JPWO2004029698A1 - 可変偏光回転装置及びそれを用いた可変光減衰器 - Google Patents

可変偏光回転装置及びそれを用いた可変光減衰器 Download PDF

Info

Publication number
JPWO2004029698A1
JPWO2004029698A1 JP2004539447A JP2004539447A JPWO2004029698A1 JP WO2004029698 A1 JPWO2004029698 A1 JP WO2004029698A1 JP 2004539447 A JP2004539447 A JP 2004539447A JP 2004539447 A JP2004539447 A JP 2004539447A JP WO2004029698 A1 JPWO2004029698 A1 JP WO2004029698A1
Authority
JP
Japan
Prior art keywords
light
input
magneto
variable
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004539447A
Other languages
English (en)
Inventor
浩 長枝
浩 長枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2004029698A1 publication Critical patent/JPWO2004029698A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator

Abstract

磁気光学効果を利用して入力光の偏光を回転させる可変偏光回転装置において、入力光を第1の集光手段(3)で集光した上で、その焦点位置付近に設置された磁気光学結晶(41)に入射するようにすることで、同じ磁気光学効果によるファラデー回転量を得るのに磁界発生手段(42,43,44,45)に必要とされる磁界強度を従来よりも大幅に削減する。これにより、磁界発生手段(42,43,44,45)自体の大幅な小型化を図って、可変偏光回転装置の大幅な小型化を図ることが可能となる。

