JPWO2003067046A1 - Discharge gas purifier - Google Patents

Discharge gas purifier Download PDF

Info

Publication number
JPWO2003067046A1
JPWO2003067046A1 JP2003566375A JP2003566375A JPWO2003067046A1 JP WO2003067046 A1 JPWO2003067046 A1 JP WO2003067046A1 JP 2003566375 A JP2003566375 A JP 2003566375A JP 2003566375 A JP2003566375 A JP 2003566375A JP WO2003067046 A1 JPWO2003067046 A1 JP WO2003067046A1
Authority
JP
Japan
Prior art keywords
discharge
cylindrical
gas purification
peripheral surface
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003566375A
Other languages
Japanese (ja)
Inventor
滋 田丸
滋 田丸
秀男 木村
秀男 木村
由美 草薙
由美 草薙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furrex Co Ltd
Original Assignee
Furrex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furrex Co Ltd filed Critical Furrex Co Ltd
Publication of JPWO2003067046A1 publication Critical patent/JPWO2003067046A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • F01N13/017Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel the purifying devices are arranged in a single housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma

Abstract

筒状外側電極20と、筒状外側電極20内に挿入されて、その筒状外側電極内周面との間に環状間隙を形成する外周面を持つ筒状誘電体23と、筒状誘電体23を挟んで前記筒状外側電極20に対向する内側電極25と、外側電極20および内側電極25間に放電電圧を印加する電源とからなる放電式ガス浄化装置である。筒状誘電体23はセラミックスよりなっている。内側電極25は放電電圧印加時に筒状誘電体23内周面全周に亘って接触する誘電体と、この導電体と電源とを接続する接続手段とからなっている。そして、導電体は放電電圧印加時にその導電体の熱膨張によって前記セラミックスの内周面に加えられる圧力を緩和するように調整可能に構成されている。A cylindrical outer electrode 20, a cylindrical dielectric 23 having an outer peripheral surface inserted into the cylindrical outer electrode 20 and forming an annular gap between the inner peripheral surface of the cylindrical outer electrode, and a cylindrical dielectric 23 is a discharge-type gas purifier comprising an inner electrode 25 facing the cylindrical outer electrode 20 with a power supply for applying a discharge voltage between the outer electrode 20 and the inner electrode 25. The cylindrical dielectric 23 is made of ceramics. The inner electrode 25 includes a dielectric that contacts the entire inner peripheral surface of the cylindrical dielectric 23 when a discharge voltage is applied, and connection means that connects the conductor and a power source. The conductor is configured to be adjustable so as to relieve the pressure applied to the inner peripheral surface of the ceramic due to thermal expansion of the conductor when a discharge voltage is applied.

