JPWO2003000793A1 - Pigment masterbatch composition for polyolefin resin - Google Patents

Pigment masterbatch composition for polyolefin resin Download PDF

Info

Publication number
JPWO2003000793A1
JPWO2003000793A1 JP2003507189A JP2003507189A JPWO2003000793A1 JP WO2003000793 A1 JPWO2003000793 A1 JP WO2003000793A1 JP 2003507189 A JP2003507189 A JP 2003507189A JP 2003507189 A JP2003507189 A JP 2003507189A JP WO2003000793 A1 JPWO2003000793 A1 JP WO2003000793A1
Authority
JP
Japan
Prior art keywords
copolymer
graft
polyolefin resin
styrene
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003507189A
Other languages
Japanese (ja)
Other versions
JP4079879B2 (en
Inventor
小林 豊
豊 小林
町田 修司
修司 町田
英夫 楠山
英夫 楠山
田中 明
明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Publication of JPWO2003000793A1 publication Critical patent/JPWO2003000793A1/en
Application granted granted Critical
Publication of JP4079879B2 publication Critical patent/JP4079879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本発明は、炭素数2〜20のα−オレフィンの単独重合連鎖もしくは共重合連鎖と、環状オレフィン、芳香族ビニル単量体及び極性基含有ビニル単量体から選ばれる一種以上から構成される共重合連鎖が、グラフト結合及び/又はブロック結合されている共重合体(A)をキャリヤー樹脂として用いることを特徴とするポリオレフィン樹脂用顔料マスターバッチ組成物に関するもので、ポリオレフィン樹脂の調色における顔料分散性を著しく改善し、物性の低下を防止できる。The present invention relates to a copolymer comprising a homopolymerization chain or a copolymerization chain of an α-olefin having 2 to 20 carbon atoms and at least one selected from a cyclic olefin, an aromatic vinyl monomer and a polar group-containing vinyl monomer. The present invention relates to a pigment masterbatch composition for a polyolefin resin, wherein a copolymer (A) in which a polymerization chain is graft-bonded and / or block-bonded is used as a carrier resin. Properties can be remarkably improved, and a decrease in physical properties can be prevented.

Description

技術分野
本発明は、ポリオレフィン樹脂用顔料マスターバッチ組成物に関し、さらに詳しくは、ポリオレフィン樹脂の調色における顔料分散性を著しく改善すると共に、ポリオレフィン樹脂の物性の低下を防止するポリオレフィン樹脂用顔料マスターバッチ組成物に関するものである。
背景技術
ポリエチレンやポリプロピレンなどのポリオレフィン樹脂は、軽量で機械強度と成形性に優れる樹脂として幅広い分野・用途に用いられており、多くの場合、最終製品のデザインを考慮して顔料による調色が施されている。
こうした調色は、成形加工段階の前に、顔料を混練・分散しておくことが多いが、コスト的に有利な方法として顔料マスターバッチをポリオレフィン樹脂とドライブレンドし、成形機の可塑化段階で顔料の分散を行う場合もある。
ポリプロピレン樹脂の調色には、一般的に顔料のマスターバッチが使用されているが、射出成形時に添加するタイプの顔料マスターバッチには、成形機の可塑化段階で顔料が十分に混合分散し、色ムラが発生しないことが求められる。
従来、顔料の分散性を高めるために、マスターバッチ中にポリエチレンワックスなどのキャリヤー樹脂が添加されてきたが、ワックスを添加すると顔料の分散性は改良されるものの、ポリプロピレン樹脂本来が持つ剛性などの物性が低下するという問題を抱えていた。
本発明は、上記事情に鑑みなされたもので、ポリオレフィン樹脂の調色における顔料分散性を著しく改善し、しかもポリオレフィン樹脂の物性の低下を防止するポリオレフィン樹脂用顔料マスターバッチ組成物を提供することを目的とするものである。
発明の開示
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定構造の共重合体をキャリヤー樹脂として用いることにより、ポリオレフィン樹脂の調色における顔料分散性を著しく改善すると共に、ポリオレフィン樹脂の物性の低下を防止できることを見出した。
本発明はかかる知見に基づいて完成したものである。
すなわち、本発明は、炭素数2〜20のα−オレフィンの単独重合連鎖もしくは共重合連鎖と、環状オレフィン、芳香族ビニル単量体及び極性基含有ビニル単量体から選ばれる一種以上から構成される共重合連鎖が、グラフト結合及び/又はブロック結合されている共重合体(A)をキャリヤー樹脂として用いることを特徴とするポリオレフィン樹脂用顔料マスターバッチ組成物を提供するものである。
発明を実施するための最良の形態
共重合体(A)は、炭素数2〜20のα−オレフィンの単独重合連鎖もしくは共重合連鎖と、環状オレフィン、芳香族ビニル単量体及び極性基含有ビニル単量体から選ばれる一種以上から構成される共重合連鎖が、グラフト結合及び/又はブロック結合されているものである。
炭素数2〜20のα−オレフィンとしては、エチレン、プロピレン、1−ブテン、3−メチル−1−ブテン、4−フェニル−1−ブテン、1−ペンテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、3,3−ジメチル−1−ペンテン、3,4−ジメチル−1−ペンテン、4,4−ジメチル−1−ペンテン、1−ヘキセン、4−メチル−1−ヘキセン、5−メチル−1−ヘキセン、6−フェニル−1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン、ビニルシクロヘキサン、5−エチリデン−2−ノルボルネン等のα−オレフィン類;ヘキサフルオロプロペン、テトラフルオロエチレン、2−フルオロプロペン、フルオロエチレン、1,1−ジフルオロエチレン、3−フルオロプペン、トリフルオロエチレン、3,4−ジクロロ−1−ブテン等のハロゲン置換α−オレフィンが挙げられる。
環状オレフィンとしては、シクロペンテン等の単環式環状オレフィン;ノルボルネン、5−メチルノルボルネン、5−エチルノルボルネン、5−プロピルノルボルネン、5,6−ジメチルノルボルネン、1−メチルノルボルネン、7−メチルノルボルネン、5,5,6−トリメチルノルボルネン、5−フェニルノルボルネン、5−ベンジルノルボルネン、5−エチリデンノルボルネン、1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン、2−メチル−1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン、2−エチル−1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン、2,3−ジメチル−1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン、2−ヘキシル−1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン、2−エチリデン−1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン、2−フルオロ−1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン、1,5−ジメチル−1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン、2−シクロヘキシル−1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン、2,3−ジクロロ−1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン、2−イソブチル−1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン、1,2−ジヒドロジシクロペンタジエン、5−クロロノルボルネン、5,5−ジクロロノルボルネン、5−フルオロノルボルネン、5,5,6−トリフルオロ−6−トリアルオロメチルノルボルネン、5−クロロメチルノルボルネン、5−メトキシノルボルネン、5,6−ジカルボキシノルボルネンアンハイドレート、5−ジメチルアミノノルボルネン、5−シアノノルボルネン等の多環式環状オレフィンが挙げられる。
芳香族ビニル単量体としては、スチレン、p−メチルスチレン、p−エチルスチレン、p−プロピルスチレン、p−イソプロピルスチレン、p−ブチルスチレン、p−tert−ブチルスチレン、p−フェニルスチレン、o−メチルスチレン、o−エチルスチレン、o−プロピルスチレン、o−イソプロピルスチレン、m−メチルスチレン、m−エチルスチレン、m−イソプロピルスチレン、m−ブチルスチレン、メシチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、3,5−ジメチルスチレン等のアルキルスチレン類;p−メトキシスチレン、o−メトキシスチレン、m−メトキシスチレン等のアルコキシスチレン類;p−クロロスチレン、m−クロロスチレン、o−クロロスチレン、p−ブロモスチレン、m−ブロモスチレン、o−ブロモスチレン、p−フルオロスチレン、m−フルオロスチレン、o−フルオロスチレン、o−メチル−p−フルオロスチレン等のハロゲン化スチレン;トリメチルシリルスチレン、ビニル安息香酸エステル等を挙げることができる。
極性基含有ビニル単量体としては、弗化ビニル、塩化ビニル、臭化ビニル、ビニルメチルエーテル、ビニルエチルエーテル、ビニル−n−プロピルエーテル、ビニル−i−プロピルエーテル、ビニルブチルエーテル、ビニルペンチルエーテル、ビニルヘキシルエーテル、ビニル−2−エチルヘキシルエーテル、ギ酸ビニル、酢酸ビニル、アクリロニトリル、メタクリロニトリル、アクリルアマイド、メタクリルアマイド、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸ヘキシル、アクリル酸ヘプチル、アクリル酸2−エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ペンチル、メタクリル酸ヘキシル、メタクリル酸ヘプチル、メタクリル酸2−エチルヘキシル、無水マレイン酸、マレイン酸、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジブチル、マレイン酸ジペンチル、マレイン酸ジヘキシル、マレイン酸ジヘプチル、マレイン酸2−エチルヘキシル、マレアミド、マレイミド、マレイン酸ジアミド、N−メチルマレイミド等を挙げることができる。
共重合体(A)としては、グラフト結合点がオレフィン系マクロモノマー及び/又はポリエンから形成される共重合体〔(A)−1〕、重合過程で生成したブロック結合点を有する共重合体〔(A)−2〕、及び共重合体〔(A)−1〕で規定されたグラフト結合点と共重合体〔(A)−2〕で規定されたブロック結合点とを有する共重合体〔(A)−3〕が挙げられる。
ここで、オレフィン系マクロモノマーとは、主鎖末端にビニル基を有するポリマーであり、触媒を選択することにより、例えば、エチレンやプロピレンを重合させることにより得られるものである。
また、重合過程で生成したブロック結合点とは、モノマー種、立体規則性、共重合組成の少なくとも1種以上の異なる連鎖が共有結合を形成した状態をいう。
ポリエンとしては、1分子中に重合可能な炭素−炭素二重結合を少なくとも2個有するものであればよい。
ポリエンとしては、1,3−ブタジエン、1,4−ペンタジエン、1,5−ヘキサジエン、1,6−ヘプタジエン、1,7−オクタジエン、1,8−ノナジエン、1,9−デカジエン、1,10−ウンデカジエン、1,11−ドデカジエン、1,13−テトラデカジエン、1,15−ヘキサデカジエン、4,4,−ジメチル−1,9−デカジエン、4,4,−ジメチル−1,9−デカジエン、1,5,9−デカトリエン、5−アリル−1,9−デカジエン、1,19−エイコジエン等のα,ω型ポリエン類;p−ジビニルベンゼン、m−ジビニルベンゼン、o−ジビニルベンゼン、ジ−(p−ビニルフェニル)メタン、1,3−ビス(p−ビニルフェニル)プロパン、1,5−ビス(p−ビニルフェニル)ペンタン等のスチレン型ポリエン類;5−ビニル−2−ノルボルネン、5−イソプロピリデン−2−ノルボルネン、ジシクロペンタジエン、ジメチルジシクロペンタジエン、ジエチルジシクロペンタジエン、

