JPWO2002097160A1 - Film forming method, film forming material, and abrasive film forming sheet - Google Patents

Film forming method, film forming material, and abrasive film forming sheet Download PDF

Info

Publication number
JPWO2002097160A1
JPWO2002097160A1 JP2003500317A JP2003500317A JPWO2002097160A1 JP WO2002097160 A1 JPWO2002097160 A1 JP WO2002097160A1 JP 2003500317 A JP2003500317 A JP 2003500317A JP 2003500317 A JP2003500317 A JP 2003500317A JP WO2002097160 A1 JPWO2002097160 A1 JP WO2002097160A1
Authority
JP
Japan
Prior art keywords
film
forming
coating material
particles
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003500317A
Other languages
Japanese (ja)
Other versions
JP3902179B2 (en
Inventor
大原 稔
稔 大原
妻鹿 雅彦
雅彦 妻鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2002097160A1 publication Critical patent/JPWO2002097160A1/en
Application granted granted Critical
Publication of JP3902179B2 publication Critical patent/JP3902179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0018Brazing of turbine parts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31942Of aldehyde or ketone condensation product
    • Y10T428/31949Next to cellulosic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

まず、ろうシートを準備する(ステップS1)。ろうシートは、ろう材層と、粘着材層と、離型紙とからなる。ろう材層はろう材からなる。次に、ろう材層に被覆材層が積層される(ステップS2)。被覆材層は、被覆材粒子とバインダとの混合物からなる。被覆材粒子としては、MCrAlY粒子と研磨粒子(立方晶窒化硼素粒子等)とが用いられる。次に、被覆材層を乾燥し(ステップS3)、ろうシートを裁断し(ステップS4)、動翼に貼着する(ステップS5)。次に、動翼を加熱し(ステップS6)、ろう材を溶融する。ろう材はMCrAlY粒子周囲液相として濡れ、さらに熱処理保持家庭によりに拡散する。次に、冷却(ステップS7)によって凝固層を形成する。この凝固層にブラスト処理(ステップS8)が施されて立方晶窒化硼素粒子が突出し、研磨性皮膜が完成する。First, a brazing sheet is prepared (step S1). The brazing sheet includes a brazing material layer, an adhesive layer, and release paper. The brazing material layer is made of a brazing material. Next, a coating material layer is laminated on the brazing material layer (Step S2). The coating layer is composed of a mixture of coating particles and a binder. As the coating particles, MCrAlY particles and abrasive particles (such as cubic boron nitride particles) are used. Next, the coating material layer is dried (Step S3), the brazing sheet is cut (Step S4), and attached to the moving blade (Step S5). Next, the blade is heated (step S6) to melt the brazing material. The brazing material wets as a liquid phase around the MCrAlY particles and further diffuses through the heat treatment home. Next, a solidified layer is formed by cooling (step S7). A blast treatment (Step S8) is performed on the solidified layer to project the cubic boron nitride particles to complete the abrasive film.