Description

技術分野
本発明は放電式ガス浄化装置、特にNOxなどの自動車用排気ガスの浄化に好適な装置に関する。
背景技術
従来の放電式ガス浄化装置としては特開平5−125928号公報、または特開平7−197806公報に示すものが公知となっている。
前者の特開平5−125928号公報に係る放電式ガス浄化装置では、棒状の導電性金属からなる第1電極の外周を有機ガラスやセラミックなどの誘電体で被覆し、その外周を比較的大きな間隔をあけて筒状の導電性金属からなる第2電極で包囲し、第2電極の内壁に雌ねじ状のスパイラル溝を形成し、コロナ放電を用いて排気ガスを浄化する装置である。
この装置では棒状の導電性金属の外周を誘電体で密着被覆している。しかしながら、導電性金属と誘電体の熱膨張率は大きく異なるため、棒状の導電性金属に高電圧をかけて放電すると、その放電に伴って導電性金属が高温になり、誘電体との熱膨張率の差により誘電体が内側から大きな応力を受けて破壊する現象が起きる。従って、この装置は棒状の導電性金属にアーク放電またはグロー放電からアーク放電に至る直前の遷移域の高電圧をかける放電装置には適用することができない。
また、後者の特開平7−197806公報に示す放電式ガス浄化装置は、中心に位置する棒状電極を芯線とその芯線と筒状誘電体との間に充填した多数の粒状導電体から構成し、棒状電極の外周を円筒状電極で包囲し、円筒状電極と筒状誘電体との間でプラズマ放電を起こす排ガス浄化装置である。
この装置も筒状誘電体内に砂の粒子程度の細かな導電性粒子を密着充填して芯線と密着させているから、前記従来例の場合と同様に芯線に例えばグロー放電からアーク放電へ移行する直前の遷移域の高放電電圧を印加して放電すると、その放電に伴って導電性粒子が高温になり、誘電体との熱膨張率の差により誘電体が内側から大きな応力を受けて破壊する現象が起きる。
本発明は上記のような従来の問題点を解決するもので、その目的は外周を誘電体で包囲した金属製の電極に前記遷移域の高放電電圧を印加して高温下において放電しても誘電体が金属製の電極の熱膨張によって破損することのない放電式ガス浄化装置を提供することにある。
発明の開示
上記の目的を達成するため、本発明は、筒状外側電極と、前記筒状外側電極内に挿入されて前記筒状外側電極内周面との間に環状間隙を形成する外周面を持つ筒状誘電体と、前記筒状誘電体を挾んで前記筒状外側電極に対向する内側電極と、前記外側電極および内側電極間に放電電圧を印加する電源とからなる放電式ガス浄化装置において、前記筒状誘電体はセラミックスよりなり、前記内側電極は放電電圧印加時に前記筒状誘電体内周面全周に亘って接触する導電体と、前記導電体と前記電源とを接続する接続手段とからなり、前記導電体は放電電圧印加時に前記導電体の熱膨張によって前記セラミックスの内周面に加えられる圧力を緩和するように調整可能に構成されてなるのである。
このような構成により、内側電極に高電圧を印加して外側電極との間においてアーク放電またはアーク放電に至る直前のグロー放電からアーク放電への遷移域の放電を行い内側電極が高温に加熱されてもセラミックに大きな応力がかかることが無く、長期間の放電によっても誘電体が破損することなく効率よい放電を維持することができる。
好ましくは、前記調整可能な構成とするために、前記内側電極の前記導電体を径方向に圧縮可能な炭素繊維体から形成し、前記炭素繊維体を前記筒状誘電体の軸線に沿って配設された金属製軸状部材と前記筒状誘電体との間に介装することである。
更に好ましくは、前記炭素繊維体を炭素繊維からなる不織布から構成し、この不織布を前記金属製軸状部材に渦巻状に巻き付けることである。そして好ましくは、この不織布のカサ密度を約90〜180g/mとすることである。
また好ましくは、前記調整可能な構成とするために、前記内側電極の前記導電体が水などの導電性液体からなり、前記導電性液体が前記内側電極の前記筒状誘電体内に充填されるとともに前記筒状誘電体の外部との間で循環されるように構成することである。
また、本発明の好ましい形態では、前記筒状誘電体の外周面を、軸線方向に伸びる稜線を持つ複数の山形凸面と、相隣る両山形凸面の対向する両斜面によって谷形凹面とが形成されるように周方向に沿って配列することによって、前記軸線方向に直交する断面が環状の波形となるように形成することである。
これによって、例えば山形凸面の頂部と外側電極の内周面との間隔が5mm程度の場合、自動車の排気ガスの初期の放電処理時において排気ガス中に多量の水分が含まれていても、その水分が山形凸面に集中することなく谷形凹面を通ることによって両電極間の短絡が防止されて良好な放電処理が可能となる。また、環状の波形形状により、山形凸面を環状に結んで形成される滑らかな筒状内側電極の場合と比べて谷形凹面の存在により環状空隙の断面積が増大し、そのぶん単位時間内に処理されるガスの流量を増大させることができる。
発明を実施するための好適な形態
第1図は本発明の好適な実施例に係る放電式排気ガス浄化装置を示し、この装置1は、放電器2と、その放電器2の近傍に配置された電源としての交流電源3とを備えている。放電器2は、ステンレス鋼(例えば、JIS SUS304)より構成されたハウジング4を有し、そのハウジング4は、横断面四角形で、且つ両端に四角形のフランジ5、6を有する筒状ハウジング本体7と、一方のフランジ5に四角形のポリアミド12製絶縁パッキン8を介して四角形のフランジ9を取付けられたガス入口形成体10と、他方のフランジ6に四角形のポリアミド12製絶縁パッキン11を介して四角形のフランジ12を取付けられたガス出口形成体13とを有する。
ガス入口形成体10は四角錐台形中空部14を有し、その中空部14の大開口縁側に前記四角形のフランジ9が連設され、また中空部10の小開口縁側に横断面円形の入口筒15が連設される。ガス出口形成体13は四角錐台形中空部16を有し、その中空部16の大開口縁側に前記四角形のフランジ12が連設され、また中空部16の小開口縁側に横断面円形の出口筒17が連設される。
ガス入口形成体10のフランジ9内周縁に、中央に貫通孔18を有する四角形の板状支持部19が連設され、その貫通孔18の内周縁に、ステンレス鋼(例えば、JIS SUS304)より構成された横断面円形の筒状外側電極20の一端外周縁が固着され、その外側電極20はハウジング本体7内に配置される。その外側電極20の長さはハウジング本体7の長さの2分の1よりも短い。
第2図にも示すように、ハウジング本体7内において、ガス出口形成体13と外側電極20の端面との間に、ステンレス鋼(例えば、JIS SUS304)よりなる支持部材21が底壁上に設置され、その支持部材21の短円筒形保持部22に横断面ほぼ円形の筒状誘電体23の一端部側が支持される。誘電体23の他端部側は外側電極20内に挿入され、その誘電体23の挿入長さは外側電極20の長さの3分の2程度である。これにより外側電極20内に存する誘電体23の外周面と外側電極20の内周面との間には環状間隙24が形成される。
誘電体23内に、内側電極25が配置され、その内側電極25は誘電体23を挟んで外側電極20に対向し、且つその誘電体23内周面全周に亘って接触する。
第3図に明示するように誘電体23は、セラミックス(例えば、2MgO・2Al.5SiO)よりなる筒状セラミックス本体26と、前記環状間隙24を形成すべく、筒状セラミックス本体26の外周面を被覆する筒状外側ガラス層(例えば、うわぐすり)27とを有し、また筒状セラミックス本体26の内周面に、内側電極25との接触面を形成する筒状内側ガラス層(例えば、うわぐすり)28を有する。筒状セラミックス本体26の筒状外側ガラス層27により被覆される外周面は、軸線方向に延びる稜線を持つ複数の山形凸面29を、相隣る両山形凸面29の対向する両斜面によって谷形凹面30が形成されるように、周方向に沿って配列することによって形成され、前記軸線方向に直交する断面が環状の波形に形成されている。
前記山形凸面の頂点と前記筒状外側電極20の内周面との間の間隙は4〜6mm、好ましくは5mmで、前記谷形凹面の底部と前記筒状外側電極20の内周面との間の間隙は7〜9mm、好ましくは8mmで、前記頂部と前記底部との間隙は2〜4mm、好ましくは3mmである。
内側電極25は、金属(例えば、JIS SUS304)よりなる軸状部材31と、その軸状部材31および誘電体23間に充填された導電性の炭素繊維集合体32とよりなる。炭素繊維集合体32は、実施例では炭素繊維(商品名カイノール)よりなる不織布を軸状部材31外周面に渦巻状に巻付けて形成されており、そのカサ密度は約90〜180g/mである。軸状部材31の両端部は、誘電体23両端の開口を閉鎖する、セラミックス(例えば、2MgO・2Al・5SiO)よりなる蓋板33に支持されており、その軸状部材33の、ガス出口側の端部は蓋板33より突出する。
交流電源3の一方の端子に接続されたリード線34がハウジング本体7の天井壁に設けられた絶縁筒35を通されて、軸状部材31の端部に接続され、また他方の端子はアース線36を介して接地される。また外側電極20と電気的に接続されたガス入口形成体10がアース線37を介して接地されている。これにより外側、内側電極20、25間に放電電圧を印加することができる。
ガス出口形成体13の中空部16周壁にガス分析器38の採取管39が貫通保持されている。ガス分析器38としては、HORIBA PORTABLE GAS ANALYZER型番PG−240が用いられている。
以下、ガソリンエンジンから排出された排気ガス中に含まれるNOxの浄化について説明する。
[例−I]
第4図に示すように、排気量660ccのガソリンエンジン40の排気管41に、1つの放電器2におけるハウジング4の入口筒15を導入管42を介して接続した。次いで、ガソリンエンジン40をエンジン回転数1000rpmにて運転して、排気管41、放電器2の前記環状間隙24等を流通した排気ガス中のNOx濃度をガス分析器38により測定した。このNOx濃度を放電処理前NOx濃度とする。
その後、交流電源3により内、外側電極20、25間に、20kV、1kHzの高放電電圧を印加した。これにより環状間隙24に放電(グロー放電)が発生し、その放電は、環状間隙24を形成する外側電極20内周面ほぼ全体および誘電体23外周面ほぼ全体、つまり各山形凸面29の表面ほぼ全体に亘って発生しており、面放電を呈しており、この放電状態は環状間隙の入口側から出口側に向かって螺旋状に旋回した。このような放電を約10分間行い、その間に排気ガス中のNOx濃度をガス分析器38により測定した。このNOx濃度を放電処理後NOx濃度とする。
交流電源3による高放電電圧の印加を中断し、次いでガソリンエンジン40をエンジン回転数1500rpm、全負荷の条件で運転すると共に前記同様に放電処理前NOx濃度の測定を行い、その後交流電源3による前記と同一条件での高放電電圧の印加を行うと共に前記同様に放電処理後NOx濃度の測定を行った。これをエンジン回転数2400rpmについても行った。表1は測定結果を示す。
【表1】

