JPWO2003014727A1 - 心疾患治療剤 - Google Patents

心疾患治療剤 Download PDF

Info

Publication number
JPWO2003014727A1
JPWO2003014727A1 JP2003519408A JP2003519408A JPWO2003014727A1 JP WO2003014727 A1 JPWO2003014727 A1 JP WO2003014727A1 JP 2003519408 A JP2003519408 A JP 2003519408A JP 2003519408 A JP2003519408 A JP 2003519408A JP WO2003014727 A1 JPWO2003014727 A1 JP WO2003014727A1
Authority
JP
Japan
Prior art keywords
cells
heart disease
cell
apoptosis
sits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003519408A
Other languages
English (en)
Inventor
泰伸 岡田
泰伸 岡田
秀 田辺
秀 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Publication of JPWO2003014727A1 publication Critical patent/JPWO2003014727A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5061Muscle cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5064Endothelial cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2510/00Detection of programmed cell death, i.e. apoptosis

Abstract

本発明は、心臓・血管系細胞のアポトーシスを選択的に抑制することができる物質を探索する方法を提供することを課題とする。培養心筋細胞および/または培養血管内皮細胞にアポトーシスを誘導する工程;被検物質であるCl−チャネル阻害剤で処理する工程;および筋細胞および/または血管内皮細胞のアポトーシス性細胞死の抑制効果により被検物質の心疾患に対する治療効果および/または予防効果を判定する工程;を含有することを特徴とする、心疾患治療剤および/または心疾患予防剤のスクリーニング方法を提供することにより上記課題を解決する。

