat. No. 5,605,760). However, these polishing pads optically detect the end point and at the same time have problems of reducing polishing scratches and ensuring the polishing speed during CMP polishing. Especially in the damascene method, the generation of defects due to polishing scratches and corrosion is reduced as described above. is important.

本発明は、上記問題点を解決するために、研磨パッドの構造を種々検討して見出されたものである。
本発明は、半導体素子製造工程における層間絶縁膜、BPSG膜、シャロー・トレンチ分離用絶縁膜などの平坦化、および金属配線部の形成などに使用するCMP技術において、平坦化および金属配線形成の効率的な実施と同時に研磨面の傷や絶縁層の不具合を抑制できる研磨パッド、その製造方法およびその研磨パッドを用いた研磨方法を提供するものである。さらに、研磨パッドを介して半導体ウエハ等の被研磨物表面へ光を照射し、その反射率の変化を検知し、研磨終点を管理する研磨工程に使用するのに適した光透過性を有し、なおかつ被研磨物の研磨傷の発生を抑制する研磨パッド、およびこの研磨パッドを使用して研磨をする研磨方法を提供する。
本発明は、(1)有機繊維を含む繊維と、該繊維を保持しているマトリックス樹脂とからなり、被研磨物側表面に少なくとも有機繊維が露出していることを特徴とする研磨パッドに関する。
また本発明は、(2)有機繊維を含む繊維と、該繊維を保持しているマトリックス樹脂とからなり、ドレッシング処理後の被研磨物側表面に少なくとも有機繊維が露出していることを特徴とする研磨パッドに関する。
本発明は、(3)前記マトリックス樹脂が少なくとも一種の熱可塑性樹脂を含む前記(1)または(2)記載の研磨パッドに関する。
本発明は、(4)マトリックス樹脂が半結晶性熱可塑性樹脂よりなる前記(1)〜(3)のいずれか記載の研磨パッドに関する。
本発明は、(5)マトリックス樹脂にエラストマが分散されている前記(1)〜(4)のいずれか記載の研磨パッドに関する。
本発明は、(6)前記エラストマのガラス転移点が0℃以下である前記(5)記載の研磨パッドに関する。
本発明は、(7)繊維が芳香族ポリアミドからなる前記(1)〜(6)いずれか記載の研磨パッドに関する。
本発明は、(8)有機繊維を1〜50重量%含む前記(1)〜(7)いずれか記載の研磨パッドに関する。
本発明は、(9)有機繊維の径が1mm以下である前記(1)〜(8)いずれか記載の研磨パッドに関する。
本発明は、(10)有機繊維の長さが1cm以下である前記(1)〜(9)いずれか記載の研磨パッドに関する。
本発明は、(11)被研磨物側表面に露出した有機繊維により研磨粒子を保持する前記(1)〜(10)のいずれか記載の研磨パッドに関する。
本発明は、(12)前記露出している有機繊維の最大露出部長さが0.1mm以下である前記(1)〜(11)いずれか記載の研磨パッドに関する。
本発明は、(13)前記露出している有機繊維がポリエステルからなる前記(12)記載の研磨パッドに関する。
本発明は、(14)マトリックス樹脂中にチョップ状のポリエステル繊維を分散させてなる前記(12)または(13)記載の研磨パッドに関する。
本発明は、(15)マトリックス樹脂中にポリエステル不織布を積層してなる前記(12)または(13)記載の研磨パッドに関する。
本発明は、(16)被研磨物表面を研磨中に光学的に研磨終点を検知するのに有用な研磨パッドであって、有機繊維を1〜20重量%含有した実質的に非発泡のマトリックス樹脂からなり、研磨スラリ粒子の輸送および保持機能を有し、なおかつ、190から3500nmの範囲の波長の光線が透過する前記(1)、(2)〜(4)、(7)、(9)〜(11)のいずれか記載の研磨パッドに関する。
本発明は、(17)被研磨物表面を研磨中に光学的に研磨終点を検知するのに有用な研磨パッドであって、190から3500nmの範囲の波長の光線が透過する部分を含み、該部分は、有機繊維を1〜20重量%含有する実質的に非発泡なマトリックス樹脂からなり、なおかつ研磨スラリ粒子の輸送および保持機能を有する部分である前記(1)、(2)〜(4)、(7)、(9)〜(11)のいずれか記載の研磨パッドに関する。
本発明は、(18)前記有機繊維がアラミド繊維である前記(16)または(17)記載の研磨パッドに関する。
本発明は、(19)定盤に貼り付けて使用し被研磨面の平坦化を行う研磨パッドの製造方法であって、有機繊維を含む繊維と熱可塑性樹脂を含むマトリックス組成物を混合して混合物を得る過程、該混合物をペレットまたはタブレットにする過程、および該ペレットまたはタブレットを押し出し成形または射出成形により板状またはシート状に加工する過程を含むことを特徴とする研磨パッドの製造方法に関する。
本発明は、(20)定盤に貼り付けて使用し被研磨面の平坦化を行う研磨パッドの製造方法であって、有機繊維を含む繊維基材にマトリックス樹脂組成物を含浸して樹脂含浸シート状繊維基材を作製する過程、該樹脂含浸シート状繊維基材を含むシート状繊維基材を積層して加熱加圧成形を施す過程を含むことを特徴とする研磨パッドの製造方法に関する。
本発明は、(21)さらに表面に繊維を露出させる過程を含む前記(19)または(20)記載の研磨パッドの製造方法に関する。
本発明は、(22)被研磨物の被研磨面を前記(1)〜(18)いずれか記載の研磨パッドの有機繊維露出面に押し当て、研磨液を被研磨面と研磨パッドとの間に供給しながら、被研磨物とパッドを相対的に摺動させて被研磨面を研磨する研磨方法に関する。
本発明は、(23)前記被研磨面が、配線やトレンチを形成した誘電率2.7以下の絶縁層上に、導体層、更に銅層を被覆した積層からなる前記(22)記載の研磨方法に関する。
本発明は、(24)前記(16)〜(18)のいずれか記載の研磨パッドを用いて光学的に研磨終点を検知する研磨方法に関する。
この表面に露出した有機繊維は研磨時に研磨液中の砥粒や異物などと被研磨物との間の応力を緩和し、被研磨物表面の傷の発生をふせぐ。また、一般的な樹脂だけからなる従来の研磨パッドでは発泡孔や表面の大小の溝が、研磨液の砥粒の輸送や保持能力をになうが、本発明の研磨パッドでは表面に露出した有機繊維が研磨液の砥粒の輸送や保持能力を有し、研磨速度の獲得と平坦均一性の向上の役割を果たす。
The present invention has been found by variously examining the structure of a polishing pad in order to solve the above problems.
The present invention relates to planarization and metal wiring formation efficiency in CMP technology used for planarization of an interlayer insulating film, a BPSG film, a shallow trench isolation insulating film, and the like in a semiconductor element manufacturing process, and formation of a metal wiring portion. It is intended to provide a polishing pad capable of suppressing scratches on the polishing surface and defects of the insulating layer simultaneously with practical implementation, a method for producing the same, and a polishing method using the polishing pad. In addition, the surface of the object to be polished such as a semiconductor wafer is irradiated with light through a polishing pad, the change in the reflectance is detected, and the light transmission suitable for use in a polishing process for managing the polishing end point is provided. A polishing pad that suppresses generation of polishing flaws on an object to be polished, and a polishing method for polishing using the polishing pad are provided.
The present invention relates to (1) a polishing pad comprising an organic fiber-containing fiber and a matrix resin holding the fiber, and at least the organic fiber is exposed on the surface of the object to be polished.
Further, the present invention is characterized in that (2) a fiber containing organic fibers and a matrix resin holding the fibers, and at least the organic fibers are exposed on the surface of the object to be polished after the dressing process. The present invention relates to a polishing pad.
The present invention relates to (3) the polishing pad according to (1) or (2), wherein the matrix resin contains at least one thermoplastic resin.
The present invention relates to (4) the polishing pad according to any one of (1) to (3), wherein the matrix resin comprises a semicrystalline thermoplastic resin.
The present invention relates to (5) the polishing pad according to any one of (1) to (4), wherein an elastomer is dispersed in a matrix resin.
The present invention relates to (6) the polishing pad according to (5), wherein the glass transition point of the elastomer is 0 ° C. or lower.
The present invention relates to (7) the polishing pad according to any one of (1) to (6), wherein the fibers are made of an aromatic polyamide.
The present invention relates to (8) the polishing pad according to any one of (1) to (7), comprising 1 to 50% by weight of organic fibers.
The present invention relates to (9) the polishing pad according to any one of (1) to (8), wherein the organic fiber has a diameter of 1 mm or less.
The present invention relates to (10) the polishing pad according to any one of (1) to (9), wherein the organic fiber has a length of 1 cm or less.
The present invention relates to (11) the polishing pad according to any one of (1) to (10), wherein the abrasive particles are held by organic fibers exposed on the surface to be polished.
The present invention relates to (12) the polishing pad according to any one of (1) to (11), wherein the exposed organic fiber has a maximum exposed portion length of 0.1 mm or less.
The present invention relates to (13) the polishing pad according to (12), wherein the exposed organic fiber is made of polyester.
The present invention relates to (14) the polishing pad according to (12) or (13), wherein chopped polyester fibers are dispersed in a matrix resin.
The present invention relates to (15) the polishing pad according to (12) or (13), wherein a polyester nonwoven fabric is laminated in a matrix resin.
The present invention is (16) a polishing pad useful for optically detecting the polishing end point during polishing of the surface of an object to be polished, and a substantially non-foamed matrix containing 1 to 20% by weight of organic fibers (1), (2) to (4), (7), (9) made of resin, having a function of transporting and holding abrasive slurry particles, and transmitting light having a wavelength in the range of 190 to 3500 nm It is related with the polishing pad in any one of-(11).
The present invention is (17) a polishing pad useful for optically detecting the polishing end point during polishing of the surface of an object to be polished, comprising a portion through which light having a wavelength in the range of 190 to 3500 nm is transmitted, The portion is made of a substantially non-foamed matrix resin containing 1 to 20% by weight of organic fibers, and has a function of transporting and holding abrasive slurry particles. (1), (2) to (4) , (7), and (9) to the polishing pad according to any one of (11).
The present invention relates to (18) the polishing pad according to (16) or (17), wherein the organic fiber is an aramid fiber.
The present invention is (19) a method for producing a polishing pad that is used by being attached to a surface plate to flatten the surface to be polished, and comprising mixing a fiber composition containing an organic fiber and a matrix composition containing a thermoplastic resin. The present invention relates to a method for producing a polishing pad comprising a step of obtaining a mixture, a step of converting the mixture into pellets or tablets, and a step of processing the pellets or tablets into a plate or sheet by extrusion molding or injection molding.
The present invention is (20) a method of manufacturing a polishing pad that is used by being attached to a surface plate to flatten the surface to be polished, and is impregnated with a matrix resin composition impregnated into a fiber substrate containing organic fibers. The present invention relates to a method for producing a polishing pad comprising a step of producing a sheet-like fiber substrate, and a step of laminating the sheet-like fiber substrate including the resin-impregnated sheet-like fiber substrate and subjecting the sheet-like fiber substrate to heating and pressing.
The present invention relates to (21) the method for producing a polishing pad according to the above (19) or (20), which further comprises a step of exposing fibers on the surface.
In the present invention, (22) the surface to be polished of the object to be polished is pressed against the organic fiber exposed surface of the polishing pad according to any one of (1) to (18), and the polishing liquid is interposed between the surface to be polished and the polishing pad. The present invention relates to a polishing method in which a surface to be polished is polished by relatively sliding an object to be polished and a pad while supplying to the surface.
(23) The polishing according to (22), wherein the surface to be polished comprises a laminate in which a conductor layer and a copper layer are further coated on an insulating layer having a dielectric constant of 2.7 or less in which wirings and trenches are formed. Regarding the method.
The present invention relates to (24) a polishing method for optically detecting a polishing end point using the polishing pad according to any one of (16) to (18).
The organic fibers exposed on the surface relieve stress between the abrasive grains and foreign matters in the polishing liquid and the object to be polished during polishing, and prevent the surface of the object to be scratched from being generated. Further, in the conventional polishing pad made of only a general resin, the foam holes and the large and small grooves on the surface provide the ability to transport and hold the abrasive grains of the polishing liquid, but the polishing pad of the present invention is exposed on the surface. The organic fiber has the ability to transport and retain abrasive grains of the polishing liquid, and plays a role in obtaining a polishing rate and improving flatness uniformity.

本発明の研磨パッドの構造は、有機繊維を含む繊維と、該繊維を保持しているマトリックス樹脂とからなる。有機繊維は繊維の一部でも全部でもよく、繊維は、主たる有機繊維の他に、ガラス繊維等の無機繊維を含んでも良い。
また、被研磨面側表面に少なくとも有機繊維が露出しているものであれば、特に制限はない。本発明において、有機繊維が露出している、とはドレッシング処理後の被研磨面側表面についても含まれ、すなわち、少なくとも使用時に少なくとも有機繊維が露出しているものである。
具体的な研磨パッドの構造は、マトリックス樹脂中にチョップ状の繊維が分散している構造、マトリックス樹脂中に不織布または織布状の繊維が積層している構造等が挙げられる。
本発明の研磨パッドの繊維を保持するマトリックス樹脂としては、通常の熱硬化性樹脂並びに熱可塑性樹脂が特別の制限なく使用できる。好ましくは、比較的弾性率の高い部類に属する樹脂、例えば硬化物の室温弾性率0.1GPa以上、より好ましくは0.5GPa以上の樹脂である。弾性率が小さければ平坦性が悪化する傾向がある。
熱硬化性樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のエポキシ樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂等を使用できる。これらは、単独でも二種以上を混合して使用してもよい。これらの熱硬化性樹脂がエポキシ樹脂である場合、通常は硬化剤、硬化促進剤等を配合する。硬化剤としては、ジシアンジアミド、有機酸、有機酸無水物、ポリアミン等を用いることができ、硬化促進剤としては、例えば2−エチル−4−メチルイミダゾール等を用いることができる。
熱可塑性樹脂としては、例えば、ポリカーボネート、ポリメチルメタクリレート、AS(アクリロニトリル−スチレン共重合体)、ABS(アクリロニトリル−ブタジエンゴム−スチレン共重合体)、ポリエチレン、ポリプロピレン、ポリブテン、4−メチル−ペンテン−1、エチレン−プロピレン共重合体、エチレン酢酸ビニル共重合体、ポリエステル、ポリアミド、ポリアミドイミド、ポリアセタール等が挙げられる。これらは、単独でも二種以上を混合して使用してもよい。特に、マトリックスの樹脂として、半結晶性の熱可塑性高分子樹脂を用いれば、耐磨耗性に優れ高耐久性の研磨パッドが得られる。
本発明の研磨パッドの第一の実施形態は、前記マトリックス樹脂が少なくとも一種の熱可塑性樹脂を含む研磨パッドである。ここで、マトリックス樹脂としては、少なくとも一種の熱可塑性樹脂を含んでいれば、特に制限はなく使用でき、熱可塑性樹脂が主成分であるのが好ましい。
本発明の研磨パッドの第二の実施形態は、前記被研磨面側表面に露出している有機繊維の最大露出部長さが0.1mm以下である研磨パッドである。ここで、露出している有機繊維の最大露出部長さとは、実質的に研磨パッド表面に固定されている繊維の露出した部分の長さであって、そのうち最大のものを言う。実際的には、SEM(走査型電子顕微鏡)などを用いて、パッド表面上を5点程度以上観察することにより、計測が可能である。
本発明の研磨パッドの第三の実施形態は、被研磨物表面を研磨中に光学的に研磨終点を検知するのに有用な研磨パッドであって、その一部または全部が、190から3500nmの範囲の波長の光線が透過し、有機繊維を1〜20重量%含有した実質的に非発泡のマトリックス樹脂からなり、なおかつ研磨スラリ粒子の輸送および保持機能を有する研磨パッドである。
マトリックス樹脂については、特に上記第一の実施形態では、上記熱可塑性樹脂に加え、添加剤として架橋および未架橋のエラストマ、架橋ポリスチレン、架橋ポリメチルメタクリレート等をさらに混合してマトリックス樹脂に分散させても良い。熱可塑性エラストマおよび低架橋度のエラストマを加えることはより好ましい。エラストマとしては、ガラス転移点が室温以下のものであれば、特に制限されることなく使用でき、0℃以下のものがより好ましい。例えば、オレフィン系エラストマ、スチレン系エラストマ、ウレタン系エラストマ、エステル系エラストマ等、アルケニル芳香族化合物−共役ジエン共重合体、ポリオレフィン系共重合体等のエラストマ等が挙げられる。これらエラストマの添加量が多いほど、耐衝撃性が高く粘り強い樹脂となるとともに、パッド表面と金属との摩擦力も増加する。
本発明の研磨パッドにおける有機繊維としては、アラミド、ポリエステル、ポリイミド等の繊維状にできる材質が広く使用できる。また、これらのうち二種以上を選択、混合しても使用できる。
パッドの耐久性や繊維による砥粒粒子の保持性の点からは、単独あるいは主たる成分としてアラミドすなわち芳香族ポリアミド繊維を選択することが好ましく、アラミド繊維単独であるのがさらに好ましい。すなわち、アラミド繊維は、他の一般的な有機繊維に比べて引っ張り強度が高く、本発明の研磨パッド表面を機械的に粗化して繊維を露出する際、繊維が表面に残りやすいため、砥粒粒子の保持に効果的であるからである。また、研磨パッドの耐久性を向上させ、使用寿命を伸ばす効果もある。アラミド繊維は、特に上記第一及び第三の実施形態の場合に好ましい。
アラミド繊維にはパラ型とメタ型が有るが、パラ系アラミド繊維はメタ型繊維より力学的強度が高く低吸湿性であるので、より好適である。パラ系アラミド繊維としては、ポリp−フェニレンテレフタルアミド繊維とポリp−フェニレンジフェニルエーテルテレフタルアミド繊維が市販されており、使用が可能である。
また、最大露出長さと表面粗さの調整との点からは、有機繊維としてポリエステルを主成分とするのが好ましい。これは、該研磨パッドの繊維を露出させる際に、硬質の繊維に比べポリエステル繊維のせん断強度が小さいために、最大露出長さを小さくできるためである。特に上記第二の実施形態の研磨パッドの場合に好ましい。一方、他のアラミド繊維、ポリイミド繊維等の硬質繊維を使用する場合には、最大露出長さは使用する砥石粒径の微細化によって調整される。このとき、パッド表面の粗さは上記砥石粒径に依存するので、必然的にパッド自体の表面の凹凸は影響を受け研磨速度に影響する。これに対し、ポリエステルを使用した場合は、いずれの粒径の砥石を使用しても露出長さは殆ど変わらない。そのため、繊維長は一定のままパッド自体の表面粗さを任意に調整可能となる。
ここで、ポリエステル繊維に他の上記硬質繊維を混ぜて使用しても良い。このとき、ポリエステル繊維の割合は、40〜100重量%が望ましく、好ましくは70〜100重量%、さらに好ましくは80〜100重量%である。ポリエステル繊維が多いと繊維露出層は小さくなり、反対に硬質繊維が多いと厚くなって平坦性を悪化する傾向がある。
有機繊維の繊維径(直径)は1mm以下のものが好適に使用でき、200μm以下であることが望ましい。好ましくは1〜200μm、より好ましくは5〜150μmである。太すぎると機械的強度が高すぎて、研磨傷やドレス不良の原因となる場合がある。細すぎれば取り扱い性が低下したり、強度不足によるパッドの耐久性低下を引き起こしたりする恐れがある。
繊維長は、特に制限は無いが、繊維が樹脂中にチョップ状に分散している研磨パッドの場合は、10mm以下のものが好ましく、5mm以下であることがさらに好ましい。より好ましくは、0.1〜3mmである。短かすぎると、パッド表面を機械的に表面を粗した時に露出した繊維がパッドに効果的に保持されず、長すぎると、樹脂との混合時に増粘して成形が困難となる場合がある。これらは、短繊維を所定長に切断したチョップを使用しても、数種の繊維長のものを混合して使用することもできる。
また、樹脂との親和性を向上するため、予め繊維表面を機械的あるいは化学的に粗化したり、カップリング材等による改質を行ったりしても良い。取り扱いの面から、短繊維チョップを極少量の樹脂でコーティングして束にしたものを使用することができる。ただしこれは、マトリックス樹脂との混合中の加熱、あるいは加えられるせん断力により短繊維がマトリックス樹脂中に分散される程度の保持力をもつ程度ついていればよい。
また、不織布または織布が積層している研磨パッドについては、不織布を使用する場合は、長さ1mm以上の上記と同様の繊維同士を繊維自体の融着力あるいは接着剤を用いてシート状に成形したものが使用できる。接着剤としては水溶性エポキシ樹脂バインダ等のエポキシ樹脂などからなる接着剤を使用することができる。接着剤を用いる場合は、その量に特に制限はないが、繊維100重量部に対して3〜20重量部とすることが好ましく、5〜15重量部とすることがより好ましい。また、長繊維を織物状にした織布の場合、織り方に関しては特に制限なく使用できる。このような繊維が積層している研磨パッドは本発明の第二の実施形態の研磨パッドに特に適している。
以上の不織布及び織布の単位重量は、36〜100g/mであることが好ましく、55〜72g/mであることがより好ましい。
上記有機繊維の含有率は、特に制限されるものではないが、パッド全体にチョップ状繊維を使用する場合はパッド全体の1〜50重量%が好ましく、より好ましくは1〜20重量%、さらに好ましくは5〜20重量%である。繊維量が少なければ研磨面の研磨傷が顕著になり、多すぎれば成形性が悪くなる、という傾向がある。一方、織布及び不織布の場合は、50重量%以上が好ましく、より好ましくは60〜80重量%である。
特に第三の実施形態の場合、上記光透過性を有する部分の有機繊維の含有率は、光透過性を阻害せず、ウエハの研磨状態が検知できる範囲にする必要がある。従って、研磨パッド全体の1〜20重量%が好ましく、より好ましくは2〜10重量%である。繊維量が少なければ研磨面の研磨傷が顕著になり、多すぎれば成形性が悪くなる傾向がある。
上記研磨パッドは、マトリックスとなる樹脂組成物中に繊維を分散し、成形する方法、繊維を含む織布または不織布に樹脂のワニスを含浸してプリプレグを得て、積層する等の方法で製造できるが、これらに限定されるものではない。
以下に、本発明の研磨パッドの製造方法を説明する。
第一の製造方法は、有機繊維を含む繊維とマトリックス樹脂組成物を混合して混合物を得る過程、該混合物をペレットまたはタブレットにする過程、および該ペレットまたはタブレットを押し出し成形または射出成形により板状またはシート状に加工する過程を含む。第二の製造方法は、有機繊維を含む繊維基材にマトリックス樹脂組成物を含浸して樹脂含浸シート状繊維基材を作製する過程、該樹脂含浸シート状繊維基材を含むシート状繊維基材を積層して加熱加圧成形を施す過程を含む。繊維基材は主としてポリエステル繊維を含有するのが好ましい。
本発明の研磨パッドを製造するためのマトリックス樹脂組成物の調製や、繊維との混合の方法は、従来から公知の方法で行うことが出来、特に限定されない。
すなわち、第一の製造方法としてチョップ状繊維をマトリックス樹脂組成物中にそのまま分散させる場合は、例えばマトリックスを形成する各樹脂組成物をヘンシェルミキサー、スーパーミキサー、ターンブルミキサー、リボンブレンダー等で均一に混合(ドライブレンド)した後、単軸押出機や二軸押出機、バンバリーミキサー等で溶融混練する。さらに、繊維を加えて同様に溶融混合する。その後、冷却してタブレットあるいはペレット化する。冷却に水を使用する場合は、十分に乾燥し、脱水する必要がある。
得られた上記のタブレットまたはペレットを再度押し出し成形機でダイを通して押し出し、ロールで圧延することで、シート状または板状成形物を作製できる。また、別の製造方法として、前記押し出し成形のかわりに金型に射出成形してシート状または板状成形物としても良い。
一方、マトリックス樹脂組成物が液状熱硬化性樹脂組成物の場合は、チョップ状繊維を液状熱硬化性樹脂組成物中に所定量分散させ、金型等に流し込んで減圧により気泡を除去した後、加熱硬化を進めることにより成形物とすることができる。これも上記と同様、金型に加熱状態で加圧、流し込んで作製しても良い。
また、上記第二の製造方法も、従来から公知の方法で行うことが出来、特に上記第二の実施形態の研磨パッドの製造に適する。例えば、繊維基材として織布、不織布を使用する場合、上記のような樹脂含浸シート状繊維基材あるいは樹脂含浸シート状繊維基材及び樹脂未含浸シート状繊維基材(すなわち織布または不織布)を用意する。これらを加熱加圧成形により一体化して成形物を得ることができる。また、この時、少なくとも一方の表面には樹脂未含浸シート状繊維基材を配置することで、表面に有機繊維を露出した状態とすることが好ましい。
上記樹脂含浸シート状繊維基材は樹脂未含浸シート状繊維基材に樹脂組成物を含浸させたもので、通常プリプレグとよばれるものである。プリプレグの作製方法は特に限定されるものではないが、有機溶剤に上記マトリックス樹脂組成物成分を溶解したワニスを作製し、樹脂未含浸シート状繊維基材を含浸後、加熱乾燥して得ることができる。溶剤の種類は、樹脂組成物を均一に溶解するものであれば、特に制限なく使用できる。例えば、メチルエチルケトン、メチルイソブチルケトン、アセトン等のケトン類、エチルアルコール、プロピルアルコール、イソプロピルアルコール等の低級アルコール類、ジメチルホルムアミド、ホルムアミド等のアミド類などが挙げられ、これらを混合して使用することも可能である。樹脂含浸シート状繊維基材中の繊維の含有量は、樹脂組成物及び接着剤の合計100重量部に対して、60〜140重量部であることが望ましく、90〜120重量部であることがより好ましい。
また、樹脂未含浸シート状繊維基材の全体に占める割合は、研磨パッドにおける繊維の含有率、殊に、被研磨物に押し当てることになる表面層の有機繊維含有率を考慮しながら決定する。この方法によれば、研磨パッドの繊維含有率を変えるために、上記プリプレグ製造時の樹脂含有量を変更する必要はなく、樹脂未含浸のシート状繊維基材の使用割合を変えることにより調整可能である。
加熱加圧成形において、一般には、加熱温度は通常150〜200℃であり、圧力は50〜500kPaである。これらは、使用する熱硬化性樹脂の種類、含有率により適宜調整が可能である。
これら成形物を、必要に応じて所定の研磨装置の定盤形状にあわせ適宜加工して最終製品の研磨パッドが得られる。一例として、上記シート状成形物を円形状に切り出すことで最終製品である研磨パッドとすることができる。
研磨パッドの全体の厚みは0.1〜5mmであることが好ましく、0.5〜2mmであることがより好ましい。また、上記パッドの研磨面に、研磨液及び研磨屑の流路となる溝加工を、NC旋盤等を使用して同心円状、格子状等に形成しても良い。
本発明の、被研磨物側表面に少なくとも有機繊維が露出している研磨パッドを得るため、必要に応じて、パッドの被研磨物側表面を処理して繊維を露出させる。この露出繊維の形成方法としては、ドレッシング処理、すなわちダイヤモンド等の砥石を用いてパッド表面の樹脂を削り取り、繊維を露出する方法をとることができる。砥石の代わりに、ワイヤーブラシ、メタルスクレーバ、樹脂ブラシ、ガラスあるいはセラミックスプレートを使用しても良い。
これらの使用条件は繊維の露出長さを制御するために、よく調整する必要がある。最大露出繊維長さは、繊維の硬度により大きく左右されるが、パッドにポリエステル繊維を使用すると容易に短く調整することが可能となる。
有機繊維の表面に露出した部分の最大長さは、一般に1mm以下のものが実用上使用でき、200μm以下であることが望ましい。より好ましくは1〜200μm、さらに好ましくは10〜150μmである。短かすぎると、研磨液の保持性が低下して研磨速度が小さくなり、長すぎると平坦性に悪影響を及ぼす傾向がある。
特に、本発明の第二の実施形態の研磨パッドは、前記露出している有機繊維の最大露出部長さが0.1mm以下である。ここで、最大露出部長さは、0.1mm以下なら特に制限なく使用でき、好ましくは1〜50μm、さらに好ましくは1〜25μmである。最大露出部長さが大きくなれば、平坦性が低化し、小さくなると研磨速度が低化する傾向がある。
このような被研磨物側表面に露出した有機繊維により、研磨の際に、後述する研磨液中の研磨粒子(砥粒)を効率良く保持することができる。
次に、本発明の第三の実施形態の研磨パッドについて説明する。この研磨パッドは、被研磨物の研磨量を光学的に検知し、その終点を管理し、かつ高い研磨速度と均一性を維持しながら、研磨時の研磨傷の発生を抑制するものである。このような構成は、研磨パッドの構造、樹脂組成、充填物等を工夫することにより実現できる。
この研磨パッドの構造は、研磨パッドの材質が190〜3500nmの範囲の波長の光に対する透過性を有するものであるか、もしくは、研磨パッドの一部がこの光透過性を有する材質で形成されたものである。後者は、例えば、この研磨パッドの部材を小片に成形し、他の充分な光透過性を有さない研磨パッドの一部に光を透過するための窓材として挿入したものである。
このように、研磨パッド又はその一部が、190〜3500nmの範囲の波長の光線を透過することから、研磨パッドを介して被研磨物の研磨面へ光を照射し、その反射率の変化を検知することにより、研磨終点を管理することができる。本発明において、190〜3500nmの範囲の波長の光線を透過するとは、通常、有機繊維を露出させる前の研磨パッド又はその一部のこの波長の光線の透過率が10〜100%であることを意味する。この透過率は好ましくは30〜100%である。
このような光透過性を有する材質に用いるマトリックス樹脂としては、比較的弾性率の高い部類に属する樹脂が好ましく、上述した各樹脂が特に断り無く使用できる。特に、半結晶性の熱可塑性高分子樹脂を用いれば、耐磨耗性に優れ高耐久性の研磨パッドにできる。また、この樹脂は、実質的に発泡孔を有しない形態であるのが好ましい。発泡孔を有する形態は、光透過を阻害し、ウエハの研磨状態の検知を損ねるからである。有機繊維としては、単独あるいは主たる成分としてアラミド繊維を選択することが好ましい。
製造方法は上述の製造方法と同様であり、各成形物を所定の研磨装置の定盤形状にあわせ、円形状などに切り出すことで研磨パッドとするか、もしくはこの成形物を小片に加工し、一部を切り取りぬいた他の光透過性の低い研磨パッドに光透過性の窓部として挿入し、光検知可能な研磨パッドとする。後者の場合、本発明の効果を高める為には、窓部を挿入される光透過性の低い研磨パッドもまた、同様に有機繊維を含有した樹脂板等により形成されているのが望ましいが、特に繊維含有率に制限はない。また、挿入した窓材は研磨時にパッド表面にて被研磨物と接触する必要がある。これは窓材と被研磨物との間に隙間が大きいと研磨液が流入し、透過してきた光を散乱して光検知を阻害する為である。窓部の形状は、特に制限はないが、そのサイズは、光検知を行なう研磨装置に付属する光照射及び検出センサーからなるシステムが動作するのに必要な光路を確保するだけの面積が必要であり、なおかつ研磨パッド表面全体の0.1〜10%程度の面積であることが好ましい。
以下、本発明の研磨パッドを用いた研磨方法について説明する。本発明の研磨方法は、被研磨物の被研磨面を上述の本発明のいずれかの研磨パッドの有機繊維の露出面に押し当て、研磨液を被研磨面と研磨パッドとの間に供給しながら、被研磨物とパッドを相対的に摺動させて被研磨面を研磨する研磨方法である。
被研磨物として、シャロー・トレンチ分離工程では窒化珪素膜で成形するデバイスのパターンを作製した後、Si露出部をエッチングし、この上にTEOS−プラズマCVD法などで酸化珪素膜を形成した基板が、また、ダマシン法ではビアホールと配線溝をドライエッチングで形成した層間絶縁膜上に、開口部と内壁を完全に覆うようにバリア導体膜、さらにその上にCu膜を成長させて完全に開口部を埋め込んだ状態の基板が挙げられる。
本発明の研磨方法に使用するCMP研磨液は特に定めないが、例えば、絶縁膜用としては酸化セリウム粒子(セリア)あるいは酸化珪素(シリカ)と分散剤とからなる組成物を水等の分散媒に分散させ、さらに添加剤を添加して得られるものが挙げられる。Cu等の金属層用研磨液としては、シリカ、アルミナ、セリア、チタニア、ジルコニア及びゲルマニア等の砥粒、添加剤と防食剤を水に分散させ、さらに過酸化物を添加した研磨液が挙げられる。砥粒としては、コロイダルシリカ粒子あるいはアルミナ粒子が、特に好ましい。また、砥粒粒子含有量は、0.1〜20重量%が望ましい。該砥粒粒子はその製造方法を限定するものではないが、その平均粒径が、0.01〜1.0μmであることが好ましい。平均粒径が0.01μm未満では研磨速度が小さくなりすぎ、1.0μmを超えると傷になりやすい。
研磨する装置に特に制限はなく、円盤型研磨装置、リニア型研磨装置で使用できる。例えば、被研磨物を保持するためのホルダーと、研磨パッドを貼り付けられ、回転数を変更可能なモータ等が取り付けてある研磨定盤とを有する一般的な研磨装置が使用できる。一例として、(株)荏原製作所製研磨装置:型番EPO111が使用できる。
特に、光学的に研磨終点を検知する第三の実施形態の研磨パッドを用いる研磨方法においては、該研磨パッドを用いて、前記のように被研磨物と研磨パッドを相対的に摺動させて被研磨面を研磨しつつ、研磨パッドを介して被研磨物の研磨面へ波長190〜3500nmの光線を照射し、その反射率の変化を検知することにより、研磨終点を管理する。
第三の実施形態の研磨パッドを用いる場合、研磨する装置は、米国アプライドマテリアルズ社製のMIRRA研磨装置のように研磨パッドを貼り付ける定盤にレーザ光の照射及び、反射光の検知の為のデバイスを具備している必要がある。研磨条件に特に制限はないが、研磨対象に応じて最適化を図るのが望ましい。精度よく研磨する為にシャロー・トレンチ分離工程では窒化珪素膜の露出を、ダマシン法ではバリア膜の露出をウエハ表面に照射した光の反射を検知して研磨装置側にて研磨の終点を管理する。このとき、研磨の進行を制御するプログラムは、予め研磨装置に組み込んでおく。
本発明の研磨パッドを、研磨装置の定盤へ固定するために、両面接着テープ等の接着剤を研磨面と逆側に使用することができる。また、発泡ポリウレタン等からなる低弾性率のサブパッドを介してとりつけても良い。
被研磨物の被研磨面を研磨パッドに押しあてた状態で研磨パッドと被研磨物とを相対的に摺動させて研磨するには、具体的には被研磨物と研磨定盤との少なくとも一方を動かせば良い。研磨定盤を回転させる他に、ホルダーを回転や揺動させて研磨しても良い。また、研磨定盤を遊星回転させる研磨方法、ベルト状の研磨パッドを長尺方向の一方向に直線状に動かす研磨方法等が挙げられる。なお、ホルダーは固定、回転、揺動のいずれの状態でも良い。これらの研磨方法は、研磨パッドと被研磨物とを相対的に動かすのであれば、被研磨面や研磨装置により適宜選択できる。
研磨条件に、特に制限はないが、被研磨物に応じて最適化を図ることが望ましい。例えば、研磨定盤の回転速度は被研磨物が飛び出さないように200rpm以下の低回転が好ましく、被研磨物にかける圧力は研磨後に傷が発生しない圧力、例えば被研磨面が銅の場合には約50kPa以下が好ましい。また、低誘電率層間絶縁膜を有する被研磨物を使用する場合は20kPa以下が好ましい。
研磨している間、研磨パッドと被研磨面の間に研磨液をポンプ等で連続的に供給する。この供給量には制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。研磨によるパッドや露出有機繊維の磨耗は、ドレッシングを行うことにより再生され、維持される。研磨終了後の被研磨物は、流水中でよく水洗後、スピンドライア等を用いて研磨面上に付着した水滴を払い落としてから乾燥させることが望ましい。
以下、本発明の研磨方法の一態様として、半導体デバイスの配線形成工程にそって、前記被研磨面が、配線やトレンチを形成した絶縁層上に、バリア導体層、更に銅等の金属層を被覆した積層からなる研磨方法について説明する。
前記金属層としては、銅、銅合金、銅の酸化物、銅合金の酸化物からなる群(以下、銅及びその化合物という。)、タングステン、タングステン合金、銀、金等の、金属が主成分の物質が挙げられ、銅及びその化合物等の銅が主成分であることが好ましい。
金属層に被覆されるバリア導体層(以下、バリア層という。)としては、上記金属のうち、上記の銅及びその化合物、特に銅と銅合金とに対するバリア層であるのが好ましい。バリア層は絶縁膜中への金属層拡散防止、および絶縁膜と金属層との密着性向上のために形成される。この導体の組成は、タンタル、チタン、タングステン、及びこれらの窒化物、酸化物、合金等の化合物等が挙げられる。
絶縁膜としては、シリコン系被膜や有機ポリマー膜の層間絶縁膜が挙げられる。シリコン系被膜としては、二酸化ケイ素、フルオロシリケートグラス、トリメチルシランやジメトキシジメチルシランを出発原料として得られるオルガノシリケートグラス、シリコンオキシナイトライド、水素化シルセスキオキサン等のシリカ系被膜や、シリコンカーバイド及びシリコンナイトライドが挙げられる。また、有機ポリマー膜としては、全芳香族系低誘電率層間絶縁膜が挙げられる。特に、層間絶縁膜が誘電率2.7以下であることが好ましい。
まず、シリコンの基板上に二酸化ケイ素等の層間絶縁膜を積層する。次いで、レジスト層形成、エッチング等の公知の手段によって、層間絶縁膜表面に所定パターンの凹部(基板露出部)を形成して凸部と凹部とを有する層間絶縁膜とする。この層間絶縁膜上に、表面の凸凹に沿って層間絶縁膜を被覆するタンタル等のバリア層を蒸着またはCVD等により成膜する。さらに、前記凹部を充填するようにバリア層を被覆する銅等の金属層を蒸着、めっきまたはCVD等により形成する。
次に、この基板の表面の金属層を、本発明の研磨パッドを用いて、研磨液を供給しながらCMPにより研磨する(第1の研磨工程)。これにより、基板上の凸部のバリア層が表面に露出し、凹部に前記金属膜が残された所望の配線パターンが得られる。この研磨が進行する際に、金属層と同時に凸部のバリア層の一部が研磨されても良い。第2の研磨工程では、金属層、バリア層および層間絶縁膜を研磨できる研磨液を使用して、CMPにより、少なくとも、前記露出しているバリア層および凹部の金属層を研磨する。凸部のバリア層の下の層間絶縁膜が全て露出し、凹部に配線層となる金属層が残され、凸部と凹部との境界にバリア層の断面が露出した所望のパターンが得られた時点で研磨を終了する。本発明の研磨パッドは少なくとも第2の研磨工程で使用され、本実施態様のように第1の研磨工程にも使用されるのが好ましい。
研磨終了時のより優れた平坦性を確保するために、さらに、オーバー研磨(例えば、第2の研磨工程で所望のパターンを得られるまでの時間が100秒の場合、さらに50秒追加して研磨することをオーバー研磨50%という。)して凸部の層間絶縁膜の一部を含む深さまで研磨しても良い。
本発明の研磨パッドおよびそれを用いた研磨方法は、上記の絶縁層の複合開口部を埋め込んでなる主にCu、Ta、TaNやAl等の金属を含む膜だけでなく、所定の配線板に形成された酸化珪素膜、ガラス、窒化珪素等の無機絶縁膜、ポリシリコンを主として含む膜、フォトマスク・レンズ・プリズムなどの光学ガラス、ITOなどの無機導電膜、ガラスおよび結晶質材料で構成される光集積回路・光スイッチング素子・光導波路・光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザLED用サファイア基板、SiC、GaP、GaAs等の半導体単結晶、磁気ディスク用ガラスあるいはアルミ基板、磁気ヘッド等の研磨にも適用することができる。
The structure of the polishing pad of the present invention comprises a fiber containing organic fibers and a matrix resin holding the fibers. The organic fibers may be part or all of the fibers, and the fibers may include inorganic fibers such as glass fibers in addition to the main organic fibers.
Further, there is no particular limitation as long as at least the organic fiber is exposed on the surface to be polished. In the present invention, the term “exposed organic fibers” includes the surface to be polished after dressing treatment, that is, at least the organic fibers are exposed at least during use.
Specific examples of the structure of the polishing pad include a structure in which chopped fibers are dispersed in a matrix resin, and a structure in which nonwoven fabrics or woven fabric fibers are laminated in a matrix resin.
As the matrix resin for holding the fibers of the polishing pad of the present invention, ordinary thermosetting resins and thermoplastic resins can be used without any particular limitation. A resin belonging to a class having a relatively high elastic modulus, for example, a resin having a room temperature elastic modulus of 0.1 GPa or more, more preferably 0.5 GPa or more, is preferable. If the elastic modulus is small, the flatness tends to deteriorate.
As the thermosetting resin, for example, epoxy resins such as bisphenol A type epoxy resin and cresol novolac type epoxy resin, unsaturated polyester resin, acrylic resin, polyurethane resin and the like can be used. These may be used alone or in admixture of two or more. When these thermosetting resins are epoxy resins, a curing agent, a curing accelerator and the like are usually blended. As the curing agent, dicyandiamide, organic acid, organic acid anhydride, polyamine or the like can be used, and as the curing accelerator, for example, 2-ethyl-4-methylimidazole or the like can be used.
Examples of the thermoplastic resin include polycarbonate, polymethyl methacrylate, AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene rubber-styrene copolymer), polyethylene, polypropylene, polybutene, and 4-methyl-pentene-1. , Ethylene-propylene copolymer, ethylene vinyl acetate copolymer, polyester, polyamide, polyamideimide, polyacetal and the like. These may be used alone or in admixture of two or more. In particular, if a semi-crystalline thermoplastic polymer resin is used as the matrix resin, a highly durable polishing pad having excellent wear resistance can be obtained.
1st embodiment of the polishing pad of this invention is a polishing pad in which the said matrix resin contains at least 1 type of thermoplastic resin. Here, the matrix resin can be used without particular limitation as long as it contains at least one kind of thermoplastic resin, and the thermoplastic resin is preferably the main component.
In a second embodiment of the polishing pad of the present invention, the maximum exposed portion length of the organic fiber exposed on the surface to be polished is 0.1 mm or less. Here, the maximum exposed portion length of the exposed organic fiber is the length of the exposed portion of the fiber that is substantially fixed to the surface of the polishing pad, and refers to the maximum length. In practice, measurement is possible by observing about 5 or more points on the pad surface using an SEM (scanning electron microscope) or the like.
A third embodiment of the polishing pad of the present invention is a polishing pad useful for optically detecting a polishing end point during polishing of the surface of an object to be polished, part or all of which is 190 to 3500 nm. It is a polishing pad that is substantially non-foamed matrix resin that transmits light in the wavelength range and contains 1 to 20% by weight of organic fiber, and that has a function of transporting and holding abrasive slurry particles.
Regarding the matrix resin, particularly in the first embodiment, in addition to the thermoplastic resin, a cross-linked and non-cross-linked elastomer, a cross-linked polystyrene, a cross-linked polymethyl methacrylate, and the like as additives are further mixed and dispersed in the matrix resin. Also good. It is more preferred to add a thermoplastic elastomer and an elastomer with a low degree of crosslinking. The elastomer can be used without particular limitation as long as it has a glass transition point of room temperature or lower, and more preferably 0 ° C. or lower. Examples thereof include elastomers such as olefinic elastomers, styrene elastomers, urethane elastomers, ester elastomers, alkenyl aromatic compound-conjugated diene copolymers, and polyolefin copolymers. As the amount of these elastomers added increases, the impact resistance becomes higher and the resin becomes tenacious, and the frictional force between the pad surface and the metal increases.
As the organic fiber in the polishing pad of the present invention, materials that can be made into a fibrous form such as aramid, polyester, polyimide, and the like can be widely used. In addition, two or more of these can be selected and mixed.
From the viewpoint of the durability of the pad and the retention of the abrasive grains by the fibers, it is preferable to select an aramid, that is, an aromatic polyamide fiber as the main component, and more preferably an aramid fiber alone. That is, the aramid fiber has higher tensile strength than other general organic fibers, and when the surface of the polishing pad of the present invention is mechanically roughened to expose the fiber, the fiber tends to remain on the surface. This is because it is effective for holding particles. It also has the effect of improving the durability of the polishing pad and extending the service life. Aramid fibers are particularly preferable in the case of the first and third embodiments.
The aramid fiber has a para type and a meta type, and the para-type aramid fiber is more suitable because it has higher mechanical strength and lower moisture absorption than the meta type fiber. As the para-aramid fiber, poly p-phenylene terephthalamide fiber and poly p-phenylene diphenyl ether terephthalamide fiber are commercially available and can be used.
Further, from the viewpoint of adjusting the maximum exposure length and the surface roughness, it is preferable to use polyester as a main component as the organic fiber. This is because when the fibers of the polishing pad are exposed, the maximum exposed length can be reduced because the shear strength of the polyester fibers is smaller than that of the hard fibers. It is particularly preferable for the polishing pad of the second embodiment. On the other hand, when other hard fibers such as aramid fiber and polyimide fiber are used, the maximum exposed length is adjusted by refining the grindstone particle size used. At this time, since the roughness of the pad surface depends on the grain size of the grindstone, the irregularities on the surface of the pad inevitably are affected and affect the polishing rate. On the other hand, when polyester is used, the exposed length hardly changes even if a grindstone having any particle diameter is used. Therefore, the surface roughness of the pad itself can be arbitrarily adjusted while the fiber length is constant.
Here, you may mix and use the said other hard fiber with a polyester fiber. At this time, the ratio of the polyester fiber is desirably 40 to 100% by weight, preferably 70 to 100% by weight, and more preferably 80 to 100% by weight. When there are many polyester fibers, a fiber exposure layer will become small, and conversely, when there are many hard fibers, it will become thick and will tend to deteriorate flatness.
An organic fiber having a fiber diameter (diameter) of 1 mm or less can be preferably used, and is preferably 200 μm or less. Preferably it is 1-200 micrometers, More preferably, it is 5-150 micrometers. If it is too thick, the mechanical strength is too high, which may cause polishing scratches or defective dresses. If it is too thin, the handleability may be reduced, or the durability of the pad may be reduced due to insufficient strength.
The fiber length is not particularly limited, but in the case of a polishing pad in which the fibers are dispersed in a chopped form in the resin, the fiber length is preferably 10 mm or less, and more preferably 5 mm or less. More preferably, it is 0.1-3 mm. If it is too short, the exposed fiber will not be effectively held in the pad when the pad surface is mechanically roughened. If it is too long, it may become difficult to mold due to thickening when mixed with resin. . Even if these use the chop which cut | disconnected the short fiber to predetermined length, the thing of several types of fiber lengths can also be mixed and used.
Moreover, in order to improve the affinity with the resin, the fiber surface may be roughened mechanically or chemically in advance, or may be modified with a coupling material or the like. From the viewpoint of handling, a bundle of short fiber chops coated with a very small amount of resin can be used. However, this is only required to have a holding power enough to disperse the short fibers in the matrix resin by heating during mixing with the matrix resin or by an applied shearing force.
In addition, for a polishing pad in which a nonwoven fabric or a woven fabric is laminated, when using a nonwoven fabric, the same fibers as described above having a length of 1 mm or more are formed into a sheet shape by using the fusion force of the fibers themselves or an adhesive. Can be used. As the adhesive, an adhesive made of an epoxy resin such as a water-soluble epoxy resin binder can be used. When the adhesive is used, the amount is not particularly limited, but is preferably 3 to 20 parts by weight, more preferably 5 to 15 parts by weight with respect to 100 parts by weight of the fiber. In the case of a woven fabric in which long fibers are woven, the weaving method can be used without any particular limitation. A polishing pad in which such fibers are laminated is particularly suitable for the polishing pad of the second embodiment of the present invention.
The unit weight of the above nonwoven fabric and woven fabric is 36-100 g / m. 2 Preferably, it is 55 to 72 g / m. 2 It is more preferable that
The content of the organic fiber is not particularly limited, but when chopped fiber is used for the entire pad, it is preferably 1 to 50% by weight, more preferably 1 to 20% by weight, even more preferably. Is 5 to 20% by weight. If the amount of fibers is small, the polishing scratches on the polished surface become prominent, and if the amount is too large, the moldability tends to deteriorate. On the other hand, in the case of a woven fabric and a nonwoven fabric, 50 weight% or more is preferable, More preferably, it is 60 to 80 weight%.
In particular, in the case of the third embodiment, the content of the organic fiber in the portion having the light transmittance needs to be within a range in which the polished state of the wafer can be detected without impeding the light transmittance. Therefore, 1 to 20% by weight of the entire polishing pad is preferable, and more preferably 2 to 10% by weight. If the amount of fiber is small, polishing scratches on the polished surface become prominent, and if it is too large, moldability tends to deteriorate.
The polishing pad can be produced by a method in which fibers are dispersed and molded in a resin composition as a matrix, a woven fabric or non-woven fabric containing fibers is impregnated with a resin varnish to obtain a prepreg, and laminated. However, it is not limited to these.
Below, the manufacturing method of the polishing pad of this invention is demonstrated.
The first production method is a process of mixing a fiber containing organic fibers and a matrix resin composition to obtain a mixture, a process of making the mixture into pellets or tablets, and a plate-like by extrusion or injection molding of the pellets or tablets. Or the process of processing into a sheet form is included. A second production method includes a step of producing a resin-impregnated sheet-like fiber base material by impregnating a fiber base material containing organic fibers with a matrix resin composition, a sheet-like fiber base material containing the resin-impregnated sheet-like fiber base material The process of laminating and applying heat and pressure forming is included. The fiber substrate preferably contains mainly polyester fibers.
The preparation of the matrix resin composition for producing the polishing pad of the present invention and the method of mixing with the fiber can be carried out by a conventionally known method and are not particularly limited.
That is, when the chopped fiber is dispersed as it is in the matrix resin composition as the first production method, for example, each resin composition forming the matrix is uniformly mixed with a Henschel mixer, a super mixer, a turntable mixer, a ribbon blender, or the like. After (dry blending), it is melt kneaded with a single screw extruder, a twin screw extruder, a Banbury mixer, or the like. Further, fibers are added and melt-mixed in the same manner. Then, it is cooled and tableted or pelletized. When water is used for cooling, it must be sufficiently dried and dehydrated.
The obtained tablet or pellet is again extruded through a die with an extrusion molding machine and rolled with a roll, whereby a sheet-like or plate-like molding can be produced. As another manufacturing method, a sheet-like or plate-like molded article may be formed by injection molding into a mold instead of the extrusion molding.
On the other hand, when the matrix resin composition is a liquid thermosetting resin composition, a predetermined amount of chopped fibers are dispersed in the liquid thermosetting resin composition, and after pouring into a mold or the like to remove bubbles by decompression, By proceeding with heat curing, a molded product can be obtained. Similarly to the above, it may be produced by pressurizing and pouring into a mold in a heated state.
The second manufacturing method can also be performed by a conventionally known method, and is particularly suitable for manufacturing the polishing pad of the second embodiment. For example, when a woven fabric or a nonwoven fabric is used as the fiber substrate, the resin-impregnated sheet-like fiber substrate or the resin-impregnated sheet-like fiber substrate and the resin-unimpregnated sheet-like fiber substrate (that is, woven or nonwoven fabric) Prepare. These can be integrated by heating and pressing to obtain a molded product. At this time, it is preferable that an organic fiber is exposed on the surface by disposing a resin-unimpregnated sheet-like fiber base material on at least one surface.
The resin-impregnated sheet-like fiber base material is obtained by impregnating a resin composition into a resin-unimpregnated sheet-like fiber base material, and is usually called a prepreg. The method for preparing the prepreg is not particularly limited, but it can be obtained by preparing a varnish in which the above matrix resin composition components are dissolved in an organic solvent, impregnating the resin-unimpregnated sheet-like fiber base material, and then drying by heating. it can. The type of the solvent can be used without particular limitation as long as it can dissolve the resin composition uniformly. For example, ketones such as methyl ethyl ketone, methyl isobutyl ketone, and acetone, lower alcohols such as ethyl alcohol, propyl alcohol, and isopropyl alcohol, amides such as dimethylformamide, formamide, and the like can be used as a mixture. Is possible. The fiber content in the resin-impregnated sheet-like fiber base material is desirably 60 to 140 parts by weight, and preferably 90 to 120 parts by weight, with respect to 100 parts by weight of the resin composition and the adhesive. More preferred.
Further, the ratio of the resin-unimpregnated sheet-like fiber base material to the whole is determined in consideration of the fiber content in the polishing pad, particularly the organic fiber content of the surface layer that is pressed against the object to be polished. . According to this method, in order to change the fiber content of the polishing pad, it is not necessary to change the resin content at the time of manufacturing the prepreg, and it can be adjusted by changing the usage ratio of the resin-impregnated sheet-like fiber base material. It is.
In heating and pressing, generally, the heating temperature is usually 150 to 200 ° C., and the pressure is 50 to 500 kPa. These can be appropriately adjusted depending on the type and content of the thermosetting resin used.
These molded products are appropriately processed in accordance with the shape of the surface plate of a predetermined polishing apparatus as required to obtain a final product polishing pad. As an example, it is possible to obtain a polishing pad which is a final product by cutting the sheet-like molded product into a circular shape.
The entire thickness of the polishing pad is preferably 0.1 to 5 mm, and more preferably 0.5 to 2 mm. In addition, grooves that serve as a flow path for the polishing liquid and polishing debris may be formed on the polishing surface of the pad in a concentric or lattice shape using an NC lathe or the like.
In order to obtain a polishing pad in which at least organic fibers are exposed on the surface of the object to be polished according to the present invention, the surface of the object to be polished side of the pad is treated as necessary to expose the fibers. As a method of forming this exposed fiber, a dressing process, that is, a method of scraping off the resin on the pad surface using a grindstone such as diamond and exposing the fiber can be employed. A wire brush, a metal scraper, a resin brush, glass or a ceramic plate may be used instead of the grindstone.
These use conditions need to be well adjusted to control the exposed length of the fiber. The maximum exposed fiber length greatly depends on the hardness of the fiber, but if polyester fiber is used for the pad, it can be easily adjusted to be short.
In general, the maximum length of the portion exposed on the surface of the organic fiber can be practically 1 mm or less, and is desirably 200 μm or less. More preferably, it is 1-200 micrometers, More preferably, it is 10-150 micrometers. If it is too short, the retention of the polishing liquid will decrease and the polishing rate will decrease, and if it is too long, the flatness will tend to be adversely affected.
In particular, the polishing pad of the second embodiment of the present invention has a maximum exposed portion length of the exposed organic fiber of 0.1 mm or less. Here, the maximum exposed portion length can be used without particular limitation as long as it is 0.1 mm or less, preferably 1 to 50 μm, more preferably 1 to 25 μm. If the maximum exposed portion length increases, the flatness decreases, and if it decreases, the polishing rate tends to decrease.
Such organic fibers exposed on the surface of the object to be polished can efficiently hold abrasive particles (abrasive grains) in a polishing liquid, which will be described later, during polishing.
Next, the polishing pad of 3rd embodiment of this invention is demonstrated. This polishing pad optically detects the polishing amount of an object to be polished, manages its end point, and suppresses generation of polishing flaws during polishing while maintaining a high polishing rate and uniformity. Such a configuration can be realized by devising the structure of the polishing pad, the resin composition, the filler, and the like.
The structure of this polishing pad is such that the material of the polishing pad is transparent to light having a wavelength in the range of 190 to 3500 nm, or a part of the polishing pad is formed of this light-transmitting material. Is. In the latter case, for example, the member of the polishing pad is formed into a small piece and inserted as a window material for transmitting light to a part of another polishing pad that does not have sufficient light transmittance.
Thus, since the polishing pad or a part thereof transmits light having a wavelength in the range of 190 to 3500 nm, the polishing surface of the object to be polished is irradiated with light through the polishing pad to change the reflectance. By detecting, the polishing end point can be managed. In the present invention, transmitting light having a wavelength in the range of 190 to 3500 nm usually means that the transmittance of the light of this wavelength of the polishing pad or a part thereof before exposing the organic fiber is 10 to 100%. means. This transmittance is preferably 30 to 100%.
As a matrix resin used for such a light-transmitting material, a resin belonging to a class having a relatively high elastic modulus is preferable, and the above-described resins can be used without particular notice. In particular, if a semi-crystalline thermoplastic polymer resin is used, a highly durable polishing pad having excellent wear resistance can be obtained. Moreover, it is preferable that this resin is a form which does not have a foaming hole substantially. This is because the form having the foamed holes hinders light transmission and impairs detection of the polished state of the wafer. As the organic fiber, it is preferable to select an aramid fiber alone or as a main component.
The manufacturing method is the same as the manufacturing method described above, and each molded product is matched to the surface plate shape of a predetermined polishing apparatus, cut into a circular shape or the like to make a polishing pad, or this molded product is processed into small pieces, A light-transmitting window is inserted into another low light-transmitting polishing pad, which is partially cut off, to obtain a light-detectable polishing pad. In the latter case, in order to enhance the effect of the present invention, it is desirable that the low light-transmitting polishing pad into which the window portion is inserted is also formed of a resin plate or the like containing organic fibers, There is no particular limitation on the fiber content. Further, the inserted window material needs to contact the object to be polished on the pad surface during polishing. This is because if the gap between the window material and the object to be polished is large, the polishing liquid flows in, scatters the transmitted light, and hinders light detection. There are no particular restrictions on the shape of the window, but the size of the window must be large enough to secure the optical path required for the system consisting of the light irradiation and detection sensor attached to the polishing device that performs light detection. In addition, the area is preferably about 0.1 to 10% of the entire polishing pad surface.
Hereinafter, a polishing method using the polishing pad of the present invention will be described. In the polishing method of the present invention, the surface to be polished of the object to be polished is pressed against the exposed surface of the organic fiber of any of the above-described polishing pads of the present invention, and the polishing liquid is supplied between the surface to be polished and the polishing pad. However, this is a polishing method for polishing the surface to be polished by relatively sliding the object to be polished and the pad.
A substrate having a silicon oxide film formed thereon by TEOS-plasma CVD or the like after etching a Si exposed portion after forming a device pattern formed with a silicon nitride film in a shallow trench isolation process as an object to be polished. In the damascene method, a barrier conductor film is formed on an interlayer insulating film in which via holes and wiring trenches are formed by dry etching so as to completely cover the opening and the inner wall, and a Cu film is further grown thereon to completely open the opening. A substrate in which is embedded.
The CMP polishing liquid used in the polishing method of the present invention is not particularly defined. For example, for an insulating film, a composition comprising cerium oxide particles (ceria) or silicon oxide (silica) and a dispersant is used as a dispersion medium such as water. And obtained by further adding an additive. Examples of the polishing liquid for a metal layer such as Cu include polishing liquid in which abrasive grains such as silica, alumina, ceria, titania, zirconia, and germania, additives and anticorrosive are dispersed in water, and a peroxide is further added. . As the abrasive, colloidal silica particles or alumina particles are particularly preferable. The abrasive particle content is preferably 0.1 to 20% by weight. The abrasive particles do not limit the production method, but the average particle size is preferably 0.01 to 1.0 μm. If the average particle size is less than 0.01 μm, the polishing rate becomes too low, and if it exceeds 1.0 μm, it tends to cause scratches.
There is no restriction | limiting in particular in the apparatus which grind | polishes, It can use with a disk type polisher and a linear type polisher. For example, a general polishing apparatus having a holder for holding an object to be polished and a polishing surface plate to which a polishing pad is attached and a motor or the like capable of changing the number of rotations can be used. As an example, polishing apparatus manufactured by Ebara Corporation: model number EPO111 can be used.
In particular, in the polishing method using the polishing pad of the third embodiment for optically detecting the polishing end point, the object to be polished and the polishing pad are relatively slid using the polishing pad as described above. While polishing the surface to be polished, the polishing surface of the object to be polished is irradiated with a light beam having a wavelength of 190 to 3500 nm through the polishing pad, and the change in the reflectance is detected to manage the polishing end point.
When the polishing pad of the third embodiment is used, the polishing apparatus is used for laser light irradiation and detection of reflected light on a surface plate to which the polishing pad is attached, such as the MIRRA polishing apparatus manufactured by Applied Materials, USA. It is necessary to have a device. There is no particular limitation on the polishing conditions, but it is desirable to optimize depending on the object to be polished. In order to polish accurately, the exposure of the silicon nitride film is detected in the shallow trench isolation process, and in the damascene method, the reflection of the light irradiated to the wafer surface is detected and the polishing end point is managed on the polishing apparatus side. . At this time, a program for controlling the progress of polishing is incorporated in the polishing apparatus in advance.
In order to fix the polishing pad of the present invention to the surface plate of the polishing apparatus, an adhesive such as a double-sided adhesive tape can be used on the side opposite to the polishing surface. Alternatively, it may be attached via a low elastic modulus subpad made of foamed polyurethane or the like.
In order to perform polishing by sliding the polishing pad and the object to be polished relative to each other while the surface to be polished of the object is pressed against the polishing pad, specifically, at least between the object to be polished and the polishing surface plate Move one side. In addition to rotating the polishing surface plate, polishing may be performed by rotating or swinging the holder. Further, a polishing method in which a polishing platen is rotated on a planetary surface, a polishing method in which a belt-like polishing pad is moved linearly in one direction in the longitudinal direction, and the like can be given. The holder may be in any state of being fixed, rotating and swinging. These polishing methods can be appropriately selected depending on the surface to be polished and the polishing apparatus as long as the polishing pad and the object to be polished are moved relatively.
There is no particular limitation on the polishing conditions, but it is desirable to optimize the polishing conditions according to the object to be polished. For example, the rotation speed of the polishing platen is preferably a low rotation of 200 rpm or less so that the object to be polished does not jump out, and the pressure applied to the object to be polished is a pressure at which scratches do not occur after polishing, for example, when the surface to be polished is copper. Is preferably about 50 kPa or less. Moreover, when using the to-be-polished object which has a low dielectric constant interlayer insulation film, 20 kPa or less is preferable.
During polishing, a polishing liquid is continuously supplied by a pump or the like between the polishing pad and the surface to be polished. Although there is no restriction | limiting in this supply amount, It is preferable that the surface of a polishing pad is always covered with polishing liquid. The abrasion of the pad and exposed organic fiber due to polishing is regenerated and maintained by dressing. The object to be polished after polishing is preferably washed in running water and then dried after removing water droplets adhering to the polishing surface using a spin dryer or the like.
Hereinafter, as one aspect of the polishing method of the present invention, in accordance with the wiring formation step of the semiconductor device, the surface to be polished has a barrier conductor layer, and further a metal layer such as copper on the insulating layer in which the wiring and the trench are formed. A polishing method comprising a coated laminate will be described.
The metal layer is mainly composed of metal such as copper, copper alloy, copper oxide, copper alloy oxide (hereinafter referred to as copper and its compounds), tungsten, tungsten alloy, silver, and gold. It is preferable that copper, such as copper and its compound, is a main component.
The barrier conductor layer (hereinafter referred to as a barrier layer) covered with the metal layer is preferably a barrier layer for the above-mentioned copper and its compound, particularly copper and a copper alloy, among the above metals. The barrier layer is formed to prevent diffusion of the metal layer into the insulating film and to improve the adhesion between the insulating film and the metal layer. Examples of the conductor composition include tantalum, titanium, tungsten, and compounds such as nitrides, oxides, and alloys thereof.
Examples of the insulating film include a silicon-based film and an organic polymer film interlayer insulating film. Silicon-based coatings include silicon dioxide, fluorosilicate glass, organosilicate glass obtained using trimethylsilane and dimethoxydimethylsilane as starting materials, silicon-based coatings such as silicon oxynitride and silsesquioxane hydride, silicon carbide and A silicon nitride is mentioned. Examples of the organic polymer film include wholly aromatic low dielectric constant interlayer insulating films. In particular, the interlayer insulating film preferably has a dielectric constant of 2.7 or less.
First, an interlayer insulating film such as silicon dioxide is laminated on a silicon substrate. Next, a known pattern concave portion (substrate exposed portion) is formed on the surface of the interlayer insulating film by a known means such as resist layer formation or etching to obtain an interlayer insulating film having convex portions and concave portions. On this interlayer insulating film, a barrier layer made of tantalum or the like covering the interlayer insulating film is formed along the surface irregularities by vapor deposition or CVD. Furthermore, a metal layer such as copper covering the barrier layer is formed by vapor deposition, plating, CVD, or the like so as to fill the concave portion.
Next, the metal layer on the surface of the substrate is polished by CMP using the polishing pad of the present invention while supplying a polishing liquid (first polishing step). Thereby, the barrier layer of the convex part on a board | substrate is exposed on the surface, and the desired wiring pattern with which the said metal film was left in the recessed part is obtained. When this polishing proceeds, a part of the convex barrier layer may be polished simultaneously with the metal layer. In the second polishing step, at least the exposed barrier layer and the recessed metal layer are polished by CMP using a polishing liquid capable of polishing the metal layer, the barrier layer, and the interlayer insulating film. The interlayer insulation film under the barrier layer of the convex part was all exposed, the metal layer to be the wiring layer was left in the concave part, and the desired pattern was obtained in which the cross section of the barrier layer was exposed at the boundary between the convex part and the concave part At this point, the polishing is finished. The polishing pad of the present invention is used at least in the second polishing step, and is preferably used in the first polishing step as in this embodiment.
In order to ensure better flatness at the end of polishing, further overpolishing (for example, if the time until a desired pattern is obtained in the second polishing step is 100 seconds, additional 50 seconds are added for polishing) This may be referred to as over-polishing 50%) and may be polished to a depth that includes a portion of the convex interlayer insulating film.
The polishing pad of the present invention and the polishing method using the same are applied not only to a film containing mainly a metal such as Cu, Ta, TaN, and Al, but also to a predetermined wiring board by embedding the composite opening of the insulating layer. It is composed of formed silicon oxide film, glass, inorganic insulating film such as silicon nitride, film mainly containing polysilicon, optical glass such as photomask / lens / prism, inorganic conductive film such as ITO, glass and crystalline material Optical integrated circuits, optical switching elements, optical waveguides, optical fiber end faces, scintillator and other optical single crystals, solid state laser single crystals, sapphire substrates for blue laser LEDs, semiconductor single crystals such as SiC, GaP, and GaAs, for magnetic disks It can also be applied to polishing glass or aluminum substrates, magnetic heads, and the like.

以下実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。  EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

有機繊維としてポリ−p−フェニレンテレフタルアミド繊維(デュポン社製商品名「ケブラー」、繊維径12.5μm、繊維長3mm)、マトリックス組成物としてABS樹脂ペレットを押し出し成形機にて溶融混合し、タブレット化した。ここで、ポリ−p−フェニレンテレフタルアミド繊維は、10重量%になるように調整した。タブレットを大型乾燥機にて120℃、5時間乾燥した後、押し出し成形およびロールを用いて、厚さ1.2mm、幅1mのシート状成形品を作製した。これに深さ0.6mm、幅2.0mmの矩形断面形状の溝を、ピッチ15mm格子状に形成した後、円形に切り出した。さらに、溝加工した面の反対側に両面テープを接着して研磨パッドとした。  Poly-p-phenylene terephthalamide fiber (trade name “Kevlar” manufactured by DuPont, fiber diameter 12.5 μm, fiber length 3 mm) as organic fiber, and ABS resin pellets as matrix composition are melt-mixed in an extruder, and tableted Turned into. Here, the poly-p-phenylene terephthalamide fiber was adjusted to 10% by weight. After the tablet was dried at 120 ° C. for 5 hours with a large dryer, a sheet-shaped molded product having a thickness of 1.2 mm and a width of 1 m was produced using an extrusion molding and a roll. Grooves having a rectangular cross-sectional shape with a depth of 0.6 mm and a width of 2.0 mm were formed in a grid shape with a pitch of 15 mm, and then cut into a circle. Furthermore, a double-sided tape was bonded to the opposite side of the grooved surface to obtain a polishing pad.

マトリックス組成物として、ポリエチレン、ポリプロピレン、スチレン系エラストマを、重量比で50:50:100に混合したほかは、実施例1と同様にして研磨パッドを得た。  A polishing pad was obtained in the same manner as in Example 1 except that polyethylene, polypropylene, and styrene elastomer were mixed at a weight ratio of 50: 50: 100 as the matrix composition.

マトリックス組成物として、ポリプロピレンを用いたほかは、実施例1と同様にして研磨パッドを得た。
(比較例1)
有機繊維を使用しないほかは、実施例1と同様にして研磨パッドを作製した。
(比較例2)
発泡ポリウレタン製研磨パッドを用意した。
以上のパッドをそれぞれ研磨装置の定盤に取り付け、#160番手のダイヤモンド砥石をつけたドレッサーで、30分間表面を粗化した。
(研磨液の調製)
銅用の研磨液として、砥粒フリー研磨剤(日立化成工業株式会社製 商品名HS−C430スラリ)およびこれに二次粒子の平均径が35nmのコロイダルシリカを加え0.37重量%に調整した砥粒入り研磨剤を使用した。両者とも、使用時に、体積比で研磨液:過酸化水素水=7:3で混合した。
(基板の研磨)
実施例および比較例で作製した研磨パッドと上記研磨液を使用して、配線なしあるいは配線を形成したシリコンウエハ基板を以下のように研磨し、研磨速度、研磨傷、および平坦性の指標としてディッシングを測定した。
すなわち研磨装置のウエハ取り付け用の吸着パッドを貼り付けたホルダーに上記ウエハをセットした。また、前記研磨装置の研磨定盤に実施例および比較例で作製した研磨パッドを貼り付け、その上に、被研磨面を下にしてホルダーを研磨装置に取り付けた。上記研磨液を150cc/分で供給しながら、定盤とウエハとを38rpmで回転し、加工荷重4×10Paで研磨し、評価した。結果を表1に示す。
(研磨速度の評価)
厚さ1μmの銅膜を形成した配線形成のない二酸化シリコン膜層付きシリコンウエハ基板(直径13cm)を用い、2分間研磨を行った。研磨前後の銅膜厚を、ナプソン株式会社製 型番 RT−7を用いてシート抵抗値を測定し、抵抗率から膜厚を計算し、CMP前後での膜厚差を求め計算した。結果を表1に記載する。
(研磨傷の評価)
研磨速度の評価を行ったウエハを用い、目視で傷の評価を行った。結果を表1に併記する。
○:研磨後の被研磨面に傷が5個未満
×:研磨後の被研磨面に傷が5個以上
(ディッシング量)
シリコンウエハに厚さ300nmの二酸化シリコン膜を形成し、二酸化シリコン中に配線密度50%、深さ0.5μmの溝を形成して、公知のスパッタ法によってバリア層として厚さ50nmの窒化タンタル膜を形成し、同様にスパッタ法により銅膜を1.0μm形成して公知の熱処理によって埋め込んだ、配線金属部(銅)幅100μm、絶縁膜(二酸化シリコン)部幅100μmが交互に並んだストライプ状パターン部の表面形状を有するシリコン基板(直径13cm)を被研磨物として用意した。
この被研磨物を用いて銅膜の研磨とバリア層の研磨とからなる2段研磨を行い、触針式段差計(Veeco/Sloan社製Dektat3030)で上記ストライプ状パターン部の表面形状から、絶縁膜部に対する配線金属部の膜減り量を測定した。結果を表1に併記する。なお、表中の「測定不能」とは、低研磨速度で基板が研磨できないか、研磨傷が多すぎて測定できない状態を示す。
実施例1と比較例1で作製した研磨パッドは、マトリックス樹脂は同様で、繊維を含むか含まないかの違いである。本発明の研磨パッドである実施例1は、有機繊維を含まない比較例1に比べて傷の発生が抑えられて良好である。比較例1は研磨傷がひどく、ディッシングの測定が不能であった。実施例では砥粒フリー研磨剤を用いると殆ど研磨できず、研磨速度の高い比較例1あるいは比較例2と異なる研磨装置構によって研磨されていることが明らかである。

Figure 2004090963
つづいて、研磨液は上記の検討から研磨速度の高かった砥粒入り研磨剤を使用し、かつ加工荷重2×10Paとした以外は上記と同様に研磨し評価した結果を表2に示す。ここで、表2から、実施例では、上記研磨条件と殆ど研磨速度に差がなく、低荷重すなわち低摩擦力でも研磨が可能であることが確認できた。一方、比較例では、本条件のような低荷重では研磨速度が極端に低下してしまった。
Figure 2004090963
以上の検討から、本発明による研磨パッドを使用すれば、CMP時に絶縁層にかかる負荷を低減しつつ、平坦性を向上できることが分かった。
次に、実施例により、研磨パッドを介して半導体ウエハ表面へ光を照射し、その反射率の変化を検知し、研磨終点を管理する研磨工程に使用するのに適した本発明の研磨パッドを説明するが、本発明はこれらの実施例に限定されるものではない。
研磨パッドを作製するために以下の板材1〜3を準備した。
[板材1]
有機繊維としてポリ−p−フェニレンテレフタルアミド繊維(デュポン製「ケブラー」、繊維径12.5μm.繊維長3mm)、マトリックス樹脂としてAS樹脂ペレット(日本エイアンドエル株式会社製、商品名:ライタックA−100PC)を押し出し成形機にて溶融混合し、タブレット化した。ここで、ポリ−p−フェニレンテレフタルアミド繊維は、5重量%になるように調整した。タブレットを大型乾燥機にて120℃、5h乾燥した後、押し出し成形及びロールを用いて、厚さ1.2mm、幅1mのシート状成形品を作製した。
[板材2]
AS樹脂ペレット(同上)を押し出し成形機にて溶融し、タブレット化した。このタブレットを大型乾燥機にて120℃、5h乾燥した後、押し出し成形及びロールを用いて、厚さ1.2mm、幅1mのシート状成形品を作製した。この板材は有機繊維を含まない。
[板材3]
パラ系アラミド繊維チョップ(繊維径:12.5μm、繊維長:5mm、デュポン製「ケブラー」)とパラ系アラミド繊維パルプ(繊維径:1μm、繊維長:1mm、デュポン製「ケブラー」)とメタ系アラミド繊維チョップ(繊維径:25μm、繊維長:6mm、軟化温度280℃、帝人(株)製「コーネックス」)を混抄し、水溶性エポキシ樹脂バインダ(ガラス転移温度110℃、大日本インキ化学工業(株)製、商品名「Vコート」)の20重量%水溶液をスプレーして加熱乾燥(150℃、3min)し、さらに、一対の熱ロール間(温度300℃、線圧力196kN/m)に通すことにより加熱圧縮し、メタ系アラミド繊維チョップをパラ系アラミド繊維チョップに熱融着した不織布を準備した。単位質量70g/m、パラ系アラミド繊維チョップ/パラ系アラミド繊維パルプ/メタ系アラミド繊維チョップ/エポキシ樹脂バインダの配合質量比58/17/8/17であった。
硬化剤としてジシアンジアミドを、硬化促進剤として2−エチル−4メチルイミダゾールを配合したビスフェノールA型エポキシ樹脂(油化シェル(株)製、商品名「EP−828SK」)ワニスを準備した。ワニスの調整には、ビスフェノールA型エポキシ樹脂100重量部に対し、硬化剤を20重量部、硬化促進剤を0.1重量部、溶剤としてメチルエチルケトンを40重量部用いた。
このワニスを前述のアラミド繊維不織布に含浸し加熱乾燥(170℃、5min)してプリプレグとした。このプリプレグは、加熱加圧成形後の厚さが0.08mmになるように樹脂付着量を調整したものである。アラミド繊維不織布の含有率は60重量%である。
このプリプレグを12枚重ねたプリプレグ層の両表面に離型フィルム(50μm厚のポリプロピレンフィルム)を配置し、これをステンレス製鏡面板に挟み込み、その複数組をプレス熱盤間に投入し、熱盤との間にはクラフト紙層からなる厚さ10mmのクッション材を介在させて加熱加圧成形して(温度170℃、圧力300kPa、時間120min)、厚さ1.0mmの積層板を得た。A polishing pad was obtained in the same manner as in Example 1 except that polypropylene was used as the matrix composition.
(Comparative Example 1)
A polishing pad was produced in the same manner as in Example 1 except that no organic fiber was used.
(Comparative Example 2)
A foamed polyurethane polishing pad was prepared.
Each of the above pads was attached to a surface plate of a polishing apparatus, and the surface was roughened for 30 minutes with a dresser equipped with a # 160 diamond wheel.
(Preparation of polishing liquid)
As a polishing liquid for copper, an abrasive-free abrasive (trade name HS-C430 slurry manufactured by Hitachi Chemical Co., Ltd.) and colloidal silica having an average secondary particle diameter of 35 nm were added to adjust to 0.37% by weight. An abrasive containing abrasive was used. Both were mixed at a volume ratio of polishing liquid: hydrogen peroxide solution = 7: 3 at the time of use.
(Polishing the substrate)
Using the polishing pads prepared in Examples and Comparative Examples and the above polishing liquid, a silicon wafer substrate without wiring or with wiring formed thereon is polished as follows, and dishing is performed as an index of polishing speed, polishing scratches, and flatness. Was measured.
That is, the wafer was set in a holder to which a suction pad for wafer attachment of a polishing apparatus was attached. In addition, the polishing pads produced in Examples and Comparative Examples were attached to the polishing surface plate of the polishing apparatus, and the holder was attached to the polishing apparatus with the surface to be polished facing down. While supplying the above polishing liquid at 150 cc / min, the surface plate and the wafer were rotated at 38 rpm, polished with a processing load of 4 × 10 4 Pa, and evaluated. The results are shown in Table 1.
(Evaluation of polishing rate)
Polishing was performed for 2 minutes using a silicon wafer substrate (diameter 13 cm) with a silicon dioxide film layer on which a 1 μm-thick copper film was formed and no wiring was formed. The copper film thickness before and after polishing was measured by using a Napson Co., Ltd. model number RT-7, the sheet resistance value was measured, the film thickness was calculated from the resistivity, and the film thickness difference before and after CMP was calculated. The results are listed in Table 1.
(Evaluation of polishing scratches)
Using the wafer on which the polishing rate was evaluated, the scratches were evaluated visually. The results are also shown in Table 1.
○: Less than 5 scratches on the polished surface after polishing ×: 5 or more scratches on the polished surface after polishing (dishing amount)
A silicon dioxide film having a thickness of 300 nm is formed on a silicon wafer, a groove having a wiring density of 50% and a depth of 0.5 μm is formed in the silicon dioxide, and a tantalum nitride film having a thickness of 50 nm is formed as a barrier layer by a known sputtering method. Similarly, a copper film of 1.0 μm is formed by sputtering and embedded by a known heat treatment, and a stripe shape in which a wiring metal part (copper) width of 100 μm and an insulating film (silicon dioxide) part width of 100 μm are alternately arranged A silicon substrate (diameter 13 cm) having the surface shape of the pattern portion was prepared as an object to be polished.
Using this object to be polished, two-stage polishing consisting of polishing of a copper film and polishing of a barrier layer is performed, and insulation is performed from the surface shape of the stripe-shaped pattern portion with a stylus type step meter (Dektat 3030 manufactured by Veeco / Sloan). The amount of reduction of the wiring metal part relative to the film part was measured. The results are also shown in Table 1. In the table, “impossible to measure” indicates a state in which the substrate cannot be polished at a low polishing rate or cannot be measured due to excessive polishing scratches.
The polishing pads produced in Example 1 and Comparative Example 1 have the same matrix resin, and are different in whether or not they contain fibers. Example 1 which is the polishing pad of the present invention is good in that the occurrence of scratches is suppressed as compared with Comparative Example 1 which does not contain organic fibers. In Comparative Example 1, polishing scratches were severe and dishing measurement was impossible. In the examples, it is apparent that when the abrasive-free abrasive is used, the polishing can hardly be performed, and the polishing is performed by a polishing apparatus structure different from Comparative Example 1 or Comparative Example 2 having a high polishing rate.
Figure 2004090963
Table 2 shows the results of polishing and evaluation in the same manner as described above except that the polishing liquid used was a polishing agent containing abrasive grains having a high polishing rate from the above examination and the processing load was set to 2 × 10 4 Pa. . Here, from Table 2, it was confirmed that in the Examples, there was almost no difference in the polishing conditions and the polishing rate, and polishing was possible even with a low load, that is, a low frictional force. On the other hand, in the comparative example, the polishing rate was extremely reduced at a low load as in this condition.
Figure 2004090963
From the above study, it was found that the use of the polishing pad according to the present invention can improve the flatness while reducing the load applied to the insulating layer during CMP.
Next, according to the embodiment, the polishing pad of the present invention suitable for use in a polishing process in which light is irradiated to the surface of the semiconductor wafer through the polishing pad, the change in reflectance is detected, and the polishing end point is managed. As will be described, the present invention is not limited to these examples.
In order to prepare a polishing pad, the following plate materials 1 to 3 were prepared.
[Plate 1]
Poly-p-phenylene terephthalamide fiber (Du Pont “Kevlar”, fiber diameter 12.5 μm, fiber length 3 mm) as organic fiber, AS resin pellet as matrix resin (trade name: LIGHTAC A-100PC, manufactured by Nippon A & L Co., Ltd.) Was melt-mixed in an extruder and tableted. Here, the poly-p-phenylene terephthalamide fiber was adjusted to 5% by weight. After the tablet was dried at 120 ° C. for 5 hours with a large dryer, a sheet-like molded product having a thickness of 1.2 mm and a width of 1 m was prepared using an extrusion molding and a roll.
[Plate material 2]
AS resin pellets (same as above) were melted in an extruder and tableted. The tablet was dried at 120 ° C. for 5 hours with a large dryer, and then a sheet-like molded product having a thickness of 1.2 mm and a width of 1 m was produced using extrusion molding and a roll. This plate material does not contain organic fibers.
[Plate 3]
Para-aramid fiber chop (fiber diameter: 12.5 μm, fiber length: 5 mm, DuPont “Kevlar”) and para-aramid fiber pulp (fiber diameter: 1 μm, fiber length: 1 mm, DuPont “Kevlar”) and meta Aramid fiber chop (fiber diameter: 25 μm, fiber length: 6 mm, softening temperature 280 ° C., Teijin's “Conex”) was mixed and water-soluble epoxy resin binder (glass transition temperature 110 ° C., Dainippon Ink & Chemicals, Inc.) Sprayed with a 20% by weight aqueous solution (trade name “V coat”, manufactured by Co., Ltd.) and dried by heating (150 ° C., 3 min), and further between a pair of hot rolls (temperature 300 ° C., linear pressure 196 kN / m) A non-woven fabric was prepared by heat-compressing by passing, and heat-sealing the meta-aramid fiber chop to the para-aramid fiber chop. The unit mass was 70 g / m 2 , and the blending mass ratio of para-aramid fiber chop / para-aramid fiber pulp / meta-aramid fiber chop / epoxy resin binder was 58/17/8/17.
A bisphenol A type epoxy resin (trade name “EP-828SK”, manufactured by Yuka Shell Co., Ltd.) varnish in which dicyandiamide was blended as a curing agent and 2-ethyl-4methylimidazole was blended as a curing accelerator was prepared. For adjusting the varnish, 20 parts by weight of the curing agent, 0.1 part by weight of the curing accelerator and 40 parts by weight of methyl ethyl ketone as the solvent were used with respect to 100 parts by weight of the bisphenol A type epoxy resin.
This varnish was impregnated into the aramid fiber nonwoven fabric described above and dried by heating (170 ° C., 5 min) to obtain a prepreg. This prepreg is obtained by adjusting the resin adhesion amount so that the thickness after heat and pressure molding becomes 0.08 mm. The content of the aramid fiber nonwoven fabric is 60% by weight.
A release film (50 μm-thick polypropylene film) is placed on both surfaces of the prepreg layer in which 12 prepregs are stacked, and this is sandwiched between stainless mirror plates, and a plurality of sets are put between press hot plates. A 10 mm thick cushioning material made of a kraft paper layer was interposed between the two and heated and pressure-molded (temperature 170 ° C., pressure 300 kPa, time 120 min) to obtain a laminated plate having a thickness of 1.0 mm.

板材1を用いて、φ500mmの円板状に加工し、研磨時に供給される研磨液がウエハを保持する治具の下を通り、ウエハの下へ流入するための溝加工を表面に行い(格子状、溝幅2mm、溝ピッチ15mm、溝深さ0.6mm)、その反対側の面に両面テープを装着して研磨パッドとした。  The plate 1 is processed into a disk shape of φ500 mm, and a groove is processed on the surface so that the polishing liquid supplied at the time of polishing passes under the jig holding the wafer and flows under the wafer (lattice Shape, groove width 2 mm, groove pitch 15 mm, groove depth 0.6 mm), and a double-sided tape was attached to the opposite surface to obtain a polishing pad.

板材1を縦56mm、横19mmで角にアール(曲率半径1.0mm)をもつ矩形状の小片に加工した。次に板材3を用いて、実施例3と同様にφ500mmの円板状に加工し、溝加工をその表面に行った。この円板の中心から円周に向かう半径の中間点を縦56mm、横19mmで角に上記と同様のアールを有する矩形の穴を半径側に長手方向がくるように切り抜いた。この円板の穴に前述の板材1からなる矩形状の小片を挿入して光検知用の透過窓とした。最後に溝加工面の反対側に両面テープを装着して研磨パッドとした。
(従来例1)
発泡ポリウレタン系樹脂からなる研磨パッドであり、縦56mm、横19mmで角にアールをもつ矩形状の透明樹脂板からなる光検知用の透過窓をもつ市販品を用意した。(厚み1.2mm、ロデール社製「IC−1000/Suba−400」)
(比較例3)
板材2に、実施例3と同じ加工をして研磨パッドを作製した。
(参考例1)
板材3に、実施例3と同じ加工をして研磨パッドを作製した。この研磨パッドは実施例4のような窓部を持たない。
これら実施例、従来例、参考例及び比較例の研磨パッドの光透過率を測定した。光透過窓をもつ研磨パッドについては窓部で測定を行い、持たない研磨パッドについては研磨パッド本体の板材で測定を行った。透過率の測定は島津製作所(株)製分光光度計UV−2200を用い、測定波長は670nmとした。なお、測定値はランベルトベールの法則を用いて板厚1mmの透過率に換算した。
研磨装置は米国アプライドマテリアルズ社製MIRRA機を使用し、これら各研磨パッドをφ500mmの定盤上に貼付けて固定した。光検出用の光透過窓をもつ研磨パッドは研磨装置の定盤の窓と研磨パッドの窓をずれないよう合わせた。各研磨パッドは定盤に貼り付けた後、この研磨装置に付属するパッドコンディショナ機構に旭ダイヤモンド(株)製ダイヤモンドドレッサ(砥粒:#170 アクリルコートあり)を装着し、9LBにて15分間ドレッシングした。このとき、各研磨パッドの表面状態を観察したところ、実施例3および参考例1の研磨パッドは表面に繊維の露出(露出長:500μm前後)が見られた。実施例4の研磨パッドも窓部を含め、パッド表面全体に同様の繊維の露出(露出長:500μm前後)が見られた。従来例1および比較例3の研磨パッドはこれら繊維の露出はみられなかった。
これら実施例、従来例、参考例および比較例の研磨パッドの構造と表面状態および光透過率を表3にまとめた。

Figure 2004090963
以上のように研磨装置にセットした各実施例、従来例、参考例および比較例の研磨パッドとCMP研磨液により、シリコンウエハ(絶縁膜ブランケットウエハおよびTEGウエハ)の研磨を次のように実施し、その特性を次の観点から評価した。これら評価結果を表4に示す。
(研磨傷数の評価)
φ200mmシリコンウエハ上にTEOS−プラズマCVD法で酸化珪素膜を1μm形成したブランケットウエハを研磨装置にセットした。このとき、ウエハはヘッド部に保持され、酸化珪素膜面を定盤上の研磨パッドに当接されていた。研磨中にウエハの表面にかかる研磨圧力を21kPa(3PSI)に設定し、酸化セリウム系研磨液(日立化成工業(株)製 HS−8005)を供給量40mL/minと添加剤(日立化成工業(株)製 HS−8102GP)を供給量160mL/minで混合して定盤上に滴下しながら、定盤を100rpm、ヘッドを90rpmで回転させて、ウエハ上の酸化珪素膜を1分間研磨した。研磨後のシリコンウエハを純水で十分に洗浄後、乾燥した後、ウエハの表面全体を顕微鏡で暗視野にて観察を行い、研磨傷をカウントした。
(研磨速度の評価)
研磨傷数の評価の終わった各ブランケットウエハの酸化珪素膜厚を光干渉式膜厚測定装置により測定し、研磨前に測定した酸化珪素膜厚との差から平均研磨速度を求めた。
(均一性の評価)
研磨速度の測定と同様に各ブランケットウエハ面内の直行する直径上にて端部5mmから8mmおきの45点について、各箇所の酸化珪素膜の研磨速度を測定し、標準偏差(1δ)から研磨速度のばらつき(1δ/平均研磨速度×100)を求めた。
(終点管理の可否の評価)
φ200mmシリコンウエハ上に幅および間隔を25〜2000μmとしたラインなどのパターンを厚み100nmの窒化珪素膜で作製した後、Si露出部を深さ350nmエッチングし、このウエハ上にTEOS−プラズマCVD法で酸化珪素膜を600nm形成した表面に450nmの凹凸を持ったTEGウエハを準備した。このウエハを前述したブランケットウエハと同条件で研磨する際に、評価に用いた研磨装置(アプライドマテリアルテクノロジー社製MIRRA)に付属するレーザ光によるISRM終点管理システムを使用して、窒化珪素膜の露出検知の可否を判別した。
(平坦性の評価)
前述の終点管理にて窒化珪素膜の露出を検知し、研磨を終了したTEGウエハの窒化珪素膜のライン(幅100μm)とその隣り合った酸化珪素膜のライン(幅300μm)との表面の段差を触針式段差計Dektak3030(SLOAN社製)を用いて測定した。
Figure 2004090963
表4の実施例3および4の結果から本発明に係る研磨パッドを用いることにより、光検知による終点の管理ができ、なおかつ従来例1、および比較例3との比較から有機繊維の効果で研磨傷の発生を抑制できることが判る。また、このとき、研磨速度が高く、均一性も充分であることが判った。なお、参考例1の研磨パッドは評価に用いたTEGウエハを研磨するにあたり、光照射により終点を検知するのに、充分顕著な反射率の変化がみられなかった。これは、参考例1の研磨パッドが先の検討で光透過率が低い結果となったことと相応する。
次に最大露出繊維長さに関する実施例について説明する。The plate 1 was processed into a rectangular piece having a length of 56 mm, a width of 19 mm, and a rounded corner (curvature radius of 1.0 mm). Next, the plate material 3 was processed into a disk shape of φ500 mm in the same manner as in Example 3, and groove processing was performed on the surface thereof. A rectangular hole having a radius of 56 mm in length and 19 mm in width and having the same radius as the above at the corner was cut out so that the longitudinal direction would be on the radius side. A rectangular small piece made of the above-described plate material 1 was inserted into the hole of the disk to form a transmission window for light detection. Finally, a double-sided tape was attached to the opposite side of the grooved surface to obtain a polishing pad.
(Conventional example 1)
A polishing pad made of a foamed polyurethane-based resin and having a light-transmitting transmission window made of a rectangular transparent resin plate having a length of 56 mm and a width of 19 mm and a corner at the corner was prepared. (Thickness 1.2 mm, “IC-1000 / Suba-400” manufactured by Rodel)
(Comparative Example 3)
The plate 2 was processed in the same manner as in Example 3 to produce a polishing pad.
(Reference Example 1)
The plate 3 was processed in the same manner as in Example 3 to produce a polishing pad. This polishing pad does not have a window as in the fourth embodiment.
The light transmittances of the polishing pads of these Examples, Conventional Examples, Reference Examples and Comparative Examples were measured. For the polishing pad having the light transmission window, measurement was performed at the window portion, and for the polishing pad not having the light transmission window, measurement was performed on the plate material of the polishing pad main body. The transmittance was measured using a spectrophotometer UV-2200 manufactured by Shimadzu Corporation, and the measurement wavelength was 670 nm. The measured value was converted to a transmittance of a plate thickness of 1 mm using Lambert Beer's law.
As the polishing apparatus, an MIRRA machine manufactured by Applied Materials, Inc., USA was used, and each of these polishing pads was stuck on a surface plate of φ500 mm and fixed. A polishing pad having a light transmission window for light detection was aligned so that the window of the surface plate of the polishing apparatus and the window of the polishing pad did not shift. After each polishing pad is affixed to the surface plate, a diamond dresser (Abrasive: # 170 with acrylic coat) manufactured by Asahi Diamond Co., Ltd. is attached to the pad conditioner mechanism attached to this polishing apparatus, and 15 minutes at 9 LB. Dressed up. At this time, when the surface state of each polishing pad was observed, fiber exposure (exposure length: around 500 μm) was observed on the surfaces of the polishing pads of Example 3 and Reference Example 1. Also in the polishing pad of Example 4, similar fiber exposure (exposure length: around 500 μm) was observed on the entire pad surface including the window portion. The polishing pads of Conventional Example 1 and Comparative Example 3 did not expose these fibers.
Table 3 summarizes the structures, surface states, and light transmittances of the polishing pads of these examples, conventional examples, reference examples, and comparative examples.
Figure 2004090963
As described above, polishing of silicon wafers (insulating film blanket wafer and TEG wafer) was carried out as follows using the polishing pad and CMP polishing liquid of each of the examples, conventional examples, reference examples and comparative examples set in the polishing apparatus. The characteristics were evaluated from the following viewpoints. These evaluation results are shown in Table 4.
(Evaluation of the number of polishing scratches)
A blanket wafer in which a silicon oxide film of 1 μm was formed on a φ200 mm silicon wafer by TEOS-plasma CVD was set in a polishing apparatus. At this time, the wafer was held by the head portion, and the silicon oxide film surface was in contact with the polishing pad on the surface plate. The polishing pressure applied to the wafer surface during polishing was set to 21 kPa (3 PSI), and a cerium oxide-based polishing liquid (HS-8005 manufactured by Hitachi Chemical Co., Ltd.) was supplied at 40 mL / min and additives (Hitachi Chemical Industry ( HS-8102GP) was mixed at a supply rate of 160 mL / min and dropped onto the platen, while rotating the platen at 100 rpm and the head at 90 rpm, the silicon oxide film on the wafer was polished for 1 minute. The polished silicon wafer was thoroughly washed with pure water and dried, and then the entire surface of the wafer was observed with a microscope in a dark field, and polishing scratches were counted.
(Evaluation of polishing rate)
The silicon oxide film thickness of each blanket wafer after the evaluation of the number of polishing flaws was measured with an optical interference film thickness measuring device, and the average polishing rate was determined from the difference from the silicon oxide film thickness measured before polishing.
(Evaluation of uniformity)
Similar to the measurement of the polishing rate, the polishing rate of the silicon oxide film at each point is measured at 45 points every 5 mm to 8 mm on the direct diameter in each blanket wafer surface, and polishing is performed from the standard deviation (1δ). Variation in speed (1δ / average polishing speed × 100) was determined.
(Evaluation of availability of end point management)
A pattern such as a line having a width and interval of 25 to 2000 μm is formed on a φ200 mm silicon wafer with a silicon nitride film having a thickness of 100 nm, and then an Si exposed portion is etched to a depth of 350 nm. The TEOS-plasma CVD method is formed on this wafer. A TEG wafer having 450 nm irregularities on the surface on which a 600 nm silicon oxide film was formed was prepared. When this wafer is polished under the same conditions as the blanket wafer described above, the silicon nitride film is exposed using the ISRM end point management system using laser light attached to the polishing apparatus (MIRRA manufactured by Applied Material Technology) used for evaluation. It was determined whether or not detection was possible.
(Evaluation of flatness)
The surface level difference between the silicon nitride film line (width: 100 μm) and the adjacent silicon oxide film line (width: 300 μm) of the TEG wafer whose polishing has been finished by detecting the exposure of the silicon nitride film by the end point management described above. Was measured using a stylus type step gauge Dektak 3030 (manufactured by SLOAN).
Figure 2004090963
By using the polishing pad according to the present invention from the results of Examples 3 and 4 in Table 4, it is possible to manage the end point by light detection, and polishing by the effect of organic fiber from comparison with Conventional Example 1 and Comparative Example 3 It can be seen that the occurrence of scratches can be suppressed. At this time, it was found that the polishing rate was high and the uniformity was sufficient. Note that the polishing pad of Reference Example 1 did not show a sufficiently significant change in reflectance to detect the end point by light irradiation when polishing the TEG wafer used for evaluation. This corresponds to the result that the polishing pad of Reference Example 1 has a low light transmittance in the previous examination.
Next, examples relating to the maximum exposed fiber length will be described.

繊維径12.5μm、繊維長5mmのポリエステル繊維からなる単位質量70g/mの不織布(日本バイリーン(株)製「EPM−4070TE」)に、下記ワニスを含浸し、170℃、5分間乾燥させてプリプレグを作製した。
ワニスは、ビスフェノールA型エポキシ樹脂100重量部に対し、硬化剤としてジシアンジアミドを20重量部、硬化促進剤として2−エチル−4−メチルイミダゾールを0.1重量部加え、メチルエチルケトン40重量部に溶解して作製した。
上記プリプレグを20枚積層し、上下に離型フィルム(ポリプロピレン、50μm厚)を配置、鏡面板にはさんだ。厚さ10mmクッション紙を介してプレス熱盤間で加熱加圧成形した。ここで、成形条件は、175℃、400kPa、120分間とした。結果、厚さ1.5mmの積層板を得た。積層板全体の繊維含有率は、50重量%であった。これを、円形に切り出し、表面を、#70のダイヤモンド砥石を用いて表面を削り込んだ後溝を加工して研磨パッドとした。ここで、溝の幅は2mm、深さは0.6mm、ピッチは15mm格子状溝を形成した。
A nonwoven fabric (“EPM-4070TE” manufactured by Nippon Vilene Co., Ltd.) having a unit mass of 70 g / m 2 made of polyester fiber having a fiber diameter of 12.5 μm and a fiber length of 5 mm is impregnated with the following varnish and dried at 170 ° C. for 5 minutes. A prepreg was prepared.
The varnish is dissolved in 40 parts by weight of methyl ethyl ketone by adding 20 parts by weight of dicyandiamide as a curing agent and 0.1 part by weight of 2-ethyl-4-methylimidazole as a curing accelerator to 100 parts by weight of a bisphenol A type epoxy resin. Made.
20 sheets of the above prepregs were laminated, and release films (polypropylene, 50 μm thickness) were placed on the top and bottom, sandwiched between mirror plates. Heat pressing was performed between press hot plates through cushion paper having a thickness of 10 mm. Here, the molding conditions were 175 ° C., 400 kPa, and 120 minutes. As a result, a laminated plate having a thickness of 1.5 mm was obtained. The fiber content of the entire laminate was 50% by weight. This was cut into a circular shape, and the surface was cut using a # 70 diamond grindstone, and then the groove was processed to obtain a polishing pad. Here, a groove having a groove width of 2 mm, a depth of 0.6 mm, and a pitch of 15 mm was formed.

実施例5に示すプリプレグを10枚、樹脂未含浸のポリエステル不織布10枚を交互に積層するほかは実施例5と同様にして1.5mm厚の積層板を得た。積層板全体の繊維含有率は、70重量%であった。その後、実施例5と同様にして表面を削り込み、溝を加工して研磨パッドとした。  A 1.5 mm thick laminate was obtained in the same manner as in Example 5 except that 10 prepregs and 10 non-resin impregnated polyester nonwoven fabrics were laminated alternately. The fiber content of the entire laminate was 70% by weight. Thereafter, the surface was cut in the same manner as in Example 5, and the grooves were processed to obtain a polishing pad.

繊維として単位質量130g/mのポリエステル織布(旭化成(株)製「BKEポプリン」、繊維径:9μm)を用いたほかは、実施例5と同様にして研磨パッドを作製した。なお、本実施例において、積層板全体の繊維含有率は、50重量%であった。A polishing pad was prepared in the same manner as in Example 5 except that a polyester woven fabric having a unit mass of 130 g / m 3 (“BKE poplin” manufactured by Asahi Kasei Corporation, fiber diameter: 9 μm) was used as the fiber. In this example, the fiber content of the entire laminate was 50% by weight.

有機繊維として繊維径12.5μm、繊維長3mmのポリエステル繊維(日本バイリーン(株)製)と、マトリックス樹脂としてABS樹脂ペレットを押し出し成形機にて溶融混合し、タブレット化した。ここで、繊維含有率は、10重量%になるように調整した。タブレットを大型乾燥機にて120℃、5h乾燥した後、押し出し成形及びロールを用いて、厚さ1.2mm、幅1mのシート状成形品を作製した。これに深さ0.6mm、幅2.0mmの矩形断面形状の溝を、ピッチ15mm格子状に形成した後、円形に切り出した。さらに、溝加工した面の反対側に両面テープを接着した後、#70のダイヤモンド砥石を用いて表面を粗面化して研磨パッドとした。
(参考例2)
不織布として、パラ系アラミド繊維チョップ(繊維径:12.5μm、繊維長:5mm、帝人(株)製「テクノーラ」)と、メタ系パラ系アラミド繊維チョップ(繊維径:25μm、繊維長:6mm、帝人(株)製「コーネックス」)を混抄したものに、水溶性エポキシ樹脂バインダ(大日本インキ化学工業(株)製、商品名「Vコート」)の20重量%水溶液をスプレーした後150℃、3分間加熱乾燥して70g/mの不織布とし、さらにこの不織布を300℃、線圧力196kN/mの熱ロール間に通して、加熱圧縮したものを使用したほかは、実施例5と同様にして研磨パッドとした。また、表面は#150のダイヤモンド砥石を用いて削り込んだ。本参考例において、積層板全体の繊維含有率は、50重量%であった。
(比較例4)
厚さ1.5mmのABS(アクリロニトリル−ブタジエンゴム−スチレン共重合体)板を使用し円形に切り出し、表面に溝の幅は2mm、深さは0.6mm、ピッチは15mm格子状溝を加工した。その後、#70のダイヤモンド砥石を用いて表面を粗面化して研磨パッドとした。
(参考例3)
表面の削りこみを#70のダイヤモンド砥石を用いたほかは、実施例8と同様にして研磨パッドを作製した。
(表面の観察)
SEM(走査型電子顕微鏡)にてパッド表面の任意な個所5点を100倍及び200倍にて観察し、露出した繊維の最大長さを計測した。
(研磨液)
研磨液として以下の方法でCMPスラリを準備した。
炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中で焼成して得た酸化セリウム粉末1kgにジェットミルを用いて乾式粉砕を行った。これに、ポリアクリル酸アンモニウム塩水溶液(40重量%)23gと脱イオン水8977gを混合し、攪拌しながら超音波分散を10分間施した。得られたスラリを1ミクロンフィルターでろ過をし、さらに脱イオン水を加えて5wt%スラリを得た。スラリpHは8.3であった。スラリの粒子をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒子径のD99%が0.99μmであった。
(研磨方法と研磨特性の評価)
φ127mmSi基板上にTEOS−プラズマCVD法で酸化珪素膜を2μm形成したブランケットウエハと、φ200mmSi基板上に正方形凸部を配置したトレンチを設け、この上にSi膜とTEOS−プラズマCVD法で酸化珪素膜を600μm形成したテストウエハとを準備した。トレンチは、深さ0.35μm、密度は凸部が60%、トレンチ幅が500μmの部分を使用した。
研磨装置の、ウエハ基板取り付け用の吸着パッドを貼り付けたホルダーに上記ウエハをセットし、上記作製した研磨パッドを貼り付けたφ380mmの定盤上に絶縁膜面を下にしてホルダーをのせさらに加工荷重を29kPa(300gf/cm)に設定した。定盤上に上記酸化セリウム研磨液を150cc/分の速度で滴下しながら、定盤及びウエハを38rpmで二分間回転させ、絶縁膜を研磨した。研磨後のウエハを純水でよく洗浄後、乾燥した。光干渉式膜厚測定装置を用いて研磨前後の膜厚差を測定し、研磨速度を算出した。研磨傷については、研磨後のウエハ表面を顕微鏡で暗視野にて観察し、ウエハ表面に存在する研磨に起因する傷を数えた。
また、平坦性の評価については、TEGウエハの凸部と凹部の段差1μmを削っていき、凸部のSi膜が露出する前の最終的な段差を測定した。また、TEGウエハの上記トレンチ部を触針式段差計でディッシングを測定した。
表5に実施例、参考例及び比較例の研磨特性を示す。本発明によるポリエステル繊維を含む実施例5、6、7及び8は、高硬度繊維であるアラミド繊維を含む参考例2とを比べると、露出繊維長の低減が容易で、平坦性に優れ、研磨傷もない。また、実施例5、6、7及び8と繊維を含まない比較例4とを比べると明らかなように、研磨速度の向上がみられ、そのうえ研磨傷もなくなる。

Figure 2004090963
Figure 2004090963
表5から、最大露出繊維長さが0.1mm以下である研磨パッドを用いれば、研磨傷なしに平坦性、トレンチ部の耐ディッシング性を向上でき、層間絶縁膜、BPSG膜の平坦化、シャロー・トレンチ分離の形成をはじめとする半導体形成プロセスを効率的に行えることがわかる。A polyester fiber (manufactured by Nippon Vileen Co., Ltd.) having a fiber diameter of 12.5 μm and a fiber length of 3 mm as organic fibers and ABS resin pellets as a matrix resin were melt-mixed in an extrusion molding machine and tableted. Here, the fiber content was adjusted to 10% by weight. After the tablet was dried at 120 ° C. for 5 hours with a large dryer, a sheet-like molded product having a thickness of 1.2 mm and a width of 1 m was prepared using an extrusion molding and a roll. Grooves having a rectangular cross-sectional shape with a depth of 0.6 mm and a width of 2.0 mm were formed in a grid shape with a pitch of 15 mm, and then cut into a circle. Furthermore, after a double-sided tape was bonded to the opposite side of the grooved surface, the surface was roughened using a # 70 diamond grindstone to obtain a polishing pad.
(Reference Example 2)
Para-aramid fiber chops (fiber diameter: 12.5 μm, fiber length: 5 mm, “Technola” manufactured by Teijin Ltd.) and meta-para-aramid fiber chops (fiber diameter: 25 μm, fiber length: 6 mm) After spraying a 20% by weight aqueous solution of a water-soluble epoxy resin binder (Dainippon Ink Chemical Co., Ltd., trade name “V Coat”) to a mixture of Teijin's “Conex”), 150 ° C. The same as in Example 5 except that the nonwoven fabric was heated and dried for 3 minutes to give a nonwoven fabric of 70 g / m 2 , and this nonwoven fabric was passed through a hot roll at 300 ° C. and a linear pressure of 196 kN / m and heated and compressed. Thus, a polishing pad was obtained. The surface was cut using a # 150 diamond grindstone. In this reference example, the fiber content of the entire laminate was 50% by weight.
(Comparative Example 4)
A 1.5 mm thick ABS (acrylonitrile-butadiene rubber-styrene copolymer) plate was used to cut into a circle, and the surface was processed with a grid-like groove having a groove width of 2 mm, a depth of 0.6 mm, and a pitch of 15 mm. . Thereafter, the surface was roughened using a # 70 diamond grindstone to obtain a polishing pad.
(Reference Example 3)
A polishing pad was prepared in the same manner as in Example 8 except that a # 70 diamond grindstone was used for surface scraping.
(Surface observation)
The SEM (scanning electron microscope) was used to observe five arbitrary points on the pad surface at 100 times and 200 times, and the maximum length of the exposed fiber was measured.
(Polishing liquid)
A CMP slurry was prepared as a polishing liquid by the following method.
2 kg of cerium carbonate hydrate was put in a platinum container, and 1 kg of cerium oxide powder obtained by firing in air at 800 ° C. for 2 hours was dry pulverized using a jet mill. To this, 23 g of an aqueous polyacrylic acid ammonium salt solution (40% by weight) and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The resulting slurry was filtered with a 1 micron filter, and deionized water was added to obtain a 5 wt% slurry. The slurry pH was 8.3. In order to measure the slurry particles with a laser diffraction particle size distribution meter, the slurry was diluted to an appropriate concentration, and as a result, D99% of the particle diameter was 0.99 μm.
(Evaluation of polishing method and polishing characteristics)
A blanket wafer having a silicon oxide film of 2 μm formed by TEOS-plasma CVD method on a φ127 mm Si substrate and a trench having square convex portions arranged on a φ200 mm Si substrate are provided, and a Si 3 N 4 film and TEOS-plasma CVD method are provided thereon. A test wafer on which a silicon oxide film was formed to 600 μm was prepared. As the trench, a portion having a depth of 0.35 μm, a density of 60% of the convex portion, and a trench width of 500 μm was used.
Set the wafer on the holder of the polishing machine with the suction pad for attaching the wafer substrate, and place the holder on the surface plate of φ380mm with the prepared polishing pad attached, and place the holder on the bottom to further process The load was set to 29 kPa (300 gf / cm 2 ). While the cerium oxide polishing liquid was dropped onto the surface plate at a rate of 150 cc / min, the surface plate and the wafer were rotated at 38 rpm for 2 minutes to polish the insulating film. The polished wafer was thoroughly washed with pure water and then dried. The difference in film thickness before and after polishing was measured using an optical interference type film thickness measuring device, and the polishing rate was calculated. Regarding the polishing scratches, the polished wafer surface was observed with a microscope in a dark field, and the scratches caused by polishing existing on the wafer surface were counted.
For evaluation of flatness, a step of 1 μm between the convex part and the concave part of the TEG wafer was cut, and the final step before the convex Si 3 N 4 film was exposed was measured. Further, dishing of the above-mentioned trench portion of the TEG wafer was measured with a stylus type step gauge.
Table 5 shows the polishing characteristics of Examples, Reference Examples and Comparative Examples. Examples 5, 6, 7 and 8 containing the polyester fiber according to the present invention are easy to reduce the exposed fiber length, excellent in flatness and polished compared to Reference Example 2 containing the aramid fiber which is a high-hardness fiber. There is no wound. Further, as is clear when Examples 5, 6, 7 and 8 are compared with Comparative Example 4 which does not contain fibers, the polishing rate is improved and polishing scratches are eliminated.
Figure 2004090963
Figure 2004090963
From Table 5, if a polishing pad having a maximum exposed fiber length of 0.1 mm or less is used, the flatness and dishing resistance of the trench portion can be improved without polishing scratches, and the interlayer insulating film and BPSG film can be flattened. It can be seen that the semiconductor formation process including trench isolation can be performed efficiently.

産業上の利用の可能性Industrial applicability

本発明の研磨パッドまたは本発明の製造方法によって作製した研磨パッドを使用してCMPを行えば、研磨パッドの被研磨物側表面に露出した有機繊維により、被研磨物の微細な研磨傷の発生を抑制できる。これにより、低荷重で平坦な研磨を行うことができる。また、光学的な手法による被研磨物の研磨状態の検知システムによる被研磨物の研磨終点を、研磨傷無しに管理することができる。そして、これらによって、被研磨物の生産性、および歩留まりの向上が可能となる。
このため、例えば半導体装置の製造工程において、層間絶縁膜への負荷が小さく、かつ平坦性にも優れた研磨が行え、次世代のデュアルダマシン法を容易に実施することができる。
When CMP is performed using the polishing pad of the present invention or the polishing pad produced by the manufacturing method of the present invention, fine polishing scratches on the object to be polished are generated by the organic fibers exposed on the surface of the object to be polished of the polishing pad. Can be suppressed. Thereby, flat polishing can be performed with a low load. Further, the polishing end point of the object to be polished by the system for detecting the polishing state of the object to be polished by an optical method can be managed without any polishing scratches. Thus, the productivity and yield of the workpiece can be improved.
For this reason, for example, in the manufacturing process of a semiconductor device, polishing with a low load on the interlayer insulating film and excellent flatness can be performed, and the next generation dual damascene method can be easily performed.

Claims (24)

有機繊維を含む繊維と、該繊維を保持しているマトリックス樹脂とからなり、被研磨物側表面に少なくとも有機繊維が露出していることを特徴とする研磨パッド。A polishing pad comprising an organic fiber-containing fiber and a matrix resin holding the fiber, wherein at least the organic fiber is exposed on the surface of the object to be polished. 有機繊維を含む繊維と、該繊維を保持しているマトリックス樹脂とからなり、ドレッシング処理後の被研磨物側表面に少なくとも有機繊維が露出していることを特徴とする研磨パッド。A polishing pad comprising a fiber containing organic fibers and a matrix resin holding the fibers, wherein at least the organic fibers are exposed on the surface of the object to be polished after the dressing process. 前記マトリックス樹脂が少なくとも一種の熱可塑性樹脂を含む請求の範囲第1項または第2項記載の研磨パッド。The polishing pad according to claim 1 or 2, wherein the matrix resin contains at least one thermoplastic resin. マトリックス樹脂が半結晶性熱可塑性樹脂よりなる請求の範囲第1項〜第3項のいずれか記載の研磨パッド。The polishing pad according to any one of claims 1 to 3, wherein the matrix resin is made of a semicrystalline thermoplastic resin. マトリックス樹脂にエラストマが分散されている請求の範囲第1項〜第4項のいずれか記載の研磨パッド。The polishing pad according to any one of claims 1 to 4, wherein an elastomer is dispersed in the matrix resin. 前記エラストマのガラス転移点が0℃以下である請求の範囲第5項記載の研磨パッド。The polishing pad according to claim 5, wherein the glass transition point of the elastomer is 0 ° C or lower. 繊維が芳香族ポリアミドからなる請求の範囲第1項〜第6項いずれか記載の研磨パッド。The polishing pad according to any one of claims 1 to 6, wherein the fibers are made of an aromatic polyamide. 有機繊維を1〜50重量%含む請求の範囲第1項〜第7項いずれか記載の研磨パッド。The polishing pad according to any one of claims 1 to 7, comprising 1 to 50% by weight of organic fibers. 有機繊維の径が1mm以下である請求の範囲第1項〜第8項いずれか記載の研磨パッド。The polishing pad according to any one of claims 1 to 8, wherein the organic fiber has a diameter of 1 mm or less. 有機繊維の長さが1cm以下である請求の範囲第1項〜第9項いずれか記載の研磨パッド。The polishing pad according to any one of claims 1 to 9, wherein the organic fiber has a length of 1 cm or less. 被研磨物側表面に露出した有機繊維により研磨粒子を保持する請求の範囲第1項〜第10項のいずれか記載の研磨パッド。The polishing pad according to any one of claims 1 to 10, wherein the abrasive particles are held by organic fibers exposed on the surface of the object to be polished. 前記露出している有機繊維の最大露出部長さが0.1mm以下である請求の範囲第1項〜第11項いずれか記載の研磨パッド。The polishing pad according to any one of claims 1 to 11, wherein the exposed length of the exposed organic fiber is 0.1 mm or less. 前記露出している有機繊維がポリエステルからなる請求の範囲第12項記載の研磨パッド。The polishing pad according to claim 12, wherein the exposed organic fibers are made of polyester. マトリックス樹脂中にチョップ状のポリエステル繊維を分散させてなる請求の範囲第12項または第13項記載の研磨パッド。The polishing pad according to claim 12 or 13, wherein chopped polyester fibers are dispersed in a matrix resin. マトリックス樹脂中にポリエステル不織布を積層してなる請求の範囲第12項または第13項記載の研磨パッド。The polishing pad according to claim 12 or 13, wherein a polyester nonwoven fabric is laminated in a matrix resin. 被研磨物表面を研磨中に光学的に研磨終点を検知するのに有用な研磨パッドであって、有機繊維を1〜20重量%含有した実質的に非発泡のマトリックス樹脂からなり、研磨スラリ粒子の輸送および保持機能を有し、なおかつ、190から3500nmの範囲の波長の光線が透過する請求の範囲第1項、第2項〜第4項、第7項、第9項〜第11項のいずれか記載の研磨パッド。A polishing pad useful for optically detecting the polishing end point during polishing of the surface of an object to be polished, comprising a substantially non-foamed matrix resin containing 1 to 20% by weight of organic fibers, and polishing slurry particles In addition, the light beam having a wavelength in the range of 190 to 3500 nm is transmitted, and the light beam of the first, second to fourth, seventh, and ninth to eleventh aspects is transmitted. Any polishing pad. 被研磨物表面を研磨中に光学的に研磨終点を検知するのに有用な研磨パッドであって、190から3500nmの範囲の波長の光線が透過する部分を含み、該部分は、有機繊維を1〜20重量%含有する実質的に非発泡なマトリックス樹脂からなり、なおかつ研磨スラリ粒子の輸送および保持機能を有する部分である請求の範囲第1項、第2項〜第4項、第7項、第9項〜第11項のいずれか記載の研磨パッド。A polishing pad useful for optically detecting a polishing end point during polishing of a surface of an object to be polished, including a portion that transmits a light beam having a wavelength in a range of 190 to 3500 nm. A portion consisting of a substantially non-foamed matrix resin containing up to 20% by weight and having a function of transporting and holding abrasive slurry particles. The polishing pad according to any one of Items 9 to 11. 前記有機繊維がアラミド繊維である請求の範囲第16項または第17項記載の研磨パッド。The polishing pad according to claim 16 or 17, wherein the organic fiber is an aramid fiber. 定盤に貼り付けて使用し被研磨面の平坦化を行う研磨パッドの製造方法であって、有機繊維を含む繊維と熱可塑性樹脂を含むマトリックス組成物を混合して混合物を得る過程、該混合物をペレットまたはタブレットにする過程、および該ペレットまたはタブレットを押し出し成形または射出成形により板状またはシート状に加工する過程を含むことを特徴とする研磨パッドの製造方法。A method of manufacturing a polishing pad that is used by being attached to a surface plate to flatten a surface to be polished, the process of mixing a fiber containing organic fibers and a matrix composition containing a thermoplastic resin to obtain a mixture, the mixture A method for producing a polishing pad comprising the steps of: converting the pellet or tablet into a plate or sheet by extrusion molding or injection molding. 定盤に貼り付けて使用し被研磨面の平坦化を行う研磨パッドの製造方法であって、有機繊維を含む繊維基材にマトリックス樹脂組成物を含浸して樹脂含浸シート状繊維基材を作製する過程、該樹脂含浸シート状繊維基材を含むシート状繊維基材を積層して加熱加圧成形を施す過程を含むことを特徴とする研磨パッドの製造方法。A method of manufacturing a polishing pad that is used by attaching to a surface plate to flatten the surface to be polished, and impregnating a matrix resin composition into a fiber substrate containing organic fibers to produce a resin-impregnated sheet-like fiber substrate A method for producing a polishing pad, comprising: a step of laminating a sheet-like fiber base material including the resin-impregnated sheet-like fiber base material, and subjecting the sheet-like fiber base material to heating and pressing. さらに表面に繊維を露出させる過程を含む請求の範囲第19項または第20項記載の研磨パッドの製造方法。21. The method for producing a polishing pad according to claim 19, further comprising a step of exposing the fiber to the surface. 被研磨物の被研磨面を請求の範囲第1項〜第18項いずれかに記載の研磨パッドの有機繊維露出面に押し当て、研磨液を被研磨面と研磨パッドとの間に供給しながら、被研磨物とパッドを相対的に摺動させて被研磨面を研磨する研磨方法。The surface to be polished of the object to be polished is pressed against the organic fiber exposed surface of the polishing pad according to any one of claims 1 to 18 while supplying the polishing liquid between the surface to be polished and the polishing pad. A polishing method for polishing a surface to be polished by relatively sliding an object to be polished and a pad. 前記被研磨面が、配線やトレンチを形成した誘電率2.7以下の絶縁層上に、導体層、更に銅層を被覆した積層からなる請求の範囲第22項記載の研磨方法。23. A polishing method according to claim 22, wherein said surface to be polished comprises a laminate in which a conductor layer and a copper layer are further coated on an insulating layer having a dielectric constant of 2.7 or less in which wirings and trenches are formed. 請求の範囲第16項〜第18項のいずれか記載の研磨パッドを用いて光学的に研磨終点を検知する研磨方法。A polishing method for optically detecting a polishing end point using the polishing pad according to any one of claims 16 to 18.
JP2005505261A 2003-04-03 2004-04-02 Polishing pad, manufacturing method thereof, and polishing method using the same Pending JPWO2004090963A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2003100376 2003-04-03
JP2003100376 2003-04-03
JP2003103477 2003-04-07
JP2003103477 2003-04-07
JP2003103624 2003-04-08
JP2003103624 2003-04-08
PCT/JP2004/004820 WO2004090963A1 (en) 2003-04-03 2004-04-02 Polishing pad, process for producing the same and method of polishing therewith

Publications (1)

Publication Number Publication Date
JPWO2004090963A1 true JPWO2004090963A1 (en) 2006-07-06

Family

ID=33162772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005505261A Pending JPWO2004090963A1 (en) 2003-04-03 2004-04-02 Polishing pad, manufacturing method thereof, and polishing method using the same

Country Status (4)

Country Link
US (1) US20060199473A1 (en)
JP (1) JPWO2004090963A1 (en)
KR (1) KR100771738B1 (en)
WO (1) WO2004090963A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161720A1 (en) * 2005-11-30 2007-07-12 Applied Materials, Inc. Polishing Pad with Surface Roughness
WO2007095322A1 (en) * 2006-02-14 2007-08-23 Cabot Microelectronics Corporation Compositions and methods for cmp of indium tin oxide surfaces
TWI432285B (en) * 2007-02-01 2014-04-01 Kuraray Co Abrasive pad and process for manufacturing abrasive pad
US20080287047A1 (en) * 2007-05-18 2008-11-20 Sang Fang Chemical Industry Co., Ltd. Polishing pad, use thereof and method for making the same
US7815491B2 (en) * 2007-05-29 2010-10-19 San Feng Chemical Industry Co., Ltd. Polishing pad, the use thereof and the method for manufacturing the same
FR2924362B1 (en) * 2007-11-30 2012-07-13 Centre Nat Rech Scient CHEMICAL REACTOR WITH NANOMETRIC SUPERSTRUCTURE
JP2010064153A (en) * 2008-09-08 2010-03-25 Kuraray Co Ltd Polishing pad
WO2010075091A2 (en) * 2008-12-15 2010-07-01 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of use
US20110281510A1 (en) * 2010-05-12 2011-11-17 Applied Materials, Inc. Pad Window Insert
KR101546695B1 (en) * 2010-12-28 2015-08-25 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Polishing slurry including zirconia particles and a method of using the polishing slurry
KR20140076566A (en) * 2011-10-07 2014-06-20 아사히 가라스 가부시키가이샤 Single-crystal silicon-carbide substrate and polishing solution
JP6222171B2 (en) * 2015-06-22 2017-11-01 信越半導体株式会社 Sizing device, polishing device, and polishing method
US20180281076A1 (en) * 2017-03-31 2018-10-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Gelling reduction tool for grooving chemical mechanical planarization polishing pads
KR101945874B1 (en) * 2017-08-07 2019-02-11 에스케이씨 주식회사 Surface treated window for polishing pad and polishing pad comprising the same
CN112259454B (en) * 2019-07-22 2024-04-12 华邦电子股份有限公司 Chemical mechanical polishing process
US11014215B2 (en) * 2019-09-28 2021-05-25 Winbond Electronics Corp. Chemical mechanical polishing process
CN116141214A (en) * 2022-08-04 2023-05-23 华侨大学 Preparation method of recyclable mixed abrasive polishing film
CN117107369B (en) * 2023-10-18 2023-12-22 山东森荣新材料股份有限公司 Short fiber production device and process

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021209A (en) * 1975-07-23 1977-05-03 Federal-Mogul Corporation Aramid fiber reinforced abrasive wheel
US4728552A (en) * 1984-07-06 1988-03-01 Rodel, Inc. Substrate containing fibers of predetermined orientation and process of making the same
US5030496A (en) * 1989-05-10 1991-07-09 Minnesota Mining And Manufacturing Company Low density nonwoven fibrous surface treating article
US6069080A (en) * 1992-08-19 2000-05-30 Rodel Holdings, Inc. Fixed abrasive polishing system for the manufacture of semiconductor devices, memory disks and the like
US5458962A (en) * 1993-08-11 1995-10-17 Minnesota Mining And Manufacturing Company Nonwoven surface treating articles and methods of making and using same
US5605760A (en) * 1995-08-21 1997-02-25 Rodel, Inc. Polishing pads
US6156651A (en) * 1996-12-13 2000-12-05 Texas Instruments Incorporated Metallization method for porous dielectrics
JPH10225864A (en) * 1997-02-17 1998-08-25 Sony Corp Polishing pad and manufacture thereof and polishing method of wafer using its
US6022268A (en) * 1998-04-03 2000-02-08 Rodel Holdings Inc. Polishing pads and methods relating thereto
KR200295255Y1 (en) * 1997-05-12 2003-04-26 삼성중공업 주식회사 Engine top bracing
US6117000A (en) * 1998-07-10 2000-09-12 Cabot Corporation Polishing pad for a semiconductor substrate
US6739947B1 (en) * 1998-11-06 2004-05-25 Beaver Creek Concepts Inc In situ friction detector method and apparatus
US6428388B2 (en) * 1998-11-06 2002-08-06 Beaver Creek Concepts Inc. Finishing element with finishing aids
US6179887B1 (en) * 1999-02-17 2001-01-30 3M Innovative Properties Company Method for making an abrasive article and abrasive articles thereof
WO2001015861A1 (en) * 1999-08-27 2001-03-08 Asahi Kasei Kabushiki Kaisha Polishing pad and polisher
US6793561B2 (en) * 1999-10-14 2004-09-21 International Business Machines Corporation Removable/disposable platen top
US6953388B2 (en) * 1999-12-22 2005-10-11 Toray Industries, Inc. Polishing pad, and method and apparatus for polishing
US6713413B2 (en) * 2000-01-03 2004-03-30 Freudenberg Nonwovens Limited Partnership Nonwoven buffing or polishing material having increased strength and dimensional stability
US6533645B2 (en) * 2000-01-18 2003-03-18 Applied Materials, Inc. Substrate polishing article
CN1468162A (en) * 2000-10-06 2004-01-14 Polishing pad comprising a filled translucent region
US7377836B1 (en) * 2000-10-10 2008-05-27 Beaver Creek Concepts Inc Versatile wafer refining
JP2002166352A (en) * 2000-11-29 2002-06-11 Nitsusen:Kk Polishing material for wet polishing
JP2003080450A (en) * 2001-09-06 2003-03-18 Mitsui Chemicals Inc Composition object for cmp abrasive pad, cmp abrasive pad and method of making it
WO2003032379A1 (en) * 2001-10-09 2003-04-17 Hitachi Chemical Co., Ltd. Polishing pad for cmp, method for polishing substrate using it and method for producing polishing pad for cmp
JP2003124163A (en) * 2001-10-09 2003-04-25 Hitachi Chem Co Ltd Manufacturing method of polishing pad and polishing object

Also Published As

Publication number Publication date
KR20050114716A (en) 2005-12-06
US20060199473A1 (en) 2006-09-07
WO2004090963A1 (en) 2004-10-21
KR100771738B1 (en) 2007-10-30

Similar Documents

Publication Publication Date Title
JPWO2004090963A1 (en) Polishing pad, manufacturing method thereof, and polishing method using the same
KR102458170B1 (en) Chemical mechanical polishing pad
KR100710096B1 (en) Semiconductor wafer polishing method
JP6487249B2 (en) Chemical mechanical polishing pad having polishing layer and window
US7086932B2 (en) Polishing pad
US7374474B2 (en) Polishing pad for CMP, method for polishing substrate using it and method for producing polishing pad for CMP
KR100669301B1 (en) Polishing Pad and Multi-Layer Polishing Pad
US6899602B2 (en) Porous polyurethane polishing pads
JP5143528B2 (en) Polishing pad
JP2007083387A (en) Transparent polishing pad
JP2005294661A (en) Polishing pad and polishing method using the same
KR101340246B1 (en) Polishing pad and method for polishing a semiconductor wafer
KR101314013B1 (en) Chemical Mechanical Polishing Pad
JP2006100556A (en) Polishing pad and polishing method using the same
JP2004266186A (en) Polishing pad and manufacturing method for polished article
JP2006043803A (en) Polishing pad and method for polishing object to be polished
JP2004311727A (en) Polishing pad, its manufacturing method and polishing method using it
JP2004306195A (en) Polishing pad for chemical mechanical polishing (cmp), and its manufacturing method
JP2004345014A (en) Polishing pad and polishing method using the same
JP2008044103A (en) Abrading multiple layer and semiconductor wafer polishing method
JP2004311732A (en) Polishing pad and method for manufacturing polished article
JP2003124163A (en) Manufacturing method of polishing pad and polishing object

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825