Figure 2003067046
表1から明らかなように、エンジン回転数の上昇に伴いNOx濃度が高くなり、それに応じてNOx除去率は低下するが、それでもエンジン回転数2400rpmにてNOx除去率44%は実用レベルであることが判る。
[例−II]
第5図に示す大型放電器2は、1つの入口筒15および1つの出口筒17を有するハウジング4内に、外側電極20、誘電体23および内側電極25よりなる複数、実施例では3つの放電ユニット43を水平面上において並列に配置し、相隣る両放電ユニット43間に隔壁44を設けたものである。ガソリンエンジン40から排出される排気ガスは三分割されて各放電ユニット43により放電処理され、各放電ユニット43を経た処理済排気ガスの合計NOx濃度がガス分析器38によって測定される。
NOx濃度測定を行うべく、排気量2500ccのガソリンエンジン40の排気管41に大型放電器2におけるハウジング4の入口筒15を導入管42を介して接続した。そして、ガソリンエンジン40を運転してエンジン回転数1600rpm、全負荷およびエンジン回転数2000rpm、全負荷について前記同様の方法でNOx濃度測定を行った。表2は測定結果を示す。
【表2】
Figure 2003067046
Figure 2003067046
表2から明らかなように、大型放電器2はその浄化処理能力が大であることから、大量のNOxが効率良く除去されることが判る。
なお、3つの放電ユニット43を直列に連結した大型放電器2はNOx浄化能が低い。これは、放電処理経路が長いことから、NOxの分解だけでなくその合成が行われているものと考えられる。
[例−III]
第6図に示すように、排気量660ccのガソリンエンジン40の排気管41に、1つの放電器2におけるハウジング4の入口筒15を導入管42を介して接続し、また出口筒17に3元触媒式触媒コンバータ45を導入管46を介して接続した。次いで、ガソリンエンジン40をエンジン回転数2000rpmにて運転して、排気管41、放電器2の前記環状間隙24等を流通してガス出口形成体13内に到った排気ガス中のNOx濃度をガス分析器38により測定した。このNOx濃度を放電処理前NOx濃度とする。
その後、交流電源3により内、外側電極20、25間に、20kV、1kHzの高放電電圧を印加した。これにより、前記同様に環状間隙24に放電が発生した。この放電を約10分間行い、その間にガス出口形成体13内の排気ガス中のNOx濃度をガス分析器38により測定した。このNOx濃度を放電処理後NOx濃度とする。同時に、触媒コンバータ45を通過した排気ガス中のNOx濃度をガス分析器38により測定した。このNOx濃度を触媒作用後NOx濃度とする。このような測定を2回行って表3の結果を得た。
【表3】
Figure 2003067046
表3において、「放電」の欄のNOx除去率は放電処理前および放電処理後の両NOx濃度を用いて求められたものであり、また「触媒」の欄の最終NOx除去率は放電処理前NOx濃度および触媒作用後NOx濃度を用いて求められたものである。
表3から明らかなように、放電式排気ガス浄化装置1を用いることによって排気ガス中のNOxを54%以上除去することができ、また触媒コンバータ45を併用することによって排気ガス中のNOxを97%以上除去することができる。
なお、本発明における好適な放電状態は、前記外側電極と前記筒状誘電体との間の環状空隙において単なるグロー放電をさせることではなく、グロー放電からアーク放電に至る直前の遷移域の放電状態とすることである。
本発明は上記の実施例以外にも種々の変更が可能であり、例えば、筒状セラミックス本体26を耐熱高強度セラミックスである94.77wt%のAlと1.72wt%のCaOと3.51wt%のSiOとよりなるアルミナ系セラミックス、或いはAlを92wt%含有した碍子用セラミックスを用いれば筒状セラミックス本体26の外側および内側のガラス層27,28を被覆しないでもよい。
さらに内側電極25の炭素繊維集合体32の代わりに、筒状セラミックス本体26内に水などの導電性液体を充填し、その水を筒状セラミックス本体の内外に循環するようにし、この循環する導電性液体の量を調整することによって軸状部材31等の熱膨張により筒状セラミックス本体26の内面に加えられる応力を緩和することができる。
以上、本発明の好適な実施形態に基づいて説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。
産業上の利用可能性
本発明によれば、前記のように構成することによって、内側電極に高電圧を印加して外側電極との間においてアーク放電またはアーク放電に至る直前のグロー放電からアーク放電への遷移域の放電を行い内側電極が高温に加熱されてもセラミックに大きな応力がかかることが無く、長期間の放電によっても誘電体が破損することがなく、自動車の排気ガスのような被処理ガス中の有害成分を効率よく除去することが可能な放電式ガス浄化装置を提供することができる。
【図面の簡単な説明】
第1図は本発明の実施例に係る放電式ガス浄化装置の要部破断正面図である。
第2図は第1図の装置において内部電極を構成する筒状誘電体およびその支持構造を示す斜視図である。
第3図は第1図の3−3線拡大断面図である。
第4図は本発明の実施例に係る放電式ガス浄化装置をガソリンエンジンの排気系に接続した状態を示す説明図である。
第5図は本発明の実施例に係る放電式排気ガス浄化装置をガソリンエンジンの排気系に接続した第2例を示す説明図である。
第6図は本発明の実施例に係る放電式排気ガス浄化装置をガソリンエンジンの排気系に接続した第3例を示す説明図である。TECHNICAL FIELD The present invention relates to a discharge type gas purification device, and more particularly to a device suitable for purification of automobile exhaust gas such as NOx.
2. Description of the Related Art As a conventional discharge type gas purification apparatus, those disclosed in Japanese Patent Application Laid-Open No. 5-125828 or Japanese Patent Application Laid-Open No. 7-197806 are known.
In the former discharge type gas purification apparatus according to Japanese Patent Laid-Open No. 5-125828, the outer periphery of the first electrode made of a rod-like conductive metal is covered with a dielectric such as organic glass or ceramic, and the outer periphery is relatively large. This is an apparatus that is surrounded by a second electrode made of a cylindrical conductive metal, forms a female threaded spiral groove on the inner wall of the second electrode, and purifies exhaust gas using corona discharge.
In this apparatus, the outer periphery of a rod-shaped conductive metal is tightly coated with a dielectric. However, the coefficient of thermal expansion between the conductive metal and the dielectric material is greatly different. Therefore, when a high voltage is applied to the rod-shaped conductive metal and discharged, the conductive metal becomes high temperature along with the discharge, and the thermal expansion with the dielectric Due to the difference in rate, a phenomenon occurs in which the dielectric material is broken by receiving a large stress from the inside. Therefore, this device cannot be applied to a discharge device that applies a high voltage in a transition region immediately before an arc discharge or a glow discharge to an arc discharge to a rod-shaped conductive metal.
Moreover, the latter discharge type gas purification apparatus shown in JP-A-7-197806 is composed of a core electrode and a number of granular conductors filled between the core wire and the cylindrical dielectric, This is an exhaust gas purifying apparatus that surrounds the outer periphery of a rod-shaped electrode with a cylindrical electrode and causes plasma discharge between the cylindrical electrode and a cylindrical dielectric.
Since this device is also closely packed with fine conductive particles, such as sand particles, in a cylindrical dielectric and is in close contact with the core wire, the core wire is shifted from, for example, glow discharge to arc discharge as in the conventional example. When discharging by applying a high discharge voltage in the immediately preceding transition region, the conductive particles become high temperature with the discharge, and the dielectric is damaged by a large stress from the inside due to the difference in thermal expansion coefficient with the dielectric. A phenomenon occurs.
The present invention solves the above-mentioned conventional problems, and its purpose is to apply a high discharge voltage in the transition region to a metal electrode whose outer periphery is surrounded by a dielectric material and discharge at a high temperature. An object of the present invention is to provide a discharge type gas purification apparatus in which a dielectric is not damaged by thermal expansion of a metal electrode.