Description

技術分野
本発明は、心疾患治療剤若しくは心疾患予防剤に関する。より具体的には、容積感受性Clチャネル阻害剤を含有する心疾患治療剤もしくは心疾患予防剤に関する。
本発明はまた、これらの心疾患治療剤若しくは心疾患予防剤のスクリーニング方法に関する。より具体的には、本発明は、既知の方法により誘導されるアポトーシスを被検物質であるClチャネル阻害剤により阻害することができるかどうかを検出することによる、心疾患治療剤若しくは心疾患予防剤のスクリーニング方法に関する。
背景技術
心疾患の多くは、主として冠動脈の器質的または機能的損傷が原因となり、冠動脈からの供給と心筋の需要との間に不均衡が生じ、この結果急性あるいは慢性の虚血性心筋障害が生じることにより引き起こされる。そして心筋細胞に虚血状態が生じると、その結果心筋細胞にアポトーシスが生じると考えられている。一旦アポトーシスの引き金が引かれてしまうと、心筋細胞がアポトーシスを回避することができず、その細胞が細胞死を起こすため、狭心症、心筋梗塞あるいは心不全などの重篤な心疾患症状を引き起こすこととなる。
生理学的細胞死として知られるアポトーシスの過程において、進行性の細胞収縮と、これに引き続いて細胞の断片化(アポトーシス小体の形成)が引き起こされることが知られている。このアポトーシスによる細胞死の時間経過のうち、アポトーシス小体が形成される以前のごく早い段階で、等張性の細胞収縮であるアポトーシス性細胞容積減少(Apoptotic Volume Decrease;AVD)と呼ばれる細胞収縮が生じる(Maeno,E.et al.,Proc.Natl.Acad.Sci.U.S.A.,Vol.97,9487−9492,2000)。
等張性条件下でのこのアポトーシス性細胞容積減少(AVD)の誘導は、細胞外低浸透圧負荷によって細胞膨張を物理化学的に強制された後に生じる調節性容積減少(Regulatory Volume Decrease;RVD)の促進と関連している。そしてアポトーシス性細胞容積減少(AVD)の誘導および調節性容積減少(RVD)の促進は、ともに、ミトコンドリアからのチトクロームc放出、カスパーゼ(例えばカスパーゼ−3)の活性化、DNAのラダー形成、そして超微細構造変化よりも前の、アポトーシスの極めて初期の段階において生じることが知られている。
これまでに、上皮系細胞株(例えばヒト由来上皮HeLa細胞)、リンパ系細胞株(例えばヒト由来リンパ系U937細胞)、あるいは神経系細胞株(例えばラットクロム親和性細胞腫PC12細胞、マウス神経芽細胞腫とラット神経膠腫のハイブリッドNG108−15細胞)などの細胞において、アポトーシス性細胞容積減少(AVD)や調節性容積減少(RVD)について詳細に調べられている。その結果、前述した調節性容積減少(RVD)は、主としてCa2+依存性Kチャネルと容積感受性Clチャネル(VSOR−ClC)の並列的活性化によるKCl流出によって生じることがわかった。そして、容積調節性のClチャネルまたはKチャネルを阻害することによりアポトーシス性細胞容積減少(AVD)の誘導および調節性容積減少(RVD)の促進が妨げられると、これらの細胞はアポトーシスに伴う生化学的変化や形態学的変化を引き起こさず、そしてアポトーシスによる細胞死そのものも阻止することができることがわかっている。
多くの細胞において、Kチャネルは、細胞の静止状態においても常に活性化されているのに対して、Clチャネルは、骨格筋や赤血球などの一部の例外を除き、必要時以外には活性化されていないことが知られている。そのため、アポトーシス性細胞容積減少(AVD)の誘導および調節性容積減少(RVD)の促進に対してより重要な働きをしているのは容積感受性Clチャネルであると考えられているが、その実体は未だ解明されていない。
これまで、細胞の由来する組織が異なると、その発現する容積感受性Clチャネルの種類も異なることが、多くの研究により示されている。例えば、心筋細胞においては、ClC−3が容積感受性Clチャネルの実体であることが示唆されている(Duan et al.Nature 1997;390:417−421;Britton et al.Am J Physiol Heart Circ Physiol 2000;279:H2225−2233;およびDuan et al.J Physiol 2001;531:437−444)。具体的には、gpClC−3クローンがモルモット心臓からクローニングされ、ノザンブロット法により心房・心室において発現され、これをトランスフェクトした培養細胞(NIH/3T3細胞)を用いて心筋で見られるVSOR−ClC電流と同様の性質を持つ電流活性を検出したことを示す研究(Duan et al.Nature 1997;390:417−421);ClC−3特異的抗体を用いて、免疫組織化学的に、ClC−3が心筋細胞膜(sarcolemmal membarane)と細胞質領域のどちらにも存在することを提示した研究(Britton et al.Am J Physiol Heart Circ Physiol 2000;279:H2225−2233);抗−ClC−3抗体(Alomone社製)の細胞内への注入によりgpClC−3をトランスフェクトしたNIH/3T3細胞でVSOR−ClC様電流が抑制されることを示し、さらに同抗体を注入することによりモルモット心筋で本来見られるVSOR−ClC電流も同様に抑制されることを提示して、内在性のClC−3が心筋で本来見られるVSOR−ClCの実体であると主張する研究(Duan et al.J Physiol 2001;531:437−444)が知られている。
これに対してその他の組織に由来する細胞を用いた実験からは、ClC−3が容積感受性Clチャネルの実体ではないことが示唆されている(Stobrawa et al.Neuron 2001;29:185−196;Weylandt et al.J Biol Chem 2001;276:17461−17467)。具体的には、ClC−3遺伝子のエクソン3を欠失させたノックアウトマウスを初めて作出し、このノックアウトマウスでは、膜タンパクにClC−3が存在しないこと、ClC−4とClC−5の亢進はないこと、肝細胞(Hepatocyto)および膵臓腺房細胞(pancreatic acinar cell)においてVSOR−ClC電流は影響されていないことから、VSOR−ClCの実体はClC−3以外であることを示唆し、さらに、ClC−3は細胞内小胞膜に存在して機能すること、ホモノックアウトマウスは誕生後の成長(体重増加)が悪く、海馬や網膜に障害が生じることを提示している研究(Stobrawa et al.Neuron 2001;29:185−196);いくつかのhClC−3変異体をそれぞれ安定に発現させたHEK293細胞を用いて、ClC−3タンパクはゴルジ体などの細胞内小器官にあるが、細胞膜にも存在することを提示しているが、しかしながら、対照(トランスフェクトされていない)の細胞も一連のトランスフェクトされた細胞もVSOR−ClC電流活性・調節性容積減少能ともに変化のなかったことから、hClC−3はVSOR−ClCでないと主張している研究(Weylandt et al.J Biol Chem 2001;276:17461−17467)などが知られている。
したがって、容積感受性Clチャネルは、従来から調べられてきた細胞株以外の細胞あるいは組織、例えば心筋細胞においても同様な機構でアポトーシスを抑制することができるか否かについては、不明である。また、心筋細胞のアポトーシスがどのような機序により生じているのか、そしてかかる心筋細胞のアポトーシスを選択的に抑制することができる化合物にはどのようなものがあるのか、ほとんど知られていなかった。
発明の開示
発明が解決しようとする技術的課題
本発明は、心臓・血管系細胞のアポトーシスを選択的に抑制することができる物質からなる、心疾患治療剤若しくは心疾患予防剤を提供することを課題とする。
本発明はまた、心臓・血管系細胞のアポトーシスを選択的に抑制することができる物質をスクリーニングする方法を提供することを課題とする。
本発明はまた、上述した方法によりスクリーニングされた化合物を含む、心臓・血管系細胞のアポトーシスを抑制することによる心疾患治療剤若しくは心疾患予防剤を提供することもまた課題とする。
技術的課題の解決手段
本発明者らは、鋭意研究を継続した結果、上述した課題を解決することができることを見出した。
すなわち、Clチャネル阻害剤を有効成分とすることにより、心疾患治療剤もしくは心疾患予防剤を提供するという本発明の上記課題を解決できることを見いだした。
本発明の発明者は、心臓・血管系細胞を用いて、Clチャネル阻害剤の投与により、アポトーシスの発生を阻害または抑制できるか否かについて検討を行った。より具体的には、アポトーシスを誘導した心臓・血管系細胞に対して、被検物質であるClチャネル阻害剤を投与することにより、誘導されたアポトーシスを回避することができるかどうかを検討した。その結果、Clチャネル阻害剤を投与することにより、心臓・血管系細胞におけるアポトーシスの機序を阻害して、心臓・血管系細胞において生じるアポトーシスを抑制できることを明らかにし、本発明を完成した。
本発明において、Clチャネル阻害剤という用語は、Clチャネルを介したClの輸送を阻害する物質のことをいい、たとえばClチャネル阻害効果を有する低分子化合物、抗体、アンチセンス化合物等が挙げられる。本発明において、Clチャネル阻害剤は容積感受性Clチャネル阻害剤であることが好ましく、したがって容積感受性Clチャネル阻害効果を有する低分子化合物、抗体、アンチセンス化合物等が好ましい。Clチャネル阻害剤のさらに好ましい例としては、容積感受性ClチャネルであるClC−3を特異的に阻害する低分子化合物、抗体、アンチセンス化合物等が挙げられる。
本発明の容積感受性Clチャネル阻害剤として使用することができる低分子化合物としては、例えば、4−アセトアミド−4’−イソチオシアノスチルベン(SITS)、4,4’−ジイソチオシアノスチルベン−2,2’−ジスルホン酸(DIDS)、5−ニトロ−2−(3−フェニルプロピルアミノ)−ベンゾエート(NPPB)、フロレチン(Phloretin)、ニフルム酸、グリベンクラミド、フルオキセチン(fluoxetine)、タモキシフェン(tamoxifen)、クロミフェン(clomiphene)、ナフオキシジン(nafoxidine)、その他、以下の論文;DDT 2000;5:492−505、Br J Pharmacol 1999;126:508−514、Br J Pharmacol 2001;132:135−142に記載のものなどを例としてあげることができるが、これらには限定されず、容積感受性Clチャネル阻害剤作用を有する化合物であれば、いずれの化合物であってもかまわない。より具体的には、容積感受性Clチャネルに対する選択性が高く、cAMP依存性Clチャネル(CFTR)やCa2+依存性Clチャネル(CaCC)などの他のClチャネルに対する選択性が低い、4−アセトアミド−4’−イソチオシアノスチルベン(SITS)、4,4’−ジイソチオシアノスチルベン−2,2’−ジスルホン酸(DIDS)、フロレチン(Phloretin)のような性質を有するClチャネル阻害剤が特に好ましく、SITSおよびDIDSが特に好ましい。
このような低分子化合物のうち、心臓・血管系細胞のアポトーシス性細胞死の抑制効果を有する低分子化合物を、本発明の心疾患治療剤または心疾患予防剤として使用することができる。
本発明の容積感受性Clチャネル阻害剤として使用することができる抗体は、容積感受性Clチャネルと結合してその機能を阻害する限り特に制限はなく、マウス抗体、ラット抗体、ウサギ抗体、ヒツジ抗体、キメラ抗体、ヒト型化抗体、ヒト抗体等を適宜用いることができる。抗体は、ポリクローナル抗体であってもモノクローナル抗体であってもよいが、均質な抗体を安定に生産できる点でモノクローナル抗体が好ましい。ポリクローナル抗体およびモノクローナル抗体は当業者に周知の方法により作製することができる。