Figure 2003000793
Figure 2003000793
Figure 2003000793
等の環状ポリエン類;p−(2−プロペニル)スチレン、m−(2−プロペニル)スチレン、p−(3−ブテニル)スチレン、m−(3−ブテニル)スチレン、o−(3−ブテニル)スチレン、p−(4−ペンテニル)スチレン、m−(4−ペンテニル)スチレン、o−(4−ペンテニル)スチレン、p−(5−プロペニル)スチレン、p−(7−オクテニル)スチレン、p−(1−メチル−3−ブテニル)スチレン、p−(2−メチル−3−ブテニル)スチレン、o−(2−メチル−3−ブテニル)スチレン、p−(3−メチル−3−ブテニル)スチレン、p−(2−エチル−3−ブテニル)スチレン、p−(2−エチル−4−ペンテニル)スチレン、p−(3−ブテニル)−α−メチルスチレン、m−(3−ブテニル)−α−メチルスチレン、o−(3−ブテニル)−α−メチルスチレン、4−ビニル−4’−(3−ブテニル)ビフェニル、4−ビニル−3’−(3−ブテニル)ビフェニル、4−ビニル−4’−(4−ペンテニル)ビフェニル、4−ビニル−2’−(4−ペンテニル)ビフェニル、4−ビニル−4’−(2−メチル−3−ブテニル)ビフェニル等の、スチレン残基とα−オレフィン残基を同一分子内に有するスチレン/α−オレフィン型ポリエン類;1,4−ジクロヘキサジエン,1,5−シクロオクタジエン、1,5−シクロドデカジエン、4−ビニルシクロヘキサン、1−アリル−4−イソプロピリデンシクロヘキサン、3−アリルシクロペンテン、4−アリルシクロヘキセン及び1−イソプロペニル−4−(4−ブテニル)シクロヘキサンなどを挙げることができる。
本発明においては、この中で、炭素−炭素二重結合の反応性が高く、組成物製造時に熱安定性を低下させる原因となり易い残存不飽和基を低減することができる点から、α,ω型ポリエン類、スチレン型ポリエン類、環状ポリエン類及びスチレン/α−オレフィン型ポリエン類が好ましい。
上記共重合体(A)について、下記の[1]〜[4]において説明する。
[1](A)−1グラフト結合点を有する共重合体
(1)共重合体の構造
マクロモノマーを経由する重合反応で形成されたグラフト共重合体、ポリエンに基づくグラフト構造が形成されたグラフト共重合体、あるいはマクロモノマーとポリエンの両者からグラフト構造が形成されたグラフト共重合体である。
(2)グラフト構造のパラメータ
1.分岐長と分岐数
分岐長は、炭素数10〜主鎖長と同程度であることが好ましく、分岐数は、0.001〜5個/炭素1000個が好ましい。
分岐長を前記の範囲で調整する手段としては、グラフト共重合体製造時に使用するマクロモノマーやポリエンの量、種類及びグラフト共重合条件の調整が挙げられる。
分岐数は、マクロモノマーやポリエンの量を調整することにより、前記の範囲で調整することができる。
2.非ニュートン性パラメータによる規定
微量なポリエン単位の含有量を測定する有効な方法として、動的粘弾性の角速度依存性から評価する方法を用いる。
これは、ポリエン単位に基因する分岐を微量でも有するポリオレフィンは溶融粘度のせん断速度依存性が分岐を含まないポリオレフィンと比較して異なることを利用して測定するものである。
すなわち、ポリエン単位に基因する分岐が存在すると、溶融粘度のせん断速度依存性は分岐の存在しない系と比較して大きい。
従って、ポリエンを使用せずにその他の製造条件は同一にして製造した重合体とグラフト共重合体とを比較することで、分岐を形成したポリエン単位を検出することができる。
また、この方法は分子量分布の影響を受けることが知られているが、この場合は、明らかに分岐を含まず単量体単位種が同一で、かつその構成比率がほぼ同一のポリオレフィンを用い、分子量分布に対する溶融粘度のせん断速度依存性を比較することで分岐を形成したポリエン単位を検出することができる。
この一例として挙げられる具体的な測定方法を記載する。
装置:溶融粘度測定装置 RMS800(レオメトリックス社製)
測定条件
温度:グラフト共重合体の融点またはガラス転移温度以上、
通常グラフト共重合体の最高融点より10〜60℃高い温度、
通常グラフト共重合体の最高ガラス転移温度より10〜200℃
高い温度
歪み:15%
角速度:0.01〜100rad/s
試料形状:コーンプレート
データ処理:
貯蔵弾性率が10パスカルとなる角速度をω
貯蔵弾性率が10パスカルとなる角速度をω
としω/10ωの値を算出する
<ポリエン単位の検出>
ケース1
比較試料がグラフト共重合体の製造時ポリエンを使用せずに製造したポリオレフィンの場合で、ポリエンを使用して製造したグラフト共重合体に対する分子量分布[重量平均分子量(Mw)/数平均分子量(Mn)]の比が0.8〜1.8倍の範囲にある場合
グラフト共重合体のω/10ωの値をN
比較試料ポリオレフィンのω/10ωの値をN°としたとき
以下の式(a)を満たす場合、ポリエン単位が存在する。
ケース2
比較試料が明らかに分岐を含まず、単量体単位種が同一でその構成比率がほぼ同一のポリオレフィンの場合
ここで単量体の構成比率がほぼ同一とは次の様な場合を示している。
(イ)グラフト共重合体のポリエン単位由来のシーケンス以外は同一のシーケンスをすべて含むポリオレフィンであって、グラフト構造以外のポリマー構造を有しており、その単量体組成がほぼグラフト共重合体と同じであるポリオレフィン、
(ロ)又はグラフト共重合体のポリエン単位由来のシーケンス以外は同一のシーケンスをすべて含むポリオレフィンがグラフト構造以外の混合物からなっており、その単量体組成がほぼグラフト共重合体と同じであるポリオレフィン混合物、
のいずれかである。
この比較試料のGPCから求めた分子量分布[重量平均分子量(Mw)/数平均分子量(Mn)]に対するN°(比較試料のω/10ωの値)をプロットしこの関係から単調増加の関数N°=f(Mw/Mn)を最小2乗法により決定する。
この関係にグラフト共重合体の分子量分布(Mw/Mn)の値から得られるNが以下の式(a)を満たすとき、ポリエン単位を確認できる。
Figure 2003000793
/N°が1.05未満ではグラフト共重合体の相溶化能力が低く、組成物の物性を充分に発現させることに支障をきたすおそれがあり、一方80を超えると架橋構造を含むグラフト共重合体が副生し、ゲルが発生し、物性、組成物製造時の混合性に支障をきたす原因となる。
3.分岐パラメータ(α)
分岐パラメータ(α)は、試料のGPC/MALLS(多角度光散乱)測定を行い、各溶出位置において、散乱光強度の傾きより<R1/2(半径の2乗平均の平方根)を求め、散乱光強度の切片より重量平均分子量Mを求め、<R1/2とMの対数をプロットし、最小2乗法によりその傾きαを計算することにより求める。
このようにして、直鎖状重合体とグラフト共重合体のα値を求め、直鎖状重合体のα値を(α)、グラフト共重合体のα値を(α)としたときに、
[(α)/(α)]≧1.02
を満たすことが好ましい。より好ましくは、
[(α)/(α)]≧1.04
である。
試料のGPC/MALLS測定は、例えば以下の条件で行う。
Figure 2003000793
(3)ポリエンを含有する場合の規定
グラフト共重合体(A)−1において、140℃でのキシレン不溶部の量は0〜1.5質量%の範囲にあることが好ましい。
このキシレン不溶部の量が1.5質量%を超えると樹脂組成物製造の際に、グラフト共重合体の溶融分散、溶液分散混合が不十分で設計した通りの組成物物性を引出すことに支障をきたす上、成形体の外観を悪化させ、応力集中による破壊強度の低下をもたらす原因となるおそれがある。
したがって、該キシレン不溶部の量は、好ましくは0〜1.3質量%、より好ましくは0〜1.2質量%、さらに好ましくは0〜1.0質量%、特に好ましくは0〜0.5質量%、最も好ましくは0〜0.3質量%の範囲である。
なお、上記キシレン不溶部の量は、以下の方法に従って測定した値である。
すなわち、グラフト共重合体2.0gを150メッシュのステンレス鋼製の容器に入れ、140℃、1リットルのパラキシレンに浸漬し、5時間攪拌しながら溶解する。
溶解後、容器を引き上げ、容器ごと100℃で恒量になるまで減圧乾燥を実施する。
容器内に残ったグラフト共重合体の重量を仕込みのグラフト共重合体重量で割り、その百分率をもってキシレン不溶部の量とする。
また、グラフト共重合体(A)−1において、ポリエン単位の含有量は、通常0〜0.45モル%の範囲にあることが好ましい。
好ましくは0〜0.40モル%、より好ましくは0〜0.35モル%、さらに好ましくは0〜0.30モル%、特に好ましくは0〜0.25モル%、最も好ましくは0〜0.20モル%の範囲である。
このポリエン単位の含有量が0.45モル%を超えると前記キシレン不溶部が1.5質量%を超えた場合と同様の問題点が生じるおそれがある。
なお、ポリエン単位の含有量は、上述した方法により測定することができる。
さらに、グラフト共重合体(A)−1において、その中のポリエン単位に由来する炭素−炭素二重結合の残存量は、0〜0.15モル%の範囲にあることが好ましい。
なお、ここで定義する残存不飽和基はポリエン由来のものであり、製造過程で新たに生じた重合体末端の炭素炭素二重結合を含まない。
上記残存量が0.15モル%を超えると得られる組成物の耐候性、熱安定性が低下する傾向を示す。
この残存量は、好ましくは0〜0.13モル%、より好ましくは0〜0.11モル%、さらに好ましくは0〜0.09モル%、特に好ましくは0〜0.07モル%、最も好ましくは0〜0.05モル%の範囲である。
なお、ポリエン単位に由来する炭素−炭素二重結合の残存量は、赤外線吸収スペクトル、紫外線吸収スペクトル法による定法に従って測定する。
(4)好ましい共重合体(A)−1
1.オレフィン(共)重合部
(共)重合部は、炭素数2〜20のα−オレフィンから選ばれる一種以上の単量体からなるオレフィン単独重合連鎖もしくは共重合連鎖である。
着色の対象とするポリオレフィン樹脂と同一の単量体種であり、その単量体組成が類似していることが好ましく、更に、顔料のほぐれ性を良くするために、着色の対象とするよりポリオレフィン樹脂より低融点であるような構造、組成をとることが好ましい。
2.非オレフィン(共)重合部
特に制限はないが、顔料との親和性という観点から極性基含有ビニル(共)重合連鎖が好ましく、更に、品質・コスト面でアクリル酸及びメタクリル酸のエステル類の(共)重合連鎖が好ましい。
3.共重合体(A)−1の分子量
分子量の指標である135℃、デカリン溶媒中で測定した極限粘度[η]が、0.05〜10デシリットル/gの範囲にあるのが好ましく、より好ましくは0.05〜8デシリットル/g、さらに好ましくは0.06〜7デシリットル/g、最も好ましくは0.1〜6デシリットル/gである。
0.05デシリットル/g未満では、組成物としての物性、特に耐衝撃強度の向上効果が小さく、10デシリットル/gを越えると組成物の製造の際、共重合体(A)−1の溶融分散性が低下する。
[2](A)−2ブロック結合点を有する共重合体
(1)共重合体の構造
ブロック重合法によって製造された化学結合点を有する真のブロック共重合体を指す。
真のブロック共重合体は、いわゆるチーグラー・ナッタ触媒を用い、触媒が重合可能な活性状態にある間に、炭素数2〜20のα−オレフィンの重合を行い、引き続き環状オレフィン、芳香族ビニル単量体及び極性基含有ビニル単量体から選ばれる一種以上を(共)重合することによって製造することができる。
(2)ブロック構造の規定
1.分光学的方法によりブロック結合点が確認できる共重合体
化学結合点そのものを検出する方法、例えば通常の核磁気共鳴スペクトル法により検出される。
ブロック結合点には、通常2級炭素が存在するため、これらの特有な結合を検出することができる。
2.ポリマー連鎖の溶解性の差に基づいてブロック構造が確認できる共重合体
ポリマー連鎖の溶解性の差を利用して検出する。
どちらか一方のポリマー連鎖に対する溶解性が高い溶媒、または複数種の溶媒を混合し、溶解性を制御した混合溶媒を用いて溶解操作を行い、溶媒不溶成分に可溶成分が存在すること、または可溶成分中に溶媒不溶成分が存在することを確認する。
または、これらの分別物に上記1.の方法を適用することにより、ブロック結合点を検出する。
(3)好ましい共重合体(A)−2
1.オレフィン(共)重合部については、上記共重合体(A)−1と同様である。
2.非オレフィン(共)重合部については、上記共重合体(A)−1と同様である。
3.共重合体の分子量については、上記共重合体(A)−1と同様である。
[3](A)−3グラフト結合点とブロック結合点を有する共重合体
(1)共重合体の構造
マクロモノマーを経由する重合反応で形成されたグラフト共重合点と、真のブロック結合によるブロック結合点を有するグラフト・ブロック共重合体、ポリエンに基づくグラフト共重合点と、真のブロック結合によるブロック結合点を有するグラフト・ブロック共重合体、あるいはマクロモノマーとポリエンの両者から誘導されるグラフト共重合点と、真のブロック結合によるブロック結合点を有するグラフト・ブロック共重合体である。
(2)グラフト・ブロック構造のパラメータ
共重合体(A)−1と同様であり、好ましい範囲も同様である。
[4]好ましい共重合体(A)
(1)固体H−NMR測定による規定
マスターバッチとして用いる場合、着色するポリオレフィン樹脂とマスターバッチを構成するキャリヤー樹脂、すなわち、共重合体(A)との相溶性が高いことが好ましい。
この評価は、着色するポリオレフィン樹脂と共重合体(A)からなる組成物において、以下の関係にあることが好ましい。
共重合体(A)とポリオレフィン樹脂からなる組成物の固体H−NMR測定により求めた長時間緩和成分の緩和速度(1/R)と、グラフト共重合体、ブロック共重合体、あるいは、グラフト・ブロック共重合体を構成するポリマー連鎖とポリオレフィン樹脂の物理的混合物からなる組成物の固体H−NMR測定により求めた長時間緩和成分の緩和速度(1/Rとの比[(1/R)/(1/R]が1.05以上であることが好ましい。
該比が1.05未満では樹脂相溶性が悪く、所望の物性を有する組成物が得られないおそれがある。
[(1/R)/(1/R]は、好ましくは1.06以上、より好ましくは1.07以上である。
なお、上記(1/R)及び(1/Rは、下記の固体H−NMR測定装置を用い、反転回復法(180°−τ−90°パルス法)により求める。
Figure 2003000793
(2)好ましい共重合体(A)
1.炭素数2〜20のα−オレフィンから選ばれる一種以上の単量体からなるオレフィン単独重合連鎖もしくは共重合連鎖と、少なくとも極性基含有ビニル単量体を含む(共)重合連鎖が、グラフト結合及び/又はブロック結合されている共重合体(A)が好ましい。
具体的には、ポリオレフィン樹脂とアクリル酸系単量体、メタクリル酸系単量体、酢酸ビニル、アクリロニトリル、メタクリロニトなどから選ばれる一種以上から構成される(共)重合体が好ましく、ポリオレフィン樹脂とアクリル酸系単量体、メタクリル酸系単量体などから選ばれる一種以上から構成される(共)重合体が、更に好ましい。
2.低融点で、かつ比較的高い分子量を有する、グラフト結合及び/又はブロック結合されている共重合体(A)が好ましい。
具体的には、プロピレン/エチレン、エチレン/ブテン、プロピレン/ブテンなどの共重合連鎖ポリオレフィン樹脂、低立体規則性ポリオレフィン樹脂が、特に好ましい。
3.少なくとも極性基含有ビニル単量体を含む(共)重合連鎖を有し、低融点で、かつ比較的高い分子量の、グラフト結合及び/又はブロック結合されている共重合体(A)が好ましい。
具体的には、上記1.と2.を兼ね備えた共重合体が挙げられる。
共重合体(A)には、中和剤、酸化防止剤、耐候剤、帯電防止剤等の添加剤を加えることができる。
本発明のポリオレフィン用顔料マスターバッチ組成物の調製方法について述べる。
その調製方法には特に制限はなく、通常の顔料マスターバッチに慣用されている方法を用いることができる。
このような方法として、例えば後記する比較例1、2の方法を挙げることができる。
本発明の顔料マスターバッチ組成物に使用される顔料の種類については、特に限定されない。
具体的には、例えば、後記する実施例で使用される酸化チタンやカーボンブラック等を挙げることができる。
共重合体(A)の添加量は、20〜50質量%が好ましい。10質量%未満では、顔料の分散性の低下が見られるようになり、50質量%を越えると衝撃強度等の物性が低下することなく顔料の分散を改良する効果が見られない場合がある。
また、マスターバッチ組成物には、本発明の目的が損なわれない範囲で、所望に応じ、強化材、充填材、耐熱安定剤、耐候安定剤、帯電防止剤、滑剤、造核剤、及び難燃剤等の各種添加剤を添加することができる。
次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
実施例1
[1]触媒成分の調製
(1)アルミニウムオキシ化合物の調製
メチルアルミノキサンのトルエン溶液1000ミリリットル(1.47モル/リットル、アルベマール社製、トリメチルアルミニウム14.5質量%含有)を減圧下(約2.67kPa)、60℃でトルエン及び遊離トリメチルアルミニウムを留去した。
これに脱水トルエンを投入し、再溶解させて、溶媒を留去する前の容量に戻し、H−NMRによりメチルアルミノキサン中のトリメチルアルミニウムを定量したところ、3.6質量%であった。
また、蛍光X線(ICP)法により全アルミニウム量を測定したところ、1.32モル/リットルであった。
その後、この溶液を48時間静置し、不溶成分を沈降させ、溶液部分をG5ガラスフィルターで濾過し、トルエン可溶のメチルアルミノキサンを得た。このメチルアルミノキサンのIPC法により測定した濃度は1.06モル/リットルであった。
(2)担体の調製と担持メチルアルミノキサンの調製
SiO(富士シリシア(株)製、P−10)70gを140℃で15時間、微量の窒素気流下で乾燥した。乾燥SiOを22.0g秤量し、脱水トルエン200ミリリットルに投入した。
窒素雰囲気下、攪拌しながら0℃に温度を一定とした後、上記(1)で調製したメチルアルミノキサンのトルエン溶液200ミリリットルを60分間かけて滴下した。
滴下終了後、室温まで温度を上げこの状態で30分間反応させ、更に70℃で3時間反応させた。
反応終了後、60℃に保持し、固体成分を脱水トルエン200ミリリットルで2回、脱水ヘプタン200ミリリットルで2回洗浄し、50℃で減圧乾燥して32.8gのSiO担持メチルアルミノキサンを得た。
再度、脱水ヘプタンを投入して、スラリー状で保存した。
(3)メタロセン担持触媒の調製
100ミリリットルのシュレンク管を乾燥させ、窒素置換した後、乾燥ヘプタン50ミリリットル、上記(2)のSiO担持メチルアルミノキサンをアルミニウム原子換算で10ミリモル加え、攪拌を開始した。
これに、ラセミジメチルシリレンビス(2−メチル−4−フェニル−インデニル)ジルコニウムジクロリド[rac−SiMe(2−Me−4−Ph−Ind)ZrCl]をジルコニウム原子換算で10マイクロモル含むトルエン溶液10ミリリットルをゆっくり添加し、10分間反応させた。
[2]グラフト共重合体(A)の製造
容量5リットルのステンレス鋼製耐圧オートクレーブに脱水ヘプタン2リットル、トリイソブチルアルミニウム2.5ミリモルを投入し、10分間室温で攪拌した。
これに上記(3)で調製した担持触媒を全量投入した。
触媒の活性化のため25℃、プロピレン圧0.3MPa(ゲージ圧)で30分間予備重合を実施した後、脱圧、窒素ブローにより未反応のプロピレンを除去し、p−(3−ブテニル)−スチレンを2.5ミリモル含むヘプタン溶液4.0ミリリットルを添加した。
反応温度を85℃に制御しながら、プロピレンを10ノルマルリットル/分、エチレンを1.5ノルマルリットル/分、水素を0.05ノルマルリットル/分で供給し、全圧を0.5MPa(ゲージ圧)として共重合を60分間実施した。
重合終了後、室温まで冷却し脱圧し、攪拌を停止し、液相部を抜き出した。
更にトリイソブチルアルミニウムのヘプタン溶液(1.25モル/リットル)で、固体生成物をデカンテーション法により3回洗浄した。
次に、脱水トルエン1リットル及びメチルメタアクリレート100gを添加し、更にアゾビスイソブチロニトリル50mgを含むトルエン溶液10ミリリットルを加え、反応温度40℃で6時間重合を行った。
重合終了後、大量のメタノールに反応混合物を投入し、グラフト共重合反応物を、濾過、乾燥により回収したところ収量は697gであった。
この反応混合物からグラフト共重合に関与しなかったポリメチルメタアクリレートをメチルエチルケトンで十分に洗浄抽出し、グラフト共重合体を得た。
このグラフト共重合体の極限粘度[η](デカリン中、135℃)は0.81デシリットル/gであった。
又、第一段目の共重合で生成したプロピレン−エチレン共重合部の割合は95質量%であった。即ち、5質量%のポリメチルメタアクリレートがグラフト共重合していることになる。
又、分岐数は、1000炭素当り、0.9個であった。
[3]マスターバッチ組成物の調製
上記[2]で得られたグラフト重合体(A)400g、ポリプロピレン(出光石油化学社製、商品名:出光ポリプロピレンJ−2000GP)1kg、酸化チタン(チタン工業社製、商品名:KR−460)400g及びカーボンブラック(キャボラック社製、商品名:Monarch800)200gをバンバリーミキサーにて混練し、グレー色のマスターバッチを調製した。
[4]調色ポリプロピレンの成形
上記[3]で調製したマスターバッチ300g及びポリプロピレン(出光石油化学社製、商品名:出光ポリプロピレンJ−5051HP)10kgをドライブレンドし、東芝機械社製成形機(IS200CN)にて、樹脂温度220℃、金型温度50℃、スクリュー回転数90rpmの条件で平板及び物性測定用の試験片を作製し、色ムラは目視により確認し、物性は下記の方法により測定した。
結果を表1に示す。
(1)曲げ弾性率
JIS K7202に準拠して、射出成形試験片を作製し、曲げ弾性率を測定した。
(2)耐衝撃強度
JIS K7110に準拠して、射出成形試験片を作製し、23℃及び−20℃でのノッチ付きアイゾット衝撃強度を測定した。
実施例2
[1]マスターバッチ組成物の調製
実施例1[2]と同様にして得られたグラフト重合体(A)400g、ポリプロピレン(出光石油化学社製、商品名:出光ポリプロピレンJ−2000GP)800g、酸化チタン(チタン工業社製、商品名:KR−460)534g及びカーボンブラック(キャボラック社製、商品名:Monarch800)266gをバンバリーミキサーにて混練し、グレー色のマスターバッチを調製した。
[2]調色ポリプロピレンの成形
上記[1]で調製したマスターバッチ250g及びポリプロピレン(出光石油化学社製、商品名:出光ポリプロピレンJ−5051HP)10kgをドライブレンドし、実施例1と同様にして平板及び物性測定用の試験片を作製し、色ムラ確認と物性を測定した。
結果を表1に示す。
実施例3
[1]グラフト共重合体(A)の製造
容量5リットルのステンレス製耐圧オートクレーブに脱水ヘプタン2リットル、トリイブチルアルミニウム2.5ミリモルを投入し、10分間室温で攪拌した。
これに実施例1の[1]、(3)と同様にして調製したメタロセン担持触媒をジルコニウム原子換算で10マイクロモルを投入した。
触媒の活性化のため25℃、プロピレン圧0.3MPa(ゲージ圧)で30分間予備重合を実施した後、脱圧、窒素ブローにより未反応のプロピレンを除去し、p−(3−ブテニル)−スチレンを3.0ミリモル含むヘプタン溶液4.6ミリリットルを添加した。
