JPWO2003014421A1 - Method for producing high-purity nickel, high-purity nickel, sputtering target comprising the same, and thin film formed by the sputtering target - Google Patents

Method for producing high-purity nickel, high-purity nickel, sputtering target comprising the same, and thin film formed by the sputtering target Download PDF

Info

Publication number
JPWO2003014421A1
JPWO2003014421A1 JP2003519547A JP2003519547A JPWO2003014421A1 JP WO2003014421 A1 JPWO2003014421 A1 JP WO2003014421A1 JP 2003519547 A JP2003519547 A JP 2003519547A JP 2003519547 A JP2003519547 A JP 2003519547A JP WO2003014421 A1 JPWO2003014421 A1 JP WO2003014421A1
Authority
JP
Japan
Prior art keywords
impurities
nickel
anolyte
iron
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003519547A
Other languages
Japanese (ja)
Other versions
JP3876253B2 (en
Inventor
新藤 裕一朗
裕一朗 新藤
竹本 幸一
幸一 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Publication of JPWO2003014421A1 publication Critical patent/JPWO2003014421A1/en
Application granted granted Critical
Publication of JP3876253B2 publication Critical patent/JP3876253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/06Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese
    • C25C1/08Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese of nickel or cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Abstract

電解液としてニッケル含有溶液を用いて電解する際に、アノライトをpH2〜5に調整し、アノライトに含有されている鉄、コバルト、銅等の不純物を、酸化剤を入れて該不純物を水酸化物として沈殿除去するか、若しくは予備電解により該不純物を除去するか、又はNi箔を入れて置換反応により該不純物を除去するかの、いずれか1又は2以上の方法を組合せることにより不純物を除去した後、さらにフィルターを使用して不純物を除去し、除去後の液をカソライトとして使用し電解する。不純物が多く含有されるニッケル原料から、ニッケル含有溶液を用いて電解精製する簡便な方法に関し、純度5N(99.999wt%)以上の高純度ニッケルを効率的に製造する技術を提供する。When electrolysis is performed using a nickel-containing solution as an electrolytic solution, the anolyte is adjusted to pH 2 to 5, and impurities such as iron, cobalt, and copper contained in the anolyte are added with an oxidizing agent to convert the impurities to hydroxide. The impurities are removed by a combination of one or more of the following methods: removing the impurities by precipitation, removing the impurities by preliminary electrolysis, or removing the impurities by a substitution reaction with a Ni foil. After that, impurities are further removed using a filter, and the solution after the removal is used as catholyte for electrolysis. Provided is a technique for efficiently producing high-purity nickel having a purity of 5N (99.999 wt%) or more with respect to a simple method for electrolytically refining a nickel raw material containing many impurities using a nickel-containing solution.

Description

技術分野
この発明は、ニッケル含有溶液を用いて電解精製により純度5N(99.999wt%)以上の高純度ニッケルを製造する方法、高純度ニッケル、同高純度ニッケルからなるスパッタリングターゲット及び該スパッタリングターゲットにより形成した薄膜に関する。
背景技術
一般に、高純度ニッケルは、アルカリ金属、放射性元素、遷移金属元素、ガス成分を極力減少させることが要求されており、VLSIの電極及び配線の形成、あるいは磁性薄膜を形成するための、特にスパッタリングターゲット材として広範囲に使用されている。
Na、K等のアルカリ金属はゲート絶縁膜中を容易に移動し、MOS−LSI界面特性の劣化原因となる。U,Th等の放射性元素は、放出するα線によって素子のソフトエラーの原因となる。一方、Fe等の遷移金属元素も界面接合部のトラブルの原因となる。
さらに、炭素、酸素などのガス成分も、スパッタリングの際のパーティクル発生原因となるため好ましくない。
一般に、5Nレベルの高純度ニッケルを製造する場合には、イオン交換や溶媒抽出等で溶液を精製し、これをさらに電解採取又は電解精製によって高純度化を行うことが普通であるが、このような溶媒抽出工程をとる方法は工程が複雑であり、また特殊な溶媒を必要とすることから抽出剤の安全を考慮する必要があるなど、効率的でないという問題があった。
5Nレベルの高純度ニッケルを製造する場合に、ニッケル含有溶液を用いて電解により製造するのが比較的簡単な方法と考えられるが、上記のような溶媒抽出等の工程を経るものは、必ずしも効率的とは言えなかった。
発明の開示
本発明は、鉄、炭素、酸素等が多く含有されるニッケル原料から、ニッケル含有溶液を用いて電解する簡便な方法を提供するものであり、同原料から純度5N(99.999wt%)以上の高純度ニッケルを効率的に製造する技術を提供することを目的としたものである。
上記問題点を解決するため、ニッケル含有溶液のアノライトから鉄等の不純物を水酸化物として除去し、除去後の液をカソライトとして使用することにより、能率良く高純度ニッケルを製造できるとの知見を得た。
この知見に基づき、本発明は
1.電解液としてニッケル含有溶液を用いて電解する際に、アノライトをpH2〜5に調整し、アノライトに含有されている鉄、コバルト、銅等の不純物を、酸化剤を入れて該不純物を水酸化物として沈殿除去するか、若しくは予備電解により該不純物を除去するか、又はNi箔を入れて置換反応により該不純物を除去するかの、いずれか1又は2以上の方法を組合せることにより不純物を除去した後、さらにフィルターを使用して不純物を除去し、除去後の液をカソライトとして使用し電解することを特徴とする高純度ニッケルの製造方法
2.アノードとカソードを隔膜で仕切り、アノライトを間歇的又は連続的に抜き出し、これに酸化剤を入れて鉄等の不純物を水酸化物として沈殿させた後、さらにフィルターを使用して不純物を除去し、除去後の液をカソード側に間歇的又は連続的に入れることを特徴とする上記1記載の高純度ニッケルの製造方法
3.アノードとカソードを隔膜で仕切り、アノライトを間歇的又は連続的に抜き出し、このアノライトを予備電解して鉄、コバルト、銅等の不純物を除去した後、さらにフィルターを使用して不純物を除去し、除去後の液をカソード側に間歇的又は連続的に入れることを特徴とする上記第1記載の高純度ニッケルの製造方法。
4.アノードとカソードを隔膜で仕切り、アノライトを間歇的又は連続的に抜き出し、このアノライトにニッケル箔を入れて置換反応により、鉄、コバルト、銅等の不純物を除去した後、さらにフィルターを使用して不純物を除去し、除去後の液をカソード側に間歇的又は連続的に入れることを特徴とする上記1記載の高純度ニッケルの製造方法。
5.フィルターとして活性炭を使用することを特徴とする上記1〜4のそれぞれに記載の高純度ニッケルの製造方法
6.フィルター通過後の、電解液中の鉄の濃度が1mg/L以下であることを特徴とする上記1〜5のそれぞれに記載の高純度ニッケルの製造方法
7.電解によって得られた電析ニッケルを電子ビーム溶解等の真空溶解を行うことを特徴とする上記1〜6のそれぞれに記載の高純度ニッケルの製造方法
8.ガス成分を除き5N(99.999wt%)以上であり、不純物としてO:30wtppm以下、C,N,S,P,Fがそれぞれ10wtppm以下であることを特徴とする高純度ニッケル、同高純度ニッケルからなるターゲット及び同ターゲットを使用してスパッタリングにより形成した薄膜
9.上記1〜7により製造したガス成分を除き5N(99.999wt%)以上であり、不純物としてO:30wtppm以下、C,N,S,P,Fがそれぞれ10wtppm以下であることを特徴とする高純度ニッケル、同高純度ニッケルからなるターゲット及び同ターゲットを使用してスパッタリングにより形成した薄膜
を提供するものである。
発明の実施の形態
図1に示す電解槽1を用い、4Nレベルの塊状のニッケル原料2をアノードバスケット3に入れてアノード5とし、カソード4にニッケル等を使用して電解を行う。ニッケル原料には、主として鉄、炭素、酸素等が多く含有されている。
電解に際しては、浴温10〜70°C、ニッケル濃度20〜120g/L、電流密度0.1〜10A/dmで実施する。電流密度0.1A/dm未満では生産性が悪く、また10A/dmを超えるとノジュールが発生してしまい、アノード5とカソード4が接触するため好ましくないので、電流密度は0.1〜10A/dmの範囲とする。
前記アノード5とカソード4は隔膜6で仕切り、アノライトを間歇的又は連続的に抜き出す。アノライトはpH2〜5に調整されている。カソードボックスは、隔膜を介して外側の液(アノライト)と分離している。抜き出したアノライトに酸化剤7を入れて鉄、コバルト、銅等の不純物を水酸化物として沈殿させる。すなわち、2価の鉄が酸化剤7により3価となりFe(OH)として沈殿する。酸化剤7としては過酸化水素、硝酸等が使用できる。
また、抜き出したアノライトを予備電解槽に入れ、電解により鉄、コバルト、銅等の不純物を除去することができる。
さらにまた、抜き出したアノライトを置換槽に入れ、ニッケル箔を使用して電解液中の鉄、コバルト、銅等の不純物との置換を行いこれらの不純物を除去することができる。
図1は、酸化剤を入れる工程を示しているが、この工程7を予備電解又は置換方法の置き換えることにより、容易に除去できる。
上記の酸化剤、予備電解又は置換方法のそれぞれを組合せて該不純物を除去することもできる。
この沈殿物等の不純物を、フィルター8を使用して除去する。フィルターには、活性炭を使用するのが良い。活性炭のフィルター8は前記沈殿した酸化物等の不純物以外に、容器等から溶出する有機物を除去する効果もある。以上によって、電解液中の鉄の濃度を1mg/L以下とすることができる。
不純物の除去後、この液をカソード側に間歇的又は連続的に導入し、カソライトとして使用して電解精製する。
電流効率は80〜100%となる。以上によって、純度5Nの電析ニッケル(カソードに析出)が得られる。すなわち、ガス成分を除き5N(99.999wt%)以上であり、不純物としてO:30wtppm以下、C,N,S,P,F,Hをそれぞれ10wtppm以下とすることができる。
さらに、電解によって得られた電析ニッケルを電子ビーム溶解等の真空溶解を行うことができる。この真空溶解によって、Na、K等のアルカリ金属やその他の揮発性不純物及びガス成分を効果的に除去できる。
また、本発明においては、イオン交換樹脂や溶媒抽出を行っていないので、有機物が混入することがなく、有機溶媒に起因する不純物元素を抑制できる。
実施例及び比較例
次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。
(実施例1)
図1に示すような電解槽を用い、4Nレベルの塊状のニッケル原料1kgをアノードとし、カソードに2Nレベルのニッケル板を使用して電解を行った。原料の不純物の含有量を表1に示す。ニッケル原料には、主として鉄、炭素、酸素等が多く含有されている。
浴温50°C、硫酸系電解液で弗酸を1mol/Lを添加し、ニッケル濃度50g/L、電流密度2A/dm、電解時間40hr実施した。
液のpHを2に調節した。この時、アノライトを間歇的に抜き出す。抜き出したアノライトに過酸化水素(H)を入れて、2価の鉄を3価に変え、鉄等の不純物を水酸化物Fe(OH)として沈殿させた。
さらに、この沈殿物等の不純物を、活性炭フィルターを使用して除去した。以上によって、電解液中の鉄の濃度が1mg/L以下とすることができた。
不純物の除去後、この液をカソード側すなわちアノードバスケット内に間歇的に導入し、カソライトとして使用して電解した。
電析ニッケル(カソードに析出)約1kgを得た。純度は5Nを達成した。すなわち、ガス成分を除き5N(99.999wt%)以上であり、不純物としてO:30wtppm以下、C,N,S,P,Fがそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、表1に示す。