Description

本発明は、磁気光学効果(ファラデー効果)を利用して入力光の偏光状態を回転(変化)させる可変偏光回転装置及びそれを用いた可変光減衰器に関する。
従来の可変ファラデー回転子を用いた可変偏光回転装置の一例を図24に示す。この図24に示す装置は、例えば入力光ファイバ101と出力光ファイバ105との間の光軸上に、入力コリメータ(コリメートレンズ)102,ファラデー回転子103,出力コリメータ(コリメートレンズ)104が配置されて構成されている。
そして、ファラデー回転子104は、この図24に示すように、ファラデー素子(磁気光学結晶)131と、このファラデー素子131に対して光軸と平行な方向に磁界を印加するための永久磁石132,133と、光軸と略90度交差する方向からファラデー素子131に磁界を印加するための電磁石(磁界発生手段)134,135との組み合わせで構成されている。なお、電磁石134,135が印加する磁界の強度は制御信号印加手段としての電流源106によって調整される。また、永久磁石132,133は、実用的なものは一般に不透明なので、それぞれ、光路を妨げない形状(例えば、中空構造)になっている。
かかる構成において、ファラデー素子131の磁化方向は、例えば特開平6−51255号公報(以下、特許文献1という)にも記載されているように、永久磁石132,133による一定磁界と電磁石134,135による可変磁界との合成磁界の方向となる。ここで、永久磁石132,133の一定磁界により磁化が飽和するのに十分な磁界がかかっているとすると、電磁石134,135による印加電磁界を可変することにより、磁化ベクトルはその大きさが一定で方向だけを変えるような変化をする。
従って、光軸方向と平行な成分は合成磁界の方向、即ち、電磁石134,135の可変磁界の大きさに応じて変化することになり、光軸方向と平行な磁化成分により決まるファラデー回転角が電磁石134,135の磁界の大きさに応じて変化することになる。
そして、上記の特許文献1では、このような可変ファラデー回転子を用いて、可変光アッテネータ(可変光減衰器)を構成することが提案されている。即ち、例えば図25に示すように、図24により上述した構成において、ファラデー回転子103の磁気光学結晶131の前段に偏光子136を設けるとともに、磁気光学結晶131の後段に検光子137を設けて可変光アッテネータを構成している。
ここで、偏光子136及び検光子137は、それぞれ、テーパ状(くさび形状)の複屈折性結晶(例えば、ルチル等)により構成され、入射光のうち所定の偏波面を有する直線偏波を選択的に透過するもので、偏光子136の頂部及び底部がそれぞれ検光子137の底部及び頂部に対向し、且つ、これら両複屈折性結晶の光学軸(紙面に垂直な平面内に存在する)が互いに垂直となるように配置されている。この場合、図25に示す可変光アッテネータは次のように動作する。
即ち、図26に示すように、入力光ファイバ101から出射した光は、入力コリメータ102にてコリメートされたのち、偏光子136に入射し、そこで常光成分oと異常光成分eとに分離される。ここで、常光成分oと異常光成分eの偏光方向は互いに直交している。なお、図26は図25のX軸(矢印B)方向から見た場合の光路を示す側面図である。ただし、この図26において、永久磁石132,133,電磁石134,135の図示は省略している。
そして、上記の常光成分oと異常光成分eは、それぞれファラデー回転子103を通過する際、光軸に平行な方向の磁化の大きさに応じて偏光方向が回転し、検光子137に入射する。検光子137は、常光成分oを更に常光成分ooと異常光成分oeとに分離し、異常光eを更に常光成分eoと異常光成分eeとに分離する。
ここで、検光子137から出射する常光成分ooと異常光成分eeは、それぞれが偏光子136及び検光子137で受けた屈折の履歴と偏光子136及び検光子137の形状及び配置とを考慮すると、互いに平行である。したがって、これらの常光成分oo及び異常光成分eeは、コリメートレンズ104によって集光して出力光ファイバ105のコアに結合することができる(実線で示す)。一方、常光成分oの異常光成分oeと異常光成分eの常光成分eoは互いに平行でなく広がるために、コリメートレンズ104を通っても出力光ファイバ105のコアには結合しない(破線で示す)。
さて、常光成分ooと異常光成分eeのトータルパワーと異常光成分oeと常光成分eoのトータルパワーの比は、ファラデー回転子103の回転角に依存し、ファラデー回転角が一定である状態においては、常光成分ooと異常光成分eeのトータルパワーは入力光ファイバ101の出射光の偏光状態には依存しない。
例えば、電磁石134,135による印加電磁界が0の時、ファラデー回転角は90度(磁化が光軸と平行)であり、偏光子136から出射した常光成分oは殆どそのまま検光子137から常光成分ooとして出射し、偏光子136から出射した異常光成分eは殆どそのまま検光子137から異常光成分eeとして出射するので、入力光ファイバ101の出射光の殆どが出力光ファイバ105に結合することになる。
これに対し、電磁石134,135による印加電磁界が十分大きいと、ファラデー回転角は0度に近づき、偏光子136から出射した常光成分oは殆どそのまま検光子137から異常光成分oeとして出射し、偏光子136から出射した異常光成分eは殆どそのまま検光子137から常光成分eoとして出射するので、入力光ファイバ101の出射光の殆どは出力光ファイバ105のコアには結合しないことになる。
このようにして電磁石134,135による印加電磁界の強さに応じて、ファラデー素子131の磁化が回転してファラデー回転角が約90度から約0度までの範囲で変化し、それに応じて出力光ファイバ105のコアに結合する光量が変化するので、図25に示す装置は可変光アッテネータとして機能することになる。
なお、ファラデー回転子103に組み込むファラデー素子131としては、近年、主にLPE法(液相エピタキシャル法)により作製したBi(ビスマス)置換希土類鉄ガーネット単結晶膜(LPE膜)が用いられている。その理由は、LPE膜はBiの奇与によってYIG(イットリウム鉄ガーネット)単結晶に比べてファラデー回転係数が大きいという利点を有するからである。
また、従来の可変光アッテネータとしては、他に、例えば図27に示すように、ファラデー回転子103(ファラデー素子131)の下流側に反射素子107を配置し、光線が往復でファラデー回転子103(ファラデー素子131)を2回透過する反射型の可変光アッテネータも提案されている(例えば、特開平10−161076号公報(以下、特許文献2という)参照)。
なお、この図27において、115は入力光ファイバ101と出力光ファイバ105とを固定している2芯フェルール、124は入力コリメータ102と出力コリメータ104とを兼用するコリメータ(コリメートレンズ)124、138は前記の偏光子136と検光子137とを兼用する偏光子兼検光子をそれぞれ示す。
そして、この図27に示す可変光アッテネータでは、上記特許文献2の段落〔0008〕及び〔0009〕にも記載されているように、光線がファラデー回転子103を往復で2回透過するため、ファラデー回転子103(ファラデー素子131)の厚さや必要な磁界の強さを半減することができる。また、偏光子136と検光子137、入力コリメータ102と出力コリメータ104とをそれぞれ偏光子兼検光子138、コリメータ124で兼用できるため小型化及び部品点数の低減による低コスト化も図られている。
しかしながら、このような反射型の可変光アッテネータにおいてファラデー回転子103(ファラデー素子131)を小さくできたとしても、ファラデー回転子103のサイズの大部分を占める電磁石コイル(磁界発生手段)は小さくならないため、劇的な小型化は期待できない。コイル線の細線化で小型化を図ることも可能だが、電気抵抗上昇により発熱等の問題が生じるため電磁石コイル自体の小型化は困難なのが現状である。
本発明は、このような課題に鑑み創案されたもので、ファラデー回転子の磁界発生手段の大幅な小型化を図って、ファラデー回転子を用いる可変偏光回転装置及びそれを用いた可変光減衰器の大幅な小型化を図れるようにすることを目的とする。
なお、ファラデー回転子を用いた光学装置に関するその他の公知技術文献情報を以下に付記する。
(1)特開2001−1420240号公報(ファラデー回転子を用いた可変光減衰器に関するもの)
(2)特開2000−56187号公報(ファラデー回転子を用いたレーザモジュールに関するもの)
(3)特開2002−23104号公報(ファラデー回転子を用いた光アイソレータに関するもの)
上記の目的を達成するために、本発明の可変偏光回転装置は、入力光を集光する第1の集光手段と、該第1の集光手段の焦点位置付近に設置された磁気光学結晶と、該磁気光学結晶に磁界を印加する磁界発生手段と、該磁界発生手段を制御して該磁界を変化させる制御手段とをそなえたことを特徴としている。
ここで、該第1の集光手段は、該入力光を線状に集光する入力ラインフォーカスレンズにより構成されていてもよいし、該入力光を点状に集光する入力点集光レンズにより構成されていてもよい。また、該第1の集光手段の前段に、該入力光をコリメートして該第1の集光手段へコリメート光を入力する入力コリメータを設けてもよい。
さらに、本発明の可変偏光回転装置を用いた可変光減衰器は、該入力ラインフォーカスレンズの前段に、該入力光をコリメートして該入力ラインフォーカスレンズへコリメート光を入力する入力コリメータが設けられるとともに、該入力ラインフォーカスレンズと該磁気光学結晶との間に偏光子又は複屈折板が設けられた可変偏光回転装置を用いたことを特徴としている。
また、本発明の可変偏光回転装置を用いた可変光減衰器は、該入力点集光レンズの前段に、該入力光をコリメートして該入力点集光レンズへコリメート光を入力する入力コリメータが設けられるとともに、該入力コリメータと該入力点集光レンズとの間に偏光子又は複屈折板が設けられた可変偏光回転装置を用いたことを特徴としている。
なお、上記の可変偏光回転装置は、該磁気光学結晶の後段に、該磁気光学結晶を透過する光をコリメートする出力コリメータを設けてもよい。この出力コリメータは、該磁気光学結晶から出射された光を線状に集光する出力ラインフォーカスレンズにより構成してもよいし、該磁気光学結晶から出射された光を点状に集光する出力点集光レンズにより構成してもよい。
さらに、本発明の可変偏光回転装置を用いた可変光減衰器は、該磁気光学結晶と該出力ラインフォーカスレンズとの間に検光子又は複屈折板が設けられた可変偏光回転装置を用いたことを特徴としている。
また、本発明の可変偏光回転装置を用いた可変光減衰器は、該出力点集光レンズの後段に該出力点集光レンズから出射された光を集光する第2の集光手段が設けられるとともに、該出力点集光レンズと該第2の集光手段との間に検光子又は複屈折板が設けられた可変偏光回転装置を用いたことを特徴としている。
さらに、本発明の可変偏光回転装置は、入力光を伝播する入力光ファイバと、該入力光ファイバからの入力光をコリメートする入力コリメータと、該入力コリメータから出射されるコリメート光を線状に集光する入力ラインフォーカスレンズと、該入力ラインフォーカスレンズの焦点位置付近に設置された磁気光学結晶と、該磁気光学結晶を透過してくる光をコリメートする出力ラインフォーカスレンズと、該出力ラインフォーカスレンズから出射されるコリメート光を集光する出力コリメートレンズと、該出力コリメートレンズの焦点位置付近に設置された出力光ファイバと、該磁気光学結晶に磁界を印加する磁界発生手段と、該磁界発生手段を制御して該磁界を変化させる制御手段とをそなえたことを特徴としている。
また、本発明の可変偏光回転装置を用いた可変光減衰器は、該入力ラインフォーカスレンズと該磁気光学結晶との間に偏光子又は第1の複屈折板が設けられるとともに、該磁気光学結晶と該出力ラインフォーカスレンズとの間に検光子又は第2の複屈折板が設けられた可変偏光回転装置を用いたことを特徴としている。
ここで、上記の偏光子又は第1の複屈折板及び検光子又は第2の複屈折板は、それぞれくさび形状を有する複屈折性結晶により構成してもよい。
さらに、本発明の可変偏光回転装置は、入力光を集光する第1の集光手段と、該第1の集光手段の焦点位置付近に設置された磁気光学結晶と、該磁気光学結晶に磁界を印加する磁界発生手段と、該磁界発生手段を制御して該磁界を変化させる制御手段と、該磁気光学結晶を透過した光を反射して該磁気光学結晶に戻す反射素子とをそなえたことを特徴としている。
ここで、上記の第1の集光手段は、該入力光を線状に集光する入力ラインフォーカスレンズにより構成してもよい。また、上記の第1の集光手段の前段には、該入力光をコリメートして該第1の集光手段に入射する入力コリメータを設けてもよい。
さらに、上記の反射素子により反射され該磁気光学結晶を透過してくる反射光をコリメートする出力コリメータを設けてもよく、この出力コリメータは、該磁気光学結晶からの該反射光を線状に集光する出力ラインフォーカスレンズにより構成してもよい。
また、該出力コリメータの後段には、当該出力コリメータから出射された光を集光する第2の集光手段を設けてもよい。
さらに、本発明の可変偏光回転装置は、入力光を伝播する入力光ファイバと、該入力光ファイバから出射される光をコリメートする入力コリメータと、該入力コリメータから出射されるコリメート光を集光する第1の集光手段と、該第1の集光手段の焦点位置付近に設置された磁気光学結晶と、該磁気光学結晶を透過した光を反射して該磁気光学結晶に戻す反射素子と、該反射素子により反射され該磁気光学結晶を透過してきた光をコリメートする出力コリメータと、該出力コリメータから出射されたコリメート光を集光する第2の集光手段と、該第2の集光手段の焦点位置付近に設置された出力光ファイバと、該磁気光学結晶に磁界を印加する磁界発生手段と、該磁界発生手段を制御して該磁界を変化させる制御手段とをそなえたことを特徴としている。
ここで、上記の第1の集光手段及び出力コリメータは、それぞれ、入射光を線状に集光するラインフォーカスレンズにより構成してもよいし、入射光を線状に集光する1つのラインフォーカスレンズにより兼用してもよい。
また、上記の入力コリメータ及び第2の集光手段は、それぞれ、入射光をコリメートするコリメートレンズにより構成してもよいし、入射光をコリメートする1つのコリメートレンズにより兼用してもよい。
さらに、本発明の可変偏光回転装置を用いた可変光減衰器は、上記の第1の集光手段と磁気光学結晶との間に偏光子又は第1の複屈折板を設けるとともに、上記の磁気光学結晶と出力コリメータとの間に検光子又は第2の複屈折板を設けた可変偏光回転装置を用いたことを特徴としている。
ここで、上記の第1の複屈折板と第2の複屈折板とは偏光子兼検光子により兼用してもよい。また、上記の第1の複屈折板及び第2の複屈折板は、それぞれ、くさび形状を有する複屈折性結晶により構成してもよい。さらに、上記の偏光子兼検光子は、くさび形状を有する複屈折性結晶により構成してもよい。
図1は本発明の一実施形態としての可変偏光回転装置の構成を示す模式的斜視図である。
図2は図1に示す可変偏光回転装置の要部に着目した構成を示す模式的斜視図である。
図3は図2に示す構成を矢印A方向から見たときの構成を光路も併せて示す模式的上面図である。
図4は図2に示す構成を矢印B方向から見たときの構成を光路も併せて示す模式的側面図である。
図5は図1に示す可変偏光回転装置の変形例を示す模式的斜視図である。
図6は本発明の一実施形態としての可変ファラデー回転子を利用した可変光減衰器の構成を光路も併せて示す模式的斜視図である。
図7は図6に示す可変光減衰器を矢印A方向から見たときの構成を光路も併せて示す模式的上面図である。
図8は図6に示す可変光減衰器を矢印B方向から見たときの構成を光路も併せて示す模式的側面図である。
図9は図6に示す可変光減衰器の変形例を示す模式的斜視図である。
図10は図9に示す可変光減衰器を矢印A方向から見たときの構成を光路も併せて示す模式的上面図である。
図11は図9に示す可変光減衰器を矢印B方向から見たときの構成を光路も併せて示す模式的側面図である。
図12は図9に示す可変光減衰器の動作を説明すべく図9の矢印B方向から見たときの常光成分及び異常光成分に着目した光路を示す図である。
図13は本発明の一実施形態としての反射型の可変偏光回転装置の構成を光路も併せて示す模式的斜視図である。
図14は図13に示す可変偏光回転装置の反射素子の動作を説明すべく反射素子の側面を示す模式図である。