反応温度を85℃に制御しながら、プロピレンを10ノルマルリットル/分、エチレン1.0ノルマルリットル/分、水素を0.05ノルマルリットル/分の流量で供給して、全圧を0.5MPa(ゲージ圧)となるようにして共重合を60分間実施した。
重合終了後、室温まで冷却し脱圧し、攪拌を停止し、十分乾燥された、窒素置換した5リットルガラス製反応容器に反応混合物を移送した。
フィルターを用いて液相部を抜き出した後、更に脱水ヘプタン1000ミリリットルで固体生成物を3回洗浄した。
その後、脱水ヘプタンを1000ミリリットル投入し、室温でノルマルブチルリチウム20ミリモルを投入し、50℃で30分間攪拌しながら反応した。
反応終了後、固体成分を脱水ヘプタン600ミリリットルで3回洗浄した。これを−78℃に温度制御しながら、1時間をかけて十分に脱水したメチルメタアクリレートを20グラム添加した。この状態で攪拌下、24時間反応した。
更に、十分乾燥したアクリル酸エチル80グラムを同様にして1時間かけて添加した。この状態で、更に、24時間反応した。
反応終了後、大量のメタノールに反応混合物を投入し、ろ過乾燥によりグラフト共重合体を回収した。収量は671gであった。
このグラフト共重合体の極限粘度[η](デカリン中、135℃)は0.89デシリットル/gであった。
又、第一段目の共重合で生成したプロピレン−エチレン共重合部の割合は95質量%であった。即ち、ブロック結合したポリメチルメタアクリレートとポリアクリル酸エチルからなる共重合体5質量%がグラフト共重合していることになる。
又、このポリメチルメタアクリレートとポリアクリル酸エチルからなるブロック共重合体中のメチルメタアクリレートに起因する単位は、グラフト共重合体(A)に占める割合として2質量%、アクリル酸エチルに起因する単位は3質量%であった。
[2]マスターバッチ組成物の調製
上記[1]で得られたグラフト共重合体(A)を用いて、実施例1の[3]と同様にしてマスターバッチ組成物を調製した。
[3]調色ポリプロピレンの成形
上記[2]で調製したマスターバッチを用い、実施例1の[4]と同様にして試験片を作製し、実施例1記載の方法で、曲げ弾性率、耐衝撃強度、色ムラを評価した。結果を表1に示す。
比較例1
[1]マスターバッチ組成物の調製
ワックス(日本油脂社製、商品名:サンワックス165)400g、ポリプロピレン(出光石油化学社製、商品名:出光ポリプロピレンJ−2000GP)1kg、酸化チタン(チタン工業社製、商品名:KR−460)400g及びカーボンブラック(キャボラック社製、商品名:Monarch800)200gをバンバリーミキサーにて混練し、グレー色のマスターバッチを調製した。
[2]調色ポリプロピレンの成形
上記[1]で調製したマスターバッチ300g及びポリプロピレン(出光石油化学社製、商品名:出光ポリプロピレンJ−5051HP)10kgをドライブレンドし、実施例1と同様にして平板及び物性測定用の試験片を作製し、色ムラ確認と物性を測定した。
結果を表1に示す。
比較例2
[1]マスターバッチ組成物の調製
ワックス(日本油脂社製、商品名:サンワックス165)400g、ポリプロピレン(出光石油化学社製、商品名:出光ポリプロピレンJ−2000GP)800g、酸化チタン(チタン工業社製、商品名:KR−460)534g及びカーボンブラック(キャボラック社製、商品名:Monarch800)266gをバンバリーミキサーにて混練し、グレー色のマスターバッチを調製した。
[2]調色ポリプロピレンの成形
上記[1]で調製したマスターバッチ250g及びポリプロピレン(出光石油化学社製、商品名:出光ポリプロピレンJ−5051HP)10kgをドライブレンドし、実施例1と同様にして平板及び物性測定用の試験片を作製し、色ムラ確認と物性を測定した。
結果を表1に示す。
Figure 2003000793
産業上の利用可能性
本発明のポリオレフィン樹脂用顔料マスターバッチ組成物は、ポリオレフィン樹脂の調色における顔料分散性を著しく改善し、物性の低下を防止できる。 Technical field
The present invention relates to a pigment masterbatch composition for a polyolefin resin, and more particularly, to a pigment masterbatch composition for a polyolefin resin, which significantly improves pigment dispersibility in toning of the polyolefin resin and prevents a decrease in physical properties of the polyolefin resin. It is about.
Background art
Polyolefin resins such as polyethylene and polypropylene are used in a wide range of fields and applications as lightweight resins with excellent mechanical strength and moldability.In many cases, color is adjusted with pigments in consideration of the design of the final product. I have.
In such toning, pigments are often kneaded and dispersed before the molding process, but as a cost-effective method, a pigment masterbatch is dry-blended with a polyolefin resin, and the pigment is mixed at the plasticizing stage of the molding machine. In some cases, the pigment is dispersed.
In general, pigment master batches are used for the toning of polypropylene resin.However, pigments are sufficiently mixed and dispersed in the plasticization stage of the molding machine in the type of pigment master batch added during injection molding. It is required that color unevenness does not occur.
Conventionally, a carrier resin such as polyethylene wax has been added to the masterbatch in order to enhance the dispersibility of the pigment, but the addition of the wax improves the dispersibility of the pigment, but the rigidity inherent to the polypropylene resin There was a problem that physical properties deteriorated.
The present invention has been made in view of the above circumstances, and provides a pigment masterbatch composition for a polyolefin resin which significantly improves pigment dispersibility in toning of a polyolefin resin and prevents a decrease in physical properties of the polyolefin resin. It is the purpose.
Disclosure of the invention
The present inventors have conducted intensive studies in order to solve the above problems, and as a result, by using a copolymer having a specific structure as a carrier resin, the pigment dispersibility in the toning of the polyolefin resin has been significantly improved, and the polyolefin resin has been improved. It has been found that a decrease in physical properties of the resin can be prevented.
The present invention has been completed based on such findings.
That is, the present invention comprises a homopolymerization chain or a copolymerization chain of an α-olefin having 2 to 20 carbon atoms and at least one selected from a cyclic olefin, an aromatic vinyl monomer and a polar group-containing vinyl monomer. The present invention provides a pigment masterbatch composition for a polyolefin resin, wherein a copolymer (A) having a copolymer chain having a graft bond and / or a block bond is used as a carrier resin.
BEST MODE FOR CARRYING OUT THE INVENTION
The copolymer (A) is composed of a homopolymerization chain or a copolymerization chain of an α-olefin having 2 to 20 carbon atoms and at least one selected from cyclic olefins, aromatic vinyl monomers and polar group-containing vinyl monomers. The constituent copolymer chains are graft-bonded and / or block-bonded.
As the α-olefin having 2 to 20 carbon atoms, ethylene, propylene, 1-butene, 3-methyl-1-butene, 4-phenyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4- Methyl-1-pentene, 3,3-dimethyl-1-pentene, 3,4-dimethyl-1-pentene, 4,4-dimethyl-1-pentene, 1-hexene, 4-methyl-1-hexene, 5- Methyl-1-hexene, 6-phenyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, vinylcyclohexane, 5-ethylidene-2 Α-olefins such as -norbornene; hexafluoropropene, tetrafluoroethylene, 2-fluoropropene, fluoroethylene, 1,1-difluene Examples include halogen-substituted α-olefins such as oloethylene, 3-fluoropropene, trifluoroethylene, and 3,4-dichloro-1-butene.
Examples of the cyclic olefin include monocyclic cyclic olefins such as cyclopentene; norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-propylnorbornene, 5,6-dimethylnorbornene, 1-methylnorbornene, 7-methylnorbornene, 5,6-trimethylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene, 5-ethylidenenorbornene, 1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydro Naphthalene, 2-methyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-ethyl-1,4,5,8-dimethano- 1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2,3-dimethyl-1,4,5,8-dimethyl 1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-hexyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8, 8a-octahydronaphthalene, 2-ethylidene-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-fluoro-1,4,5 8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 1,5-dimethyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-cyclohexyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2,3-dichloro- 1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahi Lonaphthalene, 2-isobutyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 1,2-dihydrodicyclopentadiene, 5-chloronorbornene 5,5-dichloronorbornene, 5-fluoronorbornene, 5,5,6-trifluoro-6-trialolomethylnorbornene, 5-chloromethylnorbornene, 5-methoxynorbornene, 5,6-dicarboxynorbornene anhydrate , 5-dimethylaminonorbornene, 5-cyanonorbornene and the like.
As the aromatic vinyl monomer, styrene, p-methylstyrene, p-ethylstyrene, p-propylstyrene, p-isopropylstyrene, p-butylstyrene, p-tert-butylstyrene, p-phenylstyrene, o- Methyl styrene, o-ethyl styrene, o-propyl styrene, o-isopropyl styrene, m-methyl styrene, m-ethyl styrene, m-isopropyl styrene, m-butyl styrene, mesityl styrene, 2,4-dimethyl styrene, Alkylstyrenes such as 2,5-dimethylstyrene and 3,5-dimethylstyrene; alkoxystyrenes such as p-methoxystyrene, o-methoxystyrene and m-methoxystyrene; p-chlorostyrene, m-chlorostyrene, o- Chlorostyrene, p-bromostyrene, m-butyl Mosuchiren, o- bromostyrene, p- fluoro styrene, m- fluorostyrene, o- fluorostyrene, o- methyl -p- fluorostyrene and halogenated styrenes; trimethylsilyl styrene, and vinyl benzoate and the like.
Examples of the polar group-containing vinyl monomer include vinyl fluoride, vinyl chloride, vinyl bromide, vinyl methyl ether, vinyl ethyl ether, vinyl-n-propyl ether, vinyl-i-propyl ether, vinyl butyl ether, vinyl pentyl ether, Vinylhexyl ether, vinyl-2-ethylhexyl ether, vinyl formate, vinyl acetate, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, acrylic acid Pentyl, hexyl acrylate, heptyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, pen methacrylate Hexyl methacrylate, heptyl methacrylate, 2-ethylhexyl methacrylate, maleic anhydride, maleic acid, dimethyl maleate, diethyl maleate, dipropyl maleate, dibutyl maleate, dipentyl maleate, dihexyl maleate, diheptyl maleate And 2-ethylhexyl maleate, maleamide, maleimide, maleic diamide, N-methylmaleimide, and the like.
Examples of the copolymer (A) include a copolymer [(A) -1] in which a graft bonding point is formed from an olefin-based macromonomer and / or a polyene, and a copolymer having a block bonding point generated in a polymerization process [ (A) -2] and a copolymer having a graft bonding point defined by the copolymer [(A) -1] and a block bonding point defined by the copolymer [(A) -2] [ (A) -3].
Here, the olefin-based macromonomer is a polymer having a vinyl group at the terminal of the main chain, and is obtained by, for example, polymerizing ethylene or propylene by selecting a catalyst.
Further, the block bonding point generated in the polymerization process refers to a state in which at least one or more different chains of the monomer type, stereoregularity, and copolymer composition form a covalent bond.
Any polyene may be used as long as it has at least two polymerizable carbon-carbon double bonds in one molecule.
Examples of the polyene include 1,3-butadiene, 1,4-pentadiene, 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, and 1,10-diene. Undecadiene, 1,11-dodecadiene, 1,13-tetradecadiene, 1,15-hexadecadiene, 4,4, -dimethyl-1,9-decadiene, 4,4, -dimethyl-1,9-decadiene, Α, ω-type polyenes such as 1,5,9-decatriene, 5-allyl-1,9-decadiene and 1,19-ecodiene; p-divinylbenzene, m-divinylbenzene, o-divinylbenzene, di- ( Styrene-type polyenes such as p-vinylphenyl) methane, 1,3-bis (p-vinylphenyl) propane, and 1,5-bis (p-vinylphenyl) pentane; 5-vinyl-2-norbornene, 5-isopropylidene-2-norbornene, dicyclopentadiene, dimethyldicyclopentadiene, diethyldicyclopentadiene,
Figure 2003000793
Figure 2003000793
Figure 2003000793