Figure 2003014421
(実施例2)
実施例1と同じ電解槽を用い、4Nレベルの塊状の原料ニッケルをアノードとし、カソードに3Nレベルのニッケル板を使用して電解を行った。
浴温30°C、塩酸系電解液で、ニッケル濃度80g/L、電流密度5A/dm、電解時間40hr実施した。
実施例1と同様に、液のpHを2に調節した。この時、アノライトを間歇的に抜き出す。抜き出したアノライトに過酸化水素(H)を入れて、2価の鉄を3価に変え、鉄等の不純物を水酸化物Fe(OH)として沈殿させた。
さらに、この沈殿物等の不純物を、活性炭フィルターを使用して除去した。以上によって、電解液中の鉄の濃度が1mg/L以下とすることができた。
不純物の除去後、この液をカソード側すなわちアノードバスケット内に間歇的に導入し、カソライトとして使用して電解した。
電析ニッケル(カソードに析出)約1kgを得た。この電析ニッケルをさらに電子ビーム溶解した。電子ビーム溶解条件は、1A、30kW、真空度2〜5×10−4mmHgで実施した。以上の結果を、同様に表1に示す。
(比較例1)
図1に示すような電解槽を用い、4Nレベルの塊状のニッケル原料1kgをアノードとし、カソードに3Nレベルのニッケル板を使用して電解を行った。原料の不純物の含有量を表1に示す。
浴温50°C、硫酸系電解液で弗酸を1mol/Lを添加し、ニッケル濃度50g/L、電流密度2A/dm、電解時間40hr実施した。
液のpHを2は調節した。この時、アノライトを抜き出さず、そのまま電解を続けた。
電析ニッケル(カソードに析出)約1kgを得た。
以上の結果を、同様に表1に示す。
表1に示すように、実施例1では、原料の鉄50wtppmが2wtppmに、酸素200wtppmが20wtppmに、炭素50wtppmが10wtppm未満、C,N,S,P,F10wtppmをそれぞれ10wtppm未満とすることができた。
また、実施例2では、鉄1wtppm、酸素10wtppm未満、その他の不純物10wtppm未満とすることができた。
これに対し、比較例1では、C,N,S,P,F10wtppmをそれぞれ10wtppm未満とすることができたが、鉄50wtppm、また酸素60wtppmで実施例に比べ精製効果が劣り、特に鉄の除去が困難であった。
(実施例3)
3Nレベルの塊状のニッケル原料1kgをアノードとし、カソードに2Nレベルのアルミニウム板を使用して電解を行った。原料の不純物の含有量を表2に示す。このニッケル原料には、鉄、コバルト、銅、炭素、酸素等が多く含有されている。
電解条件は、浴温40°C、硫酸系電解液に塩酸を1mol/Lを添加し、ニッケル濃度100g/L、電流密度3A/dm、電解時間25hr実施した。
液のpHは2.5に調節した。この時、アノライトを間歇的に抜き出す。抜き出したアノライトは、予備電解槽で電流密度0.1A/dmで電解を行い、鉄、コバルト、銅等を除去した。
さらに、活性炭フィルターを使用して電解液中の有機物を除去した。以上によって、電解液中の鉄、コバルト、銅等の濃度を1mg/L以下にすることができた。
不純物の除去後、この液をカソード側すなわちアノードバスケット内に間歇的に導入し、カソライトとして使用して電解した。
その結果、電析ニッケル約1.1kgを得た。純度は5Nを達成した。すなわち、ガス成分を除き5N以上であり、不純物としてO:20wtppm、C,N,S,P,Fはそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、表2に示す。
(実施例4)
3Nレベルの塊状のニッケル原料1kgをアノードとし、カソードに2Nレベルのチタン板を使用して電解を行った。原料の不純物の含有量を表2に示す。このニッケル原料には、鉄、コバルト、銅、炭素、酸素等が多く含有されている。
電解条件は、浴温60°C、硫酸系電解液に塩酸を1mol/Lを添加し、ニッケル濃度100g/L、電流密度1.5A/dm、電解時間50hr実施した。
液のpHは2.7に調節した。この時、アノライトを間歇的に抜き出す。抜き出したアノライトは、置換槽で2NレベルのNi箔で電解液中の不純物との置換を行い、鉄、コバルト、銅等を除去した。
さらに、活性炭フィルターを使用して電解液中の有機物を除去した。以上によって、電解液中の鉄、コバルト、銅等の濃度を1mg/L以下にすることができた。
不純物の除去後、この液をカソード側すなわちアノードバスケット内に間歇的に導入し、カソライトとして使用して電解した。
その結果、電析ニッケル約1.1kgを得た。純度は5Nを達成した。すなわち、ガス成分を除き5N以上であり、不純物としてO:20wtppm、C,N,S,P,Fはそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、同様に表2に示す。
(実施例5)
上記実施例3の工程において、アノライトを間歇的に抜き出し、抜き出したアノライトを予備電解槽で電流密度0.1A/dmで電解を行い、これをさらに実施例4の置換槽における置換反応と同一の条件で鉄、コバルト、銅等の不純物を除去した(予備電解と置換反応の組合せ)。
そして、この工程以外は実施例3と同一の工程により電析ニッケル約1.1kgを得た。この結果、純度はガス成分を除き5N以上であり、不純物としてO:10wtppm、C,N,S,P,Fはそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、同様に表2に示す。
Figure 2003014421
以上から、本発明の、アノードとカソードを隔膜で仕切り、該アノライトを間歇的又は連続的に抜き出し、これに酸化剤を入れて鉄等の不純物を水酸化物として沈殿させ、さらにフィルターを使用して不純物を除去し、除去後の液をカソード側に間歇的又は連続的に入れて電解することは、鉄を効果的に除去し、高純度ニッケルを得る上で、簡便な方法でありかつ極めて有効であることが分かる。
発明の効果
以上に示すように、電解液としてニッケル含有溶液を用い、鉄、炭素、酸素等が多く含有されるニッケル原料から、ニッケル含有溶液を用いて電解精製する簡便な方法を提供するものであり、簡単な製造工程の改良により、同原料から純度5N(99.999wt%)以上の高純度ニッケルを効率的に製造できるという著しい効果を有する。
【図面の簡単な説明】
図1は、電解工程の概要を示す図である。TECHNICAL FIELD The present invention relates to a method for producing high-purity nickel having a purity of 5 N (99.999 wt%) or more by electrolytic refining using a nickel-containing solution, high-purity nickel, a sputtering target composed of the high-purity nickel, and the sputtering target. It relates to the formed thin film.
BACKGROUND ART In general, high-purity nickel is required to reduce alkali metals, radioactive elements, transition metal elements, and gas components as much as possible, and particularly for forming VLSI electrodes and wiring, or forming magnetic thin films, Widely used as a sputtering target material.
Alkali metals such as Na and K easily move in the gate insulating film and cause deterioration of MOS-LSI interface characteristics. Radioactive elements such as U and Th cause soft errors in the device due to emitted α-rays. On the other hand, transition metal elements such as Fe also cause troubles at the interface junction.
Further, gas components such as carbon and oxygen are not preferred because they also cause particles to be generated during sputtering.
In general, when producing high-purity nickel at the 5N level, it is common to purify the solution by ion exchange or solvent extraction and then further purify the solution by electrowinning or electrolytic refining. The method of employing a complicated solvent extraction step is inefficient because the steps are complicated and the safety of the extractant must be taken into consideration because a special solvent is required.
In the case of producing high-purity nickel of the 5N level, it is considered to be a relatively simple method to produce nickel by using a nickel-containing solution by electrolysis. It was not a target.
DISCLOSURE OF THE INVENTION The present invention provides a simple method for electrolyzing a nickel raw material containing a large amount of iron, carbon, oxygen and the like using a nickel-containing solution, and has a purity of 5N (99.999 wt%) from the raw material. The purpose of the present invention is to provide a technique for efficiently producing the above high-purity nickel.
In order to solve the above problems, the knowledge that impurities such as iron are removed from the anolyte of the nickel-containing solution as hydroxide and the liquid after the removal is used as catholyte can efficiently produce high-purity nickel. Obtained.
Based on this finding, the present invention provides: When electrolysis is performed using a nickel-containing solution as an electrolytic solution, the anolyte is adjusted to pH 2 to 5, and impurities such as iron, cobalt, and copper contained in the anolyte are added to an oxidizing agent to convert the impurities to hydroxide. The impurities are removed by a combination of one or more of the following methods: removing the impurities by precipitation, removing the impurities by preliminary electrolysis, and removing the impurities by a substitution reaction with a Ni foil. After that, impurities are further removed using a filter, and the solution after the removal is used as catholyte to perform electrolysis. The anode and cathode are separated by a diaphragm, the anolyte is extracted intermittently or continuously, and an oxidizing agent is added thereto to precipitate impurities such as iron as hydroxide, and then the impurities are removed using a filter. 2. The method for producing high-purity nickel as described in 1 above, wherein the liquid after the removal is intermittently or continuously supplied to the cathode side. The anode and cathode are separated by a diaphragm, the anolyte is extracted intermittently or continuously, and this anolyte is pre-electrolyzed to remove impurities such as iron, cobalt, and copper, and then further removed using a filter to remove impurities. 2. The method for producing high-purity nickel according to the first aspect, wherein the subsequent solution is intermittently or continuously supplied to the cathode side.
4. The anode and the cathode are separated by a diaphragm, the anolyte is extracted intermittently or continuously, and nickel foil is put into the anolyte to remove impurities such as iron, cobalt, and copper by a substitution reaction. 2. The method for producing high-purity nickel as described in 1 above, wherein the solution is removed intermittently or continuously on the cathode side.
5. 5. The method for producing high-purity nickel according to any one of 1 to 4 above, wherein activated carbon is used as a filter. 6. The method for producing high-purity nickel according to any one of 1 to 5 above, wherein the concentration of iron in the electrolyte after passing through the filter is 1 mg / L or less. 7. The method for producing high-purity nickel according to any one of 1 to 6 above, wherein the electrodeposited nickel obtained by the electrolysis is subjected to vacuum melting such as electron beam melting. High-purity nickel, characterized by being 5N (99.999 wt%) or more excluding gas components, O: 30 wtppm or less as impurities, and C, N, S, P and F being 10 wtppm or less, respectively. And a thin film formed by sputtering using the target. 5N (99.999 wt%) or more except for the gas components produced by the above 1 to 7; O: 30 wtppm or less as impurities; and C, N, S, P, and F each being 10 wtppm or less. An object of the present invention is to provide a high purity nickel, a target made of the high purity nickel, and a thin film formed by sputtering using the target.
BEST MODE FOR CARRYING OUT THE INVENTION Using an electrolytic cell 1 shown in FIG. 1, a 4N-level massive nickel raw material 2 is put into an anode basket 3 to form an anode 5, and electrolysis is performed using nickel or the like for a cathode 4. The nickel raw material mainly contains a large amount of iron, carbon, oxygen and the like.
The electrolysis is performed at a bath temperature of 10 to 70 ° C., a nickel concentration of 20 to 120 g / L, and a current density of 0.1 to 10 A / dm 2 . If the current density is less than 0.1 A / dm 2 , the productivity is poor. If the current density exceeds 10 A / dm 2 , nodules are generated and the anode 5 and the cathode 4 come into contact with each other. The range is 10 A / dm 2 .
The anode 5 and the cathode 4 are separated by a diaphragm 6, and the anolyte is intermittently or continuously extracted. Anolyte is adjusted to pH 2-5. The cathode box is separated from the outer liquid (anolyte) via a diaphragm. An oxidizing agent 7 is added to the extracted anolyte to precipitate impurities such as iron, cobalt and copper as hydroxide. That is, divalent iron becomes trivalent by the oxidizing agent 7 and precipitates as Fe (OH) 3 . As the oxidizing agent 7, hydrogen peroxide, nitric acid or the like can be used.
Further, the extracted anolyte can be put in a preliminary electrolytic cell, and impurities such as iron, cobalt, and copper can be removed by electrolysis.
Furthermore, the extracted anolyte is placed in a replacement tank, and the impurities such as iron, cobalt, and copper in the electrolytic solution are replaced with nickel foil to remove these impurities.
Although FIG. 1 shows a step of adding an oxidizing agent, the step 7 can be easily removed by replacing the step 7 with a preliminary electrolysis or replacement method.
The impurities can also be removed by combining each of the above-mentioned oxidizing agents, pre-electrolysis or substitution methods.
The impurities such as the precipitate are removed using the filter 8. Activated carbon should be used for the filter. The activated carbon filter 8 has an effect of removing organic substances eluted from a container or the like, in addition to the impurities such as the precipitated oxide. As described above, the concentration of iron in the electrolyte can be reduced to 1 mg / L or less.
After removing the impurities, this solution is intermittently or continuously introduced into the cathode side, and electrolytically purified using as a catholyte.
The current efficiency is 80-100%. Thus, electrodeposited nickel having a purity of 5N (precipitated on the cathode) is obtained. That is, it is 5N (99.999 wt%) or more, excluding gas components, O: 30 wtppm or less as impurities, and C, N, S, P, F, and H can each be 10 wtppm or less.
Further, the electrodeposited nickel obtained by electrolysis can be subjected to vacuum melting such as electron beam melting. By this vacuum melting, alkali metals such as Na and K and other volatile impurities and gas components can be effectively removed.
Further, in the present invention, since no ion-exchange resin or solvent extraction is performed, no organic matter is mixed, and impurity elements due to the organic solvent can be suppressed.
Examples and Comparative Examples Next, examples of the present invention will be described. This embodiment is merely an example, and the present invention is not limited to this example. That is, within the scope of the technical idea of the present invention, all aspects or modifications other than the examples are included.
(Example 1)
Using an electrolytic cell as shown in FIG. 1, electrolysis was carried out using 1 kg of a 4N-level massive nickel raw material as an anode and a 2N-level nickel plate as a cathode. Table 1 shows the impurity contents of the raw materials. The nickel raw material mainly contains a large amount of iron, carbon, oxygen and the like.
At a bath temperature of 50 ° C., 1 mol / L of hydrofluoric acid was added with a sulfuric acid-based electrolyte, nickel concentration was 50 g / L, current density was 2 A / dm 2 , and electrolysis time was 40 hours.
The pH of the solution was adjusted to 2. At this time, the anolyte is extracted intermittently. Hydrogen peroxide (H 2 O 2 ) was added to the extracted anolyte to convert divalent iron to trivalent, and impurities such as iron were precipitated as hydroxide Fe (OH) 3 .
Further, impurities such as precipitates were removed using an activated carbon filter. As described above, the concentration of iron in the electrolytic solution could be reduced to 1 mg / L or less.
After removing the impurities, this solution was intermittently introduced into the cathode side, that is, into the anode basket, and electrolyzed using as a catholyte.
About 1 kg of electrodeposited nickel (deposited on the cathode) was obtained. Purity achieved 5N. That is, it was 5 N (99.999 wt%) or more, excluding gas components, O: 30 wt ppm or less as impurities, and C, N, S, P, and F were each 10 wt ppm or less. The above results are shown in Table 1 in comparison with the raw materials.
Figure 2003014421
(Example 2)
Using the same electrolytic cell as in Example 1, electrolysis was performed using a 4N-level massive raw material nickel as an anode and a 3N-level nickel plate as a cathode.
The bath temperature was 30 ° C., the concentration of nickel was 80 g / L, the current density was 5 A / dm 2 , and the electrolysis time was 40 hours with a hydrochloric acid-based electrolyte.
The pH of the solution was adjusted to 2 as in Example 1. At this time, the anolyte is extracted intermittently. Hydrogen peroxide (H 2 O 2 ) was added to the extracted anolyte to convert divalent iron to trivalent, and impurities such as iron were precipitated as hydroxide Fe (OH) 3 .
Further, impurities such as precipitates were removed using an activated carbon filter. As described above, the concentration of iron in the electrolytic solution could be reduced to 1 mg / L or less.
After removing the impurities, this solution was intermittently introduced into the cathode side, that is, into the anode basket, and electrolyzed using as a catholyte.
About 1 kg of electrodeposited nickel (deposited on the cathode) was obtained. The deposited nickel was further subjected to electron beam melting. Electron beam melting conditions were 1A, 30 kW, and a degree of vacuum of 2 to 5 × 10 −4 mmHg. The above results are also shown in Table 1.
(Comparative Example 1)
Using an electrolytic cell as shown in FIG. 1, electrolysis was performed using 1 kg of a 4N-level massive nickel raw material as an anode and a 3N-level nickel plate as a cathode. Table 1 shows the impurity contents of the raw materials.
At a bath temperature of 50 ° C., 1 mol / L of hydrofluoric acid was added with a sulfuric acid-based electrolyte, nickel concentration was 50 g / L, current density was 2 A / dm 2 , and electrolysis time was 40 hours.
The pH of the solution was adjusted to 2. At this time, electrolysis was continued without extracting the anolyte.
About 1 kg of electrodeposited nickel (deposited on the cathode) was obtained.
The above results are also shown in Table 1.
As shown in Table 1, in Example 1, 50 wtppm of iron as a raw material can be reduced to 2 wtppm, oxygen of 200 wtppm can be reduced to 20 wtppm, carbon of 50 wtppm can be reduced to less than 10 wtppm, and C, N, S, P and F can be reduced to 10 wtppm. Was.
Further, in Example 2, it was possible to reduce the content to 1 wtppm of iron, less than 10 wtppm of oxygen, and less than 10 wtppm of other impurities.
On the other hand, in Comparative Example 1, C, N, S, P, and F at 10 wtppm could each be less than 10 wtppm. Was difficult.
(Example 3)
Electrolysis was performed using 1 kg of a 3N-level massive nickel raw material as an anode and a 2N-level aluminum plate as a cathode. Table 2 shows the impurity contents of the raw materials. This nickel raw material contains a large amount of iron, cobalt, copper, carbon, oxygen and the like.
The electrolysis conditions were as follows: a bath temperature of 40 ° C., 1 mol / L of hydrochloric acid added to a sulfuric acid-based electrolyte, a nickel concentration of 100 g / L, a current density of 3 A / dm 2 , and an electrolysis time of 25 hours.
The pH of the solution was adjusted to 2.5. At this time, the anolyte is extracted intermittently. The extracted anolyte was subjected to electrolysis at a current density of 0.1 A / dm 2 in a preliminary electrolytic cell to remove iron, cobalt, copper, and the like.
Further, an organic substance in the electrolytic solution was removed using an activated carbon filter. As described above, the concentration of iron, cobalt, copper, and the like in the electrolytic solution could be reduced to 1 mg / L or less.
After removing the impurities, this solution was intermittently introduced into the cathode side, that is, into the anode basket, and electrolyzed using as a catholyte.
As a result, about 1.1 kg of electrodeposited nickel was obtained. Purity achieved 5N. That is, it was 5 N or more except for gas components, O: 20 wtppm as impurities, and C, N, S, P, and F were each 10 wtppm or less. The above results are shown in Table 2 in comparison with the raw materials.
(Example 4)
Electrolysis was performed using 1 kg of a 3N-level massive nickel raw material as an anode and a 2N-level titanium plate as a cathode. Table 2 shows the impurity contents of the raw materials. This nickel raw material contains a large amount of iron, cobalt, copper, carbon, oxygen and the like.
The electrolysis conditions were as follows: a bath temperature of 60 ° C., 1 mol / L of hydrochloric acid added to a sulfuric acid-based electrolyte, a nickel concentration of 100 g / L, a current density of 1.5 A / dm 2 , and an electrolysis time of 50 hours.
The pH of the solution was adjusted to 2.7. At this time, the anolyte is extracted intermittently. The extracted anolyte was replaced with impurities in the electrolytic solution using a 2N-level Ni foil in a replacement tank to remove iron, cobalt, copper, and the like.
Further, an organic substance in the electrolytic solution was removed using an activated carbon filter. As described above, the concentration of iron, cobalt, copper, and the like in the electrolytic solution could be reduced to 1 mg / L or less.
After removing the impurities, this solution was intermittently introduced into the cathode side, that is, into the anode basket, and electrolyzed using as a catholyte.
As a result, about 1.1 kg of electrodeposited nickel was obtained. Purity achieved 5N. That is, it was 5N or more except for gas components, O: 20 wtppm as impurities, and C, N, S, P, and F could each be 10 wtppm or less. The above results are shown in Table 2 in comparison with the raw materials.
(Example 5)
In the process of Example 3, the anolyte was extracted intermittently, and the extracted anolyte was electrolyzed in a preliminary electrolytic cell at a current density of 0.1 A / dm 2 , which was further subjected to the same substitution reaction as in the substitution tank of Example 4. Under the conditions described above, impurities such as iron, cobalt, and copper were removed (combination of preliminary electrolysis and substitution reaction).
Except for this step, about 1.1 kg of electrodeposited nickel was obtained by the same steps as in Example 3. As a result, the purity was 5 N or more excluding gas components, and O: 10 wt ppm as impurities and C, N, S, P, and F could each be 10 wt ppm or less. The above results are shown in Table 2 in comparison with the raw materials.
Figure 2003014421
From the above, according to the present invention, the anode and the cathode are separated by a diaphragm, the anolyte is extracted intermittently or continuously, and an oxidizing agent is added thereto to precipitate impurities such as iron as hydroxide, and further use a filter. To remove impurities, and to intermittently or continuously put the liquid after the removal on the cathode side and perform electrolysis, it is a simple and extremely convenient method for effectively removing iron and obtaining high-purity nickel. It turns out to be effective.
Effect of the Invention As described above, a nickel-containing solution is used as an electrolytic solution, and iron, carbon, a nickel raw material containing a large amount of oxygen, etc., and a simple method for electrolytic purification using a nickel-containing solution is provided. There is a remarkable effect that high-purity nickel having a purity of 5N (99.999 wt%) or more can be efficiently produced from the same raw material by improving the simple production process.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of the electrolysis step.