Description

技術分野
本発明は、例えば燃焼エンジン(ガスタービン、ジェットエンジン等)、蒸気タービンにおける動翼、静翼又はシュラウド等の部材が備えている研磨性皮膜、耐酸化性皮膜等を形成する皮膜形成方法、皮膜形成用材料、研磨性皮膜形成用シート、及びこの皮膜形成方法によって研磨性皮膜等が形成されたガスタービンの動翼並びにこの動翼を使用したガスタービンに関する。
背景技術
ガスタービンにおいては、その動翼先端とこの動翼先端に対向するシュラウドとの間には、運転中に両者が接触しないように所定寸法のクリアランスが設けられている。このクリアランスが大きすぎると、動翼の圧力面側から負圧面側へ燃焼ガスが漏れ出し、タービンの駆動に使用できる燃焼ガスが少なくなる結果、ガスタービンの運転効率が低下してしまう。従って、燃焼ガスの漏れ出しを可能な限り抑制してガスタービンの性能を向上させる目的で、前記クリアランスは極限まで小さく設定されている。
ところが、前記クリアランスが小さすぎると、ガスタービンの運転開始初期段階において、動翼の熱膨張、タービンロータの偏心、ガスタービン全体に生じる振動等に起因して、動翼の先端とシュラウドとが摺動してしまうことがある(いわゆる初期摺動)。また、ガスタービンが長期間運転されると、高温ガスにさらされたシュラウドが徐々に熱変形を起こし、やはり動翼の先端とシュラウドとが摺動してしまうことがある(いわゆる二次的摺動)。
一般的にシュラウドは、遮熱又は酸化防止の目的で形成された皮膜をその内周面に備えている。例えば、遮熱の目的でTBC(Thermal Barrier Coating)が設けられたり、時にはMCrAlYからなる耐酸化性皮膜が設けられたりすることがある。ここで、Mは鉄、ニッケル、コバルトのうちの1又は2以上である。これらの皮膜は高硬度であることが多く、このため、動翼先端とシュラウド内周面とが摺動すると動翼が大きく損傷を受けてしまうことがある。
特開平4−218698号及び特表平9−504340号各公報並びに米国特許第5702574号明細書には、酸化防止性材料であるMCrAlYからなるマトリクス中に研磨粒子が分散した研磨性皮膜を備えた動翼が開示されている。この動翼では、研磨粒子として、例えば立方晶窒化硼素(CBN)等が用いられている。立方晶窒化硼素は高硬度な材料であり、従って動翼とシュラウド内周面とが摺動すると、この立方晶窒化硼素からなる研磨粒子がシュラウドの内周面を研磨する。これによって、動翼とシュラウドとの間に適度なクリアランスが維持される。
この研磨性皮膜は、まず動翼本体に研磨粒子が仮固着され、次にこの研磨粒子の周りに電着メッキ法によってマトリクスが形成されることによって得られる。すなわち、マトリクスはメッキ層の成長によって形成される。メッキ層の成長には長時間を要するので、この形成方法は効率が悪い。しかも、電着メッキ法によるマトリクスの形成は、概して高価である。さらに、電着メッキは設備が大掛かりなものになり、また、環境保全の観点から電着メッキ設備を新設することは難しい。
特開平10−30403号公報には、溶射法によってマトリクスを形成する研磨性皮膜形成方法が開示されている。溶射法とは、溶融金属を噴射することによって金属層を成長させる手法であり、電着メッキ法に比して高効率であるという特徴がある。しかしながら、溶射法では研磨粒子を動翼本体に仮固定する際には電着メッキ法が用いられるために、上述の問題を抱えており、また、マトリクスの厚みを正確に制御することが困難であり、しかも大がかりな溶射設備が必要である。溶射法によって金属マトリックスに立方晶窒化硼素等の研磨粒子を分散させる場合には研磨粒子が溶融金属に埋没してしまうので、研磨粒子の目出しが必要となるが、その目出しが難しく、研磨粒子がシュラウド内周面を研磨し難くなる。そして、金属マトリックスがシュラウド内周面に溶着して動翼の破損を招くこともある。
ところで、シュラウドの内周面には前述のようにTBC又はMCrAlYからなる耐酸化性皮膜が設けられることがあるが、これらの皮膜は、APS法(Atmospheric Plasma Spray)、HVOF法(High Velocity Oxygen Fuel)、LPPS法(Low Pressure Plasma Spray)、D−GUN法(Detonation Gun)等の溶射法によって形成されるのが一般的である。
本発明は、研磨性皮膜を簡便に形成しうる皮膜形成方法、皮膜形成用材料、研磨性皮膜形成用シート、及びこの皮膜形成方法によって研磨性皮膜等が形成されたガスタービンの動翼並びにこの動翼を使用したガスタービンを提供することを目的とする。
発明の開示
この目的を達成するために、この発明に係る皮膜形成方法は、下記工程(1)〜(3)を含んでいる。
(1)皮膜形成対象物の表面又は裏面にろう材を主成分とするろう材層と被覆材を主成分とする被覆材層とを積層する積層工程。
(2)積層されたろう材層及び被覆材層を加熱してろう材成分を被覆材中に溶融・浸透させつつ被覆材とろう材とを拡散させる溶融工程。
(3)溶融したろう材を凝固させて皮膜形成対象物に固着させる固着工程。
本発明による皮膜形成方法では、いわゆるろう付けによって皮膜が形成される。この方法は、メッキ法や溶射法に比べて低コストであり、しかも大がかりな設備を必要としないので、施工場所に対する制約も少ない。
この場合、この発明に係る皮膜形成方法のように、積層工程で積層されるろう材と被覆材との膜厚比は、30/70以上70/30以下であることが好ましい。このように体積比を選択することにより、溶融工程において被覆材に確実にろうが溶融する。
次の発明に係る皮膜形成方法のように、ろう材はボロンを含有することが好適である。このボロンは、溶融工程において被覆材中に拡散して、被覆材の凝固点を降下させるので、比較的低温で加熱された場合でも、被覆材が溶融し、且つ一度溶融した後は、ボロンが減少し融点が上昇するため、実際の運用上再溶融等の問題は生じ難い。
好ましくは、ろう材は、次の発明に係る皮膜形成方法のように、その融点が皮膜形成対象物の熱処理温度よりも低い材料から選択される。これにより、皮膜形成対象物の熱処理と同時に溶融工程が遂行されうる。
また、用いられる被覆材層は、次の発明に係る皮膜形成方法のように、バインダ中に被覆材粒子が分散しているものであることが好ましい。バインダによって、被覆材の積層が容易となる。また、このバインダは溶融工程でほぼ完全に揮発するので、バインダが皮膜に残存することに起因する皮膜の品質低下が抑制される。なお、このバインダに揮発性のものを使用すると、溶融工程でより揮発しやすくなるため、皮膜に残存するバインダの量を少なくして、より皮膜の品質を向上させることができる。なお、前記バインダは低い温度で揮発するものが好ましく、且つ前記バインダが乾燥した後における被覆材の強度(剛性)もある程度有しているものを選定することが望ましい。
次の発明に係る皮膜形成方法のように、バインダと被覆材粒子との質量比は15/85以上2/1以下であることが好ましい。これにより、被覆材層の形成が容易となり、しかも溶融工程におけるろう材の液だれを抑制できる。
好ましい被覆材層の一例としては、次の発明に係る皮膜形成方法のように、MCrAlY粒子と立方晶窒化硼素粒子とを主成分とするものが挙げられる。この被覆材層により、研磨性皮膜が得られる。この研磨性皮膜では、立方晶窒化硼素が研磨粒子として機能し、MCrAlYがマトリクスとなって研磨粒子を固着する。また、MCrAlYのマトリクスは、研磨粒子又は動翼材の酸化を抑制する。
また、次の発明に係る皮膜形成方法のように、研磨能力の向上と研磨粒子の確実な固着との両立の観点から、MCrAlY粒子と立方晶窒化硼素粒子との体積比は、1/2以上2/1以下であることが好ましい。
また、次の発明に係る皮膜形成方法のように、この研磨性皮膜がガスタービンの動翼先端に形成されれば、対向するシュラウド内周面を研磨するので、凝着による動翼の損傷が防止される。
また、この皮膜形成方法は、次の発明に係る皮膜形成方法のように、固着した被覆材層の表面からMCrAlYの一部を除去して立方晶窒化硼素粒子を露出させる露出工程を含むことが好ましい。
好ましい露出方法は、次の発明に係る皮膜形成方法のようにブラスト処理である。また、このブラスト処理は、次の発明に係る皮膜形成方法のように、上記ブラスト処理においては、上記MCrAlY粒子よりも硬く、上記研磨粒子よりも柔らかいブラスト材を使用することが好ましい。これによって、形成した研磨性皮膜から効率よくMCrAlYを除去できるので、研磨粒子を十分に目出しできる。
さらに、このブラスト処理は、次の発明に係る皮膜形成方法のように、上記ブラスト材の粒径は、上記研磨粒子の粒径よりも小さく上記研磨粒子同士の間隔よりも小さくすることが好ましい。ただし、粒径を小さくしすぎると、研磨粒子の保持部をアタックし脱落の原因となるので、この点に注意を要する。これによって、研磨粒子の目出しを十分にしつつ、研磨粒子の脱落を最小限に抑えることができるので、当初から十分な研磨性能を発揮させることができる。
さらに、好ましい被覆材層の他の例としては、次の発明に係る皮膜形成方法のように、MCrAlY粒子を主成分とするものが挙げられる。この被覆材層により得られる耐酸化性及び耐粒界腐食性を持つ皮膜は、次の発明に係る皮膜形成方法のように、高温ガスが流通するガスタービンの諸部材、具体的には動翼、静翼及びシュラウドに好適に使用することができる。
次の発明に係る皮膜形成用被覆材は、立方晶窒化硼素、Al、SiCその他の研磨粒子と、少なくとも耐酸化性を有する金属材料と、バインダとを含むことを特徴とする。この皮膜形成用被覆材は、研磨粒子と金属材料とバインダとを含んでいるため、皮膜形成時における熱処理の際には、バインダが揮発してできた空間へろう材が吸収される。これによって周囲へのろう流れを極めて少なくできるため、皮膜形成対象物へ皮膜を形成した後における品質(膜厚の均一性)を高くできる。このため、皮膜形成後の膜厚調整も最小限で済むので、皮膜形成の手間を低減できる。
また、本発明の皮膜形成対象物にはガスタービンの動翼やシュラウドが挙げられるが、このような対象物は、高温の燃焼ガスが噴射される雰囲気中で使用されるため、酸化減肉によってその寿命が短くなってしまう。この発明に係る皮膜形成用被覆材に含まれる金属材料は耐酸化性を有しているため、このような雰囲気中でも酸化が生じ難い。したがって、長期間の使用においても研磨粒子をより確実に保持して安定した研磨性能を発揮させることができ、且つ母材の酸化減肉を低減する効果も有するので、より安定したガスタービンの運転ができる。
次の発明に係る皮膜形成用被覆材は、上記皮膜形成用被覆材において、上記バインダの質量と、上記研磨粒子及び上記金属材料の質量との比が15/85以上2/1以下であることを特徴とする。これにより、被覆材層の形成が容易となり、しかも溶融工程におけるろう材のろう流れを抑制できる。
次の発明に係る皮膜形成用被覆材は、上記皮膜形成用被覆材において、上記金属材料はMCrAlYであることを特徴とする。このように、皮膜を形成する金属材料に、耐酸化性をもつMCrAlYを使用するので、高温の酸化性雰囲気中で使用されるガスタービンの動翼等に皮膜を形成した場合でも、長期にわたって研磨粒子を保持して研磨性能を維持でき、且つ母材を酸化から守るため、安定したガスタービンの運転ができる。
次の発明に係る皮膜形成用被覆材は、上記皮膜形成用被覆材において、上記MCrAlY粒子と上記研磨粒子との体積比が1/2以上2/1以下であることを特徴とする。研磨粒子として使用する立方晶窒化硼素やAlあるいはSiC等の比率が大きいとMCrAlYの含有量が減り、耐酸化性が低くなるだけでなく、施工の際にろう切れしやすい傾向になる。また、ろう付け中に研磨粒子の保持が不十分となり、粒子の浮き上がりが生ずる。一方、MCrAlYの比率が大きくなりすぎると、研磨性皮膜の研磨能力が不足することがある。これらの観点から、上記質量比の範囲であれば、ろう切れの発生を防止して、施工性を向上させることができる。また、研磨粒子を十分に保持する金属層の耐酸化性が高いため、長時間粒子を安定して保持し、研磨粒子の脱落を抑制して信頼性の高いガスタービンの運転ができる。
次の発明に係る研磨性皮膜形成用シートは、ろう材と、上記いずれか一つの皮膜形成用被覆材とを積層したことを特徴とする。この研磨性皮膜形成用シートは、皮膜形成用被覆材にバインダが含まれているため、皮膜形成時の熱処理においてはこのバインダが揮発した空間へろう材が吸い込まれる。これによって、皮膜形成時の液だれを極めて少なくできるため、皮膜形成対象物へ皮膜を形成した後における品質を高くできる。また、皮膜形成後の修正も最小限で済むため、皮膜形成の手間を低減できる。さらに、この研磨性皮膜形成用シートを皮膜形成対象物に貼り付けて皮膜形成対象物を熱処理するだけで研磨性皮膜を形成できるため、メッキ法や溶射法と比較して極めて容易に研磨性皮膜を形成できる。また、耐酸化性や耐粒界腐食性を持つ金属材料を皮膜形成用被覆材として使用すれば、高温の酸化性雰囲気中で使用されるガスタービン動翼やシュラウド等に研磨性皮膜を形成した場合でも、研磨粒子の脱落を抑えて安定した研磨性能を維持できる。これによって、安定したガスタービンの運転ができる。
また、この研磨性皮膜形成用シートを皮膜形成対象物に貼るだけで熱処理前の処理が完了するので、作業が極めて容易になる。さらに、シートであるため、皮膜形成対象物の形状に合わせて適宜切断すればよいため、さまざまな形状を持つ皮膜形成対象物に対しても容易に対応できる。
次の発明に係る研磨性皮膜形成用シートは、上記研磨性皮膜形成用シートにおいて、上記ろう材と上記皮膜形成用被覆材との膜厚比が30/70以上70/30以下であることを特徴とする。このように体積比を選択することにより、溶融工程において皮膜形成用被覆材が確実に溶融するだけでなく、形成された皮膜も堅固となる。
次の発明に係る研磨性皮膜形成用シートは、上記研磨性皮膜形成用シートにおいて、上記ろう材にはボロンが含まれていることを特徴とする。このように、ろう材にボロンが含まれているため、溶融工程においてはこのボロンが皮膜形成用被覆材中に拡散して、皮膜形成用被覆材の凝固点を降下させるので、比較的低温で加熱された場合でも、皮膜形成用被覆材が溶融する。また、ボロンが拡散した後は、皮膜形成用被覆材の融点が上昇するためろう材の耐熱性が上昇する。これによって、ガスタービンの動翼やシュラウドのように、高温ガス中において使用する場合でもろう材が再溶融することなく使用できる。
次の発明に係る研磨性皮膜形成用シートは、上記研磨性皮膜形成用シートにおいて、上記ろう材は、その融点が皮膜形成対象物の熱処理温度よりも低い材料から選択されていることを特徴とする。これにより、皮膜形成対象物の熱処理と同時に溶融工程を進行させることができる。
次の発明に係る研磨性皮膜形成用シートは、上記研磨性皮膜形成用シートにおいて、さらに、上記ろう材には接着層が形成されていることを特徴とする。このため、この研磨性皮膜形成用シートさえ準備しておけば、皮膜形成対象物にこの研磨性皮膜形成用シートを貼るだけで熱処理前の処理が完了し、糊付けが不要になり、また糊の乾燥を待つ必要もない。これによって、さらに皮膜形成の手間を軽減できる。
次の発明に係るガスタービンの動翼は、上記いずれか一つの皮膜形成方法によって先端部に皮膜が形成されたことを特徴とする。このため、メッキ法や溶射法と比較して極めて容易に研磨性皮膜を形成できる。これによって、前記皮膜形成法と比較して皮膜形成に要する時間を大幅に短縮でき、また製造コストも低減できる。
次の発明に係るガスタービンの動翼は、上記いずれか一つの研磨性皮膜形成用シートが先端部に貼り付けられたことを特徴とする。このため、あとは動翼に必要な熱処理を施すだけで研磨性皮膜を形成できるので、メッキ法や溶射法と比較して極めて容易に研磨性皮膜を形成できる。これによって、前記皮膜形成法と比較して皮膜形成に要する時間を大幅に短縮でき、また製造コストも低減できる。
次の発明に係るガスタービンは、空気を圧縮して燃焼用空気を作る圧縮機と、この圧縮機で作られた燃焼用空気と燃料とを反応させて高温の燃焼ガスを生成する燃焼器と、上記動翼を有し、前記燃焼器からの燃焼ガスがこの動翼に噴射されることで駆動されるタービンと、を備えたことを特徴とする。
このため、熱処理設備さえ備えておけば、容易に研磨性皮膜を形成できるため、メッキ法や溶射法と比較して皮膜形成用の設備は簡単なもので済む。したがって、ガスタービンプラントの近くにメッキ設備等がない場合でも、熱処理に使用する加熱炉を備えておけば容易に研磨性皮膜を形成できるため、その場で動翼等に再び研磨性皮膜を形成することもできる。これによって、研磨性皮膜が損傷した場合でも容易に補修ができる。
発明を実施するための最良の形態
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるもの或いは実質的に同一のものが含まれる。
第1図は、本発明の一実施形態にかかる皮膜形成方法が示されたフローチャートである。この皮膜形成方法は、比較的簡単な装置(例えば高真空加熱炉)を使用して、ガスタービンの動翼先端に研磨性皮膜を形成する場合に適用されている。この皮膜形成方法では、まずろうシートを準備する(ステップS1)。第2図の(a)は、符号1で総括的に表わされたこのろうシートの一部を示す拡大断面図である。このろうシート1は、図において上側にあるろう材層3と、接着層である中間の粘着材層5と、下側の離型紙7とからなる。ろう材層3は言うまでもなくろう材からなる。なお、粘着材層5と下側の離型紙7を設けておけば、離型紙7をはがしてそのままろうシート1を皮膜形成対象物に貼り付ければよいので、極めて容易に作業できる。ここで、ろう材層3の厚みは、通常、0.05mm〜1.00mm程度である。また、ろう材層3は、単一のシートでなくてもよく、シートを2〜3枚積層して使用してもよい。なお、接着層である中間の粘着材層5と下側の離型紙7は必要に応じて設ければよく、これらを使用しない場合には、バインダを糊として貼り付け等の手段によって皮膜形成対象物へシート1を貼り付ければよい。
好ましいろう材としては、約2.75〜3.50質量%のボロン(B)を含みニッケル(Ni)を主成分とするものが挙げられる。このろう材には、通常、約6〜8質量%のクロム(Cr)と、約4〜5質量%のケイ素(Si)と、約2.5〜3.5質量%の鉄(Fe)とが含まれる。ろうシート1は、長期間経過しても硬くならないものが好ましく、ろうシート1の具体例として、BNi−2(JIS規格)等が挙げられる。
このろうシート1はろう材層3に粘着材層5及び離型紙7が予め積層されて市販されており、ろう材は、83質量%のニッケルと、7質量%のクロムと、3質量%のボロンと、4質量%のケイ素と、3質量%の鉄とを含有している。
次に、ろうシート1上に、第2図の(b)に示す被覆材層9を形成する(ステップS2)。なお、被覆材層9とシート1とを別々に成形・切断して、それらを後でバインダ等によって張り合わせることも可能であるが、多工程での切断等の割れを防止するため軟らかいBNi−2層との複層として、シート全体の切断性を向上させる。
被覆材層9は、被覆材粒子とバインダ11との混合物をろう材層3の表面に塗工して形成される。まず、被覆材粒子とバインダ11との混合物をろう材層3の上に流す。次に、前記混合物をブレード等によってシート状に伸ばしつつ余剰の前記混合物を掻き落とし、この混合物が乾燥した時の縮み代を考慮した所定の厚みに塗工する。被覆材層9は、塗工後に乾燥され(ステップS3)、通常、約1日間かけて自然乾燥される。乾燥により、バインダ11がある程度揮発する。揮発によって被覆材層9の厚みが減少する。
塗工後における被覆材層9の所定の厚みは0.10〜1.00mm程度でよいが、被覆材層9を乾燥させた後において、被覆材層9の厚みが目安としてろうシート1の膜厚以下となるようにする。このために、バインダ11の混合割合や被覆材層9の成分割合によって、前記混合物を塗工した後の被覆材層9の厚さを適宜変化させることが好ましい。
ここで、この実施の形態においては、被覆材粒子として耐酸化性及び耐粒界腐食性を持つ金属材料であるMCrAlY粒子13が、研磨粒子として立方晶窒化硼素粒子15が用いられる。以下、単に被覆材粒子というときは、これら粒子の双方を指すものとする。この被覆材粒子と研磨粒子とにバインダが混合されて、被覆材層9を形成する皮膜形成用被覆材となる。
MCrAlYは、鉄(Fe)、ニッケル(Ni)又はコバルト(Co)と、クロム(Cr)と、アルミニウム(Al)と、イットリウム(Y)とを主成分とする合金であり、耐酸化性と耐粒界腐食性とを備えている。ここで、皮膜形成後にNiろうでMCrAlYが希釈されてしまうことを考慮して、耐粒界腐食性と耐酸化性とを向上させるため、CrとAlとの含有量を多くすることが好ましい。しかし、これらの量、特にAlが多すぎるとろう付け性が悪化するので注意を要する。また、耐酸化性、耐粒界腐食性並びにろう付け性を向上させるためにはCr、Alの他に、Ta、Re、Hf、Si等を添加することができる。
また、上記MCrAlY粒子の表面には、OやN等のろう付け性にとっての不純物を限りなくゼロに近づける必要がある。なお、MCrAlYは、充填率を高くするために粒径が10〜100μmの範囲にあるものをランダムに使用することが好ましい。ただし、粒径が小さすぎると表面積が大きくなり、OやN等の不純物の量が増加するので、この点には注意が必要である。
一方、立方晶窒化硼素粒子15には、ジェネラルエレクトリック社、デビアス社、昭和電工株式会社、住友電工株式会社等が市販しているものが使用できる。立方晶窒化硼素は単結晶、多結晶に区別され、且つ高純度品もあり、それぞれを使い分けることもできるが、立方晶窒化硼素をTiN等で被覆をしたものがろう付け性に優れることは明らかとなっている。このように、立方晶窒化硼素に被覆をすると、立方晶窒化硼素とろう材との濡れ性が改善され、立方晶窒化硼素粒子15をろう材へ十分に埋め込むことができる。これによって、立方晶窒化硼素粒子15の脱落を抑制できるので、安定してシュラウドのTBC層等を削り取り、動翼先端部とシュラウドとの溶着を防止して信頼性の高い運転ができる。
また、立方晶窒化硼素をCoやNiで被覆したもの、あるいは立方晶窒化硼素をTiNやTi化合物によって被覆したものも使用できる。被覆材層9を形成するMCrAlY粒子の種類によって、これらを適宜選択することが望ましい。
さらに、立方晶窒化硼素粒子15の代わりに、例えば、AlやSiC等も研磨粒子として使用できる。ろう材との濡れ性を改善するために、AlやSiC等を使用する場合にも、被覆を施したAlやSiCを使用することが好ましい。そして、AlやTiNに対する成膜性及びMCrAlY材に対する濡れ性改善という観点から、これらの被覆材としては、例えば研磨粒子としてAlを用いる場合にはCo、Cr、Ni等が挙げられる。また、研磨粒子としてSiCを用いる場合には、ろう付け中にSiCとCrとの反応を抑止するために用いる被覆材として、AlN、TiN、Al等が挙げられる。
MCrAlY粒子13の体積Vと立方晶窒化硼素粒子15の体積Vとの体積比V/Vは、30/70以上70/30以下が好ましい。立方晶窒化硼素粒子15の比率が大きいと、ろうシート1中の空隙率が増加し、バインダの量が多くなる結果、ろう切れや変形等が生じやすい傾向になる。そして、立方晶窒化硼素粒子15の割合が70%を超えるとき、すなわち体積比V/Vが30/70よりも小さいと立方晶窒化硼素粒子15の密度が大きすぎ、皮膜上からの放電加工が困難となる。さらに、耐酸化性も低下するため、立方晶窒化硼素粒子15の保持力も低下し立方晶窒化硼素粒子15の脱落が生ずるおそれがある。これらの観点から、体積比V/Vは1/2以上とするのがより好ましく、さらには、立方晶窒化硼素粒子15の割合が60%以下、すなわち、体積比V/Vは40/60以上がコストの観点からも特に好ましい。一方、体積比V/Vが70/30を超えると、研磨性皮膜の研磨能力が不足することがある。この観点から、上記体積比V/Vは2/1以下がより好ましく、60/40以下が特に好ましい。従って、最も好ましい体積比V/Vの範囲は、40/60以上60/40以下である。なお、実作業時には、それぞれの材料の比重(密度)が分かっているので、質量管理によってシート1を作成する。
ここで、立方晶窒化硼素粒子15は高温硬度が高く、切削性に優れるが、高温酸化雰囲気において短時間で消失することも知られており、長時間安定性に優れるSiCやAl等も混ぜ合わせて使用する必要がある。また、立方晶窒化硼素粒子15の代わりに、あるいは立方晶窒化硼素粒子15とともにAlやTiN等を使用する場合にも、これらの体積比を適用することができる。
バインダ11には種々の種類のものを使用することができるが、特に低い温度で揮発するものを用いることが好ましい。揮発性バインダ11は、後に詳説される乾燥工程や溶融工程において揮発するので、研磨性皮膜にほとんど残存しない。従って、研磨性皮膜の品質に悪影響を与えない。さらに、揮発性バインダ11が揮発した後には空間が形成される。後述する溶融工程においては、毛細管現象によって金属ろうがこの空隙へ吸い取られるため、後述する溶融工程においては液だれを極めて少なくできる。これによって、液だれによる動翼の品質低下を抑え、また液だれの処理(主にストップオフの塗布)もほとんど要しないため、施工の手間を改善できる。
ここで、好ましい揮発性バインダ11としては、有機系のバインダが好適に使用でき、その中でもセルロース系のバインダがろうはけ性が良好であるためより好ましい。また、バインダに可塑剤が添加されたものを使用すると、後述する研磨性皮膜形成用シート1aに柔軟性がでて、切断しやすい等の施工性の改善が行えるので好ましい。
揮発性バインダ11の質量mと被覆材粒子13、15の質量mとの質量比m/mは、15/85以上2/1以下が好ましい。質量比m/mが上記範囲の下限レベル未満であると、被覆材粒子13、15とバインダ11との混合物の塗工が困難となるおそれがある。この観点から、上記質量比m/mは20/80(1/4)以上がより好ましく、さらには1/2以上が好ましい。一方、質量比m/mが上記範囲の上限レベルを超えると、皮膜形成対象物を熱処理する際にろう材の液だれが生じやすくなる。この観点から、質量比m/mは60/40以下がより好ましく、40/60以下が特に好ましい。従って、好ましい揮発性バインダ11と被覆材粒子13、15との質量比m/mの範囲は、20/80以上40/60以下である。
また、ろう材と被覆材との膜厚比は、30/70以上70/30以下が好ましい。この膜厚比が上記範囲の下限レベル未満であると、溶融工程において被覆材にろうが浸透せずにろう切れが生じ易くなる。この観点から、膜厚比は60/40以上が特に好ましい。ろうシート1の成形後、切断作業をし易くし、且つ余分なバインダを揮発させるため、常温において乾燥させる。できれば温度・湿度を管理した恒温室で丸一日以上乾燥させることが望ましい。
次に、被覆材層9が積層されたろうシート1(以下、研磨性皮膜形成用シート1aという)は、所定の形状・寸法に裁断される(ステップS4)。裁断の手段は特に制限されないが、研磨性皮膜形成用シート1aは脆性が高いので、ステンシル及び超音波カッターを用いるのが好ましい。そして、所定の形状・寸法に裁断した研磨性皮膜形成用シート1aから離型紙7を剥がして、皮膜形成対象物である動翼先端に貼着する(ステップS5)。
当該研磨性皮膜形成用シート1aは翼形状に切断するため、大部分が切れ端として残ってしまう。当該研磨性皮膜形成用シート1a中には非常に高価な立方晶窒化硼素が含まれるため、この立方晶窒化硼素を回収する必要がある。ただし、この立方晶窒化硼素の表面にはろう付け性を向上させるためのコーティングが施されており、このコーティングを傷つけずに回収することが重要である。そこで、回収に際しては、研磨性皮膜形成用シート1aの切れ端を10%程度の濃度のNaOH液中で1〜5時間程度沸騰浸漬してバインダを溶かし、その後純水超音波洗浄してからろ過して純水洗浄してから分級し、乾燥することで、立方晶窒化硼素のみを回収することができる。ここで、純水超音波洗浄は、例えば約10〜30分を3回行い、また、乾燥は、例えば120℃で1時間程度行う。
なお、研磨性皮膜形成用シート1aの貼着に先立って動翼先端にブラスト処理、トリクロロエチレン、アセトン等の溶剤による洗浄等の前処理を施すことが好ましい。前処理により皮膜が形成される動翼先端が粗くなり、また、皮膜形成部分の油脂類が取り除かれるため、皮膜と動翼先端との密着が良好となるからである。
ここで、動翼先端部には、内部冷却流路から冷却空気や冷却蒸気等の冷却媒体が噴出するための孔が設けられている場合がある。このため、研磨性皮膜形成用シート1aを動翼先端に貼り付ける場合にこの孔を塞いでしまうと、ガスタービンの運転中に冷却媒体が噴出できず、動翼の冷却が不十分になるおそれがある。したがって、冷却媒体が噴出する上記孔の部分を避けて研磨性皮膜形成用シート1aを貼り付けるようにする。ただし、孔寸法が小さく、且つ多い場合には、この孔を回避することは困難である。また、熱処理前においては研磨性皮膜形成用シート1aが切断し易いため、このシート貼り付け前にこのシートへ孔を確保することは困難である。このため、皮膜形成後に放電加工等で孔開けが可能となる。なお、立方晶窒化硼素粒子を目出しする前後を問わず放電加工による孔開けは可能である。
次に、研磨性皮膜形成用シート1aを動翼本体と共に加熱する(ステップS6)。加熱には、通常は真空加熱炉が用いられる。加熱条件は、動翼本体の材質や、ろう材の種類等を勘案して決定する。例えば動翼本体の材質が動翼母材(Ni基超合金等)であり、研磨性皮膜形成用シート1aに用いられるシート1として、前述のBNi−2が用いられる場合は、まず10時間以上かけて室温から600℃程度まで真空加熱炉を昇温する。このように、時間をかけて加熱して、研磨性皮膜形成用シート1a中のバインダ11を低い温度で積極的に揮発させるので、熱伸びしやすいバインダ11の成分が高い温度においては残らない。これによって、熱伸びによるしわが生じなくなり、形成した研磨性皮膜の品質を高くできる。なお、このときの真空度は、10−5torrよりもさらに高い真空度とすることが好ましい。次に2時間程度かけて1000℃以上まで昇温し、この状態で必要な時間保持する。これにより、被覆材層9からバインダ11がほぼすべて揮発するだけでなく、バインダ11が揮発した後の被覆材層9には、空間が生ずることになる。
このろう材の融点は約1000℃程度なので、1000℃以上の加熱によってろう材が溶融する。この加熱によって液状となったろう材は、毛細管現象によって被覆材層9中の空間へと浸透し、この空間内へ吸収される。また、ろう材成分であるボロンも被覆材層9中のMCrAlY粒子13へと拡散する。ボロンはMCrAlYの凝固点を降下させるので、MCrAlYは半溶融状態となり、周囲のろう材と拡散しやすくなる。
次に、アルゴンガス又は窒素ガスの導入によって真空加熱炉内を500℃以下まで冷却する(ステップS7)。これにより母材であるNi合金に必要とされる強度が得られ、且つ第2図の(c)に示されるように、MCrAlYのマトリクス19中に立方晶窒化硼素粒子15が分散した凝固層21が形成される。1000℃以上の温度制御下での保持によってボロンはある程度消失しているので、マトリクス19の融点は実用上問題ない程度の温度まで上昇する。この熱履歴によって、動翼の強度上必要となる熱処理(安定化処理)がなされる。すなわち、動翼の熱処理温度よりも低い融点のろう材を選択することにより、溶融工程において被覆材の溶融と動翼の熱処理とが同時に終了する。
一般的に立方晶窒化硼素はろう材よりも比重が軽いので、予め両者が混合されていると液状のろう材中で立方晶窒化硼素粒子15が表層に浮いてしまい、凝固層21での立方晶窒化硼素粒子15の分散が不均一となってしまう。また、溶融したろう材の液だれも生じやすい。本発明の好適な実施の形態では、動翼先端17にろう材層3と被覆材層9とを順次積層して前述のように毛細管現象によって両者を混合させる。このため、立方晶窒化硼素粒子15は被覆材層9中のMCrAlYに保持されているため浮き上がらず、立方晶窒化硼素粒子15の分散が均一となり、また、ろう材の液だれも抑制される。
次に、凝固層21にブラスト処理を施す(ステップS8)。ブラスト処理では、ブラスト粒子をマトリクス19の表面に吹きつける。このブラスト処理により、第2図の(d)に示されるようにマトリクス19の表面寄り部分が除去される。立方晶窒化硼素粒子15は、本発明に係るブラスト処理によってはほとんど除去されないので、この立方晶窒化硼素粒子15がマトリクス19から突出する(いわゆる「目出し」)。こうして、研磨性皮膜23が完成する。なお、第2図の(d)では研磨性皮膜23と動翼先端17との境界が明確に画かれているが、実際の動翼では加熱時の拡散によって両者の境界が曖昧となっている。
ブラスト処理によって立方晶窒化硼素粒子15に優先してマトリクス19の表面寄り部分を除去するには、立方晶窒化硼素粒子15よりも低硬度であり、かつマトリクス19よりも高硬度であるブラスト粒子を用いるのが好ましい。すなわち、マトリクス19のビッカース硬度をH1とし、立方晶窒化硼素粒子15のビッカース硬度をH2とし、ブラスト処理に用いられるブラスト粒子のビッカース硬度をH3としたとき、H1、H2及びH3が下記数式(I)に示される関係を満たすことが好ましい。
H1<H3<H2 ・・・(I)
立方晶窒化硼素粒子15とマトリクス19にMCrAlYとを使用した場合には、このようなブラスト粒子として、例えばAlの粒子を使用することができる。
また、ブラスト粒子の径が大きすぎると立方晶窒化硼素粒子15の目出しが不十分となる。一方、ブラスト粒子の径が小さすぎると立方晶窒化硼素粒子15を保持している根元の目出しが進みすぎて立方晶窒化硼素粒子15が被覆材層9から脱落してしまう。したがって、立方晶窒化硼素粒子15同士の間隔よりも小さく、且つ立方晶窒化硼素粒子15を保持している根元をアタックしない程度の寸法のブラスト粒子を使用することが好ましい。この例では平均粒径が50μmのAl粒子を使用したマイクロブラストを使用しているが、立方晶窒化硼素粒子15の粒径や間隔によって、使用するブラスト粒子の径を適宜選択することが望ましい。例えば、立方晶窒化硼素粒子15同士の間隔が大きく表面が粗い場合には、より大きいブラスト粒子を使用することが好ましい。また、研磨性皮膜中、研磨性粒子にAlやSiCを使用する場合には、ZrOやガラスビーズ等をブラスト粒子として使用することが好ましい。
第3図は、第1図の形成方法によって研磨性皮膜23が形成された動翼25を示す斜視図である。動翼25は、本体27とその端部から延びる突条部29とを備えており、動翼先端であるこの突条部29の上面に研磨性皮膜23が被覆されている。図示しないが、ガスタービンでは研磨性皮膜23に対向してシュラウド内周面が位置する。研磨性皮膜23によって、動翼25とシュラウドとが摺動した際にシュラウド内周面が研磨される。突条部29のない動翼も存在するが、その場合には、この動翼の先端に研磨性皮膜を形成しうる。
立方晶窒化硼素粒子15の平均粒子直径は、約50〜200μmであることが好ましい。平均粒子直径が50μm未満であると、研磨性皮膜23の研磨能力が不十分となるおそれがある。この観点から、平均粒子直径は80μm以上が特に好ましい。一方、平均粒子直径が200μmを超えると、研磨性皮膜23の膜厚が過大となるだけでなく研磨性皮膜23の耐酸化性が不十分となる。この観点から、ガスタービン動翼の場合、平均粒子直径は170μm以下が特に好ましい。従って、最も好ましい平均粒子直径範囲は80〜170μmである。
第4図は、第3図の動翼25の一部を示す拡大断面図である。前述のように、立方晶窒化硼素粒子15はマトリクス19から突出している。この図において両矢印pで示されているのは、立方晶窒化硼素粒子15の突出寸法である。立方晶窒化硼素粒子15の平均粒子直径をDとし、マトリクス19から突出しているすべての立方晶窒化硼素粒子15における突出寸法pの平均値(すなわち平均突出寸法)をPとしたとき、平均粒子直径Dに対する平均突出寸法Pの比率は、25%以上70%以下が好ましい。この比率が25%未満であると、研磨性皮膜23の研磨能力が不十分となることがある。この観点から、比率は30%以上がより好ましい。逆に、この比率が70%を超えると、立方晶窒化硼素粒子15がマトリクス19から脱落しやすくなることがある。この観点から、比率は60%以下がより好ましい。従って、最も好ましい比率範囲は30〜60%である。
マトリクス19の厚み(第4図において両頭矢印Tで示されている部分)は、50μm以上が好ましい。マトリクス19の厚みが50μm未満であると、研磨性皮膜23中の立方晶窒化硼素粒子15の保持が不十分となるだけでなく、立方晶窒化硼素粒子15の分布が乱食い状に配置できないため、研磨性皮膜23の長時間高温耐久性が低くなる。
この発明においては、被覆材層9を積層したろうシート1である研磨性皮膜形成用シート1aを使用する。そして、これを所定の形状に切断し皮膜形成対象物に貼り付けた後、皮膜形成対象物を熱処理することで、皮膜形成対象物に研磨性皮膜23(第3図参照)を形成する。次に、研磨性皮膜23をブラスト処理にして立方晶窒化硼素粒子15を目出しして、研磨性皮膜23から研磨粒子を突出させる。このように、研磨性皮膜形成用シート1aを製造した後は、所定の形状に切断して皮膜形成対象物に貼り付けるだけで、あとは皮膜形成対象物に必要な熱処理を施せば研磨性皮膜が形成できる。また、研磨粒子の目出しもブラスト処理を使用するので、簡便に研磨粒子を突出させることができる。このため、従来のメッキ法や溶射法と比較して、極めて容易に研磨性皮膜を形成できる。
例えば、あるガスタービン動翼の先端に研磨性皮膜を形成する場合には、この発明に係る皮膜形成方法によれば、従来のメッキ法と比較して施工費用を1/3〜1/4に抑えることができる。また、施工に要する時間も、1/3以下に短縮できる。このように、大幅な施工費用低減効果及び施工期間の短縮効果が得られるため、大量の動翼に研磨性皮膜を形成する場合には極めて有用である。また、メッキ法のような大掛かりな設備も不要であるため、設備投資に要する費用も少なくて済む。さらに、メッキ法のようにメッキ廃液が発生しないため、環境負荷も極めて小さくできる。
さらに、真空加熱炉等の加熱設備を用意しておけば、研磨性皮膜形成用シート1aを供給するだけで研磨性皮膜を形成できるので、必ずしも熱処理と前記シートの作製とを同じ場所で行う必要はない。このため、施工の自由度が高くできるので、例えば、施工施設が近くに存在しない場所に設置されているガスタービンプラントにおいても、加熱設備を備え、研磨性皮膜形成用シート1aを定期的に支給すればその場で再コーティング等ができる。
以上の説明では、被覆材として立方晶窒化硼素とMCrAlYとが用いられる場合が一例とされたが、MCrAlYのみが被覆材として用いられてもよい。この場合、得られる皮膜は耐酸化性皮膜となる。この耐酸化性皮膜は、ガスタービンの動翼、静翼又はシュラウドに好適である。
第5図は、この発明に係る皮膜形成方法によって先端部に研磨性皮膜が形成されたガスタービン動翼を備えたガスタービンを示す説明図である。空気取り入れ口50から取り込まれた空気は、圧縮機51によって圧縮されて高温・高圧の圧縮空気となって燃焼器52へ送り込まれる。燃焼器52では、この圧縮空気に天然ガス等のガス燃料、あるいは軽油や軽重油等の液体燃料を供給して燃料を燃焼させ、高温・高圧の燃焼ガスを生成させる。この高温・高圧の燃焼ガスは、燃焼器尾筒53へ導かれた後、タービン54に噴射される。
タービン54には、この発明に係る皮膜形成方法によってその先端部に研磨性皮膜23が形成された動翼25(第3図参照)が備えられている。この動翼25は、その先端部にこの発明に係る皮膜が形成されている。ガスタービン100の運転が開始されると、動翼の熱伸び等によりいわゆる初期摺動が発生し、動翼25の先端がシュラウド55の内壁と接触する場合がある。また、運転開始からある程度の時間が経過すると、シュラウド55の変形により、動翼25の先端がシュラウド55の内壁に接触して、いわゆる二次的摺動を引き起こす場合がある。いずれの場合においても、動翼25の先端部にはこの発明に係る皮膜形成方法によって強固に研磨粒子がろう付けされているため、シュラウド55の内壁に形成されているTBC等の皮膜(図示省略)を削り取ることができる。これによって、動翼25の溶着を防止することができるので、安定してガスタービン100を運転できる。なお、初期摺動に対しては立方晶窒化硼素が機能し、二次的摺動に対しては高温における長時間安定性に優れるSiCやAlを機能させることが好ましい。したがって、これらを混合して使用することがガスタービンの長期信頼性を確保するためにより望ましい。