Cyclic polyenes such as p- (2-propenyl) styrene, m- (2-propenyl) styrene, p- (3-butenyl) styrene, m- (3-butenyl) styrene, o- (3-butenyl) styrene , P- (4-pentenyl) styrene, m- (4-pentenyl) styrene, o- (4-pentenyl) styrene, p- (5-propenyl) styrene, p- (7-octenyl) styrene, p- (1 -Methyl-3-butenyl) styrene, p- (2-methyl-3-butenyl) styrene, o- (2-methyl-3-butenyl) styrene, p- (3-methyl-3-butenyl) styrene, p- (2-ethyl-3-butenyl) styrene, p- (2-ethyl-4-pentenyl) styrene, p- (3-butenyl) -α-methylstyrene, m- (3-butenyl) -α-methylstyrene , O- (3-butenyl) -α-methylstyrene, 4-vinyl-4 ′-(3-butenyl) biphenyl, 4-vinyl-3 ′-(3-butenyl) biphenyl, 4-vinyl-4′- Styrene residues and α-olefin residues, such as (4-pentenyl) biphenyl, 4-vinyl-2 ′-(4-pentenyl) biphenyl, 4-vinyl-4 ′-(2-methyl-3-butenyl) biphenyl Styrene / α-olefin type polyenes having in the same molecule; 1,4-diclohexadiene, 1,5-cyclooctadiene, 1,5-cyclododecadiene, 4-vinylcyclohexane, 1-allyl-4-isopropylene To mention, for example, redenecyclohexane, 3-allylcyclopentene, 4-allylcyclohexene and 1-isopropenyl-4- (4-butenyl) cyclohexane It can be.
In the present invention, α, ω is preferred because, among them, the reactivity of the carbon-carbon double bond is high, and the residual unsaturated groups which tend to cause a decrease in thermal stability during the production of the composition can be reduced. Type polyenes, styrene type polyenes, cyclic polyenes and styrene / α-olefin type polyenes are preferred.
The copolymer (A) will be described in the following [1] to [4].
[1] Copolymer having (A) -1 graft bonding point
(1) Structure of copolymer
A graft copolymer formed by a polymerization reaction via a macromonomer, a graft copolymer having a graft structure based on polyene, or a graft copolymer having a graft structure formed from both a macromonomer and a polyene .
(2) Parameters of graft structure
1. Branch length and number of branches
The branch length is preferably about the same as the number of carbon atoms 10 to the main chain, and the number of branches is preferably 0.001 to 5/1000 carbons.
Means for adjusting the branch length in the above range include adjusting the amounts and types of macromonomers and polyenes used in the production of the graft copolymer and the conditions for the graft copolymerization.
The number of branches can be adjusted within the above range by adjusting the amount of macromonomer or polyene.
2. Definition by non-Newtonian parameters
As an effective method for measuring the content of a trace amount of polyene units, a method for evaluating the dynamic viscoelasticity from the angular velocity dependence is used.
This is measured using a fact that a polyolefin having a very small amount of branching due to a polyene unit has a different shear viscosity dependence of melt viscosity as compared with a polyolefin containing no branching.
That is, when a branch originating in a polyene unit is present, the dependence of the melt viscosity on the shear rate is greater than in a system having no branch.
Therefore, by comparing a polymer and a graft copolymer produced without using a polyene under the same other production conditions, a branched polyene unit can be detected.
Also, this method is known to be affected by the molecular weight distribution, but in this case, using a polyolefin having the same monomer unit species without apparent branching, and almost the same composition ratio, By comparing the shear rate dependence of the melt viscosity with respect to the molecular weight distribution, a branched polyene unit can be detected.
A specific measuring method as an example will be described.
Apparatus: Melt viscosity measuring device RMS800 (Rheometrics)
Measurement condition
Temperature: above the melting point or glass transition temperature of the graft copolymer
Usually, a temperature higher by 10 to 60 ° C. than the highest melting point of the graft copolymer,
Usually 10 to 200 ° C higher than the maximum glass transition temperature of the graft copolymer
High temperature
Distortion: 15%
Angular velocity: 0.01 to 100 rad / s
Sample shape: cone plate
Data processing:
The angular velocity at which the storage elastic modulus becomes 10 Pascal is ω1
Storage modulus is 103The angular velocity that becomes Pascal is ω2
And ω2/ 10ω1Calculate the value of
<Detection of polyene units>
Case 1
When the comparative sample was a polyolefin produced without using a polyene during the production of the graft copolymer, the molecular weight distribution [weight average molecular weight (Mw) / number average molecular weight (Mn) of the graft copolymer produced using the polyene was used. )] Is in the range of 0.8 to 1.8 times
Ω of the graft copolymer2/ 10ω1The value of N1
Ω of comparative sample polyolefin2/ 10ω1Is the value of N °
When the following formula (a) is satisfied, a polyene unit exists.
Case 2
When the comparative sample is a polyolefin with no apparent branching, the same monomer unit type and the same composition ratio
Here, the fact that the constitutional ratios of the monomers are substantially the same indicates the following case.
(A) A polyolefin containing all the same sequences except for the sequence derived from the polyene unit of the graft copolymer, having a polymer structure other than the graft structure, and having a monomer composition substantially similar to that of the graft copolymer. The same polyolefin,
(B) A polyolefin containing a sequence other than the graft structure, wherein the polyolefin contains all the same sequences except for the sequence derived from the polyene unit of the graft copolymer, and the monomer composition of which is substantially the same as that of the graft copolymer. mixture,
Is one of
N ° (ω of the comparative sample) relative to the molecular weight distribution [weight average molecular weight (Mw) / number average molecular weight (Mn)] of the comparative sample determined by GPC2/ 10ω1Is plotted, and a monotonically increasing function N ° = f (Mw / Mn) is determined from this relationship by the least squares method.
In this relation, the molecular weight distribution of the graft copolymer (Mw / Mn)1N obtained from the value of1Satisfies the following formula (a), a polyene unit can be confirmed.
Figure 2003000793
N1If the ratio / N ° is less than 1.05, the compatibilizing ability of the graft copolymer is low, which may hinder the sufficient development of the physical properties of the composition. Coalescence is formed as a by-product and a gel is generated, which causes a problem in physical properties and in mixing properties during the production of the composition.
3. Branch parameter (α)
The branching parameter (α) is determined by GPC / MALLS (multi-angle light scattering) measurement of the sample, and at each elution position, <R2>1/2(Square root of the root mean square of the radius) and the weight average molecular weight M from the intercept of the scattered light intensity.2>1/2And the logarithm of M are plotted, and the slope α is calculated by the least squares method.
Thus, the α value of the linear polymer and the graft copolymer was determined, and the α value of the linear polymer was calculated as (α)L, The α value of the graft copolymer is (α)BAnd when
[(Α)L/ (Α)B] ≧ 1.02
It is preferable to satisfy the following. More preferably,
[(Α)L/ (Α)B] ≧ 1.04
It is.
The GPC / MALLS measurement of the sample is performed, for example, under the following conditions.
Figure 2003000793
(3) Rules for containing polyene
In the graft copolymer (A) -1, the amount of the xylene-insoluble portion at 140 ° C. is preferably in the range of 0 to 1.5% by mass.
When the amount of the xylene-insoluble portion exceeds 1.5% by mass, in the production of the resin composition, the melting and dispersing of the graft copolymer and the dispersing and mixing of the solution are insufficient, and it is difficult to bring out the designed physical properties of the composition. In addition to this, the appearance of the molded body may be deteriorated, and the strength of the molded article may be reduced due to stress concentration.
Therefore, the amount of the xylene-insoluble portion is preferably 0 to 1.3% by mass, more preferably 0 to 1.2% by mass, still more preferably 0 to 1.0% by mass, and particularly preferably 0 to 0.5% by mass. %, Most preferably in the range of 0 to 0.3% by weight.
The amount of the xylene-insoluble portion is a value measured according to the following method.
That is, 2.0 g of the graft copolymer is placed in a 150-mesh stainless steel container, immersed in 1 liter of para-xylene at 140 ° C., and dissolved with stirring for 5 hours.
After the dissolution, the container is pulled up, and the container is dried under reduced pressure at 100 ° C. until the weight becomes constant.
The weight of the graft copolymer remaining in the container is divided by the weight of the charged graft copolymer, and the percentage is defined as the amount of the xylene-insoluble portion.
In the graft copolymer (A) -1, the content of the polyene unit is usually preferably in the range of 0 to 0.45 mol%.
Preferably 0 to 0.40 mol%, more preferably 0 to 0.35 mol%, further preferably 0 to 0.30 mol%, particularly preferably 0 to 0.25 mol%, most preferably 0 to 0. It is in the range of 20 mol%.
When the content of the polyene unit exceeds 0.45 mol%, the same problem as when the content of the xylene-insoluble portion exceeds 1.5 mass% may occur.
The content of the polyene unit can be measured by the method described above.
Furthermore, in the graft copolymer (A) -1, the residual amount of carbon-carbon double bonds derived from polyene units therein is preferably in the range of 0 to 0.15 mol%.
The residual unsaturated group defined here is derived from polyene and does not include a carbon-carbon double bond at the terminal of the polymer newly generated in the production process.
If the residual amount exceeds 0.15 mol%, the resulting composition tends to have poor weather resistance and thermal stability.
This residual amount is preferably 0 to 0.13 mol%, more preferably 0 to 0.11 mol%, further preferably 0 to 0.09 mol%, particularly preferably 0 to 0.07 mol%, and most preferably. Ranges from 0 to 0.05 mol%.
In addition, the residual amount of the carbon-carbon double bond derived from the polyene unit is measured according to a standard method using an infrared absorption spectrum or an ultraviolet absorption spectrum.