【0003】
をカソード側に間歇的又は連続的に入れることを特徴とする上記1記載の高純度ニッケルの製造方法
3.アノードとカソードを隔膜で仕切り、アノライトを間歇的又は連続的に抜き出し、このアノライトを予備電解して鉄、コバルト、銅等の不純物を除去した後、さらにフィルターを使用して不純物を除去し、除去後の液をカソード側に間歇的又は連続的に入れることを特徴とする上記第1記載の高純度ニッケルの製造方法。
4.アノードとカソードを隔膜で仕切り、アノライトを間歇的又は連続的に抜き出し、このアノライトにニッケル箔を入れて置換反応により、鉄、コバルト、銅等の不純物を除去した後、さらにフィルターを使用して不純物を除去し、除去後の液をカソード側に間歇的又は連続的に入れることを特徴とする上記1記載の高純度ニッケルの製造方法。
5.フィルターとして活性炭を使用することを特徴とする上記1〜4のそれぞれに記載の高純度ニッケルの製造方法
6.フィルター通過後の、電解液中の鉄の濃度が1mg/L以下であることを特徴とする上記1〜5のそれぞれに記載の高純度ニッケルの製造方法
7.電解によって得られた電析ニッケルを電子ビーム溶解等の真空溶解を行うことを特徴とする上記1〜6のそれぞれに記載の高純度ニッケルの製造方法
8.削除
9.上記1〜7により製造したガス成分を除き5N(99.999wt%)以上であり、不純物としてO:30wtppm以下、C,N,S,
[0003]
2. The method for producing high-purity nickel according to 1 above, wherein the high-purity nickel is intermittently or continuously put on the cathode side. The anode and cathode are separated by a diaphragm, the anolyte is extracted intermittently or continuously, and this anolyte is pre-electrolyzed to remove impurities such as iron, cobalt, and copper, and then further removed using a filter to remove impurities. 2. The method for producing high-purity nickel according to the first aspect, wherein the subsequent solution is intermittently or continuously supplied to the cathode side.
4. The anode and the cathode are separated by a diaphragm, the anolyte is extracted intermittently or continuously, and nickel foil is put into the anolyte to remove impurities such as iron, cobalt, and copper by a substitution reaction. 2. The method for producing high-purity nickel as described in 1 above, wherein the solution is removed intermittently or continuously on the cathode side.
5. 5. The method for producing high-purity nickel according to any one of 1 to 4 above, wherein activated carbon is used as a filter. 6. The method for producing high-purity nickel according to any one of 1 to 5 above, wherein the concentration of iron in the electrolyte after passing through the filter is 1 mg / L or less. 7. The method for producing high-purity nickel according to any one of 1 to 6 above, wherein the electrodeposited nickel obtained by the electrolysis is subjected to vacuum melting such as electron beam melting. Delete 9. Except for the gas components produced by the above 1 to 7, the content is 5 N (99.999 wt%) or more, and O: 30 wt ppm or less as impurities, C, N, S,