このような抗体を調製するための免疫源としては、本明細書中で上述したClチャネルタンパク質を使用することができる。より好ましくは、免疫源として容積感受性Clチャネルタンパク質を使用し、最も好ましくは容積感受性Clチャネルタンパク質の中でもClC−3タンパク質を使用する。
この抗体は、マウス、ラット、ウサギ、ヤギ等の動物を、上述したような免疫原を用いて免疫化することにより作成する。免疫化する際には、抗体を産生させる動物の免疫活性を増強するために、アジュバントとともに投与することができる。アジュバントの例としては、Martin,REMINGTON’S PHARM.SCI.,15th Ed.(Mack Publ.Co.,Easton(1975))を参照することができる。アジュバントとして、油中水型エマルジョン、水中油型エマルジョン、もしくはアルミニウムアジュバントなどのいずれをも使用することができる。油中水型エマルジョンの例としては、フロイント(Fleund)の完全アジュバント、フロイントの不完全アジュバントなど、水中油型エマルジョンの例としてはRIBIアジュバントシステム(RIBI Immunol.Res.Inc.)など、そしてアルミニウムアジュバントの例としては硫酸アルミニウムカリウム、などを使用することができるが、これらのものに限定されるものではない。
数回の免疫化の後、前記免疫動物の血液を微量採取し、Clチャネルタンパク質と実質的に特異的に結合するという特徴を有する抗体が実際に産生されていることを確認する。免疫動物血液中に目的とする抗体が産生されている場合には、当該動物を犠死させて脾細胞を単離し、当該動物由来のミエローマ細胞と融合させてハイブリドーマ細胞を得る。
モノクローナル抗体を産生するハイブリドーマは、基本的には公知技術を使用し、以下のようにして作製できる。すなわち、所望の抗原自体や所望の抗原を発現する細胞を感作抗原として使用して、これを通常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体産生細胞(ハイブリドーマ)を得て、これらの細胞が産生する抗体が免疫源に対して特異的な反応を示すかどうかをスクリーニングすることによって作製できる。ハイブリドーマの作製は、たとえば、ミルステインらの方法(Kohler.G.and Milstein,C.,Methods Enzymol.(1981)73:3−46)等に準じて行うことができる。抗原の免疫原性が低い場合には、アルブミン、KLH等の免疫原性を有する巨大分子と結合させ、免疫を行えばよい。上述した方法により得られたハイブリドーマ細胞のうち、標的タンパク質であるClチャネルタンパク質に特異的に結合する抗体を産生することができるハイブリドーマ細胞をクローン化する。
また、抗体遺伝子をハイブリドーマからクローニングし、適当なベクターに組み込んで、これを宿主に導入し、遺伝子組換え技術を用いて産生させた遺伝子組換え型抗体を用いることができる(例えば、Carl,A.K.Borrebaeck,James,W.Larrick,THERAPEUTIC MONOCLONAL ANTIBODIES,Published in the United Kingdom by MACMILLAN PUBLISHERS LTD,1990参照)。具体的には、ハイブリドーマのmRNAから逆転写酵素を用いて抗体の可変領域(V領域)のcDNAを合成する。目的とする抗体のV領域をコードするDNAが得られれば、これを所望の抗体定常領域(C領域)をコードするDNAと連結し、これを発現ベクターへ組み込む。または、抗体のV領域をコードするDNAを、抗体C領域のDNAを含む発現ベクターへ組み込んでもよい。上述したベクター中に組み込むDNAは、発現制御領域、例えば、エンハンサー、プロモーターの制御のもとで発現するよう発現ベクターに組み込む。次に、この発現ベクターにより宿主細胞を形質転換し、抗体を発現させることができる。
本発明では、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体、例えば、キメラ(Chimeric)抗体、ヒト型化(Humanized)抗体などを使用することもできる。これらの改変抗体は、既知の方法を用いて製造することができる。キメラ抗体は、ヒト以外の哺乳動物、例えば、マウス抗体の重鎖、軽鎖の可変領域とヒト抗体の重鎖、軽鎖の定常領域からなる抗体であり、マウス抗体の可変領域をコードするDNAをヒト抗体の定常領域をコードするDNAと連結し、これを発現ベクターに組み込んで宿主に導入し産生させることにより得ることができる(WO 86/01533)。
ヒト型化抗体は、再構成(reshaped)ヒト抗体とも称され、ヒト以外の哺乳動物、たとえばマウス抗体の相補性決定領域(CDR;complementarity determining region)をヒト抗体の相補性決定領域へ移植したものであり、その一般的な遺伝子組換え手法も知られている。具体的には、マウス抗体のCDRとヒト抗体のフレームワーク領域(framework region;FR)を連結するように設計したDNA配列を、末端部にオーバーラップする部分を有するように作製した数個のオリゴヌクレオチドからPCR法により合成する。得られたDNAをヒト抗体定常領域をコードするDNAと連結し、次いで発現ベクターに組み込んで、これを宿主に導入し産生させることにより得られる(欧州特許出願公開番号EP 239400、国際特許出願公開番号WO 96/02576参照)。CDRを介して連結されるヒト抗体のFRは、相補性決定領域が良好な抗原結合部位を形成するものが選択される。必要に応じ、再構成ヒト抗体の相補性決定領域が適切な抗原結合部位を形成するように抗体の可変領域のフレームワーク領域のアミノ酸を置換してもよい(Sato,K.et al,,Cancer Res.(1993)53,851−856)。
また、ヒト抗体の取得方法も知られている。例えば、ヒトリンパ球をin vitroで所望の抗原または所望の抗原を発現する細胞で感作し、感作リンパ球をヒトミエローマ細胞、例えばU266と融合させ、抗原への結合活性を有する所望のヒト抗体を得ることもできる(特公平1−59878参照)。また、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物を抗原で免疫することで所望のヒト抗体を取得することができる(国際特許出願公開番号WO 93/12227、WO 92/03918、WO 94/02602、WO 94/25585、WO 96/34096、WO 96/33735参照)。さらに、ヒト抗体ライブラリーを用いて、パンニング法によりヒト抗体を取得する技術も知られている。例えば、ヒト抗体の可変領域を一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現させ、抗原に結合するファージを選択することができる。選択されたファージの遺伝子を解析すれば、抗原に結合するヒト抗体の可変領域をコードするDNA配列を決定することができる。抗原に結合するscFvのDNA配列が明らかになれば、当該配列を適当な発現ベクターを作製し、ヒト抗体を取得することができる。これらの方法は既知であり、WO 92/01047、WO 92/20791、WO 93/06213、WO 93/11236、WO 93/19172、WO 95/01438、WO 95/15388を参考にすることができる。
抗体遺伝子を一旦単離し、適当な宿主に導入して抗体を作製する場合には、適当な宿主と発現ベクターの組み合わせを使用することができる。真核細胞を宿主として使用する場合、動物細胞、植物細胞、真菌細胞を用いることができる。動物細胞としては、(1)哺乳類細胞、例えば、CHO、COS、ミエローマ、BHK(baby hamster kidney)、HeLa、Vero、(2)両生類細胞、例えば、アフリカツメガエル卵母細胞、あるいは(3)昆虫細胞、例えば、sf9、sf21、Tn5などが知られている。植物細胞としては、ニコティアナ(Nicotiana)属、例えばニコティアナ・タバカム(Nicotiana tabacum)由来の細胞が知られており、これをカルス培養すればよい。真菌細胞としては、酵母、例えば、サッカロミセス(Saccharomyces)属、例えばサッカロミセス・セレビシエ(Saccharomyces serevisiae)、糸状菌、例えば、アスペルギルス(Aspergillus)属、例えばアスペスギルス・ニガー(Aspergillus niger)などが知られている。原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、大腸菌(E.coli)、枯草菌(B.subtilis)が知られている。これらの細胞に、目的とする抗体遺伝子を形質転換により導入し、形質転換された細胞をin vitroで培養することにより抗体が得られる。
本発明においてはまた、容積感受性Clチャネル阻害剤として、アンチセンス化合物を使用することもできる(O’Connor,J Neurochem(1991)56:560 in Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression,CRC Press,Boca Raton,FL(1988)。また、容積感受性Clチャネルの遺伝子と三重らせんを形成するオリゴヌクレオチドを使用することができる(Leeら、Nucleic Acids Res(1979)6:3073;Cooneyら、Science(1988)241:456;Dervanら、Science(1991)251:1360)。
このようなアンチセンス化合物またはオリゴヌクレオチドは、本発明の容積感受性Clチャネル阻害剤の標的と考えられている、ラットClC−3(Kawasaki M et al.,Neuron 1994;12:597−604)またはヒトClC−3(GenBank Accession No.AF172729およびHuang P et al.,J.Biol.Chem.2001;276,20093−20100)などのタンパク質をコードするDNAに基づいて作成することができる。具体的には、上述したアンチセンス化合物またはオリゴヌクレオチドは、当該遺伝子のプロモーター領域、エクソン領域、翻訳終了領域などのヌクレオチド配列に結合することができるように作成することができる。
上述した低分子化合物、抗体、アンチセンス化合物またはオリゴヌクレオチドなどのClチャネル阻害剤を心疾患治療剤および/または心疾患予防剤として使用することができるかどうかについては、in vivoおよびin vitro両方またはいずれか一方の実験により確認することが可能である。具体的には、in vivoでは、虚血/再灌流モデル等の生体を用いた実験により確認することができ、一方in vitroでは、その機能が知られていない低分子化合物、抗体、アンチセンス化合物またはオリゴヌクレオチドなどを用いて、実際に心臓・血管系細胞のアポトーシス性細胞死を抑制する機能を有しているか否かについてスクリーニングすることにより確認することができる。本発明においては、in vitroにおいてスクリーニングすることが好ましい。
このように、上述した低分子化合物、抗体、アンチセンス化合物またはオリゴヌクレオチドなどが、本発明のClチャネル阻害剤効果を有し、心臓・血管系細胞のアポトーシス性細胞死を抑制することができるかどうかをスクリーニングする方法を提供することにより、本発明の課題を解決する。