(4) Preferred copolymer (A) -1
1. Olefin (co) polymerization section
The (co) polymer part is an olefin homopolymer chain or a copolymer chain composed of one or more monomers selected from α-olefins having 2 to 20 carbon atoms.
It is the same monomer species as the polyolefin resin to be colored, and it is preferable that the monomer composition is similar. Further, in order to improve the loosening property of the pigment, the polyolefin resin to be colored is It is preferable to adopt a structure and composition having a lower melting point than the resin.
2. Non-olefin (co) polymer
Although there is no particular limitation, a polar group-containing vinyl (co) polymer chain is preferable from the viewpoint of affinity with the pigment, and a (co) polymer chain of acrylic acid and methacrylic acid esters is more preferable in terms of quality and cost.
3. Molecular weight of copolymer (A) -1
The intrinsic viscosity [η] measured in a decalin solvent at 135 ° C., which is an index of the molecular weight, is preferably in the range of 0.05 to 10 deciliter / g, more preferably 0.05 to 8 deciliter / g, and furthermore Preferably it is 0.06 to 7 deciliter / g, most preferably 0.1 to 6 deciliter / g.
When the content is less than 0.05 deciliter / g, the effect of improving the physical properties of the composition, particularly the impact strength is small, and when it exceeds 10 deciliter / g, the melt dispersion of the copolymer (A) -1 during the production of the composition. Is reduced.
[2] Copolymer having (A) -2 block bonding point
(1) Structure of copolymer
It refers to a true block copolymer having a chemical bonding point manufactured by a block polymerization method.
True block copolymers use a so-called Ziegler-Natta catalyst to polymerize an α-olefin having 2 to 20 carbon atoms while the catalyst is in a polymerizable active state, followed by cyclic olefin and aromatic vinyl monomer. It can be produced by (co) polymerizing one or more selected from a monomer and a polar group-containing vinyl monomer.
(2) Definition of block structure
1. Copolymer whose block bonding point can be confirmed by spectroscopic method
It is detected by a method for detecting a chemical bonding point itself, for example, a normal nuclear magnetic resonance spectrum method.
Since a secondary carbon is usually present at the block bonding point, these unique bonds can be detected.
2. Copolymer whose block structure can be confirmed based on the difference in solubility of polymer chains
Detection is performed by utilizing the difference in solubility between polymer chains.
A solvent having high solubility in either polymer chain, or a mixture of multiple solvents, and performing a dissolution operation using a mixed solvent whose solubility is controlled, that a soluble component exists in the solvent-insoluble component, or Confirm that the solvent-insoluble component is present in the soluble component.
Alternatively, the above-mentioned 1. By applying the above method, the block joining point is detected.
(3) Preferred copolymer (A) -2
1. About an olefin (co) polymer part, it is the same as that of the said copolymer (A) -1.
2. About a non-olefin (co) polymer part, it is the same as that of the said copolymer (A) -1.
3. About the molecular weight of a copolymer, it is the same as that of the said copolymer (A) -1.
[3] (A) -3 Copolymer having graft bonding point and block bonding point
(1) Structure of copolymer
Graft copolymerization point formed by polymerization reaction via macromonomer, graft / block copolymer having block connection point by true block bond, graft copolymerization point based on polyene, and block bond by true block bond A graft / block copolymer having a point, or a graft / block copolymer having a graft copolymerization point derived from both a macromonomer and a polyene and a block bonding point by a true block bond.
(2) Graft block structure parameters
It is the same as copolymer (A) -1, and the preferred range is also the same.
[4] Preferred copolymer (A)
(1) Solid1Regulation by H-NMR measurement
When used as a masterbatch, it is preferable that the polyolefin resin to be colored and the carrier resin constituting the masterbatch, that is, the copolymer (A) have high compatibility.
This evaluation preferably has the following relationship in the composition comprising the polyolefin resin to be colored and the copolymer (A).
Solid of composition comprising copolymer (A) and polyolefin resin1Relaxation rate (1 / R) of the long-term relaxation component determined by H-NMR measurement1) And a solid composition comprising a physical mixture of a graft copolymer, a block copolymer, or a polymer chain and a polyolefin resin constituting the graft / block copolymer.1Relaxation rate (1 / R) of the long-term relaxation component determined by H-NMR measurement1)0And the ratio [(1 / R1) / (1 / R1)0Is preferably 1.05 or more.
If the ratio is less than 1.05, the resin compatibility is poor and a composition having desired physical properties may not be obtained.
[(1 / R1) / (1 / R1)0] Is preferably 1.06 or more, more preferably 1.07 or more.
The above (1 / R1) And (1 / R1)0Is the solid below1It is determined by an inversion recovery method (180 ° -τ-90 ° pulse method) using an H-NMR measuring apparatus.
Figure 2003000793
(2) Preferred copolymer (A)
1. An olefin homopolymer chain or copolymer chain composed of one or more monomers selected from α-olefins having 2 to 20 carbon atoms, and a (co) polymer chain containing at least a polar group-containing vinyl monomer have a graft bond and And / or block-bonded copolymer (A) is preferred.
Specifically, a (co) polymer composed of a polyolefin resin and one or more selected from acrylic acid monomers, methacrylic acid monomers, vinyl acetate, acrylonitrile, methacrylonites, and the like is preferable. (Co) polymers composed of at least one selected from acid monomers, methacrylic acid monomers and the like are more preferred.
2. A graft-linked and / or block-linked copolymer (A) having a low melting point and a relatively high molecular weight is preferred.
Specifically, copolymer chain polyolefin resins such as propylene / ethylene, ethylene / butene and propylene / butene, and low stereoregular polyolefin resins are particularly preferred.
3. A copolymer (A) having a (co) polymerization chain containing at least a polar group-containing vinyl monomer, having a low melting point and a relatively high molecular weight, and having a graft bond and / or a block bond is preferred.
Specifically, 1. And 2. And a copolymer having the following.
Additives such as a neutralizing agent, an antioxidant, a weathering agent, and an antistatic agent can be added to the copolymer (A).
The method for preparing the pigment masterbatch composition for polyolefin of the present invention will be described.
The preparation method is not particularly limited, and a method commonly used for ordinary pigment masterbatch can be used.
Examples of such a method include the methods of Comparative Examples 1 and 2 described below.
The type of pigment used in the pigment masterbatch composition of the present invention is not particularly limited.
Specifically, for example, titanium oxide, carbon black, and the like used in Examples described later can be mentioned.
The addition amount of the copolymer (A) is preferably from 20 to 50% by mass. If the amount is less than 10% by mass, the dispersibility of the pigment may be reduced. If the amount exceeds 50% by mass, the effect of improving the dispersion of the pigment may not be obtained without deterioration in physical properties such as impact strength.
The masterbatch composition may further include a reinforcing material, a filler, a heat stabilizer, a weather stabilizer, an antistatic agent, a lubricant, a nucleating agent, and a hardening agent, as long as the object of the present invention is not impaired. Various additives such as a flame retardant can be added.
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
[1] Preparation of catalyst component
(1) Preparation of aluminum oxy compound
Toluene and free trimethylaluminum were distilled off at 60 ° C. under reduced pressure (about 2.67 kPa) from 1000 ml of a toluene solution of methylaluminoxane (1.47 mol / liter, manufactured by Albemarle, containing 14.5% by mass of trimethylaluminum). .
To this was added dehydrated toluene, redissolved, returned to the volume before the solvent was distilled off,1The amount of trimethylaluminum in methylaluminoxane determined by 1 H-NMR was 3.6% by mass.
The total amount of aluminum measured by the fluorescent X-ray (ICP) method was 1.32 mol / L.
Thereafter, the solution was allowed to stand for 48 hours to precipitate insoluble components, and the solution was filtered through a G5 glass filter to obtain toluene-soluble methylaluminoxane. The concentration of this methylaluminoxane measured by the IPC method was 1.06 mol / liter.
(2) Preparation of carrier and preparation of supported methylaluminoxane
SiO270 g (P-10, manufactured by Fuji Silysia K.K.) was dried at 140 ° C. for 15 hours under a small amount of nitrogen gas flow. Dry SiO2Was weighed and charged into 200 ml of dehydrated toluene.
After maintaining the temperature at 0 ° C. while stirring under a nitrogen atmosphere, 200 ml of a toluene solution of methylaluminoxane prepared in the above (1) was added dropwise over 60 minutes.
After completion of the dropwise addition, the temperature was raised to room temperature, and the reaction was carried out for 30 minutes in this state, and further the reaction was carried out at 70 ° C. for 3 hours.
After completion of the reaction, the mixture was maintained at 60 ° C., and the solid component was washed twice with 200 ml of dehydrated toluene and twice with 200 ml of dehydrated heptane, and dried under reduced pressure at 50 ° C. to obtain 32.8 g of SiO 2.2A supported methylaluminoxane was obtained.
Again, dehydrated heptane was charged and stored in a slurry state.
(3) Preparation of metallocene supported catalyst
After drying a 100 ml Schlenk tube and purging with nitrogen, 50 ml of dry heptane, SiO 2 of the above (2) was used.210 mmol of supported methylaluminoxane was added in terms of aluminum atom, and stirring was started.