DISCLOSURE OF THE INVENTION To achieve the above object, the present invention provides an outer peripheral surface that forms an annular gap between a cylindrical outer electrode and an inner peripheral surface of the cylindrical outer electrode that is inserted into the cylindrical outer electrode. A discharge type gas purifying apparatus comprising: a cylindrical dielectric having an inner electrode; an inner electrode sandwiching the cylindrical dielectric and facing the outer cylindrical electrode; and a power source for applying a discharge voltage between the outer electrode and the inner electrode. In the above, the cylindrical dielectric is made of ceramics, and the inner electrode contacts the entire circumference of the cylindrical dielectric body when a discharge voltage is applied, and the connecting means for connecting the conductor and the power source The conductor is configured to be adjustable so as to relieve the pressure applied to the inner peripheral surface of the ceramic due to thermal expansion of the conductor when a discharge voltage is applied.
With such a configuration, the inner electrode is heated to a high temperature by applying a high voltage to the inner electrode and discharging between the outer electrode and an arc discharge or a transition region from the glow discharge just before reaching the arc discharge to the arc discharge. However, no great stress is applied to the ceramic, and an efficient discharge can be maintained without damaging the dielectric due to a long-term discharge.
Preferably, in order to achieve the adjustable configuration, the conductor of the inner electrode is formed of a carbon fiber body that is compressible in the radial direction, and the carbon fiber body is disposed along the axis of the cylindrical dielectric. It is to interpose between the metal shaft-shaped member provided and the cylindrical dielectric.
More preferably, the carbon fiber body is composed of a nonwoven fabric made of carbon fibers, and the nonwoven fabric is wound around the metal shaft-like member in a spiral shape. And preferably, the bulk density of this nonwoven fabric shall be about 90-180 g / m < 3 >.
Preferably, in order to achieve the adjustable configuration, the conductor of the inner electrode is made of a conductive liquid such as water, and the conductive liquid is filled in the cylindrical dielectric of the inner electrode. It is configured to circulate between the outside of the cylindrical dielectric.
Further, in a preferred embodiment of the present invention, the outer peripheral surface of the cylindrical dielectric is formed with a plurality of chevron convex surfaces having ridge lines extending in the axial direction and valley concave surfaces by the opposing slopes of the adjacent two chevron convex surfaces. As described above, by arranging along the circumferential direction, the cross section perpendicular to the axial direction is formed into an annular waveform.
Thus, for example, when the distance between the top of the convex surface of the chevron and the inner peripheral surface of the outer electrode is about 5 mm, even if a large amount of moisture is contained in the exhaust gas during the initial discharge treatment of the automobile exhaust gas, Short circuit between the two electrodes is prevented by allowing the moisture to pass through the valley-shaped concave surface without concentrating on the convex surface of the mountain-shaped, so that a favorable discharge treatment is possible. In addition, due to the annular corrugated shape, the cross-sectional area of the annular gap increases due to the presence of the valley-shaped concave surface compared to the case of the smooth cylindrical inner electrode formed by connecting the convex convex surfaces annularly, and within that unit time The flow rate of the gas to be processed can be increased.
FIG. 1 shows a discharge-type exhaust gas purifying apparatus according to a preferred embodiment of the present invention. This apparatus 1 is disposed in the vicinity of a discharger 2 and the discharger 2. And an AC power source 3 as a power source. The discharger 2 has a housing 4 made of stainless steel (for example, JIS SUS304). The housing 4 has a rectangular cross section and a cylindrical housing body 7 having square flanges 5 and 6 at both ends. A gas inlet forming body 10 having a square flange 9 attached to one flange 5 via a square polyamide 12 insulating packing 8 and a square flange 12 having a square polyamide 12 insulating packing 11 attached to the other flange 6. And a gas outlet forming body 13 to which a flange 12 is attached.
The gas inlet forming body 10 has a quadrangular frustum-shaped hollow portion 14, the square flange 9 is continuously provided on the large opening edge side of the hollow portion 14, and an inlet tube having a circular cross section on the small opening edge side of the hollow portion 10. 15 is continuously provided. The gas outlet forming body 13 has a quadrangular frustum-shaped hollow portion 16, the square flange 12 is continuously provided on the large opening edge side of the hollow portion 16, and the outlet tube having a circular cross section on the small opening edge side of the hollow portion 16. 17 is continuously provided.
A rectangular plate-like support portion 19 having a through hole 18 in the center is connected to the inner peripheral edge of the flange 9 of the gas inlet forming body 10, and the inner peripheral edge of the through hole 18 is made of stainless steel (for example, JIS SUS304). The outer peripheral edge of one end of the cylindrical outer electrode 20 having a circular cross section is fixed, and the outer electrode 20 is disposed in the housing body 7. The length of the outer electrode 20 is shorter than one half of the length of the housing body 7.
As shown also in FIG. 2, a support member 21 made of stainless steel (for example, JIS SUS304) is installed on the bottom wall between the gas outlet forming body 13 and the end face of the outer electrode 20 in the housing body 7. The one end side of the cylindrical dielectric 23 having a substantially circular cross section is supported by the short cylindrical holding portion 22 of the support member 21. The other end side of the dielectric 23 is inserted into the outer electrode 20, and the insertion length of the dielectric 23 is about two thirds of the length of the outer electrode 20. Thereby, an annular gap 24 is formed between the outer peripheral surface of the dielectric 23 existing in the outer electrode 20 and the inner peripheral surface of the outer electrode 20.
An inner electrode 25 is disposed in the dielectric 23, the inner electrode 25 is opposed to the outer electrode 20 with the dielectric 23 interposed therebetween, and is in contact with the entire inner peripheral surface of the dielectric 23.
Dielectric 23, as best shown in Figure 3, the ceramic (e.g., 2MgO · 2Al 2 O 3 .5SiO 2) a tubular ceramic body 26 made of, so as to form the annular gap 24, the cylindrical ceramic body 26 A cylindrical outer glass layer (for example, glaze) 27 that covers the outer peripheral surface of the cylindrical ceramic body, and a cylindrical inner glass that forms a contact surface with the inner electrode 25 on the inner peripheral surface of the cylindrical ceramic body 26. It has a layer (eg, glaze) 28. The outer peripheral surface covered with the cylindrical outer glass layer 27 of the cylindrical ceramic body 26 has a plurality of mountain-shaped convex surfaces 29 having ridge lines extending in the axial direction, and valley-shaped concave surfaces due to both opposing slopes of the two mountain-shaped convex surfaces 29 adjacent to each other. 30 is formed by arranging along the circumferential direction, and a cross section perpendicular to the axial direction is formed in an annular waveform.
The gap between the apex of the chevron convex surface and the inner peripheral surface of the cylindrical outer electrode 20 is 4 to 6 mm, preferably 5 mm, and the bottom of the valley-shaped concave surface and the inner peripheral surface of the cylindrical outer electrode 20 The gap between them is 7-9 mm, preferably 8 mm, and the gap between the top and the bottom is 2-4 mm, preferably 3 mm.
The inner electrode 25 includes a shaft-shaped member 31 made of metal (for example, JIS SUS304) and a conductive carbon fiber aggregate 32 filled between the shaft-shaped member 31 and the dielectric 23. In the embodiment, the carbon fiber assembly 32 is formed by winding a nonwoven fabric made of carbon fiber (trade name Kynol) around the outer peripheral surface of the shaft-shaped member 31 in a spiral shape, and its bulk density is about 90 to 180 g / m 3. It is. Both end portions of the shaft-shaped member 31 are supported by a cover plate 33 made of ceramics (for example, 2MgO · 2Al 2 O 3 · 5SiO 2 ) that closes the openings at both ends of the dielectric 23. The gas outlet side end protrudes from the cover plate 33.
A lead wire 34 connected to one terminal of the AC power source 3 is passed through an insulating cylinder 35 provided on the ceiling wall of the housing body 7 and connected to the end of the shaft-shaped member 31, and the other terminal is grounded. Grounded via line 36. Further, the gas inlet forming body 10 electrically connected to the outer electrode 20 is grounded via a ground wire 37. As a result, a discharge voltage can be applied between the outer and inner electrodes 20 and 25.
A sampling tube 39 of the gas analyzer 38 is held through the peripheral wall of the hollow portion 16 of the gas outlet forming body 13. As the gas analyzer 38, HORIBA PORTABLE GAS ANALYZER model number PG-240 is used.
Hereinafter, purification of NOx contained in the exhaust gas discharged from the gasoline engine will be described.
[Example-I]
As shown in FIG. 4, the inlet cylinder 15 of the housing 4 in one discharger 2 is connected to an exhaust pipe 41 of a gasoline engine 40 having a displacement of 660 cc through an introduction pipe 42. Next, the gasoline engine 40 was operated at an engine speed of 1000 rpm, and the NOx concentration in the exhaust gas flowing through the exhaust pipe 41 and the annular gap 24 of the discharger 2 was measured by the gas analyzer 38. This NOx concentration is taken as the NOx concentration before the discharge treatment.
Thereafter, a high discharge voltage of 20 kV and 1 kHz was applied between the inner and outer electrodes 20 and 25 by the AC power source 3. As a result, a discharge (glow discharge) is generated in the annular gap 24, and the discharge is caused by almost the entire inner peripheral surface of the outer electrode 20 and almost the entire outer peripheral surface of the dielectric 23 that form the annular gap 24, that is, almost the surface of each convex surface 29. It occurred over the whole and exhibited surface discharge. This discharge state swirled spirally from the inlet side to the outlet side of the annular gap. Such discharge was performed for about 10 minutes, during which the NOx concentration in the exhaust gas was measured by the gas analyzer 38. This NOx concentration is taken as the NOx concentration after the discharge treatment.
The application of the high discharge voltage by the AC power supply 3 is interrupted, and then the gasoline engine 40 is operated at the engine speed of 1500 rpm and the full load, and the NOx concentration before the discharge treatment is measured in the same manner as described above. The high discharge voltage was applied under the same conditions as above, and the NOx concentration was measured after the discharge treatment in the same manner as described above. This was also performed for an engine speed of 2400 rpm. Table 1 shows the measurement results.
[Table 1]
Figure 2003067046
As is apparent from Table 1, the NOx concentration increases as the engine speed increases, and the NOx removal rate decreases accordingly. However, the NOx removal rate of 44% is still at a practical level at the engine speed of 2400 rpm. I understand.
[Example-II]
A large-sized discharger 2 shown in FIG. 5 has a plurality of discharges composed of an outer electrode 20, a dielectric 23 and an inner electrode 25 in a housing 4 having one inlet tube 15 and one outlet tube 17, in the embodiment, three discharges. The units 43 are arranged in parallel on a horizontal plane, and a partition wall 44 is provided between the two discharge units 43 adjacent to each other. The exhaust gas discharged from the gasoline engine 40 is divided into three parts and discharged by each discharge unit 43, and the total NOx concentration of the processed exhaust gas that has passed through each discharge unit 43 is measured by the gas analyzer 38.