本発明のスクリーニング方法は、心臓・血管系細胞にアポトーシスを誘導する工程;被検物質であるClチャネル阻害剤で処理する工程;および心臓・血管系細胞のアポトーシス性細胞死の抑制効果により被検物質の心疾患に対する治療効果および/または予防効果を判定する工程;を含有することを特徴とする。
本発明の一態様において、心臓・血管系細胞にアポトーシスを誘導し、このアポトーシスの誘導と同時にまたはそれに連続して、被検物質である化合物により当該心臓・血管系細胞を処理する。被検物質である化合物が存在しない場合と比較して、被検物質の存在下において、心臓・血管系細胞のアポトーシス性細胞死が抑制されるか否かを確認する。これにより、被検物質が心臓・血管系細胞のアポトーシスを抑制して心疾患に対する治療効果および/または予防効果を発揮する効果を有するかどうかについて、スクリーニングすることができる。
本発明において心臓・血管系細胞の例としては、心筋細胞、血管内皮細胞、血管平滑筋細胞、線維芽細胞、筋線維芽細胞、周皮細胞、血管内皮前駆細胞が挙げられ、好ましくは、心筋細胞、血管内皮細胞が挙げられる。これらは初代培養細胞または細胞株由来細胞として使用することができる。心臓・血管系細胞として初代培養細胞を用いる場合、初代培養系が確立しているラット、マウス、モルモット、ウサギ、ウシ、ウマなどの動物から、心臓および/または血管を採取する。採取された心臓および/または血管は、コラゲナーゼ、トリプシンなどのタンパク質分解酵素による処理の後、所定細胞濃度の細胞浮遊液として調製することができる。心臓・血管系細胞として細胞株由来細胞を用いる場合、例えば、心筋細胞株、血管内皮細胞株、血管平滑筋細胞株、線維芽細胞株、筋線維芽細胞株、周皮細胞株、血管内皮前駆細胞株に由来する一般的に使用可能な細胞株のいずれかを使用することができ、好ましくは、心筋細胞株、血管内皮細胞株を使用することができる。この場合、使用する細胞株を適した条件下で培養した後、所定細胞濃度の細胞浮遊液として調製することができる。
本発明において心臓・血管系細胞に対してアポトーシスを誘導する方法としては、スタウロスポリン(STS)、腫瘍壊死因子(TNF)、シクロヘキシミド(CHX)との併用によるTNF、抗Fasアゴニスト抗体、抗癌剤、過酸化水素等による化学的方法;ウイルスを用いる生物学的方法;紫外線、放射線、温熱による物理的方法;またはこれらの組合せ;などが含まれるが、これらには限定されない。上述した心臓・血管系細胞に対してアポトーシスによる細胞死を誘導するために必要な物質の量および処理時間は、対象となる細胞とアポトーシスを誘導するための物質の種類とに依存して、当業者が適宜決定することができるが、例えば、スタウロスポリンを使用する場合には0.3〜3μMの濃度で10分〜24時間、好ましくは30分〜8時間、腫瘍壊死因子(TNF)とシクロヘキシミド(CHX)の混合物を使用する場合にはTNFαを2〜10ng/mlにシクロヘキシミドを0.1〜1μg/ml加えて10分〜24時間、好ましくは30分〜8時間、処理することによりアポトーシスを誘導することができる。
本発明のスクリーニング方法においては、被検物質は、上述のアポトーシスの誘導と同時に添加してもよく、あるいは上述のアポトーシスの誘導によるアポトーシス誘導刺激を行う前または行った後に添加してもよい。被検物質は、その有効性および有効濃度を確認するため、いくつかの濃度を用いて試験を行う。一般的には、被検物質の濃度を、10μM〜10mM程度の範囲で変化させて実験を行うことが好ましい。被検物質を用いて細胞を処理する時間は、対象となる細胞に依存して当業者が適宜決定することができるが、一般的には2〜24時間処理することにより被検物質のアポトーシス抑制効果を試験することができる。
本発明において被検物質がアポトーシス抑制効果を有しているか否かについては、対象となる細胞がアポトーシス特有の特徴を呈しているか否かによって判断する。具体的にアポトーシス特有の特徴とは、例えば、細胞容積の減少;チトクロームc放出;カスパーゼ(好ましくは、カスパーゼー3)の活性化;DNAの断片化;アポトーシス小体の形成などの形態学的特徴;アポトーシス関連特異抗原の発現などの生理学的変化;細胞生存率低下;などがあげられる。これらの特徴は、以下のような測定により、検出することができる。
細胞容積は、Coulter型細胞サイズ解析機(CDA−500;Sysmex,Kobe,Japan)を用いる電子的サイズ決定技術により、調べることができる(Hazama,A.and Okada,Y.,J.Physiol.,402,687−702,1988)。
チトクロームcは、ミトコンドリアから放出されるものであり、共焦点レーザースキャニング蛍光顕微鏡(例えば、Bio−Rad MRC−1024)を用いて調べることができる。この場合、チトクロームcを、蛍光標識した抗チトクロームcモノクローナル抗体(例えば、6H2.B4(BD PharMingen,San Diego,CA,USA)など)を用いて標識することができる(Deshmukh,M.and Johnson,E.M.Jr.,Neuron,21,695−705,1998)。チトクロームcの放出は、細胞質画分をウェスタンブロット法を用いて解析することにより検出することもできる。この場合、細胞質画分をポリアクリルアミドゲル上で電気泳動した後に、チトクロームcを、抗チトクロームcモノクローナル抗体(例えば、7H8.2C12(BD PharMingen,San Diego,CA,USA)など)を用いて検出することができる(Liu,X.et al.,Cell,86,147−157,1996)。
カスパーゼ−3(Caspase−3)の活性は、蛍光測定法を用いて検出することができる。その他の関連するプロテアーゼの関与を排除するため、カスパーゼ−3の特異的阻害剤の非存在下および存在下の蛍光の間での差異を検出することが好ましい。蛍光色素の7−アミノ4−メチルクマリン(AMC)により標識した蛍光生成性基質を、カスパーゼ−3(Ac−DEVD−AMC)およびカスパーゼ−3のテトラペプチド阻害剤(Ac−DEVD−CHO)を検出するために、CaspASEアッセイシステム(SIGMA CHEMICAL Co.,St.Louis,MO,USAもしくはPromega,Madison,WI,USA)に添加した。
ヌクレオソーム間でのDNAの断片化は、DNAラダーとして検出することができる(Shiokawa,D.et al.,Eur.J.Biochem.,226,23−30,1994)。簡略的には、溶解バッファー(10mM EDTA/0.5%Na−N−ラウロイルサルコシネート/500μg/ml RnASE/50mM Tris・HCl、pH7.8)中で37℃、1時間処理し、その後500μg/mlのプロテナーゼKを用いて37℃、1時間処理して、細胞を溶解した。染色体DNAをアガロースゲル電気泳動(2%)により解析し、その後エチジウムブロマイドにより染色した。
DNAの断片化はまた、TUNEL変法(TdTアッセイ)、Sub−G1測定法などのフローサイトメトリー法によっても検出することができる。TUNEL変法(TdTアッセイ)は、細胞内のDNA断端をTUNEL法でFITC標識し、さらに全DNAをPI(ヨウ化プロビジウム)で染色し、両者の蛍光をフローサイトメトリーで同時に測定することによりDNA断片化を検出する方法である。Sub−G1測定法は、DNA断片を細胞外に洗い出し、アポトーシス細胞を生きたG1期細胞よりDNA量の少ない細胞(sub−G1細胞)としてフローサイトメトリーで同定する方法である。
アポトーシス過程の早期に細胞膜表面に移行し、細胞外に露出するフォスファチジルセリンやフォスファチジルエタノールアミンなどを、アネキシンV法によるフローサイトメトリー法によっても検出することができる。また、ミトコンドリア膜電位測定法などのフローサイトメトリー法によっても検出することができる。
細胞の透過電子顕微鏡観察は、JEM 100CX(Tokyo,Japan)により行った。細胞培養物を、CaClを添加していない0.1M Na−リン酸バッファーを用いて、Karnovsky固定液により前固定する。水中1%のOsOによりオスミウム酸染色をした後、段階的エタノール勾配中で細胞を脱水して、エポン包埋した。
細胞生存率は、24マルチウェルプレート上または96穴マルチウェルプレート上で培養した細胞を、比色MTTアッセイを用いるミトコンドリアデヒドロゲナーゼ活性により評価した。比色MTTアッセイは、生細胞が3−(4,5−ジメチル−2−チアゾリル)−2,5−ジフェニル−2H−テトラゾリウムブロマイド(MTT)を還元することができるが、死細胞は還元できない、という特徴を利用するものである。MTTの代わりに、WST−1あるいはWST−8などの改良されたホルマザン試薬を使用することもできる。例えば、細胞計測キット(Cell Counting Kit,DOJINDO LABORATORIES,Kumamoto,Japan)、細胞計測キット−8(Cell Counting Kit−8,DOJINDO LABORATORIES,Kumamoto,Japan)などを用いて検出する。細胞生存率は、0.4%のトリパンブルーを用いて5分間インキュベートし、生存細胞がトリパンブルーを排除することにより検出することもできる。
これらの他にも、組織標本を用いて、TUNEL法、ISEL法、ヘマトキシリン−エオジン(HE)染色、免疫組織化学染色、電子顕微鏡観察によりアポトーシスを検出することができる。
本発明はまた、上述したスクリーニング方法により得られたClチャネル阻害剤を含む、心疾患治療剤若しくは心疾患予防剤を提供することにより上記課題を解決する。
本発明の心疾患治療剤若しくは心疾患予防剤は、上述したスクリーニング方法により得られたClチャネル阻害剤がClチャネル機能を阻害する結果、心筋細胞のアポトーシスを抑制することにより、その目的を達成することができる。
当該心疾患治療剤若しくは心疾患予防剤中に含まれるClチャネル阻害剤の用量、投与方法および反復頻度は、投与される被験体の性別、年齢、体重、全身状態など様々なファクターを勘案して、当業者が容易に決定することができる。一般的には、投与量は、有効成分あたりで、0.001〜1000μg/kg/日の範囲、好ましくは0.01〜100μg/kg/日の範囲、より好ましくは0.1〜10μg/kg/日の範囲である。たとえば、有効成分として容積感受性Clチャネル機能阻害抗体を用いる場合の投与量は有効成分当たりで一般的には0.001〜1000mg/kg/日、好ましくは0.1mg〜50mg/kg/日、より好ましくは0.5mg〜10mg/kg/日の範囲である。しかしながら、本発明の心疾患治療剤または心疾患予防剤はこれらの投与量に制限されるものではない。
投薬期間等の投薬スケジュールは、処置される疾患の状態の深刻さ、反応性および患者の体内の薬剤の蓄積に依存しており、数日間から数ヶ月、場合により数年間にわたり、あるいは治療が効果を示すか、あるいは疾患状態の減少または疾患リスクの予防が達せられるまで、1日に1〜3回、若しくは1週間、1箇月、1年間に1回以上、続けて投与することができる。
本発明の心疾患治療剤若しくは心疾患予防剤は、局所性あるいは全身性の処置のどちらにおいても投与することができる。投与は、経口的あるいは非経口的のいずれであってもよい。非経口的投与は、静脈内点滴、カテーテルを使用した心臓内投与あるいは目的とする血管部位での投与、腹腔内あるいは筋肉内注射、などを含む。
経口投与のための心疾患治療剤若しくは心疾患予防剤は、粉末あるいは顆粒、水性あるいは非水性の媒質における懸濁液あるいは溶液、カプセル、サシェあるいは錠剤、を含む。濃縮剤、着香料、希釈剤、乳化剤、分散補助剤あるいは結合剤は所望されうる。非経口投与のための心疾患治療剤若しくは心疾患予防剤は、緩衝液、希釈剤および他の適した添加物も含む滅菌した水性溶液を含んでもよい。
本発明の心疾患治療剤若しくは心疾患予防剤には、医薬的に許容可能なキャリア、濃縮剤、希釈剤、緩衝剤、保存剤、界面活性剤、中性あるいは陽イオン脂質、脂質複合体、リポソーム、浸透亢進剤、キャリア化合物および他の医薬的に許容可能なキャリアあるいは補形剤など、心臓・血管系細胞に上述した心疾患治療剤および/または心疾患予防剤を投与するために適したものを含んでいてもよい。心疾患治療剤および/または心疾患予防剤の食餌性運搬を亢進するための浸透亢進剤、例えば脂肪酸、胆汁酸塩、キレート剤、界面活性剤および非界面活性剤、のいずれかを含んでいてもよい。
医薬的に許容可能なキャリアは、結合剤(例えば、α化トウモロコシデンプン、ポリビニルピロリドンあるいはヒドロキシプロピルメチルセルロースなど);増量剤(例えば、ラクトースおよび他の糖、微結晶性セルロース、ペクチン、ゼラチン、硫酸カルシウム、エチルセルロース、ポリアクリレート、リン酸水素カルシウムなど);潤滑剤(例えば、ステアリン酸マグネシウム、タルク、シリカ、コロイド状二酸化シリコン、ステアリン酸、金属ステアレート、硬化植物油、コーンスターチ、ポリエチレングリコール、安息香酸ナトリウム、酢酸ナトリウムなど);分解剤(例えば、デンプンなど);あるいは湿潤剤(例えば、ラウリル硫酸ナトリウムなど)、を含むが、それらには限定されない。
本発明の心疾患治療剤若しくは心疾患予防剤は、本発明のClチャネル阻害剤の生物学的活性を阻害しない範囲内で、他の補助的要素を追加的に含んでもよい。例えば、本発明の心疾患治療剤若しくは心疾患予防剤は、例えば、色素、着香料、保存剤、抗酸化剤、乳白剤(opacifiers)、濃縮剤および安定剤などの、本発明の心疾患治療剤若しくは心疾患予防剤を物理的に製剤化するのに有用な追加的な物質を含有してもよい。
発明を実施するための最良の形態
本発明の一態様において、心臓・血管系細胞として、ラットの初代培養心筋細胞を用いて、スタウロスポリンのアポトーシス誘導作用と、SITS(4−アセトアミド−4’−イソチオシアノスチルベン)およびDIDS(4,4’−ジイソチオシアノスチルベン−2,2’−ジスルホン酸)によるアポトーシスからの保護効果について試験を行った。
細胞に対する培養時の操作はすべて滅菌条件下で行った。
心筋細胞としては、ラットの初代培養心筋細胞を用いた。初代培養心筋細胞は、胎齢20日のSD系ラット(日本SLC(株)から入手)から心臓を摘出し、コラゲナーゼ(Worthington Biochemical Corp.)とトリプシン(GIBCO BRL,Gaithersberg,MD)により酵素消化を行って、心筋細胞を単離し、細胞浮遊液を得ることにより調製した。通常の場合の培養液として、10%濃度となるようウシ胎児血清(FBS)を添加したD−MEM(GIBCO BRL,Gaithersberg,MD)を使用した。心臓・血管系細胞におけるアポトーシスおよびそれからの保護に対する、Cl/HCO 交換体(anion exchanger)の関与の有無を検討する場合には、薬物を含む培養液を作製する際に、10%濃度となるようFBSを添加したLeibovitz’s L−15 Medium(GIBCO BRL,Gaithersberg,MD)をHCO 無添加培養液として使用し、通常の場合の培養液を用いた結果と比較した。HCO 無添加培養液を使用するのは、Cl/HCO 交換体の機能をHCO を涸渇させることにより抑制させるためである。このCl/HCO 交換体は、赤血球その他の組織に広く分布しており、赤血球では主にAE1が、心筋細胞・神経細胞では主にAE3が発現している。そしてこの交換体は、細胞内Clの細胞外への排出と細胞外HCO の細胞内への取り込みを共役することにより、細胞内ClおよびpHの調節系として機能しており、調節性容積増加(Regulatory Volume Increase;RVI)の際の細胞容積の調節系としても働いている。病態との関連では、虚血に伴う心筋細胞の酸性化に関わる可能性が考えられている。
心筋細胞を3〜5×10細胞/mLの密度になるように懸濁した細胞浮遊液を、ウェル当たり0.5mLずつ24穴マルチウェルプレート(Falcon)に、若しくは0.1mLずつ96穴マルチウェルプレート(Falcon)に、若しくは1mLずつ12穴マルチウェルプレート(Falcon)に分注した。このプレートをCOインキュベーター中に静置し、5%CO、37℃にて、2〜3日間培養した。このように培養した細胞を、後の実験に供した。
対照群として無細胞状態(ブランク)、培地のみ(D−MEM)および培地に0.3%の濃度でDMSO(DOJINDO LABORATORIES,Kumamoto,Japan)を添加したもの(0.3%DMSO)、試験群として0.3%DMSO中に溶解した1μMのスタウロスポリン(Sigma社)溶液あるいは1μMのスタウロスポリン溶液と125〜1000μMの4−アセトアミド−4’−イソチオシアノスチルベン(SITS、SIGMA CHEMICAL Co.,St.Louis,MO,USA)との混合溶液、あるいは1μMのスタウロスポリン溶液と62.5〜250μMの4,4’−ジイソチオシアノスチルベン−2,2’−ジスルホン酸(DIDS、SIGMA CHEMICAL Co.,St.Louis,MO,USA)との混合溶液を、試験群のそれぞれの条件で薬物を含む培養液(以下、これを条件培養液という)として調製し、使用した。
具体的には、培養液を吸引除去した後、24穴マルチウェルプレートの場合0.5mL/ウェルずつの対照群溶液若しくは目的の条件培養液を添加した。条件培養液を添加した後、プレートをCOインキュベーター中に静置し、5%CO、37℃にて、2〜4時間培養した。HCO 無添加培養液をベースとした条件培養液の添加を行った場合には、プレートを大気組成のインキュベータ中に静置し、37℃にて培養した。その後、条件培養液を吸引除去し、残存する条件培養液を完全に除去するため0.5〜0.7mL/ウェルのPBS(−)を用いてウェルを1回洗浄し、これを吸引除去した後、0.5mL/ウェルの通常の培養液(10%濃度となるようウシ胎児血清を添加したD−MEM)を添加した。96穴マルチウェルプレートの場合には、それぞれ5分の1量を用いて、また12穴マルチウェルプレートの場合には、それぞれ1mLを用いて、同様の操作を行った。
上述のように調製した細胞に対して、WST−8((2−(2−メトキシ−4−ニトロフェニル)−3−(4−ニトロフェニル)−5−(2,4−ジスルホフェニル)−2H−テトラゾリウム・モノナトリウム塩)を発色基質(細胞計測キット−8(Cell Counting Kit−8)、DOJINDO LABORATORIES,Kumamoto,Japan)として反応させ、細胞生存率を測定した。
より具体的には、24穴マルチウェルプレートの場合には、培養液中に0.05mL/ウェルの細胞計測キット−8溶液を添加し、プレートを再びCOインキュベーター中に静置し、5%CO、37℃にて1〜4時間のうちの適切な時間、多くの場合は2時間、培養した。その後、それぞれのウェルから培養液0.11mLずつを採取し、96穴マルチウェルプレートの所定位置に分注した。96穴マルチウェルプレートの場合は、培養液中に0.01mL/ウェルの細胞計測キット−8溶液を添加して、24穴マルチウェルプレートの場合と同様にして培養を行った。このプレートをマイクロプレートリーダー(Bio−Rad,Model 3550,Bio−Rad Laboratories,Hercules,CA,USA)により、450nmの吸光度を測定し(参照波長:655nm)、生細胞数の指標とした。
また、上述のように調製した細胞に対して、Caspase−3 Assay Kit,Fluorimetric(SIGMA CHEMICAL Co.,St.Louis,MO,USA)を用い、caspase−3活性を測定した。
より具体的には、12穴マルチウェルプレートを用い、条件培養液を2時間添加して培養した後、条件培養液を除去し、引き続き適切な時間、多くの場合は2時間、培養した後、Caspase−3 Assay Kit,Fluorimetricを用いて細胞の溶解物を調製し、以後も本キットの測定手順に従い蛍光測光用マイクロプレートリーダー(SPECTRA Fluor,Wako Pure Chemical Industries,Ltd.,Osaka,Japan)で特異的蛍光色素の7−アミノ4−メチルクマリン(AMC)の生成量を測定し、caspase−3活性の指標とした。
本発明の別の一態様において、心臓・血管系細胞として、ウシ動脈内皮細胞由来細胞株を用いて、スタウロスポリンのアポトーシス誘導作用と、SITSによるアポトーシスからの保護効果について試験を行った。
内皮細胞としては、ウシ動脈内皮細胞株由来培養細胞を用いた。内皮細胞株由来培養細胞は、ウシ血管(動脈)内皮由来の細胞株(GMO7372)から調製した。培養液として、10%濃度となるようウシ胎児血清(FBS)を添加したD−MEM(GIBCO BRL,Gaithersberg,MD)を使用した。
内皮細胞を5×10細胞/mLの密度になるように懸濁した細胞浮遊液を、ウェル当たり0.5mLずつ、24穴マルチウェルプレートに分注した。このプレートをCOインキュベーター中に静置し、5%CO、37℃にて、2日間培養した。このように培養した細胞を、後の実験に供した。
試験においては、125〜500μMのSITSを使用する以外は、ラットの初代培養心筋細胞の場合と同様にして、細胞生存率を測定した。
以下に実施例を提供する。これらの実施例は本発明を具体的に説明するために記載するものであり、本発明の技術的範囲を限定するために記載するものではない。
実施例
実施例1:初代培養心筋細胞における、スタウロスポリン誘発細胞傷害に対するSITS(4−アセトアミド−4’−イソチオシアノスチルベン)の保護効果
心筋細胞として、胎齢20日のSD系ラットの初代培養心筋細胞を、10%濃度となるようウシ胎児血清を添加したD−MEM中で培養したものを使用した。心筋細胞は、5×10細胞/mLの密度になるように、ウェル当たり0.5mLずつ、24穴マルチウェルプレート上で培養した。
対照群として無細胞状態(ブランク)、培地のみ(D−MEM)および培地に0.3%DMSO、試験群として0.3%DMSO中に溶解した1μMのスタウロスポリン溶液(STS−1)あるいは1μMのスタウロスポリン溶液および125、250または500μMのSITSの混合溶液(STS−1+SITS−125、STS−1+SITS−250、STS−1+SITS−500)を用いて、5%CO、37℃にて、2時間培養した。10%濃度となるようウシ胎児血清を添加したD−MEM中でさらに1日培養した後、WST−8により細胞生存率を測定した。結果を、図1に示す。
この試験の結果、スタウロスポリンにより生じる細胞生存率の低下を、その処理時間の如何に関わらず、SITSの濃度依存的に抑制することができることがわかった。
スタウロスポリンにより生じる細胞生存率の低下に対する、SITSによる抑制の濃度依存性をさらに確認するために、同様の実験を、対照群として無細胞状態(ブランク)および何も加えていない0.3%DMSO、試験群として0.3%DMSO中に溶解した1μMのスタウロスポリン溶液(STS−1)あるいは1μMのスタウロスポリン溶液および500または1000μMの4−アセトアミド−4’−イソチオシアノスチルベンの混合溶液(STS−1+SITS−500、STS−1+SITS−1000)を用いて、5%CO、37℃にて、2時間培養することにより行った。結果を図2に示す。
この試験の結果、2時間のスタウロスポリン+SITS刺激の場合には、SITSの濃度が500μM以上である場合には、その濃度に関わらず、ほぼ同程度の細胞生存率の低下抑制効果を示すことがわかった。
実施例2:初代培養心筋細胞における、スタウロスポリン誘発細胞傷害に対するSITSの保護効果