また、この発明に係る動翼25は、ろう付けによって先端部に皮膜が形成されているため、鮫の歯状に立方晶窒化硼素その他の研磨粒子を分布させることができる。このため、たとえ表層の研磨粒子がこぼれ落ちたとしても次の研磨粒子が現れるため、研磨性皮膜23(第3図参照)が消失するまで安定してシュラウド55の内壁に形成されているTBC等の皮膜を削り取ることができる。これによって、従来のメッキ法や溶射法により皮膜を形成した動翼を使用するよりも信頼性の高い運転ができる。
以上の説明から分かるように、この発明に係る皮膜形成方法では、下記工程(1)〜(3)を含んでおり、
(1)皮膜形成対象物の表面又は裏面にろう材を主成分とするろう材層と被覆材を主成分とする被覆材層とを積層する積層工程、
(2)積層されたろう材層及び被覆材層を加熱してろう材成分を被覆材中に溶融・浸透させつつ被覆材とろう材とを拡散させる溶融工程、
(3)溶融したろう材を凝固させて皮膜形成対象物に固着させる固着工程、
いわゆるろう付けによって皮膜を形成する。この方法は、メッキ法や溶射法に比べて低コストであり、しかも大がかりな設備を必要としないので、施工場所に対する制約も少ない等の効果を奏することができる。
また、この発明に係る皮膜形成方法では、積層工程で積層されるろう材と被覆材との膜厚比を30/70以上70/30以下に設定したので、溶融工程において被覆材が確実に溶融するだけでなく、形成された皮膜も堅固となり、その特性を向上させることができる。
また、この発明に係る皮膜形成方法では、ろう材にボロンを含有させたので、溶融工程においてこのボロンが被覆材中に拡散して、被覆材の凝固点を降下させるので、比較的低温で加熱された場合でも、被覆材を低コストで確実に溶融することができる。
また、この発明に係る皮膜形成方法では、ろう材の融点が皮膜形成対象物の熱処理温度よりも低いろう材を選択するようにしたので、皮膜形成対象物の熱処理と同時に溶融工程が遂行されうる。これによって、皮膜形成の作業能率を向上させることができる。
また、この発明に係る皮膜形成方法では、バインダ中に被覆材粒子が分散している被覆材層を使用するようにしたので、バインダの作用によって被覆材の積層が容易となるだけでなく、このバインダは溶融工程でほぼ完全に揮発するので、バインダが皮膜に残存することに起因する皮膜の品質低下を抑制することができる。
また、この発明に係る皮膜形成方法では、バインダと被覆材粒子との質量比を15/85以上2/1以下としたので、被覆材層の形成が容易となり、しかも溶融工程におけるろう材の液だれが抑制され、作業性を向上させることができる。
また、この発明に係る皮膜形成方法では、MCrAlY粒子と立方晶窒化硼素粒子とを主成分とした。この被覆材層により得られた研磨性皮膜では、立方晶窒化硼素が研磨粒子として機能し、MCrAlYがマトリクスとなって研磨粒子を固着する。そして、MCrAlYのマトリクスは、研磨粒子の酸化を抑制することができる。
また、この発明に係る皮膜形成方法では、MCrAlY粒子と立方晶窒化硼素粒子との体積比を1/2以上2/1以下とした。このため、研磨性皮膜の研磨能力が向上し、また、研磨粒子を確実に固着できる。
また、この発明に係る皮膜形成方法では、上記研磨性皮膜をガスタービンの動翼先端に形成したので、研磨性皮膜の立方晶窒化硼素が対向するシュラウド内周面を研磨して、動翼の損傷を防止できる。
また、この発明に係る皮膜形成方法では、固着した被覆材層の表面からMCrAlYの一部を除去して立方晶窒化硼素粒子を露出させる露出工程を含むようにした。また、この発明に係る皮膜形成方法では、立方晶窒化硼素粒子を露出させる露出工程にブラスト処理を用いるようにした。これによって、立方晶窒化硼素粒子の目出しを適切に行うことができる。
また、この発明に係る皮膜形成方法では、上記ブラスト処理においては、上記MCrAlY粒子よりも硬く、上記研磨粒子よりも柔らかいブラスト材を使用するようにした。これによって、形成した研磨性皮膜から効率よくMCrAlYを除去できるので、研磨粒子の目出しが十分にできる。
また、この発明に係る皮膜形成方法では、上記ブラスト処理において、さらに、研磨粒子の粒径よりも小さく研磨粒子同士の間隔よりも小さい粒径のブラスト材を使用するようにした。これによって、研磨粒子の目出しを十分にしつつ、研磨粒子の脱落を最小限に抑えることができるので、当初から十分な研磨性能を発揮させることができる。
さらに、好ましい被覆材層の他の例としては、次の本発明に係る皮膜形成方法のように、MCrAlY粒子を主成分とするものが挙げられる。この被覆材層により得られる耐酸化性皮膜は、次の本発明に係る皮膜形成方法のように、高温ガスが流通するガスタービンの諸部材、具体的には動翼、静翼及びシュラウドに好適に使用することができる。
また、この発明に係る皮膜形成用被覆材では、研磨粒子と少なくとも耐酸化性を有する金属材料とバインダとを含むようにしたので、皮膜形成時における熱処理の際には、バインダが揮発してできた空間へろう材が吸収される。これによってろう材の液だれを極めて少なくできるため、皮膜形成対象物へ皮膜を形成した後における品質を高くできる。また、前記金属材料は耐酸化性を有するので、ガスタービンの動翼が使用される高温の燃焼ガス雰囲気中でも酸化が生じにくい。これによって、長期間の使用においても研磨粒子をより確実に保持して安定した研磨性能を発揮させることができ、また母材の酸化減肉も低減できるため、より安定したガスタービンの運転ができる。
また、この発明に係る皮膜形成用被覆材では、上記皮膜形成用被覆材において、バインダの質量と、研磨粒子及び金属材料の質量との比を15/85以上2/1以下とした。これにより、被覆材層の形成が容易となり、しかも溶融工程における液だれを抑制できる。
また、この発明に係る皮膜形成用被覆材では、上記皮膜形成用被覆材に含まれる金属材料をMCrAlYとした。このように耐酸化性と耐粒界腐食性をもつMCrAlYを使用するので、高温の酸化性雰囲気中で使用されるガスタービンの動翼等に皮膜を形成した場合でも、長期にわたって研磨粒子を保持して研磨性能を維持できる。これによって、安定したガスタービンの運転ができる。
また、この発明に係る皮膜形成用被覆材では、上記皮膜形成用被覆材において、MCrAlY粒子と研磨粒子との体積比が1/2以上2/1以下とした。このため、ろう切れの発生を防止して、施工性を向上させることができる。また、研磨粒子を十分に固着できるため、研磨粒子の脱落を抑制して信頼性の高いガスタービンの運転ができる。
また、この発明に係る研磨性皮膜形成用シートでは、ろう材と、上記いずれか一つの皮膜形成用被覆材とを積層して構成した。このため、この研磨性皮膜形成用シートを皮膜形成対象物に貼り付けてから、皮膜形成対象物を熱処理するだけで研磨性皮膜を形成できるため、メッキ法や溶射法と比較して極めて容易に研磨性皮膜を形成できる。また、この研磨性皮膜形成用シートを皮膜形成対象物に貼るだけで熱処理前の処理が完了するので、作業が極めて容易になる。さらに、シートであるため、皮膜形成対象物の形状に合わせて適宜切断すればよいため、さまざまな形状を持つ皮膜形成対象物に対しても容易に対応できる。
また、この発明に係る研磨性皮膜形成用シートでは、上記研磨性皮膜形成用シートにおいて、ろう材と皮膜形成用被覆材との膜厚比を30/70以上70/30以下とした。このため、溶融工程において皮膜形成用被覆材が確実に溶融するだけでなく、形成された皮膜も堅固となる。
また、この発明に係る研磨性皮膜形成用シートでは、上記研磨性皮膜形成用シートにおいて、ろう材にボロンを含むようにした。このように、ろう材にボロンが含まれているため、溶融工程においてはこのボロンが皮膜形成用被覆材中に拡散して、皮膜形成用被覆材の凝固点を降下させる。これによって、比較的低温で加熱された場合でも、皮膜形成用被覆材が溶融する。また、ボロン拡散後は、皮膜形成用被覆材の融点が上昇するためろう材の耐熱性が上昇する。これによって、ガスタービンの動翼やシュラウドのように、高温ガス中において使用する場合でもろう材が溶融することなく使用できる。
また、この発明に係る研磨性皮膜形成用シートでは、上記研磨性皮膜形成用シートにおいて、ろう材は、その融点が皮膜形成対象物の熱処理温度よりも低い材料から選択するようにした。これにより、皮膜形成対象物の熱処理と同時に溶融工程を進行させることができる。
また、この発明に係る研磨性皮膜形成用シートでは、上記研磨性皮膜形成用シートにおいて、さらに、ろう材には接着層を形成した。このため、この研磨性皮膜形成用シートさえ準備しておけば、皮膜形成対象物にこの研磨性皮膜形成用シートを貼るだけで熱処理前の処理が完了し、糊付けが不要になり、また糊の乾燥を待つ必要もない。これによって、さらに皮膜形成の手間を軽減できる。
また、この発明に係るガスタービンの動翼では、上記いずれか一つの皮膜形成方法によって先端部に研磨性皮膜を形成した。このため、メッキ法や溶射法と比較して極めて容易に研磨性皮膜を形成できるので、前記皮膜形成法と比較して皮膜形成に要する時間を大幅に短縮でき、また製造コストも低減できる。
また、この発明に係るガスタービンの動翼では、上記いずれか一つの研磨性皮膜形成用シートを先端部に貼り付けるようにした。このため、後は動翼に必要な熱処理を施すだけで研磨性皮膜を形成できるので、メッキ法や溶射法と比較して極めて容易に研磨性皮膜を形成できる。これによって、前記皮膜形成法と比較して皮膜形成に要する時間を大幅に短縮でき、また製造コストも低減できる。
また、この発明に係るガスタービンでは、燃焼器からの燃焼ガスが噴射されることで駆動されるタービンに、上記動翼を備えた。このため、熱処理設備さえ備えておけば、容易に動翼に研磨性皮膜を形成できるため、ガスタービンの運転現場付近にメッキ設備等がない場合でも、熱処理に使用する加熱炉を備えておけば容易に研磨性皮膜を形成できる。これによって、その場で動翼等に再び研磨性皮膜を形成することができるので、容易に動翼の補修ができる。
産業上の利用可能性
以上のように、本発明の皮膜形成方法、皮膜形成用材料、研磨性皮膜形成用シート、及びこの皮膜形成方法によって研磨性皮膜等が形成されたガスタービンの動翼並びにこの動翼を使用したガスタービンは、燃焼エンジン(ガスタービン、ジェットエンジン等)、蒸気タービンにおける動翼、静翼又はシュラウド等の部材が備えている研磨性皮膜、耐酸化性皮膜等を形成する場合に有用であり、これらの皮膜を簡便に形成することに適している。
【図面の簡単な説明】
第1図は、本発明の一実施形態にかかる皮膜形成方法を示すフローチャートであり、第2図は、第1図の皮膜形成方法における諸ステップについて説明するための模式図であり、第3図は、第1図の形成方法によって研磨性皮膜が形成された動翼を示す斜視図であり、第4図は、第3図に示した動翼の一部の拡大断面図であり、第5図は、この発明に係る皮膜形成方法によって先端部に研磨性皮膜が形成されたガスタービン動翼を備えたガスタービンを示す説明図である。
Technical field
The present invention relates to a film forming method for forming a polishing film, an oxidation-resistant film, and the like provided on a member such as a moving blade, a stationary blade, or a shroud in a combustion engine (gas turbine, jet engine, and the like), a steam turbine, and the like. The present invention relates to a material for forming, a sheet for forming an abrasive film, a blade of a gas turbine on which an abrasive film and the like are formed by the method of forming a film, and a gas turbine using the blade.
Background art
In a gas turbine, a clearance of a predetermined size is provided between a moving blade tip and a shroud opposed to the moving blade tip so that they do not contact during operation. If the clearance is too large, the combustion gas leaks from the pressure surface side of the rotor blade to the negative pressure surface side, and the amount of combustion gas that can be used for driving the turbine decreases, resulting in a decrease in the operating efficiency of the gas turbine. Therefore, the clearance is set as small as possible for the purpose of improving the performance of the gas turbine by suppressing the leakage of the combustion gas as much as possible.
However, if the clearance is too small, the tip of the moving blade slides with the shroud due to thermal expansion of the moving blade, eccentricity of the turbine rotor, vibration generated in the entire gas turbine, and the like in the initial stage of gas turbine operation. It may move (so-called initial sliding). Further, when the gas turbine is operated for a long period of time, the shroud exposed to the high-temperature gas gradually undergoes thermal deformation, and the tip of the moving blade and the shroud may also slide (so-called secondary sliding). Ver.)
Generally, the shroud has a coating formed on the inner peripheral surface thereof for the purpose of heat shielding or oxidation prevention. For example, a TBC (Thermal Barrier Coating) may be provided for the purpose of heat insulation, and sometimes an oxidation-resistant coating made of MCrAlY may be provided. Here, M is one or more of iron, nickel, and cobalt. These coatings often have high hardness, so that when the blade tip slides on the inner peripheral surface of the shroud, the blade may be greatly damaged.
Japanese Patent Application Laid-Open Nos. 4-218598 and 9-504340 and U.S. Pat. No. 5,702,574 have an abrasive film in which abrasive particles are dispersed in a matrix made of MCrAlY which is an antioxidant material. A bucket is disclosed. In this rotor blade, for example, cubic boron nitride (CBN) or the like is used as abrasive particles. Cubic boron nitride is a material having high hardness, and therefore, when the blade and the inner peripheral surface of the shroud slide, the abrasive particles made of cubic boron nitride polish the inner peripheral surface of the shroud. Thereby, an appropriate clearance is maintained between the bucket and the shroud.
The abrasive film is obtained by first temporarily attaching abrasive particles to the blade body, and then forming a matrix around the abrasive particles by electrodeposition plating. That is, the matrix is formed by growing the plating layer. Since the growth of the plating layer takes a long time, this forming method is inefficient. Moreover, formation of a matrix by the electrodeposition plating method is generally expensive. Furthermore, electrodeposition plating requires a large-scale facility, and it is difficult to newly install an electrodeposition plating facility from the viewpoint of environmental protection.
Japanese Patent Application Laid-Open No. 10-30403 discloses a method for forming a polishing film in which a matrix is formed by a thermal spraying method. The thermal spraying method is a method of growing a metal layer by spraying a molten metal, and has a feature that the efficiency is higher than that of an electrodeposition plating method. However, in the thermal spraying method, when the abrasive particles are temporarily fixed to the rotor blade body, the electrodeposition plating method is used, so that the above-described problem is caused, and it is difficult to accurately control the thickness of the matrix. Yes, and large-scale thermal spraying equipment is required. When abrasive particles such as cubic boron nitride are dispersed in a metal matrix by a thermal spraying method, the abrasive particles are buried in the molten metal. Particles hardly grind the inner peripheral surface of the shroud. Then, the metal matrix is welded to the inner peripheral surface of the shroud, which may cause damage to the moving blade.
As described above, an oxidation-resistant film made of TBC or MCrAlY may be provided on the inner peripheral surface of the shroud as described above. ), LPPS (Low Pressure Plasma Spray), and D-GUN (Detonation Gun).
The present invention provides a film forming method capable of easily forming an abrasive film, a material for forming a film, a sheet for forming an abrasive film, a blade of a gas turbine in which an abrasive film and the like are formed by the film forming method, and It is an object to provide a gas turbine using a moving blade.
Disclosure of the invention
In order to achieve this object, a method for forming a film according to the present invention includes the following steps (1) to (3).
(1) A laminating step of laminating a brazing material layer mainly composed of a brazing material and a covering material layer mainly composed of a covering material on the front surface or the back surface of a film forming object.
(2) A melting step in which the brazing material layer and the coating material layer are heated to diffuse the coating material and the brazing material while melting and penetrating the brazing material component into the coating material.
(3) A fixing step in which the molten brazing material is solidified and fixed to a film formation target.
In the film forming method according to the present invention, the film is formed by so-called brazing. This method is lower in cost than the plating method and the thermal spraying method, and does not require a large-scale facility, so that there are few restrictions on a construction place.
In this case, as in the film forming method according to the present invention, the thickness ratio between the brazing material and the coating material laminated in the laminating step is preferably 30/70 or more and 70/30 or less. By selecting the volume ratio in this manner, the wax is reliably melted in the coating material in the melting step.
It is preferable that the brazing material contains boron as in the film forming method according to the next invention. This boron diffuses into the coating material in the melting process and lowers the freezing point of the coating material, so even when heated at a relatively low temperature, the coating material melts and once melted, the boron decreases Since the melting point rises, problems such as remelting hardly occur in actual operation.
Preferably, the brazing material is selected from materials whose melting point is lower than the heat treatment temperature of the object to be film-formed, as in the film-forming method according to the following invention. Thus, the melting step can be performed simultaneously with the heat treatment of the film formation target.
The coating material layer used is preferably one in which coating material particles are dispersed in a binder, as in the film forming method according to the following invention. The binder facilitates lamination of the coating material. In addition, since the binder volatilizes almost completely in the melting step, deterioration of the quality of the film due to the binder remaining in the film is suppressed. If a volatile binder is used, the binder is more likely to be volatilized in the melting step, so that the amount of the binder remaining in the film can be reduced and the quality of the film can be further improved. The binder is preferably one that evaporates at a low temperature, and one that also has a certain degree of strength (rigidity) of the coating material after the binder is dried.
As in the film forming method according to the next invention, the mass ratio between the binder and the coating material particles is preferably 15/85 or more and 2/1 or less. Thereby, the formation of the coating material layer is facilitated and dripping of the brazing material in the melting step can be suppressed.
As an example of a preferable coating material layer, a material containing MCrAlY particles and cubic boron nitride particles as main components as in a film forming method according to the following invention can be mentioned. With this coating material layer, an abrasive film is obtained. In this abrasive film, cubic boron nitride functions as abrasive particles, and MCrAlY serves as a matrix to fix the abrasive particles. Further, the MCrAlY matrix suppresses oxidation of the abrasive particles or the blade material.
Further, as in the method for forming a film according to the next invention, from the viewpoint of simultaneously improving the polishing ability and firmly fixing the abrasive particles, the volume ratio between the MCrAlY particles and the cubic boron nitride particles is 以上 or more. It is preferably at most 2/1.
Further, if the abrasive film is formed on the tip of the moving blade of the gas turbine as in the film forming method according to the next invention, the inner peripheral surface of the opposed shroud is polished. Is prevented.
Further, this film forming method may include an exposing step of removing a part of the MCrAlY from the surface of the fixed coating material layer to expose the cubic boron nitride particles as in the film forming method according to the next invention. preferable.
A preferred exposure method is a blast treatment as in the film forming method according to the following invention. In the blasting process, it is preferable to use a blasting material that is harder than the MCrAlY particles and softer than the abrasive particles, as in the film forming method according to the next invention. Thereby, MCrAlY can be efficiently removed from the formed abrasive film, so that the abrasive particles can be sufficiently exposed.
Further, in the blast treatment, it is preferable that the particle size of the blast material is smaller than the particle size of the abrasive particles and smaller than the interval between the abrasive particles as in the film forming method according to the next invention. However, if the particle size is too small, the holding portion of the abrasive particles will be attacked and may fall off. Thus, the dropout of the abrasive particles can be suppressed to a minimum while sufficiently arranging the abrasive particles, so that sufficient polishing performance can be exhibited from the beginning.
Further, as another example of a preferable coating material layer, a material having MCrAlY particles as a main component as in a film forming method according to the following invention can be mentioned. The coating having oxidation resistance and intergranular corrosion resistance obtained by this coating material layer can be formed by various members of a gas turbine through which a high-temperature gas flows, specifically, a moving blade, as in a coating forming method according to the next invention. , Stationary blades and shrouds.
The coating material for forming a film according to the next invention is cubic boron nitride, Al 2 O 3 , SiC or other abrasive particles, a metal material having at least oxidation resistance, and a binder. Since the coating material for forming a film contains abrasive particles, a metal material, and a binder, the brazing material is absorbed into a space formed by volatilization of the binder during heat treatment at the time of forming the film. As a result, the flow of brazing to the surroundings can be extremely reduced, so that the quality (uniformity of the film thickness) after the film is formed on the film forming target can be increased. For this reason, the adjustment of the film thickness after the formation of the film can be minimized, and the trouble of forming the film can be reduced.
Further, the film formation target of the present invention includes a blade and a shroud of a gas turbine. However, since such a target is used in an atmosphere in which a high-temperature combustion gas is injected, the target is formed by oxidation thinning. Its life will be shortened. Since the metal material contained in the coating material for forming a film according to the present invention has oxidation resistance, oxidation hardly occurs even in such an atmosphere. Therefore, even when used for a long period of time, the abrasive particles can be more reliably held and stable polishing performance can be exhibited, and the effect of reducing the oxidation thinning of the base material is also obtained. Can be.
In the coating material for forming a film according to the next invention, in the coating material for forming a film, a ratio of the mass of the binder to the mass of the abrasive particles and the metal material is 15/85 or more and 2/1 or less. It is characterized by. This facilitates the formation of the coating material layer, and also suppresses the flow of the brazing material in the melting step.
A coating material for forming a film according to the next invention is characterized in that in the coating material for forming a film, the metal material is MCrAlY. As described above, since the oxidation-resistant MCrAlY is used as the metal material for forming the coating, even if the coating is formed on a moving blade of a gas turbine used in a high-temperature oxidizing atmosphere, polishing is performed for a long time. Since the polishing performance can be maintained by retaining the particles, and the base material is protected from oxidation, a stable gas turbine operation can be performed.
The coating material for forming a film according to the next invention is characterized in that in the coating material for forming a film, the volume ratio between the MCrAlY particles and the abrasive particles is 以上 or more and 2/1 or less. Cubic boron nitride and Al used as abrasive particles 2 O 3 Alternatively, if the ratio of SiC or the like is large, the content of MCrAlY is reduced, and not only oxidation resistance is lowered, but also wax tends to be broken during construction. In addition, the retention of the abrasive particles during brazing becomes insufficient, and the particles float. On the other hand, if the ratio of MCrAlY is too large, the polishing ability of the polishing film may be insufficient. From these viewpoints, if the mass ratio is within the above range, it is possible to prevent the occurrence of brazing and improve workability. In addition, since the metal layer that sufficiently retains the abrasive particles has high oxidation resistance, the particles can be stably retained for a long time, the abrasive particles are prevented from falling off, and a highly reliable gas turbine can be operated.
A polishing film forming sheet according to the next invention is characterized in that a brazing material and any one of the above film forming coating materials are laminated. In the sheet for forming an abrasive film, the binder is contained in the coating material for forming the film, so that in the heat treatment at the time of forming the film, the brazing material is sucked into the space where the binder has volatilized. As a result, dripping during the formation of the film can be extremely reduced, so that the quality after forming the film on the object on which the film is formed can be improved. Further, since the correction after the formation of the film is minimal, the trouble of forming the film can be reduced. Furthermore, since the abrasive film can be formed simply by attaching the sheet for forming an abrasive film to the object to be formed and heat-treating the object to be formed, the abrasive film can be formed very easily as compared with the plating method and the thermal spraying method. Can be formed. In addition, if a metal material having oxidation resistance and intergranular corrosion resistance is used as a coating material for forming a film, an abrasive film can be formed on a gas turbine blade or a shroud used in a high-temperature oxidizing atmosphere. Even in this case, stable polishing performance can be maintained by preventing the abrasive particles from falling off. Thus, stable operation of the gas turbine can be achieved.
Further, since the process before the heat treatment is completed only by sticking the sheet for forming an abrasive film on the object on which the film is to be formed, the work becomes extremely easy. Furthermore, since the sheet is a sheet, it can be cut as appropriate in accordance with the shape of the film formation target, so that the film formation target having various shapes can be easily handled.
The sheet for forming an abrasive film according to the next invention is the sheet for forming an abrasive film, wherein the film thickness ratio between the brazing material and the coating material for forming a film is 30/70 or more and 70/30 or less. Features. By selecting the volume ratio in this manner, not only the coating material for forming a film is reliably melted in the melting step, but also the formed film is solid.
The sheet for forming an abrasive film according to the next invention is characterized in that, in the sheet for forming an abrasive film, the brazing material contains boron. As described above, since the brazing filler metal contains boron, in the melting step, the boron diffuses into the coating material for film formation and lowers the freezing point of the coating material for film formation. Even when the coating is performed, the coating material for forming a film melts. Further, after boron is diffused, the melting point of the coating material for forming a film increases, so that the heat resistance of the brazing material increases. This allows the brazing material to be used without re-melting even when used in a high-temperature gas such as a rotor blade or a shroud of a gas turbine.
The sheet for forming an abrasive film according to the next invention is characterized in that in the sheet for forming an abrasive film, the brazing material is selected from a material having a melting point lower than a heat treatment temperature of a film formation target. I do. This allows the melting step to proceed simultaneously with the heat treatment of the film formation target.
The sheet for forming an abrasive film according to the next invention is characterized in that, in the sheet for forming an abrasive film, an adhesive layer is further formed on the brazing material. For this reason, if only this abrasive film forming sheet is prepared, the processing before heat treatment is completed only by sticking this abrasive film forming sheet to the film forming object, and the gluing becomes unnecessary, and the glue is not required. There is no need to wait for drying. Thereby, the trouble of forming the film can be further reduced.
A moving blade of a gas turbine according to the next invention is characterized in that a film is formed on a tip portion by any one of the film forming methods described above. Therefore, an abrasive film can be formed extremely easily as compared with the plating method and the thermal spraying method. As a result, the time required for forming the film can be significantly reduced as compared with the film forming method, and the manufacturing cost can be reduced.
The blade of the gas turbine according to the next invention is characterized in that any one of the above-mentioned sheets for forming an abrasive film is attached to a tip end portion. For this reason, since a polishing film can be formed only by performing a necessary heat treatment on the rotor blade, the polishing film can be formed extremely easily as compared with the plating method and the thermal spraying method. As a result, the time required for forming the film can be significantly reduced as compared with the film forming method, and the manufacturing cost can be reduced.
A gas turbine according to the next invention is a compressor that compresses air to produce combustion air, and a combustor that generates high-temperature combustion gas by reacting combustion air and fuel produced by the compressor. And a turbine driven by injection of combustion gas from the combustor to the moving blade.
For this reason, if only a heat treatment facility is provided, an abrasive film can be easily formed, so that the facility for forming the film can be simpler than the plating method and the thermal spraying method. Therefore, even if there is no plating equipment near the gas turbine plant, if a heating furnace used for heat treatment is provided, an abrasive film can be easily formed, so that an abrasive film can be formed again on the rotor blades and the like on the spot. You can also. Thus, even if the abrasive film is damaged, it can be easily repaired.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited by the embodiment. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.
FIG. 1 is a flowchart illustrating a film forming method according to an embodiment of the present invention. This method of forming a film is applied when a relatively simple device (for example, a high-vacuum heating furnace) is used to form an abrasive film on the tip of a moving blade of a gas turbine. In this film forming method, first, a brazing sheet is prepared (step S1). FIG. 2 (a) is an enlarged sectional view showing a part of the brazing sheet indicated generally by reference numeral 1. The brazing sheet 1 includes a brazing material layer 3 on the upper side in the figure, an intermediate adhesive layer 5 as an adhesive layer, and a release paper 7 on the lower side. Needless to say, the brazing material layer 3 is made of a brazing material. In addition, if the adhesive layer 5 and the release paper 7 on the lower side are provided, the release paper 7 can be peeled off and the brazing sheet 1 can be stuck on the object on which the film is to be formed. Here, the thickness of the brazing material layer 3 is generally about 0.05 mm to 1.00 mm. Further, the brazing material layer 3 may not be a single sheet, and may be used by laminating two or three sheets. The intermediate adhesive layer 5, which is an adhesive layer, and the release paper 7 on the lower side may be provided as necessary. When these are not used, the film-forming target is formed by means such as sticking a binder as a paste. What is necessary is just to stick the sheet 1 to an object.
Preferred brazing materials include those containing about 2.75-3.50% by mass of boron (B) and containing nickel (Ni) as a main component. This brazing material usually contains about 6 to 8% by weight of chromium (Cr), about 4 to 5% by weight of silicon (Si), and about 2.5 to 3.5% by weight of iron (Fe). Is included. The brazing sheet 1 preferably does not become hard even after a long period of time. Specific examples of the brazing sheet 1 include BNi-2 (JIS standard).
This brazing sheet 1 is commercially available in which an adhesive layer 5 and a release paper 7 are preliminarily laminated on a brazing material layer 3, and the brazing material is composed of 83 mass% nickel, 7 mass% chromium, and 3 mass% It contains boron, 4% by weight of silicon and 3% by weight of iron.
Next, a coating material layer 9 shown in FIG. 2B is formed on the brazing sheet 1 (Step S2). It is also possible to separately form and cut the covering material layer 9 and the sheet 1 and to bond them later with a binder or the like. However, in order to prevent cracks such as cutting in multiple steps, a soft BNi- As a multi-layer with two layers, the cutability of the entire sheet is improved.
The coating material layer 9 is formed by applying a mixture of the coating material particles and the binder 11 to the surface of the brazing material layer 3. First, a mixture of the coating material particles and the binder 11 flows on the brazing material layer 3. Next, excess mixture is scraped off while the mixture is stretched into a sheet shape by a blade or the like, and the mixture is coated to a predetermined thickness in consideration of a shrinkage allowance when the mixture is dried. The coating material layer 9 is dried after coating (step S3), and is naturally dried usually for about one day. Drying volatilizes the binder 11 to some extent. The thickness of the coating material layer 9 is reduced by volatilization.
The predetermined thickness of the coating material layer 9 after coating may be about 0.10 to 1.00 mm, but after the coating material layer 9 is dried, the thickness of the coating material layer 9 is used as a guide to determine the film thickness of the brazing sheet 1. It should be less than the thickness. For this reason, it is preferable to appropriately change the thickness of the coating material layer 9 after applying the mixture according to the mixing ratio of the binder 11 and the component ratio of the coating material layer 9.
Here, in this embodiment, MCrAlY particles 13 which are a metal material having oxidation resistance and intergranular corrosion resistance are used as coating particles, and cubic boron nitride particles 15 are used as abrasive particles. Hereinafter, when simply referred to as coating material particles, both of these particles are referred to. A binder is mixed with the coating material particles and the abrasive particles to form a coating material for forming a coating material layer 9.
MCrAlY is an alloy containing iron (Fe), nickel (Ni) or cobalt (Co), chromium (Cr), aluminum (Al), and yttrium (Y) as main components, and has oxidation resistance and resistance to oxidation. It has intergranular corrosion properties. Here, it is preferable to increase the content of Cr and Al in order to improve the intergranular corrosion resistance and the oxidation resistance in consideration of the fact that MCrAlY is diluted by the Ni solder after the film is formed. However, it should be noted that if these amounts, especially Al, are too large, the brazing properties deteriorate. Further, in order to improve oxidation resistance, intergranular corrosion resistance and brazing properties, Ta, Re, Hf, Si, etc. can be added in addition to Cr and Al.
In addition, it is necessary that the surface of the MCrAlY particles be free from impurities for brazing, such as O and N, as much as possible. Preferably, MCrAlY having a particle size in the range of 10 to 100 μm is used at random in order to increase the filling rate. However, if the particle size is too small, the surface area increases, and the amount of impurities such as O and N increases.
On the other hand, as the cubic boron nitride particles 15, those commercially available from General Electric, De Beers, Showa Denko KK, Sumitomo Denko KK, and the like can be used. Cubic boron nitride is classified into single crystal and polycrystal, and there is also a high-purity product. Each of them can be used properly, but it is clear that cubic boron nitride coated with TiN or the like has excellent brazing properties. It has become. When the cubic boron nitride is coated in this manner, the wettability between the cubic boron nitride and the brazing material is improved, and the cubic boron nitride particles 15 can be sufficiently embedded in the brazing material. As a result, the falling of the cubic boron nitride particles 15 can be suppressed, so that the TBC layer or the like of the shroud can be stably cut off, welding between the blade tip and the shroud can be prevented, and a highly reliable operation can be performed.
Further, cubic boron nitride coated with Co or Ni, or cubic boron nitride coated with TiN or a Ti compound can be used. It is desirable to appropriately select these depending on the type of MCrAlY particles forming the coating material layer 9.
Further, instead of the cubic boron nitride particles 15, for example, Al 2 O 3 And SiC can also be used as abrasive particles. In order to improve the wettability with the brazing material, Al 2 O 3 Al and SiC are also used when coated Al 2 O 3 It is preferable to use SiC. And Al 2 O 3 From the viewpoint of improving the film forming property with respect to TiN and TiN and the wettability with respect to the MCrAlY material, these coating materials include, for example, Al particles as abrasive particles. 2 O 3 When using, Co, Cr, Ni and the like can be mentioned. When SiC is used as abrasive particles, AlN, TiN, AlN may be used as a coating material to suppress the reaction between SiC and Cr during brazing. 2 O 3 And the like.
Volume V of MCrAlY particles 13 M And the volume V of the cubic boron nitride particles 15 C Volume ratio V M / V C Is preferably 30/70 or more and 70/30 or less. If the ratio of the cubic boron nitride particles 15 is large, the porosity in the brazing sheet 1 increases, and the amount of the binder increases. As a result, brazing or deformation tends to occur. When the ratio of the cubic boron nitride particles 15 exceeds 70%, that is, the volume ratio V M / V C Is smaller than 30/70, the density of the cubic boron nitride particles 15 is too large, and it becomes difficult to perform electric discharge machining from the film. Further, since the oxidation resistance is also reduced, the holding power of the cubic boron nitride particles 15 is also reduced, and the cubic boron nitride particles 15 may fall off. From these viewpoints, the volume ratio V M / V C Is more preferably 1/2 or more, and furthermore, the ratio of the cubic boron nitride particles 15 is 60% or less, that is, the volume ratio V M / V C Is preferably 40/60 or more from the viewpoint of cost. On the other hand, the volume ratio V M / V C Exceeds 70/30, the polishing ability of the abrasive film may be insufficient. From this viewpoint, the volume ratio V M / V C Is more preferably 2/1 or less, particularly preferably 60/40 or less. Therefore, the most preferable volume ratio V M / V C Is 40/60 or more and 60/40 or less. At the time of actual work, since the specific gravity (density) of each material is known, the sheet 1 is created by mass management.
Here, the cubic boron nitride particles 15 are high in high-temperature hardness and excellent in machinability, but are also known to disappear in a high-temperature oxidizing atmosphere in a short time. 2 O 3 It is necessary to mix them. Instead of the cubic boron nitride particles 15 or together with the cubic boron nitride particles 15, 2 O 3 These volume ratios can also be applied when using TiN or TiN.
Although various kinds of binders can be used, it is preferable to use a binder which volatilizes at a particularly low temperature. Since the volatile binder 11 is volatilized in a drying step and a melting step described in detail later, it hardly remains in the abrasive film. Therefore, the quality of the abrasive film is not adversely affected. Further, a space is formed after the volatile binder 11 has volatilized. In the melting step described later, the metal braze is sucked into these gaps by capillary action, so that dripping can be extremely reduced in the melting step described later. As a result, the deterioration of the quality of the moving blade due to the dripping is suppressed, and the treatment of the dripping (mainly, the application of the stop-off) is hardly required, so that the work of construction can be improved.
Here, as the preferred volatile binder 11, an organic binder can be suitably used, and among them, a cellulose binder is more preferred because of its good brazing property. It is preferable to use a binder to which a plasticizer is added because the polishing film-forming sheet 1a described below has flexibility and can be easily cut, and the like, so that the workability can be improved.
Mass m of volatile binder 11 B And mass m of coating material particles 13 and 15 C And mass ratio m B / M C Is preferably 15/85 or more and 2/1 or less. Mass ratio m B / M C Is less than the lower limit of the above range, it may be difficult to apply a mixture of the coating material particles 13 and 15 and the binder 11. From this viewpoint, the mass ratio m B / M C Is more preferably 20/80 (1 /) or more, further preferably 1 / or more. On the other hand, mass ratio m B / M C Exceeds the upper limit of the above range, dripping of the brazing filler metal is liable to occur during the heat treatment of the film formation target. From this viewpoint, the mass ratio m B / M C Is more preferably 60/40 or less, particularly preferably 40/60 or less. Accordingly, the mass ratio m between the preferred volatile binder 11 and the coating material particles 13 and 15 is m. B / M C Is 20/80 or more and 40/60 or less.
The thickness ratio between the brazing material and the coating material is preferably 30/70 or more and 70/30 or less. When the film thickness ratio is less than the lower limit of the above range, the wax does not penetrate into the coating material in the melting step, so that the wax is easily cut. In this respect, the film thickness ratio is particularly preferably equal to or greater than 60/40. After the brazing sheet 1 is formed, the brazing sheet 1 is dried at normal temperature to facilitate the cutting operation and to volatilize excess binder. If possible, it is desirable to dry for a whole day or more in a constant temperature room where temperature and humidity are controlled.
Next, the brazing sheet 1 on which the coating material layer 9 is laminated (hereinafter, referred to as an abrasive film forming sheet 1a) is cut into a predetermined shape and dimensions (step S4). The means for cutting is not particularly limited, but it is preferable to use a stencil and an ultrasonic cutter because the abrasive film forming sheet 1a is highly brittle. Then, the release paper 7 is peeled off from the abrasive film-forming sheet 1a cut into a predetermined shape and size, and is adhered to the tip of a moving blade, which is a film-forming object (Step S5).
Since the abrasive film forming sheet 1a is cut into a blade shape, most of the sheet 1a remains as a piece. Since the very expensive cubic boron nitride is contained in the abrasive film forming sheet 1a, it is necessary to recover the cubic boron nitride. However, the surface of the cubic boron nitride is provided with a coating for improving brazing properties, and it is important to recover the coating without damaging it. Therefore, at the time of recovery, the scraps of the abrasive film forming sheet 1a are boiled and immersed in a NaOH solution having a concentration of about 10% for about 1 to 5 hours to dissolve the binder, and then subjected to ultrasonic cleaning with pure water and filtration. By washing with pure water and classifying and drying, only cubic boron nitride can be recovered. Here, the pure water ultrasonic cleaning is performed three times, for example, for about 10 to 30 minutes, and the drying is performed, for example, at 120 ° C. for about one hour.
Prior to the application of the abrasive film forming sheet 1a, it is preferable to apply a pretreatment such as blasting or washing with a solvent such as trichloroethylene or acetone to the tip of the blade. This is because the tip of the moving blade on which the film is formed by the pretreatment is roughened, and the oils and fats at the portion where the film is formed are removed, so that the adhesion between the film and the tip of the moving blade is improved.
Here, the blade tip may be provided with a hole for ejecting a cooling medium such as cooling air or cooling steam from the internal cooling passage. Therefore, if this hole is closed when the abrasive film forming sheet 1a is attached to the tip of the moving blade, the cooling medium cannot be ejected during the operation of the gas turbine, and the cooling of the moving blade may be insufficient. There is. Therefore, the sheet 1a for forming an abrasive film is stuck so as to avoid the portion of the hole from which the cooling medium is ejected. However, when the hole size is small and large, it is difficult to avoid this hole. In addition, since the sheet 1a for forming an abrasive film is easily cut before the heat treatment, it is difficult to secure a hole in the sheet before attaching the sheet. For this reason, it is possible to form holes by electric discharge machining or the like after the formation of the film. Holes can be formed by electric discharge machining before or after cubic boron nitride particles are exposed.
Next, the abrasive film forming sheet 1a is heated together with the blade body (step S6). For heating, a vacuum heating furnace is usually used. The heating conditions are determined in consideration of the material of the blade body, the type of brazing material, and the like. For example, when the material of the rotor blade body is a rotor blade base material (Ni-based superalloy or the like) and the above-mentioned BNi-2 is used as the sheet 1 used for the abrasive film forming sheet 1a, first, it is 10 hours or more. Then, the temperature of the vacuum heating furnace is raised from room temperature to about 600 ° C. As described above, since the binder 11 in the abrasive film forming sheet 1a is positively volatilized at a low temperature by heating over a long time, components of the binder 11 that easily thermally expand do not remain at a high temperature. Thereby, wrinkles due to thermal elongation do not occur, and the quality of the formed abrasive film can be increased. The degree of vacuum at this time is 10 -5 It is preferable that the degree of vacuum be higher than torr. Next, the temperature is raised to 1000 ° C. or higher over about 2 hours, and this state is maintained for a necessary time. As a result, almost all of the binder 11 is volatilized from the coating material layer 9, and a space is created in the coating material layer 9 after the binder 11 is volatilized.
Since the melting point of this brazing material is about 1000 ° C., the brazing material is melted by heating at 1000 ° C. or more. The brazing material that has become liquid by this heating penetrates into the space in the coating material layer 9 by capillary action and is absorbed into this space. Further, boron as a brazing filler metal also diffuses into the MCrAlY particles 13 in the coating material layer 9. Since boron lowers the solidification point of MCrAlY, MCrAlY is in a semi-molten state and is easily diffused with the surrounding brazing material.
Next, the inside of the vacuum heating furnace is cooled to 500 ° C. or lower by introducing argon gas or nitrogen gas (step S7). As a result, the strength required for the Ni alloy as the base material is obtained, and the solidified layer 21 in which the cubic boron nitride particles 15 are dispersed in the MCrAlY matrix 19 as shown in FIG. Is formed. Since the boron has disappeared to some extent by the temperature control at 1000 ° C. or more, the melting point of the matrix 19 rises to a temperature at which there is no practical problem. With this heat history, heat treatment (stabilization treatment) necessary for the strength of the moving blade is performed. That is, by selecting a brazing material having a melting point lower than the heat treatment temperature of the moving blade, the melting of the coating material and the heat treatment of the moving blade are simultaneously completed in the melting step.
In general, cubic boron nitride has a lower specific gravity than the brazing material. Therefore, if both are mixed in advance, the cubic boron nitride particles 15 float on the surface layer in the liquid brazing material, and The dispersion of the crystalline boron nitride particles 15 becomes non-uniform. Also, dripping of the molten brazing material is likely to occur. In a preferred embodiment of the present invention, the brazing material layer 3 and the coating material layer 9 are sequentially laminated on the blade tip 17 and the two are mixed by the capillary phenomenon as described above. For this reason, the cubic boron nitride particles 15 are not lifted because they are held by the MCrAlY in the coating material layer 9, so that the dispersion of the cubic boron nitride particles 15 is uniform, and the dripping of the brazing filler metal is suppressed.
Next, a blast process is performed on the solidified layer 21 (step S8). In the blast processing, blast particles are sprayed on the surface of the matrix 19. By this blasting process, a portion of the matrix 19 near the surface is removed as shown in FIG. 2 (d). Since the cubic boron nitride particles 15 are hardly removed by the blast treatment according to the present invention, the cubic boron nitride particles 15 protrude from the matrix 19 (so-called “index”). Thus, the polishing film 23 is completed. In FIG. 2 (d), the boundary between the abrasive film 23 and the blade tip 17 is clearly defined, but in an actual blade, the boundary between the two is ambiguous due to diffusion during heating. .
In order to remove the portion near the surface of the matrix 19 in preference to the cubic boron nitride particles 15 by blasting, blast particles having a lower hardness than the cubic boron nitride particles 15 and a higher hardness than the matrix 19 are used. Preferably, it is used. That is, when the Vickers hardness of the matrix 19 is H1, the Vickers hardness of the cubic boron nitride particles 15 is H2, and the Vickers hardness of the blast particles used in the blasting process is H3, H1, H2 and H3 are represented by the following formula (I). It is preferable to satisfy the relationship shown in (1).
H1 <H3 <H2 (I)
When MCrAlY is used for the cubic boron nitride particles 15 and the matrix 19, as such blast particles, for example, Al 2 O 3 Can be used.
When the diameter of the blast particles is too large, the cubic boron nitride particles 15 are insufficiently exposed. On the other hand, if the diameter of the blast particles is too small, the roots holding the cubic boron nitride particles 15 will advance too much, and the cubic boron nitride particles 15 will fall off the coating material layer 9. Therefore, it is preferable to use blast particles having a size smaller than the interval between the cubic boron nitride particles 15 and having such a size that the root holding the cubic boron nitride particles 15 is not attacked. In this example, the average particle size of Al is 50 μm. 2 O 3 Although microblast using particles is used, it is desirable to appropriately select the diameter of the blast particles to be used according to the particle size and the interval of the cubic boron nitride particles 15. For example, when the spacing between the cubic boron nitride particles 15 is large and the surface is rough, it is preferable to use larger blast particles. Also, in the abrasive film, the abrasive particles have Al 2 O 3 When ZrO or SiC is used, ZrO 2 Preferably, glass beads or the like are used as blast particles.
FIG. 3 is a perspective view showing the rotor blade 25 on which the abrasive film 23 is formed by the forming method of FIG. The moving blade 25 includes a main body 27 and a protruding portion 29 extending from an end thereof, and the polishing film 23 is coated on an upper surface of the protruding portion 29 which is a tip of the moving blade. Although not shown, in the gas turbine, the inner peripheral surface of the shroud is located to face the abrasive film 23. The inner peripheral surface of the shroud is polished by the abrasive film 23 when the bucket 25 and the shroud slide. There is a moving blade without the ridge portion 29, but in that case, an abrasive film can be formed on the tip of the moving blade.
The average particle diameter of the cubic boron nitride particles 15 is preferably about 50 to 200 μm. When the average particle diameter is less than 50 μm, the polishing ability of the abrasive film 23 may be insufficient. In this respect, the average particle diameter is particularly preferably equal to or greater than 80 μm. On the other hand, when the average particle diameter exceeds 200 μm, not only the film thickness of the abrasive film 23 becomes excessive, but also the oxidation resistance of the abrasive film 23 becomes insufficient. In this respect, in the case of a gas turbine blade, the average particle diameter is particularly preferably equal to or less than 170 μm. Therefore, the most preferred average particle diameter range is 80-170 μm.
FIG. 4 is an enlarged sectional view showing a part of the moving blade 25 of FIG. As described above, the cubic boron nitride particles 15 protrude from the matrix 19. In this drawing, what is indicated by a double-pointed arrow p is the protrusion size of the cubic boron nitride particles 15. Assuming that the average particle diameter of the cubic boron nitride particles 15 is D and the average value of the protrusion dimensions p of all the cubic boron nitride particles 15 projecting from the matrix 19 (that is, the average protrusion dimension) is P, the average particle diameter The ratio of the average protrusion dimension P to D is preferably 25% or more and 70% or less. If the ratio is less than 25%, the polishing ability of the polishing film 23 may be insufficient. In this respect, the ratio is more preferably equal to or greater than 30%. Conversely, if this ratio exceeds 70%, the cubic boron nitride particles 15 may easily fall off the matrix 19. In this respect, the ratio is more preferably equal to or less than 60%. Therefore, the most preferable ratio range is 30 to 60%.
The thickness of the matrix 19 (the portion indicated by the double-headed arrow T in FIG. 4) is preferably 50 μm or more. If the thickness of the matrix 19 is less than 50 μm, not only the retention of the cubic boron nitride particles 15 in the abrasive film 23 becomes insufficient, but also the distribution of the cubic boron nitride particles 15 cannot be arranged in a random manner. In addition, the long-term high-temperature durability of the polishing film 23 is reduced.
In the present invention, an abrasive film forming sheet 1a, which is a brazing sheet 1 on which a coating material layer 9 is laminated, is used. Then, this is cut into a predetermined shape and attached to a film-forming object, and then the film-forming object is subjected to a heat treatment to form an abrasive film 23 (see FIG. 3) on the film-forming object. Next, the abrasive film 23 is subjected to blast processing to find the cubic boron nitride particles 15, and the abrasive particles are projected from the abrasive film 23. After the abrasive film-forming sheet 1a is manufactured in this manner, the sheet is simply cut into a predetermined shape and attached to the film-forming object, and the necessary heat treatment is applied to the film-forming object. Can be formed. In addition, since the blasting is also used for locating the abrasive particles, the abrasive particles can be easily projected. For this reason, an abrasive film can be formed extremely easily as compared with the conventional plating method and thermal spraying method.
For example, when an abrasive film is formed on the tip of a certain gas turbine blade, the film forming method according to the present invention reduces the construction cost to 1/3 to 1/4 compared to the conventional plating method. Can be suppressed. Also, the time required for construction can be reduced to 1/3 or less. As described above, a great effect of reducing the construction cost and the effect of shortening the construction period are obtained, and therefore, it is extremely useful when forming an abrasive film on a large number of moving blades. Further, since large-scale equipment such as a plating method is not required, the cost required for capital investment can be reduced. Further, since no plating waste liquid is generated unlike the plating method, the environmental load can be extremely reduced.
Furthermore, if heating equipment such as a vacuum heating furnace is prepared, an abrasive film can be formed only by supplying the abrasive film forming sheet 1a, so that the heat treatment and the preparation of the sheet need not necessarily be performed in the same place. There is no. For this reason, since the degree of freedom of construction can be increased, for example, even in a gas turbine plant installed in a place where there is no construction facility nearby, a heating facility is provided and the abrasive film forming sheet 1a is periodically supplied. Then, re-coating can be done on the spot.
In the above description, the case where cubic boron nitride and MCrAlY are used as the coating material is described as an example, but only MCrAlY may be used as the coating material. In this case, the obtained film becomes an oxidation resistant film. The oxidation resistant coating is suitable for a moving blade, a stationary blade, or a shroud of a gas turbine.
FIG. 5 is an explanatory view showing a gas turbine provided with a gas turbine rotor blade having an abrasive film formed at the tip portion by the film forming method according to the present invention. The air taken in from the air inlet 50 is compressed by the compressor 51 to be high-temperature and high-pressure compressed air and sent to the combustor 52. In the combustor 52, a gas fuel such as natural gas or a liquid fuel such as light oil or light heavy oil is supplied to the compressed air to burn the fuel and generate high-temperature and high-pressure combustion gas. The high-temperature and high-pressure combustion gas is guided to the combustor transition piece 53 and then injected into the turbine 54.
The turbine 54 is provided with a moving blade 25 (see FIG. 3) having the abrasive film 23 formed on the tip thereof by the film forming method according to the present invention. The blade 25 has a coating according to the present invention formed on the tip thereof. When the operation of the gas turbine 100 is started, so-called initial sliding occurs due to thermal expansion of the moving blade, and the tip of the moving blade 25 may come into contact with the inner wall of the shroud 55 in some cases. After a certain period of time has elapsed from the start of operation, the tip of the moving blade 25 may come into contact with the inner wall of the shroud 55 due to deformation of the shroud 55, causing so-called secondary sliding. In any case, since abrasive particles are firmly brazed to the tip of the rotor blade 25 by the film forming method according to the present invention, a film such as TBC (not shown) formed on the inner wall of the shroud 55 is formed. ) Can be removed. Thus, welding of the rotor blades 25 can be prevented, so that the gas turbine 100 can be stably operated. Note that cubic boron nitride functions for initial sliding and SiC or Al, which has excellent long-term stability at high temperatures for secondary sliding. 2 O 3 Preferably function. Therefore, it is more desirable to use a mixture of them in order to ensure long-term reliability of the gas turbine.
Further, since the coating is formed on the tip of the blade 25 according to the present invention by brazing, cubic boron nitride and other abrasive particles can be distributed in the shape of a shark tooth. For this reason, even if the abrasive particles on the surface layer spill out, the next abrasive particles appear, so that the TBC or the like formed on the inner wall of the shroud 55 stably until the abrasive film 23 (see FIG. 3) disappears. The film can be scraped off. As a result, a more reliable operation can be performed than using a rotor blade on which a film is formed by a conventional plating method or a thermal spraying method.
As can be seen from the above description, the film forming method according to the present invention includes the following steps (1) to (3);
(1) a laminating step of laminating a brazing material layer mainly composed of a brazing material and a coating material layer mainly composed of a coating material on the front surface or the back surface of the film formation target;
(2) a melting step of heating the laminated brazing material layer and the coating material layer to diffuse and diffuse the coating material and the brazing material while melting and penetrating the brazing material component into the coating material;
(3) a fixing step in which the molten brazing material is solidified and fixed to the film formation target;
A film is formed by so-called brazing. This method is lower in cost than the plating method and the thermal spraying method, and does not require a large-scale facility.
Further, in the film forming method according to the present invention, since the thickness ratio of the brazing material and the coating material laminated in the laminating step is set to 30/70 or more and 70/30 or less, the coating material is reliably melted in the melting step. In addition to this, the formed film becomes firm and its characteristics can be improved.
Further, in the film forming method according to the present invention, since the brazing material contains boron, the boron diffuses into the coating material in the melting step and lowers the solidification point of the coating material, so that the material is heated at a relatively low temperature. In this case, the coating material can be reliably melted at low cost.
Further, in the film forming method according to the present invention, since the brazing material whose melting point of the brazing material is lower than the heat treatment temperature of the film forming object is selected, the melting step can be performed simultaneously with the heat treatment of the film forming object. . Thereby, the work efficiency of the film formation can be improved.
Further, in the film forming method according to the present invention, since the coating material layer in which the coating material particles are dispersed in the binder is used, not only the function of the binder facilitates the lamination of the coating material, but also Since the binder volatilizes almost completely in the melting step, it is possible to suppress the deterioration of the film quality due to the binder remaining in the film.
Further, in the film forming method according to the present invention, since the mass ratio between the binder and the coating material particles is set to 15/85 or more and 2/1 or less, the formation of the coating material layer is facilitated, and the liquid of the brazing material in the melting step is further improved. Anyone can be suppressed and workability can be improved.
In the method for forming a film according to the present invention, MCrAlY particles and cubic boron nitride particles are used as main components. In the abrasive film obtained by this coating material layer, cubic boron nitride functions as abrasive particles, and MCrAlY serves as a matrix to fix the abrasive particles. The matrix of MCrAlY can suppress the oxidation of the abrasive particles.
Further, in the film forming method according to the present invention, the volume ratio between the MCrAlY particles and the cubic boron nitride particles is set to not less than 1/2 and not more than 2/1. For this reason, the polishing ability of the abrasive film is improved, and the abrasive particles can be securely fixed.
Further, in the film forming method according to the present invention, since the abrasive film is formed at the tip of the moving blade of the gas turbine, cubic boron nitride of the abrasive film is polished on the inner peripheral surface of the shroud opposed thereto, and the rotating blade is Damage can be prevented.
Further, the method for forming a film according to the present invention includes an exposing step of exposing the cubic boron nitride particles by removing a part of the MCrAlY from the surface of the fixed coating material layer. In the method of forming a film according to the present invention, blasting is used in the exposing step for exposing the cubic boron nitride particles. Thereby, the cubic boron nitride particles can be appropriately spotted.
In the method for forming a film according to the present invention, in the blasting, a blast material that is harder than the MCrAlY particles and softer than the abrasive particles is used. As a result, MCrAlY can be efficiently removed from the formed abrasive film, so that the abrasive particles can be sufficiently obtained.
Further, in the film forming method according to the present invention, in the blast treatment, a blast material having a particle size smaller than the particle size of the abrasive particles and smaller than the space between the abrasive particles is used. Thus, the dropout of the abrasive particles can be suppressed to a minimum while sufficiently arranging the abrasive particles, so that sufficient polishing performance can be exhibited from the beginning.
Further, as another example of a preferable coating material layer, a material containing MCrAlY particles as a main component as in the following film forming method according to the present invention can be mentioned. The oxidation resistant film obtained by this coating material layer is suitable for various members of a gas turbine through which a high-temperature gas flows, specifically, a moving blade, a stationary blade, and a shroud, as in the film forming method according to the present invention described below. Can be used for
Further, in the coating material for forming a film according to the present invention, since the abrasive particles, at least a metal material having oxidation resistance and a binder are included, during the heat treatment at the time of forming the film, the binder is volatilized. The brazing material is absorbed into the space. As a result, dripping of the brazing filler metal can be extremely reduced, so that the quality after forming the film on the film formation target can be improved. Further, since the metal material has oxidation resistance, oxidation is unlikely to occur even in a high-temperature combustion gas atmosphere in which a rotor blade of a gas turbine is used. As a result, even when used for a long period of time, the abrasive particles can be more reliably held and stable polishing performance can be exhibited, and the oxidation thinning of the base material can be reduced, so that a more stable gas turbine operation can be performed. .
Further, in the coating material for forming a film according to the present invention, in the coating material for forming a film, the ratio of the mass of the binder to the mass of the abrasive particles and the metal material is 15/85 or more and 2/1 or less. This facilitates the formation of the coating material layer, and can suppress dripping in the melting step.
In the coating material for forming a film according to the present invention, the metal material included in the coating material for forming a film is MCrAlY. Since MCrAlY, which has oxidation resistance and intergranular corrosion resistance, is used as described above, even if a film is formed on a moving blade of a gas turbine used in a high-temperature oxidizing atmosphere, the abrasive particles are retained for a long time. Polishing performance can be maintained. Thus, stable operation of the gas turbine can be achieved.
Further, in the coating material for forming a film according to the present invention, in the coating material for forming a film, the volume ratio between the MCrAlY particles and the abrasive particles is 以上 or more and 2/1 or less. For this reason, it is possible to prevent the occurrence of brazing and improve workability. Further, since the abrasive particles can be sufficiently fixed, the falling of the abrasive particles can be suppressed, and the gas turbine can be operated with high reliability.
Further, the abrasive film-forming sheet according to the present invention is formed by laminating a brazing material and any one of the above-mentioned film-forming coating materials. For this reason, since the abrasive film can be formed only by attaching the sheet for forming an abrasive film to the object to be formed and then heat-treating the object to be formed, the abrasive film can be formed very easily as compared with the plating method and the thermal spraying method. An abrasive film can be formed. Further, since the process before the heat treatment is completed only by sticking the sheet for forming an abrasive film on the object on which the film is to be formed, the work becomes extremely easy. Furthermore, since the sheet is a sheet, it can be cut as appropriate in accordance with the shape of the film formation target, so that the film formation target having various shapes can be easily handled.
In the sheet for forming an abrasive film according to the present invention, in the sheet for forming an abrasive film, the thickness ratio between the brazing material and the coating material for forming the film is set to 30/70 or more and 70/30 or less. For this reason, not only the coating material for forming a film is reliably melted in the melting step, but also the formed film is firm.
Further, in the abrasive film forming sheet according to the present invention, in the above abrasive film forming sheet, the brazing filler metal contains boron. As described above, since boron is contained in the brazing material, in the melting step, the boron diffuses into the coating material for film formation and lowers the freezing point of the coating material for film formation. Thereby, the coating material for forming a film is melted even when heated at a relatively low temperature. Further, after boron diffusion, the melting point of the coating material for forming a film increases, so that the heat resistance of the brazing material increases. This allows the brazing material to be used without melting even when used in a high-temperature gas such as a rotor blade or a shroud of a gas turbine.
In the polishing film forming sheet according to the present invention, in the polishing film forming sheet, the brazing material is selected from materials whose melting point is lower than the heat treatment temperature of the film forming object. This allows the melting step to proceed simultaneously with the heat treatment of the film formation target.
In the sheet for forming an abrasive film according to the present invention, an adhesive layer is further formed on the brazing material in the sheet for forming an abrasive film. For this reason, if only this abrasive film forming sheet is prepared, the processing before heat treatment is completed only by sticking this abrasive film forming sheet to the film forming object, and the gluing becomes unnecessary, and the glue is not required. There is no need to wait for drying. Thereby, the trouble of forming the film can be further reduced.
Further, in the blade of the gas turbine according to the present invention, the abrasive film is formed on the tip portion by any one of the film forming methods described above. For this reason, the abrasive film can be formed extremely easily as compared with the plating method and the thermal spraying method, so that the time required for forming the film can be greatly reduced as compared with the film forming method, and the manufacturing cost can be reduced.
Further, in the moving blade of the gas turbine according to the present invention, any one of the above-mentioned sheets for forming an abrasive film is attached to a tip portion. For this reason, since a polishing film can be formed only by performing a necessary heat treatment on the moving blade later, the polishing film can be formed extremely easily as compared with the plating method and the thermal spraying method. As a result, the time required for forming the film can be significantly reduced as compared with the film forming method, and the manufacturing cost can be reduced.
Further, in the gas turbine according to the present invention, the turbine driven by the injection of the combustion gas from the combustor is provided with the moving blade. For this reason, as long as the heat treatment equipment is provided, the abrasive film can be easily formed on the rotor blade. Even if there is no plating equipment near the operation site of the gas turbine, if the heating furnace used for the heat treatment is provided. An abrasive film can be easily formed. As a result, the abrasive film can be formed again on the moving blade or the like on the spot, so that the moving blade can be easily repaired.
Industrial applicability
As described above, the film forming method, the film forming material, the abrasive film forming sheet of the present invention, the blade of the gas turbine having the abrasive film formed by the film forming method, and the blade were used. The gas turbine is useful for forming an abrasive film, an oxidation-resistant film, and the like provided on members such as a moving blade, a stationary blade, and a shroud of a combustion engine (gas turbine, jet engine, and the like) and a steam turbine. It is suitable for easily forming these films.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a film forming method according to an embodiment of the present invention, and FIG. 2 is a schematic diagram for explaining various steps in the film forming method of FIG. FIG. 4 is a perspective view showing a moving blade on which an abrasive film is formed by the forming method of FIG. 1, FIG. 4 is an enlarged sectional view of a part of the moving blade shown in FIG. FIG. 1 is an explanatory view showing a gas turbine provided with a gas turbine blade having an abrasive film formed on a tip portion by a film forming method according to the present invention.

Claims (27)

皮膜形成方法であって、
皮膜形成対象物の表面にろう材を主成分とするろう材層と、被覆材を主成分とする被覆材層とを積層する積層工程と、
積層された前記ろう材層及び被覆材層を加熱してろう材成分を被覆材中に拡散させつつ該被覆材の少なくとも一部を溶融させる溶融工程と、
溶融した前記被覆材を凝固させ前記皮膜形成対象物に固着させる固着工程と、
を含むことを特徴とする皮膜形成方法。
A method of forming a film,
A lamination step of laminating a brazing material layer containing a brazing material as a main component on a surface of a film formation target, and a covering material layer containing a coating material as a main component,
A melting step of heating the laminated brazing material layer and the coating material layer to melt at least a part of the coating material while diffusing the brazing material component into the coating material;
A fixing step of solidifying the molten coating material and fixing the coating material to the film formation target;
A method for forming a film, comprising:
前記積層工程で積層されるろう材と被覆材との膜厚比が30/70以上70/30以下であることを特徴とする請求の範囲第1項に記載の皮膜形成方法。The film forming method according to claim 1, wherein a thickness ratio of the brazing material and the coating material laminated in the laminating step is 30/70 or more and 70/30 or less. 前記被覆材中に拡散するろう材成分がボロンであることを特徴とする請求の範囲第1項又は第2項に記載の皮膜形成方法。3. The method according to claim 1, wherein the brazing material component diffused into the coating material is boron. 前記ろう材は、その融点が皮膜形成対象物の熱処理温度よりも低い材料から選択されていることを特徴とする請求の範囲第1項〜第3項のいずれか1項に記載の皮膜形成方法。The film forming method according to any one of claims 1 to 3, wherein the brazing material is selected from a material having a melting point lower than a heat treatment temperature of a film forming target. . 前記被覆材層がバインダ中に被覆材粒子が分散したものであることを特徴とする請求の範囲第1項〜第4項のいずれか1項に記載の皮膜形成方法。The method according to any one of claims 1 to 4, wherein the coating material layer is obtained by dispersing coating material particles in a binder. 前記バインダと前記被覆材粒子との質量比が15/85以上2/1以下であることを特徴とする請求の範囲第5項に記載の皮膜形成方法。The film forming method according to claim 5, wherein a mass ratio of the binder and the coating material particles is 15/85 or more and 2/1 or less. 前記被覆材層がMCrAlY粒子と、立方晶窒化硼素、Al、TiNその他の研磨粒子とを主成分とすることを特徴とする請求の範囲第1項〜第6項のいずれか1項に記載の皮膜形成方法。7. The coating material layer according to claim 1, wherein the coating material layer is mainly composed of MCrAlY particles, cubic boron nitride, Al 2 O 3 , TiN and other abrasive particles. 3. The method for forming a film according to item 1. 前記MCrAlY粒子と前記研磨粒子との体積比が1/2以上2/1以下であることを特徴とする請求の範囲第7項に記載の皮膜形成方法。The method according to claim 7, wherein a volume ratio of the MCrAlY particles to the abrasive particles is not less than 1/2 and not more than 2/1. 前記皮膜形成対象物がガスタービンの動翼先端であることを特徴とする請求の範囲第7項又は第8項に記載の皮膜形成方法。9. The method according to claim 7, wherein the object on which the film is formed is a tip of a moving blade of a gas turbine. 前記固着工程の後に、固着した前記被覆材層の表面からMCrAlYの一部を除去して研磨粒子を露出させる露出工程をさらに含むことを特徴とする請求の範囲第7項〜第9項のいずれか1項に記載の皮膜形成方法。10. The method according to claim 7, further comprising, after the fixing step, an exposing step of removing part of MCrAlY from the surface of the fixed coating material layer to expose abrasive particles. 2. The method for forming a film according to claim 1. 前記露出工程がブラスト処理により行われることを特徴とする請求の範囲第10項に記載の皮膜形成方法。The method according to claim 10, wherein the exposing step is performed by blasting. 上記ブラスト処理においては、上記MCrAlY粒子よりも硬く、上記研磨粒子よりも柔らかいブラスト材を使用することを特徴とする請求の範囲第11項に記載の皮膜形成方法。The film forming method according to claim 11, wherein in the blasting, a blast material that is harder than the MCrAlY particles and softer than the abrasive particles is used. さらに、上記ブラスト材の粒径は、上記研磨粒子の粒径よりも小さく上記研磨粒子同士の間隔よりも小さいことを特徴とする請求の範囲第12項に記載の皮膜形成方法。13. The film forming method according to claim 12, wherein a particle size of the blast material is smaller than a particle size of the abrasive particles and smaller than an interval between the abrasive particles. 前記被覆材層がMCrAlY粒子を主成分とすることを特徴とする請求の範囲第1項〜第6項のいずれか1項に記載の皮膜形成方法。The method according to any one of claims 1 to 6, wherein the coating material layer mainly includes MCrAlY particles. 前記皮膜形成対象物がガスタービンの動翼、静翼又はシュラウドであることを特徴とする請求の範囲第14項に記載の皮膜形成方法。The method for forming a film according to claim 14, wherein the object on which the film is formed is a moving blade, a stationary blade, or a shroud of a gas turbine. 立方晶窒化硼素、Al、TiNその他の研磨粒子と、少なくとも耐酸化性を有する金属材料と、バインダとを含むことを特徴とする皮膜形成用被覆材。A coating material for forming a film, comprising: cubic boron nitride, Al 2 O 3 , TiN, and other abrasive particles, a metal material having at least oxidation resistance, and a binder. 上記バインダの質量と、上記研磨粒子及び上記金属材料の質量との比が15/85以上2/1以下であることを特徴とする請求の範囲第15項又は第16項に記載の皮膜形成用被覆材。17. The film forming film according to claim 15, wherein a ratio of the mass of the binder to the mass of the abrasive particles and the metal material is 15/85 or more and 2/1 or less. Coating material. 上記金属材料はMCrAlYであることを特徴とする請求の範囲第15項〜第17項のいずれか1項に記載の皮膜形成用被覆材。The coating material for forming a film according to any one of claims 15 to 17, wherein the metal material is MCrAlY. 上記MCrAlY粒子と上記研磨粒子との体積比が1/2以上2/1以下であることを特徴とする請求の範囲第18項に記載の皮膜形成用被覆材。19. The coating material according to claim 18, wherein a volume ratio of the MCrAlY particles to the abrasive particles is 1/2 or more and 2/1 or less. ろう材と、請求の範囲第15項〜第19項のいずれか1項に記載の皮膜形成用被覆材とを積層したことを特徴とする研磨性皮膜形成用シート。A polishing film-forming sheet, comprising a brazing material and a film-forming coating material according to any one of claims 15 to 19. 上記ろう材と上記皮膜形成用被覆材との膜厚比が30/70以上70/30以下であることを特徴とする請求の範囲第20項に記載の研磨性皮膜形成用シート。21. The sheet for forming an abrasive film according to claim 20, wherein a thickness ratio of the brazing material to the coating material for forming a film is 30/70 or more and 70/30 or less. 上記ろう材にはボロンが含まれていることを特徴とする請求の範囲第20項又は第21項に記載の研磨性皮膜形成用シート。22. The sheet for forming an abrasive film according to claim 20, wherein the brazing material contains boron. 上記ろう材は、その融点が皮膜形成対象物の熱処理温度よりも低い材料から選択されていることを特徴とする請求の範囲第20項〜第22項のいずれか1項に記載の研磨性皮膜形成用シート。The abrasive film according to any one of claims 20 to 22, wherein the brazing material is selected from a material having a melting point lower than a heat treatment temperature of a film formation target. Forming sheet. さらに、上記ろう材には接着層が形成されていることを特徴とする請求の範囲第23項に記載の研磨性皮膜形成用シート。24. The sheet for forming an abrasive film according to claim 23, wherein an adhesive layer is formed on the brazing material. 請求の範囲第7項〜第13項のいずれか1項に記載の皮膜形成方法によって先端部に皮膜が形成されたことを特徴とするガスタービンの動翼。A blade of a gas turbine, wherein a coating is formed on a tip portion by the coating forming method according to any one of claims 7 to 13. 請求の範囲第20項〜第24項のいずれか1項に記載の研磨性皮膜形成用シートが先端部に貼り付けられたことを特徴とするガスタービンの動翼。A blade of a gas turbine, wherein the sheet for forming an abrasive film according to any one of claims 20 to 24 is attached to a tip portion. 空気を圧縮して燃焼用空気を作る圧縮機と、
この圧縮機で作られた燃焼用空気と燃料とを反応させて高温の燃焼ガスを生成する燃焼器と、
請求の範囲第25項に記載の動翼を有し、前記燃焼器からの燃焼ガスがこの動翼に噴射されることで駆動されるタービンと、
を備えたことを特徴とするガスタービン。
A compressor that compresses air to produce combustion air,
A combustor that generates high-temperature combustion gas by reacting combustion air and fuel produced by the compressor;
A turbine having the moving blade according to claim 25, and driven by being injected with combustion gas from the combustor to the moving blade,
A gas turbine comprising:
JP2003500317A 2001-05-31 2002-05-31 Film forming method, film forming material, and abrasive film forming sheet Expired - Lifetime JP3902179B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001165659 2001-05-31
JP2001165659 2001-05-31
PCT/JP2002/005359 WO2002097160A1 (en) 2001-05-31 2002-05-31 Coating forming method and coating forming material, and abrasive coating forming sheet

Publications (2)

Publication Number Publication Date
JPWO2002097160A1 true JPWO2002097160A1 (en) 2004-09-09
JP3902179B2 JP3902179B2 (en) 2007-04-04

Family

ID=19008304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003500317A Expired - Lifetime JP3902179B2 (en) 2001-05-31 2002-05-31 Film forming method, film forming material, and abrasive film forming sheet

Country Status (5)

Country Link
US (1) US7063250B2 (en)
EP (1) EP1391537B1 (en)
JP (1) JP3902179B2 (en)
CN (1) CN1205357C (en)
WO (1) WO2002097160A1 (en)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323049B2 (en) * 1997-04-04 2008-01-29 Chien-Min Sung High pressure superabrasive particle synthesis
US9868100B2 (en) 1997-04-04 2018-01-16 Chien-Min Sung Brazed diamond tools and methods for making the same
US9463552B2 (en) 1997-04-04 2016-10-11 Chien-Min Sung Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods
US9238207B2 (en) 1997-04-04 2016-01-19 Chien-Min Sung Brazed diamond tools and methods for making the same
US9199357B2 (en) 1997-04-04 2015-12-01 Chien-Min Sung Brazed diamond tools and methods for making the same
US9221154B2 (en) 1997-04-04 2015-12-29 Chien-Min Sung Diamond tools and methods for making the same
US9409280B2 (en) 1997-04-04 2016-08-09 Chien-Min Sung Brazed diamond tools and methods for making the same
US20040124231A1 (en) * 1999-06-29 2004-07-01 Hasz Wayne Charles Method for coating a substrate
JP2002256808A (en) * 2001-02-28 2002-09-11 Mitsubishi Heavy Ind Ltd Combustion engine, gas turbine and grinding layer
US20040038074A1 (en) * 2001-11-01 2004-02-26 Mark Manuel Tool and a method for creating a tool
JP2003148103A (en) 2001-11-09 2003-05-21 Mitsubishi Heavy Ind Ltd Turbine and its manufacturing method
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
EP1544321B1 (en) * 2002-09-24 2016-08-10 IHI Corporation Method for coating sliding surface of high temperature member
TWI272993B (en) * 2002-10-09 2007-02-11 Ishikawajima Harima Heavy Ind Method for coating rotary member, rotary member, labyrinth seal structure and method for manufacturing rotary member
DE10326541A1 (en) * 2003-06-12 2005-01-05 Mtu Aero Engines Gmbh A method for blade tip armor of the blades of a gas turbine engine and apparatus for performing the method
US7360991B2 (en) * 2004-06-09 2008-04-22 General Electric Company Methods and apparatus for fabricating gas turbine engines
US20060051502A1 (en) * 2004-09-08 2006-03-09 Yiping Hu Methods for applying abrasive and environment-resistant coatings onto turbine components
US7378132B2 (en) * 2004-12-14 2008-05-27 Honeywell International, Inc. Method for applying environmental-resistant MCrAlY coatings on gas turbine components
US7314674B2 (en) * 2004-12-15 2008-01-01 General Electric Company Corrosion resistant coating composition, coated turbine component and method for coating same
EP1715140A1 (en) * 2005-04-21 2006-10-25 Siemens Aktiengesellschaft Turbine blade with a cover plate and a protective layer on the cover plate
US9724802B2 (en) 2005-05-16 2017-08-08 Chien-Min Sung CMP pad dressers having leveled tips and associated methods
US9138862B2 (en) 2011-05-23 2015-09-22 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US8398466B2 (en) 2006-11-16 2013-03-19 Chien-Min Sung CMP pad conditioners with mosaic abrasive segments and associated methods
US8622787B2 (en) * 2006-11-16 2014-01-07 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US8678878B2 (en) 2009-09-29 2014-03-25 Chien-Min Sung System for evaluating and/or improving performance of a CMP pad dresser
US8393934B2 (en) 2006-11-16 2013-03-12 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
JP4830812B2 (en) * 2006-11-24 2011-12-07 株式会社Ihi Compressor blade
US20090068446A1 (en) * 2007-04-30 2009-03-12 United Technologies Corporation Layered structures with integral brazing materials
US9322100B2 (en) * 2007-05-04 2016-04-26 Mtu Aero Engines Gmbh Method for manufacturing an abrasive coating on a gas turbine component
DE102007056452A1 (en) * 2007-11-23 2009-05-28 Mtu Aero Engines Gmbh Sealing system of a turbomachine
TWI388402B (en) 2007-12-06 2013-03-11 Methods for orienting superabrasive particles on a surface and associated tools
DE102008003100A1 (en) 2008-01-03 2009-07-16 Mtu Aero Engines Gmbh Solder coating, method for coating a component, component and adhesive tape with a solder coating
EP2351908B1 (en) * 2008-10-30 2016-08-17 Mitsubishi Hitachi Power Systems, Ltd. Turbine blade
US20100288977A1 (en) * 2009-05-15 2010-11-18 Metso Minerals, Inc. Corrosion protection under influence of corrosive species
US8657570B2 (en) 2009-06-30 2014-02-25 General Electric Company Rotor blade with reduced rub loading
US8662834B2 (en) 2009-06-30 2014-03-04 General Electric Company Method for reducing tip rub loading
DE102009031313B4 (en) * 2009-06-30 2018-07-05 MTU Aero Engines AG Coating and method for coating a component
WO2011002570A1 (en) * 2009-06-30 2011-01-06 General Electric Company Rotor blade and method for reducing tip rub loading
DE102010049399A1 (en) * 2009-11-02 2011-05-26 Alstom Technology Ltd. Abrasive monocrystalline turbine blade
US8708659B2 (en) 2010-09-24 2014-04-29 United Technologies Corporation Turbine engine component having protective coating
US8753093B2 (en) * 2010-10-19 2014-06-17 General Electric Company Bonded turbine bucket tip shroud and related method
WO2012162430A2 (en) 2011-05-23 2012-11-29 Chien-Min Sung Cmp pad dresser having leveled tips and associated methods
US8876470B2 (en) * 2011-06-29 2014-11-04 United Technologies Corporation Spall resistant abradable turbine air seal
EP2644312B1 (en) 2012-03-28 2018-10-31 Alfa Laval Corporate AB A novel brazing concept
EP2662474A1 (en) * 2012-05-07 2013-11-13 Siemens Aktiengesellschaft Method of applying a protective coating to a turbine component
US9909428B2 (en) 2013-11-26 2018-03-06 General Electric Company Turbine buckets with high hot hardness shroud-cutting deposits
US10408224B2 (en) 2014-01-23 2019-09-10 United Technologies Corporation Fan blades with abrasive tips
US9957819B2 (en) * 2014-03-28 2018-05-01 United Technologies Corporation Abrasive tip blade manufacture methods
US10053994B2 (en) * 2014-05-02 2018-08-21 United Technologies Corporation Abrasive sheathing
US10183312B2 (en) * 2014-05-23 2019-01-22 United Technologies Corporation Abrasive blade tip treatment
US10030527B2 (en) * 2014-07-02 2018-07-24 United Technologies Corporation Abrasive preforms and manufacture and use methods
US10012095B2 (en) * 2014-07-02 2018-07-03 United Technologies Corporation Abrasive coating and manufacture and use methods
US10018056B2 (en) 2014-07-02 2018-07-10 United Technologies Corporation Abrasive coating and manufacture and use methods
US10786875B2 (en) * 2014-07-02 2020-09-29 Raytheon Technologies Corporation Abrasive preforms and manufacture and use methods
US20160237832A1 (en) * 2015-02-12 2016-08-18 United Technologies Corporation Abrasive blade tip with improved wear at high interaction rate
DE102015213555A1 (en) * 2015-07-20 2017-03-09 MTU Aero Engines AG Sealing ridge armor and method of making the same
US20170343003A1 (en) * 2016-05-24 2017-11-30 United Technologies Corporation Enhanced Blade Tipping For Improved Abradability
CN106194578A (en) * 2016-08-09 2016-12-07 宁波锦浪新能源科技股份有限公司 Wind blade protective layer and processing technology thereof
US11149744B2 (en) * 2017-09-19 2021-10-19 Raytheon Technologies Corporation Turbine engine seal for high erosion environment
EP3546702A1 (en) * 2018-03-29 2019-10-02 Siemens Aktiengesellschaft Turbine blade for a gas turbine
US10882158B2 (en) 2019-01-29 2021-01-05 General Electric Company Peening coated internal surfaces of turbomachine components
DE102019202926A1 (en) * 2019-03-05 2020-09-10 Siemens Aktiengesellschaft Two-layer abrasive layer for blade tip, process component and turbine arrangement
DE102019207353A1 (en) * 2019-05-20 2020-11-26 Siemens Aktiengesellschaft Coated abrasive particle, coating process with the same, layer system and sealing system
US11299993B2 (en) 2019-10-28 2022-04-12 Honeywell International Inc. Rotor assembly for in-machine grinding of shroud member and methods of using the same
US11612986B2 (en) 2019-12-17 2023-03-28 Rolls-Royce Corporation Abrasive coating including metal matrix and ceramic particles
US11686208B2 (en) 2020-02-06 2023-06-27 Rolls-Royce Corporation Abrasive coating for high-temperature mechanical systems
EP4245963A1 (en) * 2022-03-16 2023-09-20 Rolls-Royce Deutschland Ltd & Co KG Rotor blade, method for manufacturing a rotor blade and a gas turbine engine
CN114833415B (en) * 2022-06-02 2023-05-23 南昌航空大学 Method for vacuum electron beam brazing of wear-resistant coating of monocrystalline superalloy blade tip
CN115011904B (en) * 2022-07-04 2024-02-09 福建华开电力科技有限公司 Composite treatment method of anti-corrosion and anti-fouling metal material
CN116201759A (en) * 2023-01-18 2023-06-02 河北德林机械有限公司 Slurry pump product blended with small-particle alloy coating technology

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610698A (en) * 1984-06-25 1986-09-09 United Technologies Corporation Abrasive surface coating process for superalloys
US4647546A (en) * 1984-10-30 1987-03-03 Megadiamond Industries, Inc. Polycrystalline cubic boron nitride compact
US4729504A (en) * 1985-06-01 1988-03-08 Mizuo Edamura Method of bonding ceramics and metal, or bonding similar ceramics among themselves; or bonding dissimilar ceramics
US4937042A (en) * 1986-11-28 1990-06-26 General Electric Company Method for making an abradable article
US4735656A (en) * 1986-12-29 1988-04-05 United Technologies Corporation Abrasive material, especially for turbine blade tips
US4851188A (en) * 1987-12-21 1989-07-25 United Technologies Corporation Method for making a turbine blade having a wear resistant layer sintered to the blade tip surface
GB2241506A (en) 1990-02-23 1991-09-04 Baj Ltd Method of producing a gas turbine blade having an abrasive tip by electrodepo- sition.
US5122182A (en) * 1990-05-02 1992-06-16 The Perkin-Elmer Corporation Composite thermal spray powder of metal and non-metal
US5536022A (en) 1990-08-24 1996-07-16 United Technologies Corporation Plasma sprayed abradable seals for gas turbine engines
FR2691658B1 (en) * 1992-05-27 1994-07-22 Snecma SUPERALLOY PART COMPRISING A SUPPORT AND METHOD FOR PRODUCING THE SUPPORT.
DE69332227T2 (en) * 1992-11-04 2003-04-17 Coating Applic Inc METHOD FOR REPAIRING THE SURFACE OF A PART FROM A SUPER ALLOY
GB9303853D0 (en) 1993-02-25 1993-04-21 Baj Coatings Ltd Rotor blades
GB9326082D0 (en) * 1993-12-21 1994-02-23 Baj Coatings Ltd Rotor blades
JP2726796B2 (en) * 1993-12-28 1998-03-11 大同メタル工業株式会社 Multi-layer sliding member and manufacturing method thereof
JPH09195067A (en) 1996-01-12 1997-07-29 Toshiba Corp Heat resistant parts
JP3864458B2 (en) 1996-07-16 2006-12-27 石川島播磨重工業株式会社 Method for forming wear-resistant layer on tip of turbine blade
US7124753B2 (en) * 1997-04-04 2006-10-24 Chien-Min Sung Brazed diamond tools and methods for making the same
EP1082180A4 (en) * 1998-04-25 2002-10-29 Penn State Res Found Method of applying hard-facing material to a substrate
US6164916A (en) * 1998-11-02 2000-12-26 General Electric Company Method of applying wear-resistant materials to turbine blades, and turbine blades having wear-resistant materials
US6187071B1 (en) * 1999-01-14 2001-02-13 Norton Company Bond for abrasive tool
JP2000345809A (en) 1999-06-02 2000-12-12 Ishikawajima Harima Heavy Ind Co Ltd Gas turbine engine
US6773475B2 (en) * 1999-12-21 2004-08-10 3M Innovative Properties Company Abrasive material having abrasive layer of three-dimensional structure
KR100360669B1 (en) * 2000-02-10 2002-11-18 이화다이아몬드공업 주식회사 Abrasive dressing tool and manufac ture method of abrasive dressing tool
JP2002256808A (en) * 2001-02-28 2002-09-11 Mitsubishi Heavy Ind Ltd Combustion engine, gas turbine and grinding layer
JP3801452B2 (en) * 2001-02-28 2006-07-26 三菱重工業株式会社 Abrasion resistant coating and its construction method
JP2003148103A (en) * 2001-11-09 2003-05-21 Mitsubishi Heavy Ind Ltd Turbine and its manufacturing method
US6706319B2 (en) * 2001-12-05 2004-03-16 Siemens Westinghouse Power Corporation Mixed powder deposition of components for wear, erosion and abrasion resistant applications

Also Published As

Publication number Publication date
CN1463302A (en) 2003-12-24
EP1391537A4 (en) 2007-01-03
CN1205357C (en) 2005-06-08
US20040091627A1 (en) 2004-05-13
JP3902179B2 (en) 2007-04-04
WO2002097160A1 (en) 2002-12-05
US7063250B2 (en) 2006-06-20
EP1391537A1 (en) 2004-02-25
EP1391537B1 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP3902179B2 (en) Film forming method, film forming material, and abrasive film forming sheet
CA2581908C (en) Repair of hpt shrouds with sintered preforms
US6451454B1 (en) Turbine engine component having wear coating and method for coating a turbine engine component
US7966707B2 (en) Method for repairing superalloy components using inserts
EP1516942A1 (en) Method for coating a substrate
US7343676B2 (en) Method of restoring dimensions of an airfoil and preform for performing same
US6470568B2 (en) Method for repairing a gas turbine component
EP2171124B1 (en) Method for manufacturing an abrasive coating on a gas turbine component
US20070044306A1 (en) Superalloy repair methods
US20160199930A1 (en) Combined braze and coating method for fabrication and repair of mechanical components
US10760422B2 (en) Pre-sintered preform for repair of service run gas turbine components
US7699944B2 (en) Intermetallic braze alloys and methods of repairing engine components
WO2019168517A1 (en) Brazing of superalloy components with hydrogen addition for boron capture
EP4335569A1 (en) Additively depositing braze material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061227

R151 Written notification of patent or utility model registration

Ref document number: 3902179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

EXPY Cancellation because of completion of term