In order to measure the NOx concentration, the inlet cylinder 15 of the housing 4 in the large-sized discharger 2 was connected to the exhaust pipe 41 of the gasoline engine 40 having a displacement of 2500 cc through the introduction pipe 42. Then, the gasoline engine 40 was operated, and the NOx concentration was measured in the same manner as described above for the engine speed of 1600 rpm, the full load and the engine speed of 2000 rpm, and the full load. Table 2 shows the measurement results.
[Table 2]
Figure 2003067046
Figure 2003067046
As is clear from Table 2, the large-sized discharger 2 has a large purification treatment capacity, and thus it can be seen that a large amount of NOx is efficiently removed.
The large-sized discharger 2 in which the three discharge units 43 are connected in series has a low NOx purification capacity. This is considered to be because not only decomposition of NOx but also its synthesis is performed due to the long discharge treatment path.
[Example-III]
As shown in FIG. 6, the inlet cylinder 15 of the housing 4 in one discharger 2 is connected to an exhaust pipe 41 of a gasoline engine 40 having a displacement of 660 cc via an introduction pipe 42, and three outlets are connected to the outlet cylinder 17. A catalytic catalytic converter 45 was connected via an introduction pipe 46. Next, the gasoline engine 40 is operated at an engine speed of 2000 rpm, and the NOx concentration in the exhaust gas that has flowed through the exhaust pipe 41, the annular gap 24 of the discharger 2 and the like into the gas outlet forming body 13 is determined. Measurement was performed by a gas analyzer 38. This NOx concentration is taken as the NOx concentration before the discharge treatment.
Thereafter, a high discharge voltage of 20 kV and 1 kHz was applied between the inner and outer electrodes 20 and 25 by the AC power source 3. As a result, discharge was generated in the annular gap 24 as described above. This discharge was performed for about 10 minutes, during which the NOx concentration in the exhaust gas in the gas outlet forming body 13 was measured by the gas analyzer 38. This NOx concentration is taken as the NOx concentration after the discharge treatment. At the same time, the NOx concentration in the exhaust gas that passed through the catalytic converter 45 was measured by the gas analyzer 38. This NOx concentration is defined as the NOx concentration after catalysis. Such measurement was performed twice to obtain the results shown in Table 3.
[Table 3]
Figure 2003067046
In Table 3, the NOx removal rate in the “Discharge” column is obtained using both NOx concentrations before and after the discharge treatment, and the final NOx removal rate in the “Catalyst” column is before the discharge treatment. This is obtained using the NOx concentration and the post-catalytic NOx concentration.
As apparent from Table 3, 54% or more of NOx in the exhaust gas can be removed by using the discharge-type exhaust gas purification device 1, and NOx in the exhaust gas can be reduced by 97 by using the catalytic converter 45 in combination. % Or more can be removed.
The preferred discharge state in the present invention is not a simple glow discharge in the annular gap between the outer electrode and the cylindrical dielectric, but a discharge state in the transition region immediately before the glow discharge to the arc discharge. It is to do.
The present invention can be modified in various ways other than the above-described embodiments. For example, the cylindrical ceramic body 26 is composed of 94.77 wt% Al 2 O 3 and 1.72 wt% CaO 3 which are heat resistant high strength ceramics. The glass layers 27 and 28 on the outer side and the inner side of the cylindrical ceramic body 26 may not be coated if alumina ceramics composed of .51 wt% SiO 2 or ceramics containing 92 wt% Al 2 O 3 is used.
Further, instead of the carbon fiber aggregate 32 of the inner electrode 25, the cylindrical ceramic body 26 is filled with a conductive liquid such as water, and the water is circulated into and out of the cylindrical ceramic body, and this circulating conductive material is circulated. By adjusting the amount of the ionic liquid, the stress applied to the inner surface of the cylindrical ceramic body 26 due to thermal expansion of the shaft-shaped member 31 or the like can be relaxed.
As mentioned above, although demonstrated based on preferred embodiment of this invention, embodiment mentioned above is for making an understanding of this invention easy, and does not limit this invention.
INDUSTRIAL APPLICABILITY According to the present invention, an arc discharge from a glow discharge immediately before reaching an arc discharge or an arc discharge between the outer electrode by applying a high voltage to the inner electrode is configured as described above. Even if the inner electrode is heated to a high temperature when the inner electrode is heated to a high temperature, there is no significant stress applied to the ceramic, and the dielectric is not damaged by a long-term discharge. It is possible to provide a discharge gas purification apparatus capable of efficiently removing harmful components in the processing gas.
[Brief description of the drawings]
FIG. 1 is a fragmentary front view of a main part of a discharge gas purification apparatus according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a cylindrical dielectric constituting an internal electrode and its supporting structure in the apparatus of FIG.
FIG. 3 is an enlarged sectional view taken along line 3-3 of FIG.
FIG. 4 is an explanatory view showing a state in which the discharge type gas purification apparatus according to the embodiment of the present invention is connected to the exhaust system of a gasoline engine.
FIG. 5 is an explanatory view showing a second example in which a discharge type exhaust gas purifying apparatus according to an embodiment of the present invention is connected to an exhaust system of a gasoline engine.
FIG. 6 is an explanatory view showing a third example in which the discharge type exhaust gas purifying apparatus according to the embodiment of the present invention is connected to the exhaust system of a gasoline engine.