【0006】
実施例及び比較例
次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。
(実施例1)
図1に示すような電解槽を用い、4Nレベルの塊状のニッケル原料1kgをアノードとし、カソードに2Nレベルのニッケル板を使用して電解を行った。原料の不純物の含有量を表1に示す。ニッケル原料には、主として鉄、炭素、酸素等が多く含有されている。
浴温50°C、硫酸系電解液で弗酸を1mol/Lを添加し、ニッケル濃度50g/L、電流密度2A/dm、電解時間40hr実施した。
液のpHを2に調節した。この時、アノライトを間歇的に抜き出す。抜き出したアノライトに過酸化水素(H)を入れて、2価の鉄を3価に変え、鉄等の不純物を水酸化物Fe(OH)として沈殿させた。
さらに、この沈殿物等の不純物を、活性炭フィルターを使用して除去した。以上によって、電解液中の鉄の濃度が1mg/L以下とすることができた。
不純物の除去後、この液をカソード側すなわちカソードバスケット内に間歇的に導入し、カソライトとして使用して電解した。
電析ニッケル(カソードに析出)約1kgを得た。純度は5Nを達成した。すなわち、ガス成分を除き5N(99.999wt%)以上であり、不純物としてO:30wtppm以下、C,N,S,P,Fがそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、表1に示す。
[0006]
Examples and Comparative Examples Next, examples of the present invention will be described. This embodiment is merely an example, and the present invention is not limited to this example. That is, within the scope of the technical idea of the present invention, all aspects or modifications other than the examples are included.
(Example 1)
Using an electrolytic cell as shown in FIG. 1, electrolysis was carried out using 1 kg of a 4N-level massive nickel raw material as an anode and a 2N-level nickel plate as a cathode. Table 1 shows the impurity contents of the raw materials. The nickel raw material mainly contains a large amount of iron, carbon, oxygen and the like.
At a bath temperature of 50 ° C., 1 mol / L of hydrofluoric acid was added with a sulfuric acid-based electrolyte, nickel concentration was 50 g / L, current density was 2 A / dm 2 , and electrolysis time was 40 hours.
The pH of the solution was adjusted to 2. At this time, the anolyte is extracted intermittently. Hydrogen peroxide (H 2 O 2 ) was added to the extracted anolyte to convert divalent iron to trivalent, and impurities such as iron were precipitated as hydroxide Fe (OH) 3 .
Further, impurities such as precipitates were removed using an activated carbon filter. As described above, the concentration of iron in the electrolytic solution could be reduced to 1 mg / L or less.
After removal of the impurities, this solution was intermittently introduced into the cathode side, that is, into the cathode basket, and used as catholyte for electrolysis.
About 1 kg of electrodeposited nickel (deposited on the cathode) was obtained. Purity achieved 5N. That is, it was 5 N (99.999 wt%) or more, excluding gas components, O: 30 wt ppm or less as impurities, and C, N, S, P, and F were each 10 wt ppm or less. The above results are shown in Table 1 in comparison with the raw materials.

【0008】
不純物の除去後、この液をカソード側すなわちカソードバスケット内に間歇的に導入し、カソライトとして使用して電解した。
電析ニッケル(カソードに析出)約1kgを得た。この電析ニッケルをさらに電子ビーム溶解した。電子ビーム溶解条件は、1A、30kW、真空度2〜5×10−4mmHgで実施した。以上の結果を、同様に表1に示す。
(比較例1)
図1に示すような電解槽を用い、4Nレベルの塊状のニッケル原料1kgをアノードとし、カソードに3Nレベルのニッケル板を使用して電解を行った。原料の不純物の含有量を表1に示す。
浴温50°C、硫酸系電解液で弗酸を1mol/Lを添加し、ニッケル濃度50g/L、電流密度2A/dm、電解時間40hr実施した。
液のpHを2は調節した。この時、アノライトを抜き出さず、そのまま電解を続けた。
電析ニッケル(カソードに析出)約1kgを得た。
以上の結果を、同様に表1に示す。
表1に示すように、実施例1では、原料の鉄50wtppmが2wtppmに、酸素200wtppmが20wtppmに、炭素50wtppmが10wtppm未満、C,N,S,P,F10wtppmをそれぞれ10wtppm未満とすることができた。
また、実施例2では、鉄1wtppm、酸素10wtppm未満、その他の不純物10wtppm未満とすることができた。
これに対し、比較例1では、C,N,S,P,F10wtppmをそれぞれ10wtppm未満とすることができたが、鉄50wtppm、また酸素60wtppmで実施例に比べ精製効果が劣り、特に鉄の除去が困難であった。
[0008]
After removal of the impurities, this solution was intermittently introduced into the cathode side, that is, into the cathode basket, and used as catholyte for electrolysis.
About 1 kg of electrodeposited nickel (deposited on the cathode) was obtained. The deposited nickel was further subjected to electron beam melting. Electron beam melting conditions were implemented at 1 A, 30 kW, and a degree of vacuum of 2 to 5 × 10 −4 mmHg. The above results are also shown in Table 1.
(Comparative Example 1)
Using an electrolytic cell as shown in FIG. 1, electrolysis was performed using 1 kg of a 4N-level massive nickel raw material as an anode and a 3N-level nickel plate as a cathode. Table 1 shows the impurity contents of the raw materials.
At a bath temperature of 50 ° C., 1 mol / L of hydrofluoric acid was added with a sulfuric acid-based electrolyte, nickel concentration was 50 g / L, current density was 2 A / dm 2 , and electrolysis time was 40 hours.
The pH of the solution was adjusted to 2. At this time, electrolysis was continued without extracting the anolyte.
About 1 kg of electrodeposited nickel (deposited on the cathode) was obtained.
The above results are also shown in Table 1.
As shown in Table 1, in Example 1, 50 wtppm of iron as a raw material can be reduced to 2 wtppm, oxygen of 200 wtppm can be reduced to 20 wtppm, carbon of 50 wtppm can be reduced to less than 10 wtppm, and C, N, S, P and F can be reduced to 10 wtppm. Was.
Further, in Example 2, it was possible to reduce the content to 1 wtppm of iron, less than 10 wtppm of oxygen, and less than 10 wtppm of other impurities.
On the other hand, in Comparative Example 1, C, N, S, P, and F were each 10 wtppm less than 10 wtppm. However, iron was 50 wtppm and oxygen was 60 wtppm, and the purification effect was inferior to that of the embodiment. Was difficult.