To this, racemic dimethylsilylene bis (2-methyl-4-phenyl-indenyl) zirconium dichloride [rac-SiMe2(2-Me-4-Ph-Ind)2ZrCl2] Was slowly added, and the mixture was reacted for 10 minutes.
[2] Production of graft copolymer (A)
2 liters of dehydrated heptane and 2.5 mmol of triisobutylaluminum were charged into a 5 liter stainless steel pressure-resistant autoclave, and the mixture was stirred at room temperature for 10 minutes.
The whole amount of the supported catalyst prepared in the above (3) was added thereto.
After preliminary polymerization was performed at 25 ° C. and a propylene pressure of 0.3 MPa (gauge pressure) for 30 minutes to activate the catalyst, unreacted propylene was removed by depressurization and nitrogen blow to obtain p- (3-butenyl)-. 4.0 milliliters of a heptane solution containing 2.5 millimoles of styrene was added.
While controlling the reaction temperature to 85 ° C., propylene was supplied at 10 normal liters / minute, ethylene at 1.5 normal liters / minute, and hydrogen at 0.05 normal liters / minute, and the total pressure was 0.5 MPa (gauge pressure). ) Was carried out for 60 minutes.
After completion of the polymerization, the mixture was cooled to room temperature, depressurized, the stirring was stopped, and the liquid phase was extracted.
Further, the solid product was washed three times with a solution of triisobutylaluminum in heptane (1.25 mol / L) by a decantation method.
Next, 1 liter of dehydrated toluene and 100 g of methyl methacrylate were added, and 10 ml of a toluene solution containing 50 mg of azobisisobutyronitrile was further added, and polymerization was performed at a reaction temperature of 40 ° C. for 6 hours.
After completion of the polymerization, the reaction mixture was poured into a large amount of methanol, and the graft copolymerized product was collected by filtration and dried. The yield was 697 g.
From the reaction mixture, polymethyl methacrylate not involved in the graft copolymerization was sufficiently washed and extracted with methyl ethyl ketone to obtain a graft copolymer.
The intrinsic viscosity [η] (in decalin at 135 ° C.) of this graft copolymer was 0.81 deciliter / g.
The proportion of the propylene-ethylene copolymer part formed in the first-stage copolymerization was 95% by mass. That is, 5% by mass of polymethyl methacrylate is graft copolymerized.
The number of branches was 0.9 per 1000 carbons.
[3] Preparation of master batch composition
400 g of the graft polymer (A) obtained in the above [2], 1 kg of polypropylene (manufactured by Idemitsu Petrochemical Co., Ltd., trade name: Idemitsu Polypropylene J-2000GP), titanium oxide (manufactured by Titanium Industry Co., trade name: KR-460) 400 g and 200 g of carbon black (manufactured by CAVOLAC, trade name: Monarch 800) were kneaded with a Banbury mixer to prepare a gray master batch.
[4] Molding of toned polypropylene
300 g of the master batch prepared in the above [3] and 10 kg of polypropylene (trade name: Idemitsu Polypropylene J-5051HP, manufactured by Idemitsu Petrochemical Co., Ltd.) are dry-blended, and the resin temperature is 220 ° C. by a molding machine (IS200CN) manufactured by Toshiba Machine Co., Ltd. A plate and a test piece for measuring physical properties were prepared under the conditions of a mold temperature of 50 ° C. and a screw rotation speed of 90 rpm, color unevenness was visually observed, and physical properties were measured by the following methods.
Table 1 shows the results.
(1) Flexural modulus
Injection molded test pieces were prepared in accordance with JIS K7202, and the flexural modulus was measured.
(2) Impact resistance
Injection molded test pieces were prepared in accordance with JIS K7110, and the notched Izod impact strength at 23 ° C. and −20 ° C. was measured.
Example 2
[1] Preparation of master batch composition
400 g of the graft polymer (A) obtained in the same manner as in Example 1 [2], 800 g of polypropylene (trade name: Idemitsu Petrochemical Co., trade name: Idemitsu Polypropylene J-2000GP), titanium oxide (trade name, manufactured by Titanium Industry Co., Ltd.) : KR-460) and 266 g of carbon black (trade name: Monarch 800, manufactured by Cavolak) were kneaded with a Banbury mixer to prepare a gray master batch.
[2] Molding of toned polypropylene
Dry blending of 250 g of the master batch prepared in [1] above and 10 kg of polypropylene (trade name: Idemitsu Polypropylene J-5051HP, manufactured by Idemitsu Petrochemical Co., Ltd.) was carried out, and a plate and a test piece for measuring physical properties were prepared in the same manner as in Example 1. It was manufactured, and color unevenness was confirmed and physical properties were measured.
Table 1 shows the results.
Example 3
[1] Production of graft copolymer (A)
2 liters of dehydrated heptane and 2.5 mmol of tributyl aluminum were charged into a 5 liter stainless steel pressure-resistant autoclave, and stirred at room temperature for 10 minutes.
To this, 10 μmol of a metallocene-supported catalyst prepared in the same manner as in [1] and (3) of Example 1 was added in terms of zirconium atoms.
After preliminary polymerization was performed at 25 ° C. and a propylene pressure of 0.3 MPa (gauge pressure) for 30 minutes to activate the catalyst, unreacted propylene was removed by depressurization and nitrogen blow to obtain p- (3-butenyl)-. 4.6 ml of a heptane solution containing 3.0 mmol of styrene were added.
While controlling the reaction temperature to 85 ° C., propylene was supplied at a flow rate of 10 normal liters / minute, ethylene at 1.0 normal liters / minute, and hydrogen at a flow rate of 0.05 normal liters / minute, and the total pressure was 0.5 MPa ( (Gauge pressure) and the copolymerization was carried out for 60 minutes.
After completion of the polymerization, the reaction mixture was cooled to room temperature, depressurized, the stirring was stopped, and the reaction mixture was transferred to a sufficiently dried, nitrogen-substituted 5-liter glass reaction vessel.
After extracting the liquid phase using a filter, the solid product was further washed three times with 1000 ml of dehydrated heptane.
Thereafter, 1000 ml of dehydrated heptane was charged, 20 mmol of normal butyllithium was charged at room temperature, and the mixture was reacted at 50 ° C. with stirring for 30 minutes.
After the completion of the reaction, the solid component was washed three times with 600 ml of dehydrated heptane. While the temperature was controlled at −78 ° C., 20 g of sufficiently dehydrated methyl methacrylate was added over 1 hour. In this state, the reaction was performed for 24 hours with stirring.
Further, 80 grams of fully dried ethyl acrylate was similarly added over 1 hour. In this state, the reaction was further performed for 24 hours.
After the completion of the reaction, the reaction mixture was poured into a large amount of methanol, and the graft copolymer was recovered by filtration and drying. The yield was 671 g.
The intrinsic viscosity [η] (in decalin at 135 ° C.) of this graft copolymer was 0.89 deciliter / g.
The proportion of the propylene-ethylene copolymer part formed in the first-stage copolymerization was 95% by mass. That is, it means that 5% by mass of a copolymer composed of block-bonded polymethyl methacrylate and polyethyl acrylate is graft-copolymerized.
The unit derived from methyl methacrylate in the block copolymer consisting of polymethyl methacrylate and polyethyl acrylate is 2% by mass as a percentage of the graft copolymer (A), and is derived from ethyl acrylate. The unit was 3% by mass.
[2] Preparation of master batch composition
Using the graft copolymer (A) obtained in the above [1], a master batch composition was prepared in the same manner as in [3] of Example 1.
[3] Molding of toned polypropylene
Using the master batch prepared in the above [2], test pieces were prepared in the same manner as in [4] of Example 1, and the flexural modulus, impact resistance, and color unevenness were evaluated by the method described in Example 1. . Table 1 shows the results.
Comparative Example 1
[1] Preparation of master batch composition
400 g of wax (manufactured by NOF Corporation, trade name: Sun Wax 165), 1 kg of polypropylene (manufactured by Idemitsu Petrochemical Co., Ltd., trade name: Idemitsu Polypropylene J-2000GP), titanium oxide (manufactured by Titanium Industry, trade name: KR-460) 400 g of carbon black and 200 g of carbon black (manufactured by CAVOLAC, trade name: Monarch 800) were kneaded with a Banbury mixer to prepare a gray master batch.
[2] Molding of toned polypropylene
300 g of the master batch prepared in the above [1] and 10 kg of polypropylene (trade name: Idemitsu Polypropylene J-5051HP, manufactured by Idemitsu Petrochemical Co., Ltd.) were dry-blended, and a plate and a test piece for measuring physical properties were prepared in the same manner as in Example 1. It was prepared, color unevenness was confirmed, and physical properties were measured.
Table 1 shows the results.
Comparative Example 2
[1] Preparation of master batch composition
400 g of wax (manufactured by NOF Corporation, trade name: sun wax 165), 800 g of polypropylene (manufactured by Idemitsu Petrochemical Co., trade name: Idemitsu Polypropylene J-2000GP), titanium oxide (manufactured by Titanium Industry, trade name: KR-460) 534 g and 266 g of carbon black (manufactured by CAVOLAC, trade name: Monarch 800) were kneaded with a Banbury mixer to prepare a gray master batch.
[2] Molding of toned polypropylene
Dry blending of 250 g of the master batch prepared in [1] above and 10 kg of polypropylene (trade name: Idemitsu Polypropylene J-5051HP, manufactured by Idemitsu Petrochemical Co., Ltd.) was carried out, and a plate and a test piece for measuring physical properties were prepared in the same manner as in Example 1. It was manufactured, and color unevenness was confirmed and physical properties were measured.
Table 1 shows the results.
Figure 2003000793
Industrial applicability
ADVANTAGE OF THE INVENTION The pigment masterbatch composition for polyolefin resins of this invention can remarkably improve the pigment dispersibility in toning of a polyolefin resin, and can prevent the fall of physical properties.