本実施例では、24穴マルチウェルプレートの代わりに96穴マルチウェルプレート上で、試験群として1μMのスタウロスポリン溶液および250または500μMのSITS(STS−1+SITS−250、STS−1+SITS−500)を用いて、培養したことを除き、実施例1と同様に試験を行った。結果を、図3に示す。
この試験の結果、24穴マルチウェルプレートの代わりに96穴マルチウェルプレートを使用しても、SITSの濃度依存的な細胞生存率低下抑制効果を示すことができることが明らかになった。このことから、上述した条件を用いることにより、被検物質の大規模スクリーニングを容易に行うこともできることが明らかになった。
実施例3:初代培養心筋細胞における、スタウロスポリン誘発細胞障害に対するDIDS(4,4’−ジイソチオシアノスチルベン−2,2’−ジスルホン酸)の保護効果
本実施例では、試験群として1μMのスタウロスポリン溶液および62.5または125または250μMのDIDS(STS−1+DIDS−62.5、STS−1+DIDS−125、STS−1+DIDS−250)を用いて、培養したことを除き、実施例1と同様に試験を行った。結果を、図4に示す。
この試験の結果、SITSの代わりにDIDSを使用しても、DIDSの濃度依存的な細胞生存率低下抑制効果を示すことができることが明らかとなった。
実施例4:初代培養心筋細胞における、スタウロスポリン誘発caspase −3活性上昇に対するDIDSの抑制効果
本実施例では、12穴マルチウェルプレートを用い、試験群として1μMのスタウロスポリン溶液および250μMのDIDS(STS−1+DIDS−250)を用いて培養したこと、および、条件培養液除去後引き続き2時間培養した後、Caspase−3 Assay Kit,Fluorimetric(SIGMA CHEMICAL Co.,St.Louis,MO,USA)を用いて細胞のlysateを調製し、以後も本キットの測定手順に従い、蛍光測光用マイクロプレートリーダー(SPECTRA Fluor,Wako Pure Chemical Industries,Ltd.,Osaka,Japan)で特異的AMCの生成を指標にcaspase−3活性を測定したことを除き、実施例3と同様に試験を行った。結果を図5に示す。
この試験の結果、スタウロスポリンによるcaspase−3活性の上昇は、DIDSにより抑制されることが明らかとなった。
実施例5:初代培養心筋細胞における、HCO 無添加培養液中でのスタウロスポリン誘発細胞障害に対するDIDSの保護効果
本実施例では、条件培養液作製時のベースの培養液としてHCO 無添加培養液を用いたこと、および本条件培養液適用中にプレートを大気組成のインキュベータ中に静置し、37℃にて培養したことを除き、実施例3と同様に試験を行った。結果を図6に示す。
本実施例においてHCO 無添加培養液を用いたのは、Clチャネルの例として知られているCl/HCO 交換体の機能がHCO を涸渇させることにより抑制されることを利用し、この交換体が心臓・血管系細胞におけるアポトーシスおよびそれからの保護に関与しているか否かを確認するためである。
この試験の結果、条件培養液のベースとして通常の培養液を使用する代わりにHCO 無添加培養液を用いても、1μMのスタウロスポリンを含む条件培養液を添加した細胞で同程度のスタウロスポリン誘発細胞障害を引き起こすことができること、およびDIDSの濃度依存的な細胞生存率低下抑制効果を示すことができることが明らかとなった。このことから、培養心筋細胞で形質細胞膜におけるClイオンの透過経路としてCl/HCO 交換体の働きを著しく低下させた条件でも、スタウロスポリンで細胞死を引き起こすことができること、および、これに対してDIDSの濃度依存的な抑制効果を示すことができることが明らかとなった。
実施例6:初代培養心筋細胞における、HCO 無添加培養液中でのスタウロスポリン誘発細胞障害に対するSITSの保護効果
本実施例では、24穴マルチウェルプレートの代わりに96穴マルチウェルプレート上で、試験群として1μMのスタウロスポリン溶液および125または250または500μMのSITS(STS−1+SITS−125、STS−1+SITS−250、STS−1+SITS−500)を用いて、培養したことを除き、実施例4と同様に試験を行った。結果を、図7に示す。
この試験の結果、条件培養液のベースとして通常の培養液を使用する代わりにHCO 無添加培養液を用いても、96穴マルチウェルプレート上で、1μMのスタウロスポリンを含む条件培養液を添加した細胞で同程度のスタウロスポリン誘発細胞障害を引き起こすことができること、およびSITSの濃度依存的な細胞生存率低下抑制効果を示すことができることが明らかとなった。このことから、実施例4の結果と同様、96穴マルチウェルプレート上で、培養心筋細胞で形質細胞膜におけるClイオンの透過経路としてCl/HCO 交換体の働きを著しく低下させた条件でも、スタウロスポリンで細胞死を引き起こすことができること、および、これに対してSITSの濃度依存的な抑制効果を示すことができることが明らかとなり、このことから、SITSおよびDIDSがClチャネル阻害剤として心筋細胞でアポトーシス抑制効果を発揮することが明らかとなった。
実施例7:ウシ動脈内皮細胞株由来細胞における、スタウロスポリン誘発細胞傷害に対するSITSの保護効果
内皮細胞として、ウシ血管(動脈)内皮由来の細胞株(GMO7372;受託番号)を、10%濃度となるようウシ胎児血清を添加したD−MEM中で培養したものを使用した。内皮細胞は、はじめに5×10細胞/mLの密度で細胞を懸濁した培養液を、ウェル当たり0.5mLずつ、24穴マルチウェルプレートに分注し、2日間、5%CO、37℃の条件下にて培養し、その後以下に示すそれぞれの溶液条件で処置を行った。
対照として無細胞状態(ブランク)、何も加えていない0.3%DMSOおよびSITSのみを添加したもの(SITS−500)、試験群として0.3%DMSO中に溶解した1μMのスタウロスポリン溶液(STS−1)あるいは1μMのスタウロスポリン溶液および125、250または500μMのSITSの混合溶液(STS−1+SITS−125、STS−1+SITS−250、STS−1+SITS−500)を用いて、5%CO、37℃にて、1時間培養した。その後、各ウェルに添加したそれぞれの条件の溶液を吸引除去し、PBS(−)をウェル当たり0.5mLずつ加えてすぐにこれを吸引除去した後、引き続き以下の処置を行った。すなわち、最初の1時間にスタウロスポリンとSITSを含む混合溶液またはSITSを含む溶液条件を与えたウェルは同濃度のSITSと0.3%DMSOのみを含む培養液(10%濃度となるようウシ胎児血清を添加したD−MEM)を、それ以外の溶液条件を与えたウェルは0.3%DMSOのみを含む培養液(10%濃度となるようウシ胎児血清を添加したD−MEM)をそれぞれ与え、5%CO、37℃にて引き続き3時間培養した。この後、それぞれの条件の溶液を吸引除去後、一旦PBS(−)をウェル当たり0.5mLずつ加えて直ぐにこれを吸引除去し、培養液(10%濃度となるようウシ胎児血清を添加したD−MEM)を加えて5%CO、37℃にてさらに1日培養した後、WST−8により細胞生存率を測定した。結果を図8に示す。
この試験の結果、ウシ動脈内皮細胞株由来細胞を用いた場合でも、スタウロスポリンにより生じる細胞生存率の低下を、SITSの濃度依存的に抑制することができることがわかった。
次いで、複数種類の濃度のスタウロスポリンを用いて、細胞生存率の低下作用およびSITSによるその抑制作用のそれぞれにどのような効果が生じるかについて、調べた。具体的には、試験群として0.3%DMSO中に溶解した1μMまたは3μMのスタウロスポリン溶液(STS−1またはSTS−3)あるいは1μMまたは3μMのスタウロスポリン溶液および500μMのSITSの混合溶液(STS−1+SITS−500、STS−3+SITS−500)を用いて、3時間培養し、その後、各ウェルに添加したそれぞれの条件の溶液を吸引除去し、さらにPBS(−)をウェル当たり0.5mLずつ加えてすぐにこれを吸引除去した後、引き続き以下の処置を行った。すなわち、最初の3時間にスタウロスポリンとSITSを含む混合溶液またはSITSを含む溶液条件を与えたウェルは同濃度のSITSと0.3%DMSOのみを含む培養液(10%濃度となるようウシ胎児血清を添加したD−MEM)を、それ以外の溶液条件を与えたウェルは0.3%DMSOのみを含む培養液(10%濃度となるようウシ胎児血清を添加したD−MEM)をそれぞれ与え、5%CO、37℃にて引き続き2時間培養した。これ以外は、本実験例において上述した条件と同一の条件下で試験を行った。結果を図8に示す。
この試験の結果、スタウロスポリンにより生じる細胞生存率の低下は、スタウロスポリンの濃度によらず、SITSにより抑制することができることがわかった。
産業上の利用可能性
本発明により、心臓・血管系細胞細胞において、誘導されたアポトーシスをClチャネル阻害剤で処理することにより、そのアポトーシスを抑制することができることが明らかになった。この結果、本発明に開示した条件下で、アポトーシス刺激された心臓・血管系細胞に対する、被検物質のアポトーシス抑制効果を調べることにより、当該未知の被検物質が心臓・血管系細胞でのアポトーシスを抑制するかどうか、ひいては心疾患に対する治療効果あるいは予防効果を有するかどうかを調べることができる。
【図面の簡単な説明】
図1は、ラット初代培養心筋細胞において、24穴マルチウェルプレート上で、125、250または500μMのSITSによる、スタウロスポリン(STS−1)により誘導される細胞生存率の低下の抑制効果を示す図である。各カラムは平均値、バーは±標準誤差(SE)を示す(以下、同様)。
図2は、ラット初代培養心筋細胞において、24穴マルチウェルプレート上で、500または1000μMのSITSによる、スタウロスポリン(STS−1)により誘導される細胞生存率の低下の抑制効果を示す図である。
図3は、ラット初代培養心筋細胞において、96穴マルチウェルプレート上で、250または500μMのSITSによる、スタウロスポリン(STS−1)により誘導される細胞生存率の低下の抑制効果を示す図である。
図4は、ラット初代培養心筋細胞において、24穴マルチウェルプレート上で、62.5、125または250μMのDIDSによる、スタウロスポリン(STS−1)により誘導される細胞生存率の低下の抑制効果を示す図である。
図5は、ラット初代培養心筋細胞において、12穴マルチウェルプレート上で、250μMのDIDSによる、スタウロスポリン(STS−1)により誘導されるcaspase−3活性の上昇の抑制効果を示す図である。
図6は、ラット初代培養心筋細胞において、24穴マルチウェルプレート上で、HCO 無添加培養液中でもスタウロスポリン(STS−1)により細胞生存率の低下が誘導されること、および、62.5、125または250μMのDIDSによる、STS−1により誘導される細胞生存率の低下の抑制効果を示す図である。
図7は、ラット初代培養心筋細胞において、96穴マルチウェルプレート上で、HCO 無添加培養液中でもスタウロスポリン(STS−1)により細胞生存率の低下が誘導されること、および、125、250または500μMのSITSによる、STS−1により誘導される細胞生存率の低下の抑制効果を示す図である。
図8は、ウシ動脈内皮細胞由来細胞株において、24穴マルチウェルプレート上で、125、250または500μMのSITSによる、スタウロスポリン(STS−1)により誘導される細胞生存率の低下の抑制効果を示す図である。
図9は、ウシ動脈内皮細胞由来細胞株において、24穴マルチウェルプレート上で、500μMのSITSによる、スタウロスポリン(STS−1またはSTS−3)により誘導される細胞生存率の低下の抑制効果を示す図である。

Claims (7)

  1. 心臓・血管系細胞にアポトーシスを誘導する工程;
    被検物質であるClチャネル阻害剤で処理する工程;
    心臓・血管系細胞のアポトーシス性細胞死の抑制効果により被検物質の心疾患に対する治療効果および/または予防効果を判定する工程;
    を含有することを特徴とする、心疾患治療剤および/または心疾患予防剤のスクリーニング方法。
  2. 心臓・血管系細胞が培養心筋細胞および/または培養血管内皮細胞である、請求項1に記載の方法。
  3. アポトーシス性細胞死の抑制効果を、細胞生存率;細胞容積減少;チトクロームc放出;カスパーゼの活性化;DNAの断片化;アポトーシス小体の形成;アポトーシス関連特異抗原の発現;により測定する、請求項1または2に記載の方法。
  4. アポトーシスの誘導および被検物質の処理を同時に行う、請求項1〜3のいずれか1項に記載の方法。
  5. アポトーシスの誘導および被検物質の処理を逐次的に行う、請求項1〜3のいずれか1項に記載の方法。
  6. 心疾患が、虚血性心疾患である、請求項1〜5のいずれか1項に記載の方法。
  7. Clチャネル阻害剤を有効成分として含有する、心疾患治療剤。
JP2003519408A 2001-08-08 2002-08-07 心疾患治療剤 Withdrawn JPWO2003014727A1 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2001240852 2001-08-08
JP2001240852 2001-08-08
JP2001353047 2001-11-19
JP2001353047 2001-11-19
JP2002092363 2002-03-28
JP2002092363 2002-03-28
PCT/JP2002/008069 WO2003014727A1 (fr) 2001-08-08 2002-08-07 Medicaments pour maladies cardiaque