【0009】
(実施例3)
3Nレベルの塊状のニッケル原料1kgをアノードとし、カソードに2Nレベルのアルミニウム板を使用して電解を行った。原料の不純物の含有量を表2に示す。このニッケル原料には、鉄、コバルト、銅、炭素、酸素等が多く含有されている。
電解条件は、浴温40°C、硫酸系電解液に塩酸を1mol/Lを添加し、ニッケル濃度100g/L、電流密度3A/dm、電解時間25hr実施した。
液のpHは2.5に調節した。この時、アノライトを間歇的に抜き出す。抜き出したアノライトは、予備電解槽で電流密度0.1A/dmで電解を行い、鉄、コバルト、銅等を除去した。
さらに、活性炭フィルターを使用して電解液中の有機物を除去した。以上によって、電解液中の鉄、コバルト、銅等の濃度を1mg/L以下にすることができた。
不純物の除去後、この液をカソード側すなわちカソードバスケット内に間歇的に導入し、カソライトとして使用して電解した。
その結果、電析ニッケル約1.1kgを得た。純度は5Nを達成した。すなわち、ガス成分を除き5N以上であり、不純物としてO:20wtppm、C,N,S,P,Fはそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、表2に示す。
(実施例4)
3Nレベルの塊状のニッケル原料1kgをアノードとし、カソードに2Nレベルのチタン板を使用して電解を行った。原料の不純物の含有量を表2に示す。このニッケル原料には、鉄、コバルト、銅、炭素、酸素等が多く含有されている。
[0009]
(Example 3)
Electrolysis was performed using 1 kg of a 3N-level massive nickel raw material as an anode and a 2N-level aluminum plate as a cathode. Table 2 shows the impurity contents of the raw materials. This nickel raw material contains a large amount of iron, cobalt, copper, carbon, oxygen and the like.
The electrolysis conditions were as follows: a bath temperature of 40 ° C., 1 mol / L of hydrochloric acid added to a sulfuric acid-based electrolyte, a nickel concentration of 100 g / L, a current density of 3 A / dm 2 , and an electrolysis time of 25 hours.
The pH of the solution was adjusted to 2.5. At this time, the anolyte is extracted intermittently. The extracted anolyte was subjected to electrolysis at a current density of 0.1 A / dm 2 in a preliminary electrolytic cell to remove iron, cobalt, copper, and the like.
Further, an organic substance in the electrolytic solution was removed using an activated carbon filter. As described above, the concentration of iron, cobalt, copper, and the like in the electrolytic solution could be reduced to 1 mg / L or less.
After removal of the impurities, this solution was intermittently introduced into the cathode side, that is, into the cathode basket, and used as catholyte for electrolysis.
As a result, about 1.1 kg of electrodeposited nickel was obtained. Purity achieved 5N. That is, it was 5N or more except for gas components, O: 20 wtppm as impurities, and C, N, S, P, and F could each be 10 wtppm or less. The above results are shown in Table 2 in comparison with the raw materials.
(Example 4)
Electrolysis was performed using 1 kg of a 3N-level massive nickel raw material as an anode and a 2N-level titanium plate as a cathode. Table 2 shows the impurity contents of the raw materials. This nickel raw material contains a large amount of iron, cobalt, copper, carbon, oxygen and the like.

【0010】
電解条件は、浴温60°C、硫酸系電解液に塩酸を1mol/Lを添加し、ニッケル濃度100g/L、電流密度1.5A/dm、電解時間50hr実施した。
液のpHは2.7に調節した。この時、アノライトを間歇的に抜き出す。抜き出したアノライトは、置換槽で2NレベルのNi箔で電解液中の不純物との置換を行い、鉄、コバルト、銅等を除去した。
さらに、活性炭フィルターを使用して電解液中の有機物を除去した。以上によって、電解液中の鉄、コバルト、銅等の濃度を1mg/L以下にすることができた。
不純物の除去後、この液をカソード側すなわちカソードバスケット内に間歇的に導入し、カソライトとして使用して電解した。
その結果、電析ニッケル約1.1kgを得た。純度は5Nを達成した。すなわち、ガス成分を除き5N以上であり、不純物としてO:20wtppm、C,N,S,P,Fはそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、同様に表2に示す。
(実施例5)
上記実施例3の工程において、アノライトを間歇的に抜き出し、抜き出したアノライトを予備電解槽で電流密度0.1A/dmで電解を行い、これをさらに実施例4の置換槽における置換反応と同一の条件で鉄、コバルト、銅等の不純物を除去した(予備電解と置換反応の組合せ)。
そして、この工程以外は実施例3と同一の工程により電析ニッケル約1.1kgを得た。この結果、純度はガス成分を除き5N以上であり、不純物としてO:10wtppm、C,N,S,P,Fはそれぞれ10wtppm以下とすることができた。以上の結果を原料と対比して、同様に表2に示す。
[0010]
The electrolysis conditions were as follows: a bath temperature of 60 ° C., 1 mol / L of hydrochloric acid added to a sulfuric acid-based electrolyte, a nickel concentration of 100 g / L, a current density of 1.5 A / dm 2 , and an electrolysis time of 50 hours.
The pH of the solution was adjusted to 2.7. At this time, the anolyte is extracted intermittently. The extracted anolyte was replaced with impurities in the electrolytic solution using a 2N-level Ni foil in a replacement tank to remove iron, cobalt, copper, and the like.
Further, an organic substance in the electrolytic solution was removed using an activated carbon filter. As described above, the concentration of iron, cobalt, copper, and the like in the electrolytic solution could be reduced to 1 mg / L or less.
After removal of the impurities, this solution was intermittently introduced into the cathode side, that is, into the cathode basket, and used as catholyte for electrolysis.
As a result, about 1.1 kg of electrodeposited nickel was obtained. Purity achieved 5N. That is, it was 5N or more except for gas components, O: 20 wtppm as impurities, and C, N, S, P, and F could each be 10 wtppm or less. The above results are shown in Table 2 in comparison with the raw materials.
(Example 5)
In the process of Example 3, the anolyte was extracted intermittently, and the extracted anolyte was electrolyzed in a preliminary electrolyzer at a current density of 0.1 A / dm 2. Under the conditions described above, impurities such as iron, cobalt, and copper were removed (combination of preliminary electrolysis and substitution reaction).
Except for this step, about 1.1 kg of electrodeposited nickel was obtained by the same steps as in Example 3. As a result, the purity was 5 N or more excluding gas components, and O: 10 wt ppm as impurities and C, N, S, P, and F could each be 10 wt ppm or less. The above results are shown in Table 2 in comparison with the raw materials.

Claims (9)