図15は図13に示す反射型の可変偏光回転装置の変形例を示す模式的斜視図である。
図16は図13に示す反射型の可変偏光回転装置の要部構成を光路も併せて示す模式的斜視図である。
図17は本発明の一実施形態としての反射型の可変光減衰器の構成を光路も併せて示す模式的斜視図である。
図18は図17に示す反射型の可変光減衰器を矢印A方向から見たときの構成を光路も併せて示す模式的上面図である。
図19は図17に示す反射型の可変光減衰器を矢印B方向から見たときの構成を光路も併せて示す模式的側面図である。
図20は図17〜図19に示す反射型の可変光減衰器の動作を説明すべく常光成分及び異常光成分の光路をそれぞれ示す模式的側面図である。
図21は図20の要部を拡大して示す図である。
図22及び図23は反射型の可変光減衰器においてシリンドリカルレンズを用いることの有用性を説明すべく構成要素の配置関係を示す模式的上面図である。
図24は従来の可変偏光回転装置の構成を光路も併せて示す模式的斜視図である。
図25は従来の可変光減衰器の構成を光路も併せて示す模式的斜視図である。
図26は図25に示す可変光減衰器の動作を説明すべく常光成分及び異常光成分の光路を示す模式的側面図である。
図27は従来の反射型の可変光減衰器の構成を示す模式的斜視図である。
(A)可変偏光回転装置の説明
図1は本発明の一実施形態としての可変偏光回転装置の構成を示す模式的斜視図で、この図1に示す可変偏光回転装置は、入力光ファイバ1,入力コリメートレンズ2,入力シリンドリカルレンズ(ラインフォーカスレンズ)3,可変ファラデー回転子4,出力シリンドリカルレンズ(ラインフォーカスレンズ)5,出力コリメートレンズ6,出力光ファイバ7及び可変電流源8をそなえて構成され、上記可変ファラデー回転子(以下、単に「ファラデー回転子」ともいう)4が、さらにファラデー素子(磁気光学結晶)41,磁界発生手段としての永久磁石42,43,電磁石44,45をそなえて構成されている。
ここで、上記の入力光ファイバ1は、入力光を伝播するものであり、入力コリメートレンズ(入力コリメータ)2は、この入力光ファイバ1から出射された光をコリメートするものであり、入力シリンドリカルレンズ(第1の集光手段)3は、この入力コリメートレンズ2から出射されるコリメート光を線状に(光波面の一方向のみを)集光するもので、ここでは、図1中に示すX軸方向にコリメート光が集光されるようになっている。
また、ファラデー回転子4は、上記入力シリンドリカルレンズ3から出射される光の偏光状態を前述した原理に従って回転させるもので、ガーネット単結晶などの磁気光学結晶41の中心が入力シリンドリカルレンズ3の焦点位置付近に位置するように配置され、この磁気光学結晶41に対して、永久磁石42,42により光線と平行に永久磁界が、電磁石44,45により光線とほぼ垂直且つ入力シリンドリカルレンズ3の集光方向(図1におけるX軸方向)に電磁界がそれぞれ印加されるようになっている。
なお、この場合も、永久磁界は磁気光学結晶41の磁化を飽和させるに足る磁界強度とし、電磁石44,45による印加電磁界強度は、制御手段としての可変電流源8が外部からの制御信号に基づいて電磁石44,45のコイルに流れる電流を調整することで制御される。また、永久磁石42,43も、実用的なものは一般に不透明なので、それぞれ、光路を妨げない形状(例えば、中空構造)になっている。
これにより、永久磁界によってファラデー回転子4(磁気光学結晶41)の磁化は飽和しているので、電磁石44,45による電磁界印加によって磁化ベクトルの方向は変わるが大きさは変わらない。この結果、ファラデー回転量は光線と平行な磁化ベクトルの成分で決定されるため、電磁界印加によりファラデー回転量を制御することが可能となる。
さらに、出力シリンドリカルレンズ(出力コリメータ)5は、その配置位置(ファラデー回転子4からの距離)によって、入射光を集光したり、コリメートしたりすることが可能なもので、この場合は、ファラデー回転子4から出射される光(磁気光学結晶41を透過し発散する光)がコリメートされるように配置されている。
また、出力コリメートレンズ(第2の集光手段)6は、この出力シリンドリカルレンズ5から出射される光を集光して出力光ファイバ7に結合させるものであり、出力光ファイバ7は、出力コリメートレンズ6から集光した出力光を伝播するものである。なお、シリンドリカルレンズ3,5のレンズ材料は、一般に使用されているSFS01,BK7等のガラス材料でよい。また、その焦点距離fは自由に設定できるが、ここでは、例えばf=1.8mmのレンズを使用している。
以上のような構成により、この図1に示す可変偏光回転装置では、入力光ファイバ1から出射された光が、入力コリメートレンズ2によってコリメートされ、入力シリンドリカルレンズ3によって集光されたのち、ファラデー回転子4の磁気光学結晶41に入射し、そこで電磁石44,45による電磁界に応じた偏光回転を受けてから、出力シリンドリカルレンズ5によってコリメートされ、出力コリメートレンズ6によって集光されて出力光ファイバ7に結合される。
ここで、従来はファラデー回転子4の電磁石44,45間の距離が最低でも入射光のビーム径以上必要であるため、例えば400μmのビーム径の光線に対してはファラデー回転子幅(図1のX軸方向)を440μm程度、電磁石44,45間の距離を460μm程度にする必要があったが、本実施形態では、図2,図3及び図4に模式的に示すように、入力シリンドリカルレンズ3によりファラデー回転子4への入射光を一方向だけ(上記X軸方向に)線状に集光しているので、大幅にビーム径が小さくなり、例えば、ファラデー回転子幅を35μm、電磁石44,45間の距離を45μm程度にすることができ、従来の約1/10にすることができる。
その結果、磁場抵抗が小さくなり、同じファラデー回転角を与えるのに印加磁界強度が従来よりも小さくて済むため、例えば、電磁石44,45のコイル巻線数を大幅に削減する等して、従来、ファラデー回転子4の容積の多くを占めていた電磁石44,45(コイル)を大幅に小型化することが可能となる。したがって、電磁石44,45自体の大幅な小型化を図って、ファラデー回転子4の大幅な小型化を実現することができる。
なお、図2は図1における要部(入力シリンドリカルレンズ3及びファラデー回転子4から成る部分)に着目した構成を光路も併せて示す模式的斜視図であり、図3はこの図2に示す構成を矢印A方向から見たときの構成を光路も併せて示す模式的上面図、図4は図2に示す構成を矢印B方向から見たときの構成を光路も併せて示す模式的側面図である。
また、上述した入力シリンドリカルレンズ3及び出力シリンドリカルレンズ5は、例えば図5に模式的に示すように、それぞれ入射光を点状に集光する入力点集光レンズ3′及び出力点集光レンズ5′に代えても、上記と同様の作用効果を得ることができる。ただし、この場合は、点集光レンズ3′で点状に集光した光がファラデー回転子4(磁気光学結晶41)を通過するため、電磁石44,45間の距離を小さくできるだけでなく、電磁石44,45の磁気光学結晶41と対向する面の断面積も小さくできるので、ファラデー回転子4のさらなる小型化を図ることが可能である。
(B)可変光減衰器の説明
次に、以下では、上述した可変ファラデー回転子4を利用した可変偏光回転装置の応用である可変光減衰器の実施形態について説明する。
図6は上述した可変ファラデー回転子4を利用した可変光減衰器の構成を光路も併せて示す模式的斜視図、図7はこの図6に示す可変光減衰器を矢印A方向から見たときの構成を光路も併せて示す模式的上面図、図8は図6に示す可変光減衰器を矢印B方向から見たときの構成を光路も併せて示す模式的側面図である。
これらの図6,図7及び図8に示すように、本実施形態の可変光減衰器も、入力光ファイバ1,入力コリメートレンズ2,入力シリンドリカルレンズ3,ファラデー回転子4,出力シリンドリカルレンズ5,出力コリメートレンズ6,出力光ファイバ7及び可変電流源8をそなえて構成されるが、ここでは、入力側の永久磁石42と磁気光学結晶41との間に偏光子(又は第1の複屈折板)9が設けられるとともに、磁気光学結晶41と出力側の永久磁石43との間に検光子(又は第2の複屈折板)10が設けられている。なお、以下において、既述の符号と同一符号を付して示すのはそれぞれ特に断らない限り既述のものと同一もしくは同様のものである。