Publications (1)

Publication Number Publication Date
JPWO2003014727A1 true JPWO2003014727A1 (ja) 2004-11-25

Family

ID=27347299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003519408A Withdrawn JPWO2003014727A1 (ja) 2001-08-08 2002-08-07 心疾患治療剤

Country Status (4)

Country Link
US (1) US20050003455A1 (ja)
EP (1) EP1426762A4 (ja)
JP (1) JPWO2003014727A1 (ja)
WO (1) WO2003014727A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2778126A1 (en) * 2003-06-24 2005-01-13 University Of Connecticut Methods of inhibiting vascular permeability and apoptosis
WO2006059423A1 (ja) * 2004-12-02 2006-06-08 Japan Science And Technology Agency 過興奮性の細胞傷害によって生じる疾患を治療するための薬剤および方法
US10745663B2 (en) * 2015-07-17 2020-08-18 Ares Trading S.A. Methods for modulating production profiles of recombinant proteins

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489612A (en) * 1991-08-23 1996-02-06 The University Of Alabama At Birmingham Research Foundation Calixarene chloride-channel blockers
JPH11510479A (ja) * 1995-06-07 1999-09-14 ネオルックス コーポレイション タモキシフェン類似体による心臓血管疾病の予防及び治療
US6127392A (en) * 1997-08-05 2000-10-03 American Home Products Corporation Anthranilic acid analogs
HUP0103673A3 (en) * 1998-10-22 2003-03-28 Neurosearch As Substituted phenyl derivatives, their preparation and use
US6127932A (en) * 1998-12-23 2000-10-03 Carrier Corporation Optical flame sensor having opaque hollow tube
JP3931022B2 (ja) * 2000-06-27 2007-06-13 独立行政法人科学技術振興機構 細胞死抑制剤
GB0017084D0 (en) * 2000-07-13 2000-08-30 Univ Bristol Inhibition of the cystic fibrosis transmembrane conductance regulator chloride channel

Also Published As

Publication number Publication date
EP1426762A1 (en) 2004-06-09
WO2003014727A1 (fr) 2003-02-20
EP1426762A4 (en) 2007-05-09
US20050003455A1 (en) 2005-01-06

Similar Documents

Publication Publication Date Title
Bialik et al. The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes
JP6277127B2 (ja) インスリン様成長因子1による細胞の活性化を阻害するための方法
AU2009291747B2 (en) Methods for inhibiting ocular angiogenesis
WO2007058384A1 (en) Method of suppressing replication of hepatitis c virus, inhibitor of replication of the virus and method of screening for the same
Prabhu et al. β-Adrenergic receptor blockade modulates Bcl-XS expression and reduces apoptosis in failing myocardium
KR20100113623A (ko) Aβ 올리고머에 특이적으로 결합하는 항체 및 그의 이용
JP2003125786A (ja) 可溶型rageタンパク質
KR20190103154A (ko) 암의 치료법을 위한 brd4 억제제 및 항폴레이트의 조합
KR20190013926A (ko) 폐혈관 질환 치료용 조성물 및 방법
US20170202910A1 (en) Differentiation marker and differentiation control of eye cell
US20060134119A1 (en) Drugs containing galectin 9
Zhang et al. A1 and A2b adenosine receptors regulate GPX4 against ferroptosis of cardiomyocytes in myocardial infarction rat model and in vitro
JPWO2003014727A1 (ja) 心疾患治療剤
EP0714290A1 (en) Compositions and methods for the detection and treatment of protein trafficking disorders and increasing secretory protein production
US10752901B2 (en) Inhibition of ferrochelatase as an antiangiogenic therapy
US20080248032A1 (en) Compositions and methods for protection against cardiac and/or central nervous system tissue injury by inhibiting sphingosine-1-phosphate lyase
US8790887B2 (en) Screening methods for compounds that modulate ARF-6 mediated endosomal redistribution
Zhu et al. Autophagy in Load‐Induced Heart Disease
KR101808763B1 (ko) 방사선 피폭에 의한 심장 손상 예측용 바이오마커 및 그 예측방법
Zhang et al. Nogo-B mediates endothelial oxidative stress and inflammation to promote coronary atherosclerosis in pressure-overloaded mouse hearts
JP6854515B2 (ja) 解糖系代謝制御物質のスクリーニング方法及び解糖系代謝制御剤
WO2012029722A1 (ja) スクリーニング方法
WO2023210405A1 (ja) 変異型の神経変性疾患関連タンパク質
WO2001089581A1 (fr) Compositions medicamenteuses renfermant le gene de la prostacyline synthase
JP2003128700A (ja) 可溶型rage測定法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070511