電解液としてニッケル含有溶液を用いて電解する際に、アノライトをpH2〜5に調整し、アノライトに含有されている鉄、コバルト、銅等の不純物を、酸化剤を入れて該不純物を水酸化物として沈殿除去するか、若しくは予備電解により該不純物を除去するか、又はNi箔を入れて置換反応により該不純物を除去するかの、いずれか1又は2以上の方法を組合せることにより不純物を除去した後、さらにフィルターを使用して不純物を除去し、除去後の液をカソライトとして使用し電解することを特徴とする高純度ニッケルの製造方法。When electrolysis is performed using a nickel-containing solution as an electrolytic solution, the anolyte is adjusted to pH 2 to 5, and impurities such as iron, cobalt, and copper contained in the anolyte are added with an oxidizing agent to convert the impurities to hydroxide. The impurities are removed by a combination of one or more of the following methods: removing the impurities by precipitation, removing the impurities by preliminary electrolysis, or removing the impurities by a substitution reaction with a Ni foil. A method for producing high-purity nickel, further comprising removing impurities using a filter, and using the removed solution as catholyte for electrolysis. アノードとカソードを隔膜で仕切り、アノライトを間歇的又は連続的に抜き出し、これに酸化剤を入れて鉄等の不純物を水酸化物として沈殿させ、さらにフィルターを使用して不純物を除去し、除去後の液をカソード側に間歇的又は連続的に入れることを特徴とする請求の範囲第1項記載の高純度ニッケルの製造方法。The anode and cathode are separated by a diaphragm, the anolyte is extracted intermittently or continuously, an oxidizing agent is added to the precipitate to precipitate impurities such as iron as hydroxide, and then the impurities are removed using a filter. 2. The method for producing high-purity nickel according to claim 1, wherein said solution is intermittently or continuously supplied to the cathode side. アノードとカソードを隔膜で仕切り、アノライトを間歇的又は連続的に抜き出し、このアノライトを予備電解して鉄、コバルト、銅等の不純物を除去した後、さらにフィルターを使用して不純物を除去し、除去後の液をカソード側に間歇的又は連続的に入れることを特徴とする請求の範囲第1項記載の高純度ニッケルの製造方法。The anode and cathode are separated by a diaphragm, the anolyte is extracted intermittently or continuously, and this anolyte is pre-electrolyzed to remove impurities such as iron, cobalt, and copper, and then further removed using a filter to remove impurities. 2. The method for producing high-purity nickel according to claim 1, wherein the subsequent liquid is intermittently or continuously supplied to the cathode side. アノードとカソードを隔膜で仕切り、アノライトを間歇的又は連続的に抜き出し、このアノライトにニッケル箔を入れて置換反応により、鉄、コバルト、銅等の不純物を除去した後、さらにフィルターを使用して不純物を除去し、除去後の液をカソード側に間歇的又は連続的に入れることを特徴とする請求の範囲第1項記載の高純度ニッケルの製造方法。The anode and the cathode are separated by a diaphragm, the anolyte is extracted intermittently or continuously, and nickel foil is put into the anolyte to remove impurities such as iron, cobalt, and copper by a substitution reaction. 2. The method for producing high-purity nickel according to claim 1, wherein the solution after the removal is removed intermittently or continuously on the cathode side. フィルターとして活性炭を使用することを特徴とする請求の範囲第1項〜第4項のそれぞれに記載の高純度ニッケルの製造方法。The method for producing high-purity nickel according to any one of claims 1 to 4, wherein activated carbon is used as a filter. フィルター通過後の、電解液中の鉄の濃度が1mg/L以下であることを特徴とする請求の範囲第1項〜第5項のそれぞれに記載の高純度ニッケルの製造方法。The method for producing high-purity nickel according to any one of claims 1 to 5, wherein the concentration of iron in the electrolyte after passing through the filter is 1 mg / L or less. 電解によって得られた電析ニッケルを電子ビーム溶解等の真空溶解を行うことを特徴とする請求の範囲第1項〜第6項のそれぞれに記載の高純度ニッケルの製造方法。The method for producing high-purity nickel according to any one of claims 1 to 6, wherein the electrodeposited nickel obtained by the electrolysis is subjected to vacuum melting such as electron beam melting. ガス成分を除き5N(99.999wt%)以上であり、不純物としてO:30wtppm以下、C,N,S,P,Fがそれぞれ10wtppm以下であることを特徴とする高純度ニッケル、同高純度ニッケルからなるターゲット及び同ターゲットを使用してスパッタリングにより形成した薄膜。High-purity nickel, characterized by being 5N (99.999 wt%) or more excluding gas components, O: 30 wtppm or less as impurities, and C, N, S, P and F being 10 wtppm or less, respectively. And a thin film formed by sputtering using the target. 請求の範第1項〜第7項により製造したガス成分を除き5N(99.999wt%)以上であり、不純物としてO:30wtppm以下、C,N,S,P,Fがそれぞれ10wtppm以下であることを特徴とする高純度ニッケル、同高純度ニッケルからなるターゲット及び同ターゲットを使用してスパッタリングにより形成した薄膜。Except for the gas components produced according to claims 1 to 7, the content is 5 N (99.999 wt%) or more, O: 30 wt ppm or less as impurities, and each of C, N, S, P, and F is 10 wt ppm or less. A high-purity nickel, a target made of the high-purity nickel, and a thin film formed by sputtering using the target.
JP2003519547A 2001-08-01 2001-10-22 Manufacturing method of high purity nickel Expired - Fee Related JP3876253B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001233036 2001-08-01
JP2001233036 2001-08-01
PCT/JP2001/009237 WO2003014421A1 (en) 2001-08-01 2001-10-22 Method for producing high purity nickel, high purity nickel, sputtering target comprising the high purity nickel, and thin film formed by using said spattering target

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006193571A Division JP4840808B2 (en) 2001-08-01 2006-07-14 High purity nickel, high purity nickel target and high purity nickel thin film

Publications (2)

Publication Number Publication Date
JPWO2003014421A1 true JPWO2003014421A1 (en) 2004-11-25
JP3876253B2 JP3876253B2 (en) 2007-01-31

Family

ID=19064862

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003519547A Expired - Fee Related JP3876253B2 (en) 2001-08-01 2001-10-22 Manufacturing method of high purity nickel
JP2006193571A Expired - Fee Related JP4840808B2 (en) 2001-08-01 2006-07-14 High purity nickel, high purity nickel target and high purity nickel thin film

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2006193571A Expired - Fee Related JP4840808B2 (en) 2001-08-01 2006-07-14 High purity nickel, high purity nickel target and high purity nickel thin film

Country Status (7)

Country Link
US (2) US7435325B2 (en)
EP (2) EP2450474A1 (en)
JP (2) JP3876253B2 (en)
KR (1) KR100603130B1 (en)
CN (2) CN1715454A (en)
TW (1) TWI243215B (en)
WO (1) WO2003014421A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715454A (en) * 2001-08-01 2006-01-04 株式会社日矿材料 Method for producing high-purty nickel, high-purity nickel formed sputtering target and thin film formed by using said sputtering target
JP4888752B2 (en) * 2001-09-17 2012-02-29 日立金属株式会社 Nickel material
JP4376487B2 (en) * 2002-01-18 2009-12-02 日鉱金属株式会社 Manufacturing method of high purity nickel alloy target
JP3987069B2 (en) * 2002-09-05 2007-10-03 日鉱金属株式会社 High purity copper sulfate and method for producing the same
JP4466902B2 (en) * 2003-01-10 2010-05-26 日鉱金属株式会社 Nickel alloy sputtering target
CN101186979B (en) * 2003-10-07 2012-06-13 Jx日矿日石金属株式会社 Method for manufacturing high-purity Ni-V alloy
WO2005073434A1 (en) * 2004-01-29 2005-08-11 Nippon Mining & Metals Co., Ltd. Ultrahigh-purity copper and process for producing the same
CN100567535C (en) * 2004-03-01 2009-12-09 日矿金属株式会社 Ni-Pt alloy and Ni-Pt alloys target
CN1276129C (en) * 2004-07-28 2006-09-20 金川集团有限公司 Process for preparing high purity nickel
US7561406B2 (en) * 2006-03-30 2009-07-14 Tdk Corporation Nickel substrate thin film capacitor and method of manufacturing nickel substrate thin film capacitor
CN101063210B (en) * 2006-04-25 2010-05-26 襄樊化通化工有限责任公司 Technique for producing high activity nickel cake with regeneration of waste material containing nickle as raw material
EP2078768A4 (en) * 2006-10-24 2009-11-04 Nippon Mining Co Method for collection of valuable metal from ito scrap
WO2008053619A1 (en) * 2006-10-24 2008-05-08 Nippon Mining & Metals Co., Ltd. Method for collection of valuable metal from ito scrap
CN101528984B (en) * 2006-10-24 2012-10-24 Jx日矿日石金属株式会社 Method for collection of valuable metal from ITO scrap
US8007652B2 (en) * 2006-10-24 2011-08-30 Jx Nippon Mining & Metals Corporation Method for collection of valuable metal from ITO scrap
US8003065B2 (en) * 2006-10-24 2011-08-23 Jx Nippon Mining & Metals Corporation Method for collection of valuable metal from ITO scrap
JP4210715B2 (en) * 2007-02-16 2009-01-21 日鉱金属株式会社 Method for recovering valuable metals from scrap containing conductive oxides
CN101611174B (en) * 2007-02-16 2011-03-02 日矿金属株式会社 Method of recovering valuable metal from scrap containing conductive oxide
CN101617067B (en) * 2007-03-27 2011-10-26 Jx日矿日石金属株式会社 Method of recovering valuable metal from scrap containing conductive oxide
CN101946027B (en) * 2008-02-12 2012-01-11 Jx日矿日石金属株式会社 Method of recovering valuable metals from izo scrap
JP5102317B2 (en) * 2008-02-12 2012-12-19 Jx日鉱日石金属株式会社 Method for recovering valuable metals from IZO scrap
KR101155357B1 (en) * 2008-03-06 2012-06-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Process for recovery of valuable metals from scrap izo
CN101660123B (en) * 2008-08-28 2013-08-14 长沙天鹰金属材料有限公司 Nickel-based target and production process
US9441289B2 (en) * 2008-09-30 2016-09-13 Jx Nippon Mining & Metals Corporation High-purity copper or high-purity copper alloy sputtering target, process for manufacturing the sputtering target, and high-purity copper or high-purity copper alloy sputtered film
KR101058765B1 (en) * 2008-09-30 2011-08-24 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Manufacturing method of high purity copper by high purity copper and electrolysis
US8460535B2 (en) 2009-04-30 2013-06-11 Infinium, Inc. Primary production of elements
US8492891B2 (en) * 2010-04-22 2013-07-23 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with electrolytic metal sidewall protection
KR101397743B1 (en) 2010-09-24 2014-05-20 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for manufacturing high-purity nickel
WO2012120982A1 (en) * 2011-03-07 2012-09-13 Jx日鉱日石金属株式会社 COPPER OR COPPER ALLOY REDUCED IN α-RAY EMISSION, AND BONDING WIRE OBTAINED FROM COPPER OR COPPER ALLOY AS RAW MATERIAL
KR101364650B1 (en) * 2012-10-09 2014-02-19 한국과학기술연구원 Recovery method of nickel from spent electroless nickel plating solutions by electrolysis
CN103726069A (en) * 2012-10-13 2014-04-16 江西江锂科技有限公司 Production method of novel electrolytic nickel
CN103046076B (en) * 2012-12-26 2016-06-08 浙江华友钴业股份有限公司 A kind of preparation method of electro deposited nickel
CN103966627B (en) * 2014-04-30 2017-01-11 兰州金川新材料科技股份有限公司 Method for reducing content of impurity Fe in high-purity cobalt
KR101570795B1 (en) * 2014-12-23 2015-11-23 인천화학 주식회사 Manufacturing method of pure nickel from fluorine containing nickel slime
RU168849U1 (en) * 2016-05-24 2017-02-21 Открытое акционерное общество "Тамбовское опытно-конструкторское технологическое бюро" (ОАО "Тамбовское ОКТБ") ANODE CELL FOR ELECTRICITY OF NON-FERROUS METALS FROM AQUEOUS SOLUTIONS
CN111663153B (en) * 2020-05-20 2022-03-15 金川集团股份有限公司 Method for inhibiting impurities of lead and zinc from being separated out at cathode in nickel electrolysis process
CN111705334B (en) * 2020-05-27 2022-04-08 金川集团股份有限公司 Method for improving physical appearance quality of electrodeposited nickel in pure sulfate system