ここで、上記の偏光子9及び検光子10は、それぞれ、図6中のYZ平面においてテーパ状(くさび形状)の複屈折性結晶(例えば、ルチル等)により構成され、入射光のうち所定の偏波面を有する直線偏波を選択的に透過するもので、偏光子9の頂部及び底部がそれぞれ検光子10の底部及び頂部に対向し(図6では偏光子9がくさび形状の長辺側を下にして設置され、検光子10が短辺側を下にして設置されている)、且つ、これら両複屈折性結晶の光学軸(紙面に垂直な平面内に存在する)が互いに垂直となるように配置されている。
なお、本例では、コリメートレンズ2,6,シリンドリカルレンズ3,5のいずれも焦点距離f=4.0mmのレンズを使用している。従って、この場合、入力光ファイバ1(出力光ファイバ7)から入力コリメートレンズ2(出力コリメートレンズ6)までの距離およびシリンドリカルレンズ3,5からファラデー回転子4(磁気光学結晶41)の中心位置までの距離はそれぞれ約4mmとなる。
上述のごとく構成された本実施形態の可変光減衰器では、入力光ファイバ1から出射された光がまず入力コリメートレンズ2にてコリメートされた後、磁気光学結晶41の前段において予め入力シリンドリカルレンズ3で集光(図6のX軸方向に線状に集光)される(特に、図7参照)。これにより、本例の場合も、ファラデー回転子幅及び電磁石44,45間の距離を従来よりも大幅に削減することができる。
そして、入力シリンドリカルレンズ3を出射した光は、偏光子9及び検光子10により、図26を用いて前述した原理と同様にして、常光成分と異常光成分とに分離し、それぞれファラデー回転子4により電磁石44,45の印加電磁界に応じた偏波面の回転を受け、これにより、当該印加電圧に応じて出力光ファイバ7のコアに結合する光量が変化する。
このように、本実施形態によれば、ファラデー回転子4を利用して可変光減衰機能を実現する可変光減衰器において、磁気光学結晶41の前段にシリンドリカルレンズ3を設けることにより、入射光を磁気光学結晶41の前段において予めシリンドリカルレンズ3で集光するので、ファラデー回転子幅及び電磁石44,45間の距離を従来よりも大幅に削減することができ、可変光減衰器の小型化を図ることができる。
なお、図6により上述した構成において、シリンドリカルレンズ3,5の代わりに例えば図9に示すようにそれぞれ点集光レンズ3′,5′を適用することも可能である。この場合の可変光減衰器を矢印A方向から見たときの構成を光路も併せて図10(模式的上面図)に、矢印B方向から見たときの構成を光路も併せて図11(模式的側面図)に、矢印B方向から見たときの常光成分及び異常光成分に着目した光路を図12に示す。
ただし、この場合、(入力)点集光レンズ3′は、偏光子9の後段(磁気光学結晶41の前段)に配置され、(出力)点集光レンズ5′は、検光子10の前段(磁気光学結晶の後段)に配置される。また、偏光子9及び検光子10は、この場合は共にくさび形状の長辺側を下(図9の矢印A方向)に設置する。
なお、このように、点集光レンズ3′,5′を適用する場合に偏光子9及び検光子10との配置関係が変わるのは次のような理由による。即ち、シリンドリカルレンズ3,5を適用する場合と同位置に点集光レンズ3′,5′を配置すると、入射光に角度変化を生じさせる偏光子9及び検光子10を透過する光が全方向において集光過程となり、点集光ビームは、角度が多少変わっても出力光ファイバ7に集光される位置はほとんど変わらない(角度トレランスが緩い)ため、減衰させることができないからである。
そこで、点集光ビームではなくコリメート光の段階で偏光子9及び検光子10で角度変化が生じるよう、点集光レンズ3′の前段に偏光子9、点集光レンズ5′の後段に検光子10が配置されるのである。
以上のような構成により、図9に示す可変光減衰器では、図12に模式的に示すような光路を辿って常光成分と異常光成分とが進むことになり、この場合も、電磁石44,45による印加電磁界の変化に応じて、出力光ファイバ7のコアに結合する光量が変化する。そして、ファラデー回転子4(磁気光学結晶41)の前段に点集光レンズ3′を設けて、磁気光学結晶41への入射光を予め点状に集光する(図10及び図11参照)ので、本例の場合も、ファラデー回転子幅及び電磁石44,45間の距離を従来よりも大幅に削減して、可変光減衰器の大幅な小型化を図ることができる。
(C)反射型の可変偏光回転装置の説明
次に、以下では、反射型の可変偏光回転装置の実施形態について説明する。
図13は本発明の一実施形態としての反射型の可変偏光回転装置の構成を光路も併せて示す模式的斜視図で、この図13に示す可変偏光回転装置は、入力光ファイバ1と、入力コリメートレンズ2と、入力シリンドリカルレンズ3と、磁気光学結晶41,永久磁石42,43及び電磁石44,45をそなえて成る可変ファラデー回転子4と、磁気光学結晶41の後段(永久磁石43の前段)に設けられた反射素子11と、出力シリンドリカルレンズ5と、出力コリメートレンズ6と、出力光ファイバ7と、可変電流源8とをそなえて構成されている。
ここで、この場合も、入力光ファイバ1は、入力光を伝播するものであり、入力コリメートレンズ(入力コリメータ)2は、この入力光ファイバ1から出射される光をコリメートするものであり、入力シリンドリカルレンズ3は、この入力コリメートレンズ2から出射される光を線状に集光して可変ファラデー回転子4(磁気光学結晶41)に入射させるもので、この場合も、その焦点距離に磁気光学結晶41の中心が位置するよう配置されている。
また、ファラデー回転子4は、前述したものと同様に、入力シリンドリカルレンズ3から出射される光の偏光状態を電磁石44,45による印加電磁界強度に応じて回転(変化)させるものであり、反射素子11は、磁気光学結晶41の出力側に設けられ、この磁気光学結晶41を透過してくる光を反射して磁気光学結晶41に戻すもので、ここでは、磁気光学結晶41からの光を入力光路とは異なる方向〔例えば図14に模式的に示すように、反射角度θをもって図13のZ軸(矢印A)方向〕へ反射するようになっている。
なお、図14に示すように、反射素子11を磁気光学結晶41に密着させる場合は磁気光学結晶41の出力面に誘電体多層膜等から成る反射膜を形成することで実現できる。勿論、密着させずに反射素子11と磁気光学結晶41との間に空気その他の光学媒質が介在していてもよい。
さらに、出力シリンドリカルレンズ(出力コリメータ)5は、反射素子11により反射され磁気光学結晶41を再び透過した反射光をコリメートするものであり、出力コリメートレンズ6は、この出力シリンドリカルレンズ5から出射される光を集光するもので、その焦点距離が出力光ファイバ7のコアに位置するよう配置されている。なお、コリメートレンズ2,6の焦点距離fはそれぞれ例えば4mm,シリンドリカルレンズ3,5の焦点距離fはそれぞれ例えば1.8mmである。
上述のごとく構成された本実施形態の反射型の可変偏光回転装置では、入力光ファイバ1から出射された光が入力コリメートレンズ2に入射し、コリメートレンズ2でコリメートされた後、入力シリンドリカルレンズ3に入射して、入力シリンドリカルレンズ3で予め図13のX軸方向に線状に集光されて、ファラデー回転子4(磁気光学結晶41)に入射する。
そして、ファラデー回転子4に入射した光は、磁気光学結晶41において電磁石44,45による印加電磁界強度に応じてその偏波面が回転して、磁気光学結晶41を透過した後、反射素子11で反射して再度磁気光学結晶41に入射する。この反射光は、磁気光学結晶41において、入射光と実質的に同じ量のファラデー回転角が同じ回転方向で与えられることになる。
したがって、磁気光学結晶41自体の厚み(図13のX軸方向)を従来よりも実質的に半減することができ、しかも、この場合は、磁気光学結晶41に入射する光をシリンドリカルレンズ3で予め図13のX軸方向に線状に集光しているので、ファラデー回転子幅及び電磁石44,45間の距離をさらに削減して、ファラデー回転子4の小型化を図ることができる。
そして、磁気光学結晶41を透過した反射光は、出力シリンドリカルレンズ5でコリメートされた後、出力コリメートレンズ6で集光されて、出力光ファイバ7のコアに結合する。
なお、磁気光学結晶41から反射素子11への入射光と反射素子11から磁気光学結晶41への反射光とが成す角度(反射角度;図14参照)θは、0度であってもよい。この場合は、入射光から反射光を空間的に分離するために例えば光サーキュレータを用いればよい。
また、さらなる可変偏光回転装置の小型化,部品点数の削減化を図る手段として、例えば図15に模式的に示すように、上述した入力コリメートレンズ2と出力コリメートレンズ6を1つのコリメートレンズ26により共有化し、入力シリンドリカルレンズ3と出力シリンドリカルレンズ5を1つのシリンドリカルレンズ35により共有化してもよい(かかる共用化は上記反射角度θが小さい(例えば5°程度)ほど容易である)。勿論、いずれか一方の組のレンズのみを共用化することも可能である。そして、いずれの場合も、入力光ファイバ1及び出力光ファイバ7付きの2芯フェルール17を用いることができる。
さらに、本発明の原理としては、例えば図16に模式的に示すように、入力シリンドリカルレンズ3,ファラデー回転子4(磁気光学結晶41,永久磁石42,43,電磁石44,45)及び反射素子11から成る部分を含んでいれば、反射型の可変偏光回転装置は実現される(図13の構成において、コリメートレンズ2,6を不要にしてよいし、出力シリンドリカルレンズ5を不要にしてもよい)。
(D)反射型の可変光減衰器の説明
次に、以下では、上述した反射型の可変偏光回転装置の応用である反射型の可変光減衰器の実施形態について説明する。
図17は本発明の一実施形態としての反射型の可変光減衰器の構成を光路も併せて示す模式的斜視図、図18はこの図17に示す可変光減衰器を矢印A方向から見たときの構成を光路も併せて示す模式的上面図、図19は同じく矢印B方向から見たときの構成を光路も併せて示す模式的側面図である。
これらの図17〜図19に示すように、本実施形態の反射型の可変光減衰器は、2芯フェルール17,コリメートレンズ26,シリンドリカルレンズ35,ファラデー回転子4(磁気光学結晶41,永久磁石42,43,電磁石44,45),偏光子兼検光子91,反射素子11及び可変電流源8をそなえて構成されている。つまり、本可変光減衰器は、これらの図17〜図19から分かるように、図15により上述した反射型の可変偏光回転装置の構成を基本として、シリンドリカルレンズ35と磁気光学結晶41との間に、前述の偏光子(第1の複屈折板)9と検光子(第2の複屈折板)10の機能を兼用する偏光子兼検光子91を配置した構成になっているのである。
なお、この偏光子兼検光子91も、図17中のYZ平面においてテーパ(くさび)形状を有する複屈折性結晶(例えば、ルチル等)を使用している。
このような構成を採ることにより、本装置では、シリンドリカルレンズ35で予めファラデー回転子4(磁気光学結晶41)に入射する光を線状に集光することにより、ファラデー回転子幅及び電磁石44,45間距離を従来よりも大幅に削減しつつ、反射型の可変光減衰器を実現することができる。
即ち、図20に示すように、図17の矢印B方向から見た光路の場合、入力光ファイバ1を出射して、コリメートレンズ26でコリメートされた光線はシリンドリカルレンズ35を透過した後も、コリメート光のままであり、この光線が偏光子兼検光子91に入射すると、常光成分oと異常光成分eとに偏光分離される。このように偏光分離した2本の光線o,eはそれぞれファラデー回転子4(磁気光学結晶41)で偏光回転され、反射素子11で反射された後、再びファラデー回転子4(磁気光学結晶41)を通過して偏光回転を受ける。
ここで、往復で受けた偏光回転量が90°のとき、復路にて偏光子兼検光子91に入射する際の偏光状態は、図21において、往路における常光成分oが異常光成分oe、往路における異常光成分eが常光成分eoとなる。この場合、光線oeと光線eoとは略平行となるため、これらの2本の光線を同時にコリメートレンズ26で集光して出力光ファイバ7に結合させることが可能となる。
一方、往復で受けた偏光回転量が0°のとき、復路にて偏光子兼検光子91に入射する際の偏光状態は、図21において、往路における常光成分oが再び常光成分oo、往路における異常光eは再び異常光成分eeとなる。この場合、光線ooと光線eeとは、互いに平行とならず、さらに光線oe,eo共に平行とならないため、光線oeおよび光線eoが出力光ファイバ7のコアに結合される光学系では、両者共に出力光ファイバ7のコアに結合されず、出力光ファイバ7のクラッドから放射される。
したがって、往復で受けた偏光回転量が0〜90°の間のときは、回転量に応じて、0°回転時の光路分離と90°回転時の光路分離が生じるため、電磁界強度の制御(可変電流源8の制御)により出力光ファイバ7への結合率を制御することが可能になる。
なお、上述した構成において、例えば図22に示すように、コリメートレンズ26の焦点距離をf1、シリンドリカルレンズ35の焦点距離をf2、コリメートレンズ26とシリンドリカルレンズ35との間の距離をαとすると、f1=f2+αとなる。
ここで、各素子の配置は、上記のようにシリンドリカルレンズ35を使用する場合、上述した構成、即ち、入力側から順に、2芯フェルール17,コリメートレンズ26,シリンドリカルレンズ35,偏光子兼検光子91,ファラデー回転子4,反射素子11という配置の他に、例えば図23に示すように、シリンドリカルレンズ35と偏光子兼検光子91の位置を入れ替えても可変減衰が可能である。
しかし、上記のようにf1=f2+αであることから、シリンドリカルレンズ35として同じ焦点距離のレンズを使用した場合でも、図23に示す配置ではコリメートレンズ26とシリンドリカルレンズ35との間に偏光子兼検光子91を配置しなければならないため、α<α′となる。従って、f1<f1′となる。
このようにコリメートレンズ26の焦点距離が大きくなるとコリメートビーム径φも大きくなり(図23のφ′参照)、ビーム径φが大きくなるとファラデー回転子4(磁気光学結晶41)に入射する光の開口数(NA:Numerical Aperture)が大きくなる。その結果、ファラデー回転子幅(電磁石44,45間の距離)を大きくしなければならなくなるので、電磁石44,45の小型化が図りにくくなり、ファラデー回転子4の小型化が図りにくくなる。従って、図22に示す配置がより有利である。
なお、上記のシリンドリカルレンズ35の代わりに、図5や図9により前述したような点集光レンズ3′を用いる場合、可変減衰機能を付加するためには図23に示す配置しか採り得ない。なぜなら、シリンドリカルレンズ35を使用する場合は、図22及び図23のいずれの配置でも、コリメートレンズ26と反射素子11との間はコリメート光が伝播するので、くさび形状の偏光子兼検光子91により光路の角度が変わるが、点集光レンズ3′を用いて図22に示す配置を採ると、角度変化を生じさせる偏光子兼検光子91を透過する光が全方向において集光過程であるため、角度が多少変わっても集光位置は殆ど変わらない(角度トレランスが緩い)からである。
しかしながら、図23に示す配置は、上述したように好ましくないため、反射型の可変光減衰器を実現する場合は、シリンドリカルレンズ35を用いて図22に示す配置を採ることが非常に有利であるということになる。
また、上述した例では、図15により上述した反射型の可変偏光回転装置の構成を基本とした場合について説明したが、例えば図13に示す構成を基本構成として、シリンドリカルレンズ3,5の組と磁気光学結晶41との間に、前述の偏光子9と検光子10の機能を兼用する偏光子兼検光子91を配置しても、上記と同様に可変光減衰器を実現できることはいうまでもない。
そして、本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
例えば、本発明の可変偏光回転装置を光アイソレータやレーザモジュール等の他の光学装置を構成するために用いることもでき、その場合にも、光学装置の大幅な小型化を実現できる。
以上のように、本発明によれば、ファラデー回転子を構成する磁気光学結晶に入射する光を予めシリンドリカルレンズ等の集光手段を用いて集光するので、ファラデー回転子幅(電磁石間距離)を従来よりも大幅に削減して、電磁石自体の小型化を図り、ひいてはファラデー回転子の大幅な小型化を図ることができる。したがって、ファラデー回転子を用いる可変偏光回転装置や可変光減衰器等の光学装置の大幅な小型化を図ることができ、その有用性は極めて高いものと考えられる。

Claims (29)

  1. 入力光を集光する第1の集光手段(3)と、
    該第1の集光手段(3)の焦点位置付近に設置された磁気光学結晶(41)と、
    該磁気光学結晶(41)に磁界を印加する磁界発生手段(42,43,44,45)と、
    該磁界発生手段(42,43,44,45)を制御して該磁界を変化させる制御手段(8)とをそなえたことを特徴とする、可変偏光回転装置。
  2. 該第1の集光手段(3)が、該入力光を線状に集光する入力ラインフォーカスレンズにより構成されたことを特徴とする、請求の範囲第1項に記載の可変偏光回転装置。
  3. 該第1の集光手段(3)が、該入力光を点状に集光する入力点集光レンズ(3′)により構成されたことを特徴とする、請求の範囲第1項に記載の可変偏光回転装置。
  4. 該第1の集光手段(3)の前段に、該入力光をコリメートして該第1の集光手段(3)へコリメート光を入力する入力コリメータ(2)が設けられたことを特徴とする、請求の範囲第1項に記載の可変偏光回転装置。
  5. 該入力ラインフォーカスレンズ(3)の前段に、該入力光をコリメートして該入力ラインフォーカスレンズ(3)へコリメート光を入力する入力コリメータ(2)が設けられるとともに、該入力ラインフォーカスレンズ(3)と該磁気光学結晶(41)との間に偏光子又は複屈折板(9)が設けられたことを特徴とする、請求の範囲第2項に記載の可変偏光回転装置を用いた可変光減衰器。
  6. 該入力点集光レンズ(3′)の前段に、該入力光をコリメートして該入力点集光レンズ(3′)へコリメート光を入力する入力コリメータ(2)が設けられるとともに、該入力コリメータ(2)と該入力点集光レンズ(3′)との間に偏光子又は複屈折板(9)が設けられたことを特徴とする、請求の範囲第3項に記載の可変偏光回転装置を用いた可変光変減衰器。
  7. 該磁気光学結晶(41)の後段に、該磁気光学結晶(41)を透過する光をコリメートする出力コリメータ(5)が設けられたことを特徴とする、請求の範囲第1項に記載の可変偏光回転装置。
  8. 該出力コリメータ(5)が、該磁気光学結晶(41)から出射された光を線状に集光する出力ラインフォーカスレンズにより構成されたことを特徴とする、請求の範囲第7項に記載の可変偏光回転装置。
  9. 該出力コリメータ(5)が、該磁気光学結晶(41)から出射された光を点状に集光する出力点集光レンズ(5′)により構成されたことを特徴とする、請求の範囲第7項に記載の可変偏光回転装置。
  10. 該磁気光学結晶(41)と該出力ラインフォーカスレンズ(5)との間に検光子又は複屈折板(10)が設けられたことを特徴とする、請求の範囲第8項に記載の可変偏光回転装置を用いた可変光減衰器。
  11. 該出力点集光レンズ(5′)の後段に該出力点集光レンズ(5′)から出射された光を集光する第2の集光手段(6)が設けられるとともに、該出力点集光レンズ(5′)と該第2の集光手段(6)との間に検光子又は複屈折板(10)が設けられたことを特徴とする、請求の範囲第9項に記載の可変偏光回転装置を用いた可変光減衰器。
  12. 入力光を伝播する入力光ファイバ(1)と、
    該入力光ファイバ(1)からの入力光をコリメートする入力コリメータ(2)と、
    該入力コリメータ(2)から出射されるコリメート光を線状に集光する入力ラインフォーカスレンズ(3)と、
    該入力ラインフォーカスレンズ(3)の焦点位置付近に設置された磁気光学結晶(41)と、
    該磁気光学結晶(41)を透過してくる光をコリメートする出力ラインフォーカスレンズ(5)と、
    該出力ラインフォーカスレンズ(5)から出射されるコリメート光を集光する出力コリメートレンズ(6)と、
    該出力コリメートレンズ(6)の焦点位置付近に設置された出力光ファイバ(7)と、
    該磁気光学結晶(41)に磁界を印加する磁界発生手段(42,43,44,45)と、
    該磁界発生手段(42,43,44,45)を制御して該磁界を変化させる制御手段(8)とをそなえたことを特徴とする、可変偏光回転装置。
  13. 該入力ラインフォーカスレンズ(3)と該磁気光学結晶(41)との間に偏光子又は第1の複屈折板(9)が設けられるとともに、該磁気光学結晶(41)と該出力ラインフォーカスレンズ(5)との間に検光子又は第2の複屈折板(10)が設けられたことを特徴とする、請求の範囲第12項に記載の可変偏光回転装置を用いた可変光減衰器。
  14. 該偏光子又は第1の複屈折板(9)及び該検光子又は第2の複屈折板(10)が、それぞれくさび形状を有する複屈折性結晶により構成されたことを特徴とする、請求の範囲第13項に記載の可変光減衰器。
  15. 入力光を集光する第1の集光手段(3)と、
    該第1の集光手段(3)の焦点位置付近に設置された磁気光学結晶(41)と
    該磁気光学結晶(41)に磁界を印加する磁界発生手段(42,43,44,45)と、
    該磁界発生手段(42,43,44,45)を制御して該磁界を変化させる制御手段(8)と、
    該磁気光学結晶(41)を透過した光を反射して該磁気光学結晶(41)に戻す反射素子(11)とをそなえたことを特徴とする、可変偏光回転装置。
  16. 該第1の集光手段(3)が、該入力光を線状に集光する入力ラインフォーカスレンズにより構成されたことを特徴とする、請求の範囲第15項に記載の可変偏光回転装置。
  17. 該第1の集光手段(3)の前段に、該入力光をコリメートして該第1の集光手段(3)に入射する入力コリメータ(2)が設けられたことを特徴とする、請求の範囲第15項又は第16項に記載の可変偏光回転装置。
  18. 該反射素子(11)により反射され該磁気光学結晶(41)を透過してくる反射光をコリメートする出力コリメータ(5)が設けられたことを特徴とする、請求の範囲第15〜17項のいずれか1項に記載の可変偏光回転装置。
  19. 該出力コリメータ(5)が、該磁気光学結晶(41)からの該反射光を線状に集光する出力ラインフォーカスレンズにより構成されたことを特徴とする、請求の範囲第18項に記載の可変偏光回転装置。
  20. 該出力コリメータ(5)の後段に、当該出力コリメータ(5)から出射された光を集光する第2の集光手段(6)が設けられたことを特徴とする、請求の範囲第18項又は第19項に記載の可変偏光回転装置。
  21. 入力光を伝播する入力光ファイバ(1)と、
    該入力光ファイバ(1)から出射される光をコリメートする入力コリメータ(2)と、
    該入力コリメータ(2)から出射されるコリメート光を集光する第1の集光手段(3)と、
    該第1の集光手段(3)の焦点位置付近に設置された磁気光学結晶(41)と、
    該磁気光学結晶(41)を透過した光を反射して該磁気光学結晶(41)に戻す反射素子(11)と、
    該反射素子(11)により反射され該磁気光学結晶(41)を透過してきた光をコリメートする出力コリメータ(5)と、
    該出力コリメータ(5)から出射されたコリメート光を集光する第2の集光手段(6)と、
    該第2の集光手段(6)の焦点位置付近に設置された出力光ファイバ(7)と、
    該磁気光学結晶(41)に磁界を印加する磁界発生手段(42,43,44,45)と、
    該磁界発生手段(42,43,44,45)を制御して該磁界を変化させる制御手段(8)とをそなえたことを特徴とする、可変偏光回転装置。
  22. 該第1の集光手段(3)及び該出力コリメータ(5)が、それぞれ、入射光を線状に集光するラインフォーカスレンズにより構成されたことを特徴とする、請求の範囲第21項に記載の可変偏光回転装置。
  23. 該第1の集光手段(3)と該出力コリメータ(5)とが、入射光を線状に集光する1つのラインフォーカスレンズ(35)により兼用されていることを特徴とする、請求の範囲第21項に記載の可変偏光回転装置。
  24. 該入力コリメータ(2)及び該第2の集光手段(6)が、それぞれ、入射光をコリメートするコリメートレンズにより構成されたことを特徴とする、請求の範囲第21〜23項のいずれか1項に記載の可変偏光回転装置。
  25. 該入力コリメータ(2)と該第2の集光手段(6)とが、入射光をコリメートする1つのコリメートレンズ(26)により兼用されていることを特徴とする、請求の範囲第21〜23項のいずれか1項に記載の可変偏光回転装置。
  26. 該第1の集光手段(3)と該磁気光学結晶(41)との間に偏光子又は第1の複屈折板(9)が設けられるとともに、該磁気光学結晶(41)と該出力コリメータ(5)との間に検光子又は第2の複屈折板(10)が設けられたことを特徴とする、請求の範囲第21〜25項のいずれか1項に記載の可変偏光回転装置を用いた可変光減衰器。
  27. 該第1の複屈折板(9)と該第2の複屈折板(10)とが偏光子兼検光子(91)により兼用されていることを特徴とする、請求の範囲第26項に記載の可変光減衰器。
  28. 該第1の複屈折板(9)及び該第2の複屈折板(10)が、それぞれ、くさび形状を有する複屈折性結晶により構成されたことを特徴とする、請求の範囲第26項に記載の可変光減衰器。
  29. 該偏光子兼検光子(91)が、くさび形状を有する複屈折性結晶により構成されたことを特徴とする、請求の範囲第27項に記載の可変光減衰器。
JP2004539447A 2002-09-27 2002-09-27 可変偏光回転装置及びそれを用いた可変光減衰器 Pending JPWO2004029698A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/010072 WO2004029698A1 (ja) 2002-09-27 2002-09-27 可変偏光回転装置及びそれを用いた可変光減衰器

Publications (1)

Publication Number Publication Date
JPWO2004029698A1 true JPWO2004029698A1 (ja) 2006-01-26

Family

ID=32040319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004539447A Pending JPWO2004029698A1 (ja) 2002-09-27 2002-09-27 可変偏光回転装置及びそれを用いた可変光減衰器

Country Status (2)

Country Link
JP (1) JPWO2004029698A1 (ja)
WO (1) WO2004029698A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190317342A1 (en) * 2017-05-15 2019-10-17 Qioptiq Photonics Gmbh & Co. Kg Glue Free Faraday Isolator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100498429C (zh) * 2004-05-28 2009-06-10 株式会社垂马提兹 使用偏振可变元件的光器件
CN109613724B (zh) * 2019-01-30 2024-02-13 福建华科光电有限公司 一种磁光可调光衰减器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118357A (ja) * 1992-10-02 1994-04-28 Seiko Epson Corp 光変調器
JP3739471B2 (ja) * 1996-03-01 2006-01-25 富士通株式会社 光可変減衰器
US6226115B1 (en) * 1998-09-30 2001-05-01 Fujitsu Limited Optical circulator or switch having a birefringent wedge positioned between faraday rotators
JP2002258229A (ja) * 2001-03-06 2002-09-11 Nec Tokin Corp 光アッテネータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190317342A1 (en) * 2017-05-15 2019-10-17 Qioptiq Photonics Gmbh & Co. Kg Glue Free Faraday Isolator
US11693266B2 (en) * 2017-05-15 2023-07-04 Qioptiq Photonics Gmbh & Co. Kg Glue free Faraday isolator

Also Published As

Publication number Publication date
WO2004029698A1 (ja) 2004-04-08

Similar Documents

Publication Publication Date Title
JPH06175069A (ja) 光アイソレータ
US6018411A (en) Optical device utilizing magneto-optical effect
US20030068112A1 (en) None-mechanical dual stage optical switches
JPH06258598A (ja) 光アイソレータ
US8854716B2 (en) Reflection type variable optical attenuator
JPWO2004029698A1 (ja) 可変偏光回転装置及びそれを用いた可変光減衰器
JPS5828561B2 (ja) 光アイソレ−タ
JP2005099737A (ja) 磁気光学光部品
JP2002258229A (ja) 光アッテネータ
JP3161885B2 (ja) 光アイソレーター
WO2003032055A1 (fr) Variateur de lumiere a reflexion
JPH05313094A (ja) 光アイソレータ
JP4382344B2 (ja) 反射型可変磁気光学デバイス
JP2003172901A (ja) 光非相反デバイス
JPH0667118A (ja) 光結合装置
JP4293921B2 (ja) 偏波無依存型多心光アイソレータ
JPH11264954A (ja) 光サーキュレータ及び光スイッチ
JP2004029334A (ja) 光アイソレータモジュール
JP2001154149A (ja) 光モジュールおよび光サーキュレータ
EP0653660A1 (en) Optical isolator with reduced walk-off
JP2004029335A (ja) 光アイソレータと光アイソレータモジュール
JPH08171075A (ja) 光スイッチ
JP2004271754A (ja) 偏波依存型光デバイス
JP3375287B2 (ja) 循環型光サーキュレータ及び光スイッチ
JP2005208402A (ja) 磁気光学光部品

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909