Claims (10)

筒状外側電極と、
前記筒状外側電極内に挿入されて、その筒状外側電極内周面との間に環状間隙を形成する外周面を持つ筒状誘電体と、
前記筒状誘電体を挾んで前記筒状外側電極に対向する内側電極と、
前記外側電極および内側電極間に放電電圧を印加する電源と、
からなる放電式ガス浄化装置において、
前記筒状誘電体はセラミックスよりなり、
前記内側電極は放電電圧印加時に前記筒状誘電体内周面全周に亘って接触する導電体と、前記導電体と前記電源とを接続する接続手段とからなり、前記導電体は放電電圧印加時に前記導電体の熱膨張によって前記セラミックスの内周面に加えられる圧力を緩和するように調整可能に構成されてなることを特徴とする放電式ガス浄化装置。
A cylindrical outer electrode;
A cylindrical dielectric inserted into the cylindrical outer electrode and having an outer peripheral surface that forms an annular gap with the inner peripheral surface of the cylindrical outer electrode;
An inner electrode sandwiching the cylindrical dielectric and facing the cylindrical outer electrode;
A power supply for applying a discharge voltage between the outer electrode and the inner electrode;
In the discharge-type gas purification device consisting of
The cylindrical dielectric is made of ceramics,
The inner electrode includes a conductor that contacts the entire circumference of the cylindrical dielectric body when a discharge voltage is applied, and a connecting means that connects the conductor and the power source. A discharge-type gas purification apparatus configured to be adjustable so as to relieve pressure applied to the inner peripheral surface of the ceramic due to thermal expansion of the conductor.
前記内側電極の前記導電体は径方向に圧縮可能な炭素繊維体からなり、前記炭素繊維体は前記筒状誘電体の軸線に沿って配設された前記接続手段を構成する金属製軸状部材と前記筒状誘電体との間に介装されてなることを特徴とする請求項1記載の放電式ガス浄化装置。The conductor of the inner electrode is made of a carbon fiber body that is compressible in the radial direction, and the carbon fiber body is a metal shaft-like member that constitutes the connecting means disposed along the axis of the cylindrical dielectric. 2. The discharge type gas purification apparatus according to claim 1, wherein the discharge type gas purification apparatus is interposed between the pipe and the cylindrical dielectric. 前記炭素繊維体を炭素繊維からなる不織布から構成し、この不織布を前記金属製軸状部材に渦巻状に巻き付けてなることを特徴とする請求項2記載の放電式ガス浄化装置。3. The discharge type gas purification apparatus according to claim 2, wherein the carbon fiber body is composed of a non-woven fabric made of carbon fiber, and the non-woven fabric is wound around the metal shaft member in a spiral shape. 前記内側電極の前記導電体が水などの導電性液体からなり、前記導電性液体が前記内側電極の前記筒状誘電体内に充填されるとともに前記筒状誘電体の外部との間で循環されるように構成されてなることを特徴とする請求項1記載の放電式ガス浄化装置。The conductor of the inner electrode is made of a conductive liquid such as water, and the conductive liquid is filled in the cylindrical dielectric of the inner electrode and is circulated between the outside of the cylindrical dielectric. The discharge-type gas purification apparatus according to claim 1, wherein the discharge-type gas purification apparatus is configured as described above. 前記筒状誘電体の外周面は、軸線方向に伸びる稜線を持つ複数の山形凸面を、相隣る両山形凸面の対向する両斜面によって谷形凹面が形成されるように、周方向に沿って配列することによって、前記軸線方向に直交する断面が環状の波形に形成されてなることを特徴とする請求項1乃至4の何れか1項に記載の放電式ガス浄化装置。The outer peripheral surface of the cylindrical dielectric has a plurality of chevron convex surfaces having ridge lines extending in the axial direction along the circumferential direction so that valley concave surfaces are formed by the opposing slopes of the two chevron convex surfaces adjacent to each other. The discharge type gas purification apparatus according to any one of claims 1 to 4, wherein a cross section perpendicular to the axial direction is formed into an annular waveform by arranging the sections. 前記筒状セラミックスの外周面をガラス層で被覆してなることを特徴とする請求項1または5記載の放電式ガス浄化装置。6. The discharge type gas purification apparatus according to claim 1, wherein an outer peripheral surface of the cylindrical ceramic is covered with a glass layer. 前記筒状セラミックスの内周面をガラス層で被覆してなることを特徴とする請求項1または5記載の放電式ガス浄化装置。6. The discharge type gas purification apparatus according to claim 1, wherein an inner peripheral surface of the cylindrical ceramic is coated with a glass layer. 前記筒状外側電極の内周面が円筒形であり、前記筒状誘電体の山形凸面の頂点と前記筒状外側電極の内周面との間の間隙が4〜6mmで、前記筒状誘電体の谷形凹面の底部と前記筒状外側電極の内周面との間の間隙が7〜9mm、前記頂部と前記底部との間隙が2〜4mmであることを特徴とする請求項5記載の放電式ガス浄化装置。The cylindrical outer electrode has a cylindrical inner peripheral surface, and a gap between the apex of the convex convex surface of the cylindrical dielectric and the inner peripheral surface of the cylindrical outer electrode is 4 to 6 mm. 6. The gap between the bottom of the valley-shaped concave surface of the body and the inner peripheral surface of the cylindrical outer electrode is 7 to 9 mm, and the gap between the top and the bottom is 2 to 4 mm. Discharge gas purification device. 前記放電電圧が前記外側電極と前記筒状誘電体との間の環状空隙においてグロー放電からアーク放電に至る直前の遷移域の放電が生じるように設定されてなることを特徴とする請求項1乃至4の何れか1項に記載の放電式ガス浄化装置。The discharge voltage is set so that discharge in a transition region immediately before glow discharge to arc discharge occurs in an annular gap between the outer electrode and the cylindrical dielectric. 5. The discharge type gas purification apparatus according to any one of 4 above. ガソリンエンジンの排気系において、前記環状空隙が触媒コンバータよりも排気ガスの流通方向上流側に配置されていることを特徴とする請求項1乃至4の何れか1項に記載の放電式ガス浄化装置。5. The discharge type gas purification apparatus according to claim 1, wherein in the exhaust system of the gasoline engine, the annular gap is arranged upstream of the catalytic converter in the flow direction of the exhaust gas. 6. .
JP2003566375A 2002-02-07 2003-02-07 Discharge gas purifier Pending JPWO2003067046A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002031210 2002-02-07
JP2002031210 2002-02-07
PCT/JP2003/001329 WO2003067046A1 (en) 2002-02-07 2003-02-07 Discharge type gas cleaner