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA860872A (en) 1971-01-12 Zubryckyj Nicolas Production of super-purity nickel powder
JPS314904B1 (en) * 1954-05-12 1956-06-23
FR1384780A (en) * 1963-11-27 1965-01-08 Nickel Le Electrolytic refining process of a nickel alloy, with a view to obtaining pure electrolytic nickel
US3446720A (en) * 1965-01-27 1969-05-27 Us Interior Preparation of high-purity nickel and cobalt
FR1583920A (en) * 1968-06-21 1969-12-05 Le Nickel S.A PROCESS FOR PURIFYING NICKEL SOLUTIONS
US3616331A (en) * 1968-08-03 1971-10-26 Int Nickel Co Recovery of nickel and copper from sulfides
US4053400A (en) * 1973-09-20 1977-10-11 The Metalux Corporation Purification of nickel and cobalt electroplating solutions
CA1064856A (en) * 1975-02-12 1979-10-23 Alexander Illis Purification of nickel electrolyte by electrolytic oxidation
DE3712271A1 (en) * 1987-04-10 1988-10-27 Vacuumschmelze Gmbh NICKEL BASED SOLDER FOR HIGH TEMPERATURE SOLDERED CONNECTIONS
DE69130891T2 (en) * 1990-06-29 1999-08-12 Toshiba Kawasaki Kk FE-NI ALLOY
US5192418A (en) * 1991-07-08 1993-03-09 Bethlehem Steel Corporation Metal recovery method and system for electroplating wastes
FR2686352B1 (en) * 1992-01-16 1995-06-16 Framatome Sa APPARATUS AND METHOD FOR ELECTROLYTIC COATING OF NICKEL.
US5569370A (en) * 1992-04-01 1996-10-29 Rmg Services Pty. Ltd. Electrochemical system for recovery of metals from their compounds
JPH06104120A (en) * 1992-08-03 1994-04-15 Hitachi Metals Ltd Sputtering target for magnetic recording medium and its production
TW271490B (en) * 1993-05-05 1996-03-01 Varian Associates
US5458745A (en) * 1995-01-23 1995-10-17 Covofinish Co., Inc. Method for removal of technetium from radio-contaminated metal
JPH08311642A (en) * 1995-03-10 1996-11-26 Toshiba Corp Magnetron sputtering method and sputtering target
DE19609439A1 (en) * 1995-03-14 1996-09-19 Japan Energy Corp Prodn. of pure cobalt@ for sputtering targets for electronics use
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon
JPH11152592A (en) * 1997-11-18 1999-06-08 Japan Energy Corp Production of high purity nickel and high purity nickel material for forming thin film
US6086725A (en) * 1998-04-02 2000-07-11 Applied Materials, Inc. Target for use in magnetron sputtering of nickel for forming metallization films having consistent uniformity through life
JPH11335821A (en) * 1998-05-20 1999-12-07 Japan Energy Corp Nickel-iron alloy sputtering target for forming magnetic thin film, production of magnetic thin film and nickel-iron alloy sputtering target for forming magnetic thin film
JP2000054040A (en) * 1998-08-07 2000-02-22 Sumitomo Metal Mining Co Ltd Impurities removing method for nickel solution
JP2000219988A (en) * 1999-02-01 2000-08-08 Japan Energy Corp Production of high purity nickel material and high purity nickel material for forming thin film
US6342114B1 (en) * 1999-03-31 2002-01-29 Praxair S.T. Technology, Inc. Nickel/vanadium sputtering target with ultra-low alpha emission
US6190516B1 (en) * 1999-10-06 2001-02-20 Praxair S.T. Technology, Inc. High magnetic flux sputter targets with varied magnetic permeability in selected regions
US6896788B2 (en) * 2000-05-22 2005-05-24 Nikko Materials Company, Limited Method of producing a higher-purity metal
US6896776B2 (en) * 2000-12-18 2005-05-24 Applied Materials Inc. Method and apparatus for electro-chemical processing
CN1715454A (en) * 2001-08-01 2006-01-04 株式会社日矿材料 Method for producing high-purty nickel, high-purity nickel formed sputtering target and thin film formed by using said sputtering target
JP4076751B2 (en) * 2001-10-22 2008-04-16 日鉱金属株式会社 Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
JP4376487B2 (en) * 2002-01-18 2009-12-02 日鉱金属株式会社 Manufacturing method of high purity nickel alloy target
JP4034095B2 (en) * 2002-03-18 2008-01-16 日鉱金属株式会社 Electro-copper plating method and phosphorous copper anode for electro-copper plating
JP4466902B2 (en) * 2003-01-10 2010-05-26 日鉱金属株式会社 Nickel alloy sputtering target
WO2005041290A1 (en) * 2003-10-24 2005-05-06 Nikko Materials Co., Ltd. Nickel alloy sputtering target and nickel alloy thin film

Also Published As

Publication number Publication date
EP2450474A1 (en) 2012-05-09
JP3876253B2 (en) 2007-01-31
WO2003014421A1 (en) 2003-02-20
EP1413651A4 (en) 2006-10-25
US7435325B2 (en) 2008-10-14
TWI243215B (en) 2005-11-11
KR100603130B1 (en) 2006-07-20
JP2007046157A (en) 2007-02-22
EP1413651A1 (en) 2004-04-28
CN1489642A (en) 2004-04-14
JP4840808B2 (en) 2011-12-21
US20040069652A1 (en) 2004-04-15
CN1715454A (en) 2006-01-04
KR20040019079A (en) 2004-03-04
US20090004498A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
JP4840808B2 (en) High purity nickel, high purity nickel target and high purity nickel thin film
WO2001090445A1 (en) Method of producing a higher-purity metal
JP4647695B2 (en) Method for recovering valuable metals from ITO scrap
JP5043028B2 (en) Recovery method of valuable metals from ITO scrap
JPWO2008053618A1 (en) Recovery method of valuable metals from ITO scrap
JP4519294B2 (en) Indium recovery method
KR20030023640A (en) Method and apparatus for processing metals, and the metals so produced
KR100614891B1 (en) Method for recovering high purity Indium
JPH10204673A (en) Recovering method of indium
TWI252875B (en) Method and device for producing high-purity metal
JP3825983B2 (en) Metal purification method
JP3878402B2 (en) Metal purification method
KR20120031445A (en) Method for manufacturing high-purity nickel
JP4087196B2 (en) Method for recovering ruthenium and / or iridium
JP2005179778A (en) High purity metal indium, and its production method and use
JP3878407B2 (en) Metal purification method
JPH06192874A (en) Refining method for cobalt
JPH04176887A (en) Apparatus for producing high-purity y
JP2006089806A (en) Method for electrowinning bismuth and method for refining obtained bismuth
JP3095730B2 (en) Method for producing high purity cobalt
JPH11315391A (en) Method for refining cobalt
JPH11350179A (en) Production of high purity cobalt

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees