JPWO2004058965A1 - Gaba作動性神経細胞のみを生み出す前駆細胞の分離方法 - Google Patents

Gaba作動性神経細胞のみを生み出す前駆細胞の分離方法 Download PDF

Info

Publication number
JPWO2004058965A1
JPWO2004058965A1 JP2005509742A JP2005509742A JPWO2004058965A1 JP WO2004058965 A1 JPWO2004058965 A1 JP WO2004058965A1 JP 2005509742 A JP2005509742 A JP 2005509742A JP 2005509742 A JP2005509742 A JP 2005509742A JP WO2004058965 A1 JPWO2004058965 A1 JP WO2004058965A1
Authority
JP
Japan
Prior art keywords
gabaergic
progenitor cells
cell
cells
neurons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005509742A
Other languages
English (en)
Inventor
伸章 玉巻
伸章 玉巻
Original Assignee
社団法人芝蘭会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 社団法人芝蘭会 filed Critical 社団法人芝蘭会
Publication of JPWO2004058965A1 publication Critical patent/JPWO2004058965A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/94Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
    • G01N33/9406Neurotransmitters
    • G01N33/9426GABA, i.e. gamma-amino-butyrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0623Stem cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • General Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

癲癇症患者や分裂病患者の脳内でGABA作動性神経細胞が欠如ないしは減少した領域にGABA作動性神経細胞前駆細胞を移植することにより、同疾患の治療を行うことを目的として、成体又は胎児神経組織中のGABA作動性神経細胞前駆細胞、ないしは胚性幹細胞から誘導したGABA作動性神経細胞前駆細胞を分離する方法を提示する。この出願の発明は、GABA作動性神経細胞前駆細胞を含む細胞集団を調製する工程、抑制性神経伝達物質GABAの合成酵素GAD67遺伝子またはGAD65遺伝子のプロモーター下流に、生体でも検出できる蛍光を発するレポーター遺伝子をつないだDNAを分散した細胞に導入する工程、レポーター蛋白の蛍光の有無によりGABA作動性神経細胞とGABA作動性神経細胞前駆細胞を単離する工程、および増殖能を持つことによりGABA作動性神経細胞前駆細胞を単離する工程を含む。

Description

この出願の発明は、抑制性神経細胞を欠落した乃至は減少した領域の抑制性神経細胞の数を正常値に戻すことに用いる、GABA作動性神経細胞のみを生み出すGABA作動性神経細胞前駆細胞を分離する方法に関するものである。さらに詳しくは、この出願の発明は、GABA作動性神経細胞前駆細胞の分離を可能にすることにより、GABA作動性神経細胞を欠落した乃至は減少した領域を正常に戻すことにより、癲癇症や分裂病の治療を行う治療行為を可能にする医療用材料等としての前駆細胞分離方法に関するものである。
中枢神経系の神経細胞には興奮性の神経細胞と抑制性の神経細胞がある。両者の神経細胞が中枢神経の領域により異なる様々な比率で含まれていて、情報処理が行われている。大脳皮質では抑制性神経細胞は神経伝達物質としてγ−aminobutyric acid(GABA)を使い、興奮性神経細胞はGlutamateを使う。大脳皮質の抑制性神経細胞は神経細胞の20%程度の比率で存在することにより、神経回路全体としては適度な活動度を維持することができ、スムーズな情報処理を営むことができる。しかしながら時として、全ての神経細胞が興奮し始め、結果として意識を失う癲癇発作が起きる。このような発作が起きる原因には、子供の間は脳の神経回路発達が未熟なために、発熱により神経細胞が興奮しやすくなって生じる熱性痙攣もあるが、多くは遺伝的背景があり、癲癇症患者の多くは、神経細胞の興奮に関わるチャンネル分子にポイント変異があり、興奮しやすくなっていると考えられている。また細胞移動の分子メカニズムに異常がある場合には大脳皮質の灰白質部が二分してしまい、入出力関係がアンバランスになり、癲癇様発作を繰り返す場合もある。いずれの場合も、神経回路に生じたショート様の異常状態であり、過発火により多量のカルシウムが細胞体に流入することにより細胞死に至ることが考えられる。しかし全ての神経細胞に起こるわけではなく、このようなショートの状態が起こるのを止める役目にある抑制性神経細胞が特に過大な入力を受け、他の興奮性神経細胞よりも先に死滅して行く。このような状態になると難治性の癲癇発作のフォーカスと呼ばれ、フォーカスにある抑制性神経細胞は激減していて、繰り返し癲癇発作の発祥元となる。このような状態にある難治性の癲癇症では治療薬では追いつかず、フォーカス領域を切除して癲癇発作の発生を抑える根治療法が行われる。しかし脳の一部を切除するため切除される脳が持っていた機能は失われる。このような癲癇発作フォーカスにGABA作動性神経細胞前駆細胞を移植により供給して生着させることができたならば癲癇発作を抑えることが期待できる。この目的のために必要となるGABA作動性神経細胞はどの様なものであってもいいのではなく、百を超えるGABA作動性神経細胞のサブタイプの内の、大脳皮質の興奮性の神経細胞の活動を抑えることのできるGABA神経細胞でなければならない。例えば癲癇症の患者のフォーカスにはどのようなサブタイプのGABA作動性神経細胞を移植すれば良いかと言えば、興奮性神経細胞が興奮するつどに、周りの興奮性神経細胞からの戻されてくる興奮性入力に対抗し抑制できる、細胞体部分に抑制を加えるバスケット細胞や軸索起始部に抑制を加えるシャンデリア細胞が必要となる。
現在までのところ人間の大脳新皮質GABA作動性神経細胞の起源は十分に理解されていなかった。この出願の発明者はこれまでに、げっ歯類の大脳皮質GABA作動性神経細胞の起源は大脳基底核原基に起源を持つことを発見し、1997年に11月1日に報告している(Tamamaki et al.,J.Neurosci 17:8313−8323 1997)。またこれとは別に、米国のAnderson S.も、1997年に10月27日に同様の報告している(Anderson et al.,Science 278:474−476 1997)。さらにその起源は、大脳基底核原基の中でも内側基底核原基に限られることが報告されており(Lavdas et al.J.Neurosci 19:7881−7888 1999)、大脳基底核原基の中でも内側に限られることは、胎児組織の移植によっても確認されている(Wichterle et al.,Development 128:3759−3771 2001)。しかし大脳基底核原基以外に起源が無いのかの点は確認されていなかった。そのような中、人間ではGABA作動性神経細胞の起源が大脳皮質にもあり、65%は大脳皮質で、35%は大脳基底核原基で作られるとする報告がある(Letinic et al.,Nature 417:645−649 2002)。この報告にある65%の大脳皮質由来のGABA作動性神経細胞前駆細胞は、脳室帯ないし脳室下帯にある神経幹細胞の分裂により供給され、Mashl陽性で特徴付けられると考えた。しかし、このような観察結果は、この出願の発明者のげっ歯類でのGABA作動性神経細胞の起源を調べた最新の研究での個々の観察結果と一部一致するものであるが、起源に関する解釈は発明者の解釈と大きく異なるものである。この出願の発明者のげっ歯類での研究によれば、GABA作動性神経細胞の起源は大脳基底核原基にあり、大脳皮質に移動したGABA作動性神経細胞の一部は前駆細胞に脱分化するか、大脳皮質に移動したGABA含有細胞の一部は前駆細胞であり、大脳皮質で新たにGABA作動性神経細胞を供給していると考えられる。人間の場合も、観察結果の同一性から考えて、大脳皮質のGABA作動性神経細胞は、大脳基底核原基の細胞に由来すると考えられる。
しかしGABA作動性神経細胞前駆細胞は大脳新皮質内のみで見られるものではない。ES細胞や神経幹細胞を培養する際に適当な培養条件を設けると、同細胞は神経前駆細胞に分化を始め、分化した神経前駆細胞の多くのものがGABA作動性神経細胞も産生するようになる。これらのGABA作動性神経細胞前駆細胞を、癲癇症患者の発作フォーカスに移植により供給して生着させることができたならば癲癇発作を抑えることも期待できるが、これまでのところ培養条件下で得られたGABA作動性神経細胞はGABAを含まない神経細胞、グリア細胞との混合物としてしか得ることができていない。
なお、この出願の発明に関連する刊行物としては、既に挙げたものを含め、以下がある。
刊行物リスト
1.Anderson SA,Eisenstat DD,Shi L,Rubenstein JLR.(1997)Interneuron migration from the basal forebrain to the neocortex:dependence on Dlx genes.Science 278:474−476.
2.Dupuy ST,Houser CR.(1996)Prominent expression of two forms of glutamate decarboxylase in the embryonic and.early postnatal rat hippocampal formation.J Neurosci.16:6919−6932.
3.Gritti A,Parati EA,Cova L,Frolichsthal P,Galli R,Wanke E,Faravelli L,Morassutti DJ,Roisen F,Nickel DD,Vescovi AL.(1996)Multipotential stem cells from the adult mouse brain proliferate and self−renew in response to basic fibroblast growth factor.J Neurosci 16:1091−1100.
4.Jin X,Mathers PH,Szabo G,Katarova Z,Agmon A.(2001)Vertical bias in dendritic trees of non−pyramidal neocortical neurons expressing GAD67−GFP in vitro.Cereb Cortex.11:666−678.
5.Lavdas AA,Grigoriou M,Pachnis V,Parnavelas JG.(1999)The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex.J Neurosci 19:7881−7888.
6.Letinic K,Zoncu R,Rakic P.(2002)Origin of GABAergic neurons in the human neocortex.Nature 417:645−649.
7.Nakamura K,Nakamura K,Kometani K,Yanagawa Y,Iwasato T,Obata K,Minato K,Kaneko T,Tamamaki N.(2003)Immigration of the proliferative progenitors for GABAergic neurons from the ganglionic eminence to the neocortex.Society for Neurosci.Abst.33th.
8.Porteus MH,Bulfone A,Liu JK,Puelles L,Lo LC,Rubenstein JL.(1994)DLX−2,MASH−1,and MAP−2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain.J Neurosci 14:6370−6383.
9.Reynolds BA,Weiss S.(1992)Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science 255:1707−10.
10.Tamamaki N,Fnjimori K,Takauji R.(1997)Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone.J Neurosci 17:8313−8323.
11.Tamamaki N,Sugimoto Y,Tanaka K,Takauji R.(1999)Cell migration from the ganglionic eminence to the neocortex investigated by labeling nuclei with UV irradiation via a fiber optic cable.Neurosci Res.35:241−251.
12.Tamamaki N,Yanagawa Y,Tomioka R,Miyazaki J.Obata K,Kaneko T.(2003)Green fluorescent protein expression and colocalization with calretinin,parbalbumin,and somatostatin in the gad67−gfp knock−in mouse.J Comp Neurol 467:60−79.
13.Vescovi AL,Reynolds BA,Fraser DD,Weiss S.(1993)bFGF regulates the proliferative fate of unipotent(neuronal)and bipotent(neuronal/astroglial)EGF−generated CNS progenitor cells.Neuron 11:951−966.
14.Westmoreland JJ,Hancock CR,Condie BG(2001)Neuronal development of embryonic stem cells:a model of GABAergic neuron differentiation.Biochem Biophys Res Commun 284:674−680.
この出願は、前記の課題を解決する発明として、GABA作動性神経細胞のみを生み出す前駆細胞の分離方法であって、以下の工程:
(a)GABA作動性神経細胞前駆細胞を含む細胞集団を調製する工程;
(b)抑制性神経伝達物質GABAの合成酵素GAD67遺伝子またはGAD65遺伝子のプロモーター下流に、生体でも検出可能なシグナルを発するレポーター蛋白のcDNAをつないだDNAを、細胞集団の各細胞に導入する工程;
(c)レポーターの発するシグナルの有無によりGABA作動性神経細胞とGABA作動性神経細胞前駆細胞を単離する工程;
(d)増殖能を持つことによりGABA作動性神経細胞前駆細胞を単離する工程、
を含むことを特徴とする方法を提供する。
またこの出願の発明は、GABA作動性神経細胞のみを生み出す前駆細胞の分離方法であって、以下の工程:
(a)GABA作動性神経細胞前駆細胞を含む細胞集団を調製する工程;
(b)抑制性神経伝達物質GABAの合成酵素GAD67遺伝子またはGAD65遺伝子のプロモーター下流に、薬剤耐性の性質を付与する蛋白のcDNAをつないだDNAを、細胞集団の各細胞に導入する工程;
(c)薬剤耐性の有無によりGABA作動性神経細胞とGABA作動性神経細胞前駆細胞を単離する工程;
(d)増殖能を持つことによりGABA作動性神経細胞前駆細胞を単離する工程、
を含むことを特徴とする方法を提供する。
さらにこの出願の発明は、GABA作動性神経細胞のみを生み出す前駆細胞の分離方法であって、以下の工程:
(a)GABA作動性神経細胞前駆細胞を含む細胞集団を調製する工程;
(b)抑制性神経伝達物質GABAの合成酵素GAD67遺伝子またはGAD65遺伝子のプロモーター下流に、遺伝子組み換え酵素のcDNAを結合したDNAと、遺伝子組み換え後に生体でも検出可能なシグナルを発するレポーターを発現するカセットDNAを、細胞集団の各細胞に導入する工程;
(c)レポーター蛋白の蛍光の有無によりGABA作動性神経細胞とGABA作動性神経細胞前駆細胞を単離する工程;
(d)増殖能を持つことによりGABA作動性神経細胞前駆細胞を単離する工程、
を含むことを特徴とする方法を提供する。
さらにまた、この出願の発明は、GABA作動性神経細胞のみを生み出す前駆細胞の分離方法であって、以下の工程:
(a)GABA作動性神経細胞前駆細胞を含む細胞集団を調製する工程;
(b)抑制性神経伝達物質GABAの合成酵素GAD67遺伝子またはGAD65遺伝子のプロモーター下流に、遺伝子組み換え酵素のcDNAを結合したDNAと、遺伝子組み換え後に薬剤耐性の性質を付与する蛋白を発現するカセットDNAを、細胞集団の各細胞に導入する工程;
(c)薬剤耐性の有無によりGABA作動性神経細胞とGABA作動性神経細胞前駆細胞を単離する工程;
(d)増殖能を持つことによりGABA作動性神経細胞前駆細胞を単離する工程、
を含むことを特徴とする方法を提供する。
前記の各発明においては、工程は(a)〜(d)の順序で行うことが好ましいが、これに限定されるものではなく、各工程は適宜に変更することができる。例えば、(a)−(d)−(b)−(c)といった順番でもよく、あるいは(a)−(b)−(d)−(c)であってもよい。また、例えば発現カセットDNAを導入遺伝子とするトランスジェニック動物の作出によって工程(b)を行うことものでき、その場合には、(b)−(a)−(c)−(d)や(b)−(a)−(d)−(c)といった順番で各発明を実施することもできる。
また前記の各発明においては、工程(a)において、胚性幹細胞または神経幹細胞から誘導したGABA作動性神経細胞前駆細胞を含む細胞集団を調製するか、またはドナーのGABA作動性神経細胞前駆細胞を含む組織を分散して細胞集団を調製することを好ましい態様としている。
さらに前記の各発明においては、DNA導入法が、ウイルスを介した形質転換、電気穿孔、リポソームを介した形質転換のいずれかを含むことを好ましい態様としている。
また前記の各発明においては、ドナーが哺乳動物であること、そして哺乳動物がヒトであることを別の好ましい態様としている。
またさらに、前記の各発明においては、さらに、ステップ(d)で分離した細胞をレシピエントに移植することを含むことを好ましい態様としてもいる。
この出願の発明はさらに、前記発明のいずれかの方法により得られた、GABA作動性神経細胞のみを生み出す前駆細胞を提供する。
さらにまた、前記発明のいずれかの方法において、GABA作動性神経細胞のみを生み出す前駆細胞を得るために試用する試薬および細胞のキットを提供する。
なお以下の説明では、「GAD67遺伝子のプロモーター」を「GAD67promoter」と、「GAD65遺伝子のプロモーター」を「GAD65 promoter」と記載することがある。
図1は、この発明の方法を実施するのに必要となるDNAコンストラクトを1から5に示す。1−2は、直接GAD67 promoterにGFP遺伝子やneo mycin耐性遺伝子をつないだもので、GABA作動性神経細胞とGABA作動性神経細胞前駆細胞でGFPやneo mycin耐性遺伝子が発現し、GABA作動性神経細胞とGABA作動性神経細胞前駆細胞を分離するために利用する。3−5はGAD67 promoter活性によって発現するCre recombinaseを利用して、GFPやneo mycin耐性遺伝子をGABA作動性神経細胞とGABA作動性神経細胞前駆細胞に発現させて、GABA作動性神経細胞前駆細胞を分離するために利用する。詳しくは、3は、GAD67 promoterにCre recombinase DNAをつないだコンストラクトであり、4はGABA作動性神経細胞とGABA作動性神経細胞前駆細胞を、Cre recombinaseを介したGFPの発現を利用して分離する方法に使うDNAコンストラクトである。5はGABA作動性神経細胞とGABA作動性神経細胞前駆細胞を、Cre recombinaseを介したneo mycin耐性遺伝子の発現を使って分離する方法に使うDNAコンストラクトである。
図2は、発明の実施の形態の説明図である。(2−1)は、薬剤耐性遺伝子(neo mycin耐性遺伝子)を利用したGABA作動性神経細胞とGABA作動性神経細胞前駆細胞の分離法を示す。図にある二種類のDNAコンストラクト(図1の3番と5番)を細胞に導入した場合、GABA作動性神経細胞とGABA作動性神経細胞前駆細胞ではGAD67 promoter活性のためCre recombinaseが発現し、stop signal DNAは切り取られ、neo mycin耐性を獲得するので、neo mycin分解酵素の発現によりGeneticinなどで選別することができる。遺伝子の導入には、レトロウイルスや一時的な発現せる真核細胞での複製オリジンを持つアデノウイルスなどによって導入が可能である。(2−2)は、生体細胞を可視化できるレポーターDNA(GFP)を利用したGABA作動性神経細胞とGABA作動性神経細胞前駆細胞の分離法を示す。図にある二種類のDNAコンストラクト(図1の3番と4番)を細胞に導入した場合、GABA作動性神経細胞とGABA作動性神経細胞前駆細胞ではGAD67 promoter活性のためCre recombinaseが発現し、stop codon配列は切り取られ、CAプロモーターによりGFPの発現が始まる。結果GFP蛍光の有無によりセルソーターを使ってGABA作動性神経細胞とGABA作動性神経細胞前駆細胞を選別することができる。上記遺伝子の導入には、レトロウイルスや一時的な発現をさせる真核細胞での複製オリジンを持つアデノウイルスなどによって導入が可能である。
図3は、GAD67 promoterの下流にGFP cDNAを結合したDNAをノックインしたマウスから、GFP陽性GABA作動性神経細胞とGFP陽性GABA作動性神経細胞前駆細胞をセルソーターを使って分離した際のデータを示す。左上は、細胞数とGFP蛍光強度の関係をグラフにしたもので、コントロールに比べて蛍光を有意に発している範囲の細胞を採集した。採集した細胞は、細胞増殖因子を加えただけの基本培養液を予め大脳皮質と大脳基底核原基を一日培養して調整した培養液中で培養した。さらにBrdUを添加して細胞増殖の際のDNA合成を検出した。右上の図にあるようにGABA作動性神経細胞前駆細胞はBrdUを取り込んだが、DNA合成阻害剤を加えるとDNAへの取り込みは見られなかった。下の図はGFP陽性のGABA作動性神経細胞前駆細胞がBrdUを二つの核中のDNAに取り込んで、分裂しているところの像である。
この出願の前記発明において、神経幹細胞は、中枢神経系を構成する全ての種の細胞を供給することのできる細胞であるのに対し、「前駆細胞」とは、神経幹細胞から生み出され、増殖することができるが、限られた細胞種に分化しうる細胞のことをいう。例えば、希突起膠細胞の前駆細胞として、O−2A progenitor cellが知られているし、GABA作動性神経細胞の前駆細胞としては、嗅球顆粒細胞を供給する前脳胞脳室下帯の前駆細胞が知られている。しかしこれまでに、大脳新皮質の実質内に大脳新皮質のGABA作動性神経細胞を生み出す前駆細胞が存在することは知られていなかった。この出願の発明者による以下の観察結果は、GABA作動性神経細胞の前駆細胞が大脳皮質脳実質内に存在する直接および間接証拠である。
1.胎児期E16のマウスにBrdUを取り込ませ、直ちに還流固定してBrdU、MAP2の二重標識をすると、中間帯のMAP2陽性移動細胞がBrdU免疫活性と重なるものが見つかる。これは、中間帯のMAP2陽性移動神経細胞(GABA含有神経細胞)が、細胞分裂に備えてDNAを複製していたことを意味する。
2.誕生直ぐのGAD67−GFP knock−inマウスに同様のBrdUパルスラベルを行っても、GFP陽性GABA作動性神経細胞の中にもBrdU免疫活性を持つものがあり、二重標識されて確認される。二重標識されたGFP陽性神経細胞は、細胞分裂に備えてDNAを複製していたことを意味する。
3.発明者が行った実験によると、胎児大脳側脳室にGAP43−EGFPを発現させるアデノウイルスを注入し、脳室帯に感染させ、生後20日目にGFP陽性神経細胞を見ると、E17以前にウイルスを注入したときにはGABA作動性神経細胞と思われる非錐体細胞が多く観察されるが、E17以降にウイルスを注入しても非錐体細胞は観察されなくなる。それに対し、幾つかの他の研究室からの報告によると、BrdU注入による実験では、GABA作動性神経細胞はE14以降、出産後まで続けて分裂増殖しているとされている。この二つの実験の意味するところは、E17以降大脳皮質にGABA神経細胞を供給する前駆細胞は、アデノウイルスが側脳室から感染できる脳室帯には存在しなくなるが、脳実質内の何処かで分裂し続けていることを意味する。
4.マウスE15胎児の大脳側脳室にアデノウイルスを胎児大脳側脳室に注入したときに見られるGABA作動性神経細胞と思われる非錐体細胞は、様々な形態を持つサブタイプに分かれる。それぞれのタイプは、異なる幹細胞から生み出されたと考えられている。SV40 originを持たず、細胞増殖の際に増えることの無いアデノウイルスを感染させたときには、ほとんど同一のサブタイプの非錐体細胞を同一サンプルで観察することは少なく、近傍に同一のサブタイプの非錐体細胞を観察することは無い。それに対し、SV40 originを入れた、細胞増殖の際に細胞とともに増えるアデノウイルスを感染させたときには、頻繁に複数の同一サブタイプの非錐体細胞が近接して分布するのを観察した。この観察結果の意味するところは、ひとつのGABA作動性神経細胞の前駆細胞は、同一サブタイプの非錐体細胞を大脳実質内で生み出していることを示唆している。
この出願の発明者は、大脳基底核原基の脳室帯にある神経幹細胞はGAD67陰性であるのに対し、大脳皮質のGABA作動性神経細胞前駆細胞は、GABA作動性神経細胞のように神経回路を形成してGABAを分泌しているわけでもないにも拘らず、GABA合成酵素GAD67陽性であることを発見した。この発見は、大脳皮質GABA作動性神経細胞の分化の細胞系譜において、多種類の細胞を生み出す神経幹細胞とGABA作動性神経細胞のみを生み出すGABA作動性神経細胞前駆細胞を区別する明らかな形質の違いであった。
この様なGAD67 promoter活性を使ってGFPを発現させる試みは、GABA作動性神経細胞にGAD67 promoterにGFP cDNAをつないだDNAをジーンガンで導入した例が報告されている(Jin et al.,Cereb Cortex 2001 11:666−678)。また、GAD67 promoterの下流にGFP cDNAをつないで染色体上に組み込んだGAD67−GFP knock−in mouseでは、GFPがほぼ100%の精度でGAD67陽性細胞に発現していた(Tamamaki et al.,2003)。このマウスを使ってGABA作動性神経細胞前駆細胞を観察したところ、緑色蛍光を発しているところが観察された(Nakamura et al.,2003)。のこの違いを利用して、神経幹細胞や他の種の細胞から、GABA作動性神経細胞前駆細胞とGABA作動性神経細胞を分離し、さらにGABA作動性神経細胞前駆細胞のみを分離する。加えて、GAD67とGAD65遺伝子は、胎児期より大脳皮質のほとんどの細胞で共存することが知られていたので(Dupuy and Houser,1996)、GAD67 promoterの代わりにGAD65 promoterを用いても、ほとんど同様の結果が得られる。
生体内のGABA作動性神経細胞前駆細胞がGAD67 promoter活性を持つことが申請者らの研究で示されており(Nakamura et al.,2003)、胚性幹細胞や神経幹細胞から誘導された細胞中にもGAD67 promoter活性を持つものがあることが報告されている(Westmoreland et al.,2001)。
GAD67またはGAD65のプロモーター下流に生体でも検出できる蛍光を発するレポーター遺伝子や薬剤耐性遺伝子を繋ぎ、GABA作動性神経細胞前駆細胞とGABA作動性神経細胞を含む細胞集団に導入することで、レポーター蛋白の蛍光や薬剤耐性でGABA作動性神経細胞前駆細胞とGABA作動性神経細胞を確認することができる。蛍光を放つGABA作動性神経細胞前駆細胞とGABA作動性神経細胞はセルソーターで分離ができるし、薬剤耐性のGABA作動性神経細胞前駆細胞とGABA作動性神経細胞は薬剤を培養液に加えることにより分離できる。このとき培養液中で永く培養増殖させれば、分裂能のGABA作動性神経細胞前駆細胞のみを得ることができる。
例えば、緑色の蛍光を発するくらげ蛋白、Green Fluorecent Protein(GFP)cDNAをGAD67 promoterにつないだDNA(図1の1)を、DNA細胞内導入試薬やウイルス、電気穿孔法などで導入するとGABA作動性神経細胞前駆細胞とGABA作動性神経細胞が緑色蛍光を発する。GAD65 promoterを使用した場合も同様の効果が得られる。このGABA作動性神経細胞前駆細胞を含む組織を切り出し、0.05% Trypsine−EDTAで処理することで個々の細胞を分散させ、細胞捲濁液をセルソーターにかけることでGABA作動性神経細胞前駆細胞とGABA作動性神経細胞を分離することができる。分離した細胞を、大脳皮質と大脳基底核原基を含む脳のスライスを培養したconditioned mediumを用いて分離したGABA作動性神経細胞前駆細胞とGABA作動性神経細胞を培養増殖させると、GABA作動性神経細胞前駆細胞は増殖し、GABA作動性神経細胞は暫時その数を減らしていく。
GFPの代わりに、neo mycine耐性遺伝子を GAD67 promoterまたはGAD65 promoterにつなぎ(図1の2)、GABA作動性神経細胞前駆細胞を含む細胞群に導入する。同細胞群を分散培養する際の培養液にGeneticin(G418)を入れて培養をすることで、GAD67 promoter活性を持つGABA作動性神経細胞前駆細胞以外は死滅するので、GABA作動性神経細胞前駆細胞のみを選び出すことができる。
しかし、GAD67 promoterやGAD65 promoter活性はGABA作動性神経細胞前駆細胞の細胞周期に伴い変化するのに加え、概してGABA作動性神経細胞のそれより常に低い。そのままGAD67 promoterまたはGAD65 promoterをGFPやneoのDNAにつないでも、現在我々が細胞系譜に従って分類しているprimary GABAergic neuron progenitor,secondary GABAergic neuron progenitorによってGAD67 promoterやGAD65 promoter活性の強さが異なることがあり、GABA神経細胞前駆細胞の種類によって採取効率に影響が出ることが考えられる。この影響を除くため、図1の3−5にあるようなDNAコンストラクを準備する。図1の3では、DNA組み換え蛋白としてCre recombinaseを用いているが、これは使用できるDNA組み換え蛋白をCre recombinaseに限ることを意味しているのではない。図1の4−5に、DNA組み換え酵素が認識するDNA配列(例えばloxP)が順方向に二つ並ぶ間に、生体細胞を可視化できるレポーターDNA(例えばGFP)や、薬剤耐性遺伝子DNA(例えばneo mycin耐性遺伝子)を配置し、強制発現プロモーター(例えばCA promoter、日本特許番号2824433、2824434)を含むDNAに結合させておく。この二つのDNAコンストラクト(3と4、乃至は3と5)を、GABA作動性神経細胞前駆細胞を含む細胞群に導入する。GABA作動性神経細胞前駆細胞とGABA作動性神経細胞ではGAD67およびGAD65 promoter活性があるので、DNA組み換え酵素が発現し、二つのDNA組み換え酵素が認識するDNA配列の間で組み換えが起こり、その間にあったstop codonは除去される。その結果、生体細胞を可視化できるレポーター(例えばGFP)を発現させた場合は、セルソーターを用いてGABA作動性神経細胞前駆細胞とGABA作動性神経細胞を分離することができ、薬剤耐性蛋白を発現させた場合は、培養液中に薬剤(例えばGenetisin)を入れることでGABA作動性神経細胞前駆細胞とGABA作動性神経細胞だけが選別される(図2)。さらに大脳皮質と大脳基底核原基を含む脳のスライスを培養したconditioned mediumを用いて培養を続けると、GABA作動性神経細胞前駆細胞は増殖し、GABA作動性神経細胞は暫時その数を減らしていく。
これまで、胚性幹細胞や神経幹細胞の培養条件を調節することで、GABA作動性神経細胞を始め様々な細胞が誘導されてきた。しかし何れの条件でも、単一種の細胞のみを産生する系はなく、治療に用いる前に再度の分離が必要となり、細胞活性を損なうこととなっていた。この出願の発明によって、GABA作動性神経細胞前駆細胞が純度高く得られる。GABA作動性神経細胞前駆細胞はGAD67およびGAD65陽性であり、GAD67陽性およびGAD65陽性の細胞を産生するので、脳内ではGAD67およびGAD65陽性細胞はGABA作動性神経細胞だけであることを考えると、GABA作動性神経細胞前駆細胞を培養することにより、GABA作動性神経細胞前駆細胞とGABA作動性神経細胞のみを生み出す系が提供される。
以下、実施例を示してこの出願の発明についてさらに詳細かつ具体的に説明するが、この出願の発明は以下の例によって限定されるものではない。
GAD67 promoterの直ぐ下流にGFP cDNAをつないだコンストラクトをgene targeting方を用いてゲノムDNA中に相同組み換えを利用して挿入したマウス、GAD67−GFP knock−in mouseを用いて、その大脳皮質内のGABA作動性神経細胞前駆細胞を分離した。このマウスのゲノム上には図1の1にあるDNAを導入したのと同じ状態が全ての細胞に形成されている。それ故、GAD67 promoter活性のある細胞は全てGFPを発現しており、また逆に、GFPを発現している細胞は全てGAD67陽性であり、脳内ではGABA作動性神経細胞前駆細胞とGABA作動性神経細胞と見なしうることは、先に調べて報告済みである(Tamamaki et al.,submitted)。
大脳皮質ではGABA作動性神経細胞前駆細胞がGABA作動性神経細胞を産生し続けている出産直後ないしは、胎生18日目のGAD67−GFP knock−in mouseの大脳皮質を取り出し、0.5%トリプシン蛋白分解酵素で処理をすることで細胞外基質と細胞接着分子を部分分解することにより、細胞を分散させた。分散させた細胞をPBSで浸し、FACS(fluorescence activated cell sorter)に通し、GFP陽性細胞を培養液に受け取った(図2−2)。この際、採取された細胞のGFP蛍光強度は図3の左上に示されている。採取したGABA作動性神経細胞前駆細胞とGABA作動性神経細胞を培養するのに用いた培養液は、ニューロスフェア法(Reynolds and Weiss,1992;Vescovi et al.,1993;Gritti et al.,1996)にある細胞増殖因子を加えただけの基本培養液で大脳皮質と大脳基底核原基を一日培養した後にフィルターで細胞を除いて得た調整培地(conditioned medium)であった。
細胞採取後、培養液中でGABA作動性神経細胞前駆細胞の一部は、細胞分裂をはじめた。図3の下の図は、分裂した細胞であるが、細胞分裂した細胞を確認するために培養液中に混ぜておいたBrdUを核内DNAに取り込んでいた。この時DNA合成阻害剤を培養液に加えておくと、図3の右上の図にあるようにBrdUはDNAに取り込まれなかったことから、細胞増殖によるBrdUの取り込みであったことが確かめられた。また分裂した後の二つの娘細胞は、両方ともGFP陽性であり、二つの一次GABA作動性神経細胞前駆細胞、ないしは一つの一次GABA作動性神経細胞前駆細胞と一つの二次GABA作動性神経細胞前駆細胞、ないしは二つの二次GABA作動性神経細胞前駆細胞、ないしは二つのGABA作動性神経細胞を生み出したと考えられる。何れの場合であっても、それ以降培養条件が整えられていれば、GABA作動性神経細胞とGABA作動性神経細胞関連細胞のみが生み出し続けられることが期待された。
これまで、胚性幹細胞や神経幹細胞の培養条件を調節することで、GABA作動性神経細胞を始め様々な細胞が誘導されてきた。しかし何れの条件でも、単一種の細胞のみを産生する系はなく、治療に用いる前に再度の分離が必要となり、細胞活性を損なうこととなっていた。この出願の発明によって、GABA作動性神経細胞前駆細胞が純度高く得られる。GABA作動性神経細胞前駆細胞はGAD67およびGAD65陽性であり、GAD67およびGAD65陽性の細胞を産生するので、脳内ではGAD67およびGAD65陽性細胞はGABA作動性神経細胞だけであることを考えると、GABA作動性神経細胞前駆細胞を培養することにより、GABA作動性神経細胞前駆細胞とGABA作動性神経細胞のみを生み出す系が提供される。

Claims (16)

  1. GABA作動性神経細胞のみを生み出す前駆細胞の分離方法であって、以下の工程:
    (a)GABA作動性神経細胞前駆細胞を含む細胞集団を調製する工程;
    (b)抑制性神経伝達物質GABAの合成酵素GAD67遺伝子またはGAD65遺伝子のプロモーター下流に、生体でも検出可能なシグナルを発するレポーター蛋白のcDNAをつないだDNAを、細胞集団の各細胞に導入する工程;
    (c)レポーターの発するシグナルの有無によりGABA作動性神経細胞とGABA作動性神経細胞前駆細胞を単離する工程;
    (d)増殖能を持つことによりGABA作動性神経細胞前駆細胞を単離する工程、
    を含むことを特徴とする方法。
  2. GABA作動性神経細胞のみを生み出す前駆細胞の分離方法であって、以下の工程:
    (a)GABA作動性神経細胞前駆細胞を含む細胞集団を調製する工程;
    (b)抑制性神経伝達物質GABAの合成酵素GAD67遺伝子またはGAD65遺伝子のプロモーター下流に、薬剤耐性の性質を付与する蛋白のcDNAをつないだDNAを、細胞集団の各細胞に導入する工程;
    (c)薬剤耐性の有無によりGABA作動性神経細胞とGABA作動性神経細胞前駆細胞を単離する工程;
    (d)増殖能を持つことによりGABA作動性神経細胞前駆細胞を単離する工程、
    を含むことを特徴とする方法。
  3. GABA作動性神経細胞のみを生み出す前駆細胞の分離方法であって、以下の工程:
    (a)GABA作動性神経細胞前駆細胞を含む細胞集団を調製する工程;
    (b)抑制性神経伝達物質GABAの合成酵素GAD67遺伝子またはGAD65遺伝子のプロモーター下流に、遺伝子組み換え酵素のcDNAを結合したDNAと、遺伝子組み換え後に生体でも検出可能なシグナルを発するレポーター蛋白を発現するカセットDNAを、細胞集団の各細胞に導入する工程;
    (c)レポーターの発するシグナルの有無によりGABA作動性神経細胞とGABA作動性神経細胞前駆細胞を単離する工程;
    (d)増殖能を持つことによりGABA作動性神経細胞前駆細胞を単離する工程、
    を含むことを特徴とする方法。
  4. GABA作動性神経細胞のみを生み出す前駆細胞の分離方法であって、以下の工程:
    (a)GABA作動性神経細胞前駆細胞を含む細胞集団を調製する工程;
    (b)抑制性神経伝達物質GABAの合成酵素GAD67遺伝子またはGAD65遺伝子のプロモーター下流に、遺伝子組み換え酵素のcDNAを結合したDNAと、遺伝子組み換え後に薬剤耐性の性質を付与する蛋白を発現するカセットDNAを、細胞集団の各細胞に導入する工程;
    (c)薬剤耐性の有無によりGABA作動性神経細胞とGABA作動性神経細胞前駆細胞を単離する工程;
    (d)増殖能を持つことによりGABA作動性神経細胞前駆細胞を単離する工程、
    を含むことを特徴とする方法。
  5. 工程(a)において、胚性幹細胞または神経幹細胞から誘導したGABA作動性神経細胞前駆細胞を含む細胞集団を調製する請求項1から4のいずれかの方法。
  6. 工程(a)において、ドナーのGABA作動性神経細胞前駆細胞を含む組織を分散して細胞集団を調製する請求項1から4のいずれかの方法。
  7. 工程(b)におけるDNA導入法が、ウイルスを介した形質転換を含む、請求項1から4のいずれかの方法。
  8. 工程(b)におけるDNA導入法が、電気穿孔を含む、請求項1から4のいずれかの方法。
  9. 工程(b)におけるDNA導入法が、リポソームを介した形質転換を含む、請求項1から4のいずれいかの方法。
  10. 胚性幹細胞または神経幹細胞が哺乳動物由来である、請求項5の方法。
  11. 哺乳動物がヒトである、請求項10の方法。
  12. ドナーが哺乳動物である、請求項6の方法。
  13. 哺乳動物がヒトである、請求項12の方法。
  14. さらに、ステップ(d)で分離した細胞をレシピエントに移植することを含む、請求項1から4のいずれかの方法。
  15. 請求項1から14のいずれかの方法により得られた、GABA作動性神経細胞のみを生み出す前駆細胞。
  16. 請求項1から14のいずれかの方法において、GABA作動性神経細胞のみを生み出す前駆細胞を得るために試用する試薬および細胞のキット。
JP2005509742A 2002-12-18 2003-12-17 Gaba作動性神経細胞のみを生み出す前駆細胞の分離方法 Pending JPWO2004058965A1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002367272 2002-12-18
JP2002367272 2002-12-18
JP2003042253 2003-02-20
JP2003042253 2003-02-20
PCT/JP2003/016188 WO2004058965A1 (ja) 2002-12-18 2003-12-17 Gaba作動性神経細胞のみを生み出す前駆細胞の分離方法

Publications (1)

Publication Number Publication Date
JPWO2004058965A1 true JPWO2004058965A1 (ja) 2006-04-27

Family

ID=32684181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005509742A Pending JPWO2004058965A1 (ja) 2002-12-18 2003-12-17 Gaba作動性神経細胞のみを生み出す前駆細胞の分離方法

Country Status (4)

Country Link
US (1) US20070116686A1 (ja)
JP (1) JPWO2004058965A1 (ja)
AU (1) AU2003289403A1 (ja)
WO (1) WO2004058965A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010037143A1 (en) * 2008-09-29 2010-04-01 The University Of Montana Vectors and methods of treating brain seizures
US20110135613A1 (en) * 2009-12-03 2011-06-09 The J. David Gladstone Institutes Methods for treating apolipoprotein e4-associated disorders
JP5970721B2 (ja) * 2010-09-22 2016-08-17 国立大学法人 熊本大学 抑制性神経前駆細胞の増殖、分離、移植、およびこの細胞の増殖促進物質
JP2014193118A (ja) * 2013-03-28 2014-10-09 Olympus Corp 脳活動の解析方法
KR102139784B1 (ko) * 2019-01-11 2020-07-30 경희대학교 산학협력단 Gad 유전자의 프로모터를 포함하는 가바성 신경세포의 검출용 조성물

Also Published As

Publication number Publication date
WO2004058965A1 (ja) 2004-07-15
US20070116686A1 (en) 2007-05-24
AU2003289403A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
Park et al. Generation of transgenic marmosets expressing genetically encoded calcium indicators
Ribeiro et al. Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors
Restivo et al. Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the hippocampus
Bi et al. Cortical glial fibrillary acidic protein-positive cells generate neurons after perinatal hypoxic injury
Rauskolb et al. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth
Banker et al. Culturing nerve cells
Keyoung et al. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain
Roy et al. Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter
US7785882B2 (en) Neuronal progenitor cells from hippocampal tissue and a method for isolating and purifying them
Leto et al. Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells
Ohtsuka et al. Visualization of embryonic neural stem cells using Hes promoters in transgenic mice
US7468277B2 (en) Enriched preparation of human fetal multipotential neural stem cells
DE602005002430T2 (de) Zelllinie
Tomomura et al. Purification of Purkinje cells by fluorescence‐activated cell sorting from transgenic mice that express green fluorescent protein
JP2009077725A (ja) 細胞を精製する方法
Van Wyk et al. Present molecular limitations of ON-bipolar cell targeted gene therapy
WO2006044492A2 (en) Methods for generating rat embryo-derived cell lines and genetic modification of rat genome
Mujtaba et al. Stable expression of the alkaline phosphatase marker gene by neural cells in culture and after transplantation into the CNS using cells derived from a transgenic rat
Sun et al. Isolation of photoreceptors from mature, developing, and regenerated zebrafish retinas, and of microglia/macrophages from regenerating zebrafish retinas
Zhang et al. Bulk and mosaic deletions of Egfr reveal regionally defined gliogenesis in the developing mouse forebrain
JPWO2004058965A1 (ja) Gaba作動性神経細胞のみを生み出す前駆細胞の分離方法
WO2001036482A1 (en) Transgenic mice expressing fluorescent protein under the control of the nestin promoter
Marinaro et al. In vivo fate analysis reveals the multipotent and self-renewal features of embryonic AspM expressing cells
Meng et al. Targeting retinal dopaminergic neurons in tyrosine hydroxylase-driven green fluorescent protein transgenic zebrafish
TWI316844B (en) Transgenic animal for screening therapeutic agents for brain tumors

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204