Publications (1)

Publication Number Publication Date
JPWO2003067046A1 true JPWO2003067046A1 (en) 2005-06-02

Family

ID=27677925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003566375A Pending JPWO2003067046A1 (en) 2002-02-07 2003-02-07 Discharge gas purifier

Country Status (3)

Country Link
JP (1) JPWO2003067046A1 (en)
AU (1) AU2003207183A1 (en)
WO (1) WO2003067046A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546123B2 (en) * 2004-03-19 2010-09-15 財団法人地球環境産業技術研究機構 Plasma reactor
JP4873564B2 (en) 2007-03-29 2012-02-08 トヨタ自動車株式会社 Exhaust gas purification device
CN103611395A (en) * 2013-08-01 2014-03-05 上海瑞津环境科技有限公司 Wire-tubular-type low temperature plasma unit reactor and assembly system thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115746A (en) * 1991-10-28 1993-05-14 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus
JPH07197806A (en) * 1993-12-29 1995-08-01 Aqueous Res:Kk Plasma discharge tube for processing exhaust gas
GB9801775D0 (en) * 1998-01-29 1998-03-25 Aea Technology Plc Gas purification
JP2002030921A (en) * 2000-07-17 2002-01-31 Mitsubishi Motors Corp Plasma type exhaust emission control device

Also Published As

Publication number Publication date
WO2003067046A1 (en) 2003-08-14
AU2003207183A1 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
US5284556A (en) Exhaust treatment system and method
EP1702665A1 (en) Gas purifying apparatus
JPS59136555A (en) Ionizing device for internal combustion engine
EP1890014B1 (en) Exhaust emission control method and exhaust emission control system
EP2131017B1 (en) Exhaust gas cleaning device
KR20090118824A (en) Plasma processing device
KR20010078089A (en) Plasma type exhaust gas cleaning apparatus
EP1058577B1 (en) A component for gas treatment
JP7255935B2 (en) Intake plasma generation system and method
US5866081A (en) Deposited inner electrode for corona discharge pollutant destruction reactor
JPWO2003067046A1 (en) Discharge gas purifier
JP2006000817A (en) Exhaust gas cleaner
US4811559A (en) Apparatus for removing soot from the exhaust gases of an internal combustion engine
JP4292868B2 (en) Exhaust gas purification device
JP2005240634A (en) Exhaust gas purifying plasma reactor
JP2006214392A (en) Exhaust emission control device
JP2006026483A (en) Exhaust emission control device
JP2005307832A (en) Exhaust gas purifying device
JPS6313007B2 (en)
KR100838408B1 (en) Plasma reactor
JP4254621B2 (en) Exhaust gas purification device
JP2005344670A (en) Plug cap for exhaust emission control device
JP2006144570A (en) Exhaust emission control device
JP2005016411A (en) Exhaust-emission control device
JP2002235530A (en) Catalyst heating up device of internal combustion engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20050412