Claims (3)

炭素数2〜20のα−オレフィンの単独重合連鎖もしくは共重合連鎖と、環状オレフィン、芳香族ビニル単量体及び極性基含有ビニル単量体から選ばれる一種以上から構成される共重合連鎖が、グラフト結合及び/又はブロック結合されている共重合体(A)をキャリヤー樹脂として用いることを特徴とするポリオレフィン樹脂用顔料マスターバッチ組成物。A homopolymerization chain or a copolymerization chain of an α-olefin having 2 to 20 carbon atoms, a cyclic olefin, a copolymerization chain composed of at least one selected from an aromatic vinyl monomer and a polar group-containing vinyl monomer, A pigment masterbatch composition for a polyolefin resin, wherein the graft-bonded and / or block-bonded copolymer (A) is used as a carrier resin. デカリン中、135℃で測定した極限粘度[η]が0.05デシリットル/g以上である共重合体(A)を用いる請求項1に記載のポリオレフィン樹脂用顔料マスターバッチ組成物。The pigment masterbatch composition for a polyolefin resin according to claim 1, wherein a copolymer (A) having an intrinsic viscosity [η] of 0.05 deciliter / g or more measured at 135 ° C in decalin is used. 共重合体(A)が、そのグラフト結合点がオレフィン系マクロモノマー及び/又はポリエンから形成される共重合体〔(A)−1〕、重合過程で生成したブロック結合点を有する共重合体〔(A)−2〕、及び共重合体〔(A)−1〕で規定されたグラフト結合点と共重合体〔(A)−2〕で規定されたブロック結合点とを有する共重合体〔(A)−3〕から選ばれる一種以上である請求項1又は2に記載のポリオレフィン樹脂用顔料マスターバッチ組成物。The copolymer (A) is a copolymer whose graft bonding point is formed from an olefin-based macromonomer and / or a polyene [(A) -1], a copolymer having a block bonding point generated in a polymerization process [ (A) -2] and a copolymer having a graft bonding point defined by the copolymer [(A) -1] and a block bonding point defined by the copolymer [(A) -2] [ The pigment masterbatch composition for a polyolefin resin according to claim 1 or 2, which is at least one selected from (A) -3].
JP2003507189A 2001-06-21 2002-06-14 Pigment masterbatch composition for polyolefin resin Expired - Fee Related JP4079879B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001187758 2001-06-21
JP2001187758 2001-06-21
PCT/JP2002/005961 WO2003000793A1 (en) 2001-06-21 2002-06-14 Pigment masterbatch composition for polyolefin resin

Publications (2)

Publication Number Publication Date
JPWO2003000793A1 true JPWO2003000793A1 (en) 2004-10-14
JP4079879B2 JP4079879B2 (en) 2008-04-23

Family

ID=19027008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003507189A Expired - Fee Related JP4079879B2 (en) 2001-06-21 2002-06-14 Pigment masterbatch composition for polyolefin resin

Country Status (3)

Country Link
JP (1) JP4079879B2 (en)
TW (1) TWI262935B (en)
WO (1) WO2003000793A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144943A (en) * 1984-08-09 1986-03-04 Mitsubishi Petrochem Co Ltd Colored resin composition
JPH0341140A (en) * 1989-07-10 1991-02-21 Japan Synthetic Rubber Co Ltd Colored thermoplastic resin composition
JPH06271741A (en) * 1993-03-22 1994-09-27 Tokuyama Soda Co Ltd Propylene resin composition
JP3389744B2 (en) * 1995-07-14 2003-03-24 東洋インキ製造株式会社 Masterbatch for coloring polyolefin resin
JP3330046B2 (en) * 1996-05-29 2002-09-30 大日精化工業株式会社 Masterbatch for coloring polypropylene-based composite materials
JP2000327794A (en) * 1999-05-17 2000-11-28 Toyo Ink Mfg Co Ltd Resin composition for coloring

Also Published As

Publication number Publication date
JP4079879B2 (en) 2008-04-23
WO2003000793A1 (en) 2003-01-03
TWI262935B (en) 2006-10-01

Similar Documents

Publication Publication Date Title
US6897261B1 (en) Branched olefinic macromonomer, olefin graft copolymer, and olefin resin composition
JP4234005B2 (en) Polyolefin resin composition
EP0958309B1 (en) Preparation of vinyl-containing macromers
JP4418107B2 (en) Products and methods for producing polyolefin polymer dispersions
JP5144008B2 (en) Use of polyolefin waxes in hot melt compositions.
KR100564499B1 (en) Thermoplastic elastomer compositions from branched olefin copolymers
KR20020061633A (en) Crosslinked blends of amorphous and crystalline polymers and their applications
WO1998034965A9 (en) Preparation of vinyl-containing macromers
KR20020061634A (en) Method of preparation of crosslinked blends of amorphous and crystalline polymers
BRPI0906091B1 (en) ETHYLENIC POLYMETER AND PROCESS FOR PREPARING ETHYLENIC POLYMETERS.
US8461261B2 (en) Engineering plastic resin composition containing graft copolymer
JPH08109222A (en) Cycloolefin polymer
US7193013B2 (en) Polyolefin resin composition
JPH11291279A (en) Polypropylene injection molded body
JP4079879B2 (en) Pigment masterbatch composition for polyolefin resin
CN101558116B (en) Polypropylene resin composition
JPH08301934A (en) Olefin copolymer elastomer and its composition
JP2732477B2 (en) Modified propylene polymer
CN103443136A (en) Amphiphilic block polymers prepared by alkene metathesis
JPH0959325A (en) Rubber-reinforced vinyl-based resin
JP2014108969A (en) Aromatic vinyl resin composition, molded body thereof and its manufacturing method
JPH1036580A (en) Thermoplastic elastomer resin composition
JP2000191879A (en) Thermoplastic resin composition and molded article thereof
MXPA99007264A (en) High melt strength polyethylene compositions
JP2005194481A (en) Modified polypropylene composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees