US20170343003A1 - Enhanced Blade Tipping For Improved Abradability - Google Patents
Enhanced Blade Tipping For Improved Abradability Download PDFInfo
- Publication number
- US20170343003A1 US20170343003A1 US15/162,699 US201615162699A US2017343003A1 US 20170343003 A1 US20170343003 A1 US 20170343003A1 US 201615162699 A US201615162699 A US 201615162699A US 2017343003 A1 US2017343003 A1 US 2017343003A1
- Authority
- US
- United States
- Prior art keywords
- grit particles
- grit
- particles
- matrix material
- turbine engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002245 particle Substances 0.000 claims abstract description 168
- 239000011159 matrix material Substances 0.000 claims abstract description 67
- 239000011248 coating agent Substances 0.000 claims abstract description 33
- 238000000576 coating method Methods 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 230000009467 reduction Effects 0.000 claims abstract description 3
- 239000002356 single layer Substances 0.000 claims abstract description 3
- 239000000758 substrate Substances 0.000 claims abstract 3
- 239000010410 layer Substances 0.000 claims description 42
- 239000002131 composite material Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 20
- 238000005299 abrasion Methods 0.000 claims description 16
- 238000005520 cutting process Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052582 BN Inorganic materials 0.000 claims description 6
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 230000020169 heat generation Effects 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000007789 gas Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/16—Sealings between pressure and suction sides
- F04D29/161—Sealings between pressure and suction sides especially adapted for elastic fluid pumps
- F04D29/164—Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/122—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/023—Selection of particular materials especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
- F04D29/324—Blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/522—Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
- F04D29/526—Details of the casing section radially opposing blade tips
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/54—Fluid-guiding means, e.g. diffusers
- F04D29/541—Specially adapted for elastic fluid pumps
- F04D29/542—Bladed diffusers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/609—Grain size
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the present disclosure is directed to abrasive coating of an abradable sealing system, such as blade and vane tips within turbine engine applications. More particularly, an engineered structure comprised of a multiplicity of phases that increase strength and optimize the aggregate abrasion and abrasion resistance of specific elements of the complete abradable sealing system, by optimizing cutting loads for individual large grit particles and optimizing the strength and abrasion resistance of engineered adjacent channels between large grit particles.
- Gas turbine engines and other turbomachines have rows of rotating blades and static vanes or knife-edge seals within a generally cylindrical case.
- the leakage of the gas or other working fluid around the blade tips should be minimized. This may be achieved by designing sealing systems in which the tips rub against an abradable seal.
- the tip is made to be harder and more abrasive than the seal; thus, the tips will abrade or cut into the abradable seal during those portions of the engine operating cycle when they come into contact with each other.
- An abrasive tip is needed for enabling reduced clearance for normal running and other transient conditions that provides a higher wear ratio with abradable seal material at the high incursion rates associated with certain off-normal engine operating conditions, such as, a bird strike and surge, and extended low rate incursion conditions during extended low transient thermal or mechanical loading cycles.
- an abrasive tip coating comprising an abrader tip having a top surface.
- a plurality of first grit particles is dispersed over the top surface of the blade tip with a specific spacing in a single layer.
- a plurality of second grit particles is placed between each of the plurality of first grit particles in one or more layers.
- the second grit particles having a nominal size smaller than the first grit particles.
- the first grit particles comprise 1-25% of the total particles in the mixture of grit particles.
- a matrix material is bonded to the top surface. The matrix material envelopes the second grit particles that are in one or more distinct layers.
- the matrix material is also bonded to and partially surrounds the first grit particles, wherein the first grit particles extend above the matrix material and the second grit particles relative to the top surface.
- the height of the secondary grit particles is 10-60% of that of the first grit particles relative to the top of the tip component.
- the first grit particles comprise a cubic boron nitride material, but could be other hard abrasive grit particles such as alumina, silicon nitride, or silicon carbide.
- the matrix material comprises a matrix formed from Ni, Low Alloyed Nickel material or MCrAlY, wherein M is Ni or Co.
- the second grit particles are selected from the group consisting of alumina, silicon nitride, cubic boron nitride or other hard abrasive grit particles.
- an adhesion layer is coupled to the top surface of the tip base material, wherein the adhesion layer is configured to adhere the first grit particles to the top layer in a controlled spacing.
- the adhesion layer comprises the same material as the matrix material.
- the matrix material and the first and the second grit particles combine to produce a composite strength and abrasive capability greater than the matrix material alone.
- a gas turbine engine component comprises an airfoil portion or vane or abrader element of a clearance sealing system having a tip; a composite abrasive coating bonded to the tip; the composite abrasive coating comprises an adhesion layer bonded to the tip.
- a layer of first grit particles with controlled spacing is bonded to the adhesion layer.
- a plurality of second grit particles in one or more layers are dispersed between the first grit particles, the second grit particles being smaller than the first grit particles, wherein the second grit particles are enveloped in a matrix material surrounding an unexposed portion of the first grit particles.
- the first grit particles comprise 1-25% of the total particles in the mixture of grit particles.
- the matrix material is coupled to the adhesion layer.
- the first grit particles are sized from about 0.04 to about 1.00 millimeters.
- the second grit particles are sized from 0.004 to about 0.1 millimeters.
- the ratio of size of the first grit particle size to the second grit particle size is 10-to-1.
- each one of the first grit particles are configured with a grit spacing that is the linear length of 1 to 3 first grit diameters to produce sufficient spacing to produce channels for cut chips and debris to pass during the cutting process.
- the spacing of second grit particles on one or more total layers between the first grit particles is defined by the ratio of first and second particle quantities.
- the turbine engine component is a blade, a single blade or a part of the integrated bladed rotor (sometimes referred to as a blisk).
- a process for coating a turbine engine blade with an abrasive comprises applying an adhesion layer onto a tip of said component; adhering a plurality of first grit particles to the adhesion layer, wherein narrow spaces are formed between the first grit particles; placing within the narrow spaces between the first grit particles are a plurality of second grit particles.
- the first grit particles comprise 1-25% of the total particles in the mixture of grit particles.
- Matrix material is applied that can envelope the second grit particles with a matrix material; surrounding each of the first grit particles with the matrix material exposing a portion of the first grit particles above the matrix material and the second grit particles.
- the process further comprises spacing the first grit particles apart, wherein the spacing is configured to protect the matrix material from wear by an abradable rub, and provide optimal channels to enable removal of cut chips and debris from the cutting process.
- the process further comprises distributing a cutting load to individual first grit particles, thereby increasing the cutting force and effectiveness of the first grit particles.
- the matrix material and the second grit particles combined comprise an effective composite strength and abrasion resistance greater than said matrix material alone.
- the process further comprises applying a base layer to the blade tip prior to applying the adhesion layer.
- FIG. 1 is a schematic representation of abrasive composite coating applied to a tip of a turbine engine component
- FIG. 2 is a schematic cross-sectional view of the exemplary abrasive blade tip coating.
- the blade 10 has an airfoil portion 12 with a tip 14 .
- the tip 14 has an abrasive coating 16 applied to it.
- the abrasive coating 16 comprises a composite material that includes an abrasive particulate/grit or simply first grit 18 , such as cubic boron nitride (CBN), coated silicon carbide (SiC), or another hard ceramic phase.
- the grit 18 can be sized as a coarse grit. In an exemplary embodiment the grit 18 can be sized from about 40 to about 1000 microns.
- the first grit 18 is embedded in a plating, vapor deposited or other type layer matrix composite 20 .
- the matrix 20 comprises a suitable oxidation-resistant alloy matrix.
- the layer comprises a matrix formed from Ni, Co, or MCrAlY, the M standing for either Ni or Co or both.
- the matrix 20 can comprise pure nickel, nickel alloy, copper, copper alloy, cobalt, cobalt alloy, chrome or other alloys.
- a second grit 22 is interspersed between the first grit 18 .
- the second grit 22 is a smaller sized particle than the larger first grit material 18 .
- the second grit 22 is sized to about 1/10 the size of the first grit 18 .
- the second grit 22 can be from about 5% to about 20% of the diameter of the first grit 18 .
- the second grit 22 may be Al 2 O 3 (alumina), Si 3 N 4 (silicon nitride), CBN (cubic boron nitride), or other similar abrasive particles.
- the percentage of particles within the mixture should range from 2% to 25% of first grit 18 to second grit 22 particles.
- Second grit particles range from about 75% to about 98% of the total number of particles.
- Second grit 22 are placed within the plating layer 20 in one or more layer, to produce a total height from the base tip material that is 10-60% of the height of the first grit 18 .
- First grit particles 18 are 40%-90% recessed below the height of the first grit particle total height.
- the resulting blade tip 14 with abrasive coating 16 is particularly well suited for rubbing metal as well as ceramic abradable seals (not shown).
- the turbine engine component/blade 10 may be formed from a titanium-based, nickel-based, iron-base, or other alloy.
- the blade 10 includes a (Ti) titanium-based alloy.
- the abrasive coating 16 includes the large first grit particles 18 and relatively smaller second grit particles 22 interspersed throughout the matrix 20 , but typically in the range of 10 to 1 diameter ratio.
- the first grit particles 18 range in size from about 0.04 to about 1.00 millimeters (mm) nominally. First grit 18 particle sizes can range up to about 1.00 mm nominally.
- This abrasion protection thus, enables greater first grit 18 retention by maintaining support from the matrix composite material 20 .
- the large grit particles 18 can comprise hard materials.
- the grit 18 can comprise: zirconia, aluminum di-boride, aluminum nitride, aluminum nitride-carbon, diamond or other engineered grit particles.
- the second grit 22 can range in size from about 0.004 to about 0.10 mm nominally.
- the second grit particles 22 can comprise the same material as the larger grit particles 18 .
- Other materials can be employed for the small grit 22 .
- the second grit particles 22 can comprise a smaller, high modulus, higher strength, and/or higher abrasion resistant material that is less costly than the first grit particle 18 .
- the larger first grit particle 18 can be a more expensive material such as, diamond and the second grit 22 can be less expensive since, it does not perform the bulk of the cutting and instead performs the function of improving the strength of the matrix composite material and the function of spacing the first grits and also providing conduits for the chips and debris removal 20 .
- the smaller second grit particles 22 function to increase the strength and abrasion resistance of the matrix material 20 and support and hold the first grit particles 18 increasing the load resistance and adherence of the first grit 18 .
- the abrasive coating 16 can include a base layer 24 bonded to the blade tip 14 .
- the base layer 24 can be the same material as the matrix 20 .
- the base layer 24 can be from about 1 to about 100 microns in thickness. In an exemplary embodiment, the base layer 24 can be from about 25 to about 50 microns in thickness.
- the base layer 24 can be optionally applied.
- An adhesion layer 26 comprising the plating, vapor deposited, brazed or other application process material utilized in the matrix 20 can be applied to the base layer 24 or can be coated directly to the blade tip 14 .
- the adhesion layer 26 prepares the surface of the tip 14 for the first grit 18 to adhere to during application of the first grit 18 .
- the adhesion layer 26 can comprise the same basic material as the matrix 20 or other beneficial materials that bind the first grit 18 to the blade tip 14 or alternatively the base layer 24 .
- the adhesion layer 24 comprises a Ni alloy matrix material.
- the exemplary abrasive coating 16 includes a portion of each first grit particle 18 projecting outward above the surface of the matrix material 20 , thereby enabling favorable sliding contact (rubbing) interaction with metal or ceramic seals during engine operation.
- the unexposed portion of the first grit particles 18 are surrounded by matrix material 20 and second grit 22 .
- the first grit particles 18 can be spaced apart from each other with an optimal distance of separation and arranged uniformly spaced apart.
- the optimal distance of separation of large grit particles can be defined by the competition between the average heat generation at the abradable surface that reduces with the distance between the grits and the force acting on the individual grit that is increasing with the distance between the grits.
- the optimal point depends on the material properties of the rub couple and on the incursion rate. However, for typical incursion rates (lower than 80 mils/s) and for metallic porous abradable material the optimal distance would be close to half of the blade thickness.
- the matrix material 20 and smaller second grit 22 , as well as first grit particles 18 can be securely bonded to the blade tip 14 .
- the spaces between the first grit 18 should be such that the first particles are spaced at a linear length of 1 to 3 first grit diameters to produce sufficient spacing to produce channels 30 for cut chips and debris to pass during the cutting process.
- the first grit particles 18 are specifically spaced apart. The spacing can provide channels 30 between each first grit particle 18 .
- Engineered abrasive resistance of the composite of second particles 22 and matrix composite material 20 which provides abrasion resistance of the recessed channels 30 between the first particles 18 .
- the channel 30 comprises a composite having a strength and abrasion resistance greater than a strength and abrasion of the matrix 20 alone.
- the channel 30 can be configured to provide superior support and bonding strength for the first grit particle 18 .
- the combination of the smaller grit 22 blended with the matrix material 20 securely bonded and surrounding the grit particles 18 achieve a higher strength and abrasion resistance than merely having only the matrix 20 surrounding the first grit 18 .
- the combination of smaller grit 22 and matrix 20 also provides superior support to the first grit 18 .
- the abrasive blade tip coating takes advantage of the characteristics of a composite structure within the channels by distributing cutting load from individual highly loaded grit particles to adjacent grit particles, thus reducing stress within the composite matrix, which holds individual grit particles.
- the exemplary abrasive blade tip coating demonstrates superior durability that is associated with the ability of individual grits to withstand higher loads. The principle is to create sufficient spacing between the coarse particles to increase the loading on them during the rub and therefore increase the cut-per-blade pass, which is beneficial for small incursion rates due to observed, as well as predicted by modeling, decrease of heat generation. It is also beneficial at both high and low incursion rates through providing optimal abrasion resistant channels for chips and debris to be removed, which in turn reduce the overall pressure within the rub system.
- first abrasive particles and optimal abrasion resistant channels between first particles allows individual first grits to support higher cutting loads and higher cutting time before being pulled out of the abrasive composite blade tip.
- Another benefit of the exemplary abrasive tip coating is that the optimum first grit spacing and application of second grit particles within the composite matrix provides better protection of the Ni matrix from wear by abraded rub debris.
- the exemplary abrasive composite blade tip coating enables for retention of the matrix that also relates to better first grit retention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
- The present disclosure is directed to abrasive coating of an abradable sealing system, such as blade and vane tips within turbine engine applications. More particularly, an engineered structure comprised of a multiplicity of phases that increase strength and optimize the aggregate abrasion and abrasion resistance of specific elements of the complete abradable sealing system, by optimizing cutting loads for individual large grit particles and optimizing the strength and abrasion resistance of engineered adjacent channels between large grit particles.
- Gas turbine engines and other turbomachines have rows of rotating blades and static vanes or knife-edge seals within a generally cylindrical case. To maximize engine efficiency, the leakage of the gas or other working fluid around the blade tips should be minimized. This may be achieved by designing sealing systems in which the tips rub against an abradable seal. Generally, the tip is made to be harder and more abrasive than the seal; thus, the tips will abrade or cut into the abradable seal during those portions of the engine operating cycle when they come into contact with each other.
- During the operation of a gas turbine engine, it is desired to maintain minimum clearance between the tips and corresponding abradable seals as large gap results in decreased efficiency of the turbine, due to the escape of high-energy gases. However, a small gap may increase the frequency of interaction between the tips and seal. That in turn, due to the friction between the tips and seals, will lead to excessive component wear and efficiency reduction or even component distress. Since aircraft turbines experience cyclic mechanical and thermal load variations during operation their geometry varies during the different stages of the operating cycle. Active clearance control and abrasive tips are currently used to establish and maintain optimum clearance during operation. Ideally, those tips should retain their cutting capability over many operating cycles compensating for any progressive changes in turbine geometry.
- During certain engine operating conditions engines have shown very high radial interaction rates (˜40″/s) between abrader tips and abradable seals that cause rapid depletion of the abrasive grit portions of the abrasive tip coating when rubbed against the abradable seals. Low incursion rates (low incursion rates (typically smaller than 1.5 mil/s for porous metallic abradables) can also result in excessive wear and damage to abradable sealing systems through the generation of large thermal excursion within the seal system (abrasive tip and abradable seal). Methods to increase the amount of cut of the abradable seal by blade can greatly reduce the damage from these conditions.
- An abrasive tip is needed for enabling reduced clearance for normal running and other transient conditions that provides a higher wear ratio with abradable seal material at the high incursion rates associated with certain off-normal engine operating conditions, such as, a bird strike and surge, and extended low rate incursion conditions during extended low transient thermal or mechanical loading cycles.
- In accordance with the present disclosure, there is provided an abrasive tip coating comprising an abrader tip having a top surface. A plurality of first grit particles is dispersed over the top surface of the blade tip with a specific spacing in a single layer. A plurality of second grit particles is placed between each of the plurality of first grit particles in one or more layers. The second grit particles having a nominal size smaller than the first grit particles. The first grit particles comprise 1-25% of the total particles in the mixture of grit particles. A matrix material is bonded to the top surface. The matrix material envelopes the second grit particles that are in one or more distinct layers. The matrix material is also bonded to and partially surrounds the first grit particles, wherein the first grit particles extend above the matrix material and the second grit particles relative to the top surface. The height of the secondary grit particles is 10-60% of that of the first grit particles relative to the top of the tip component.
- In an exemplary embodiment, the first grit particles comprise a cubic boron nitride material, but could be other hard abrasive grit particles such as alumina, silicon nitride, or silicon carbide.
- In an exemplary embodiment, the matrix material comprises a matrix formed from Ni, Low Alloyed Nickel material or MCrAlY, wherein M is Ni or Co.
- In an exemplary embodiment, the second grit particles are selected from the group consisting of alumina, silicon nitride, cubic boron nitride or other hard abrasive grit particles.
- In an exemplary embodiment, an adhesion layer is coupled to the top surface of the tip base material, wherein the adhesion layer is configured to adhere the first grit particles to the top layer in a controlled spacing.
- In an exemplary embodiment, the adhesion layer comprises the same material as the matrix material.
- In an exemplary embodiment, the matrix material and the first and the second grit particles combine to produce a composite strength and abrasive capability greater than the matrix material alone.
- In another exemplary embodiment, a gas turbine engine component comprises an airfoil portion or vane or abrader element of a clearance sealing system having a tip; a composite abrasive coating bonded to the tip; the composite abrasive coating comprises an adhesion layer bonded to the tip. A layer of first grit particles with controlled spacing is bonded to the adhesion layer. A plurality of second grit particles in one or more layers are dispersed between the first grit particles, the second grit particles being smaller than the first grit particles, wherein the second grit particles are enveloped in a matrix material surrounding an unexposed portion of the first grit particles. The first grit particles comprise 1-25% of the total particles in the mixture of grit particles. The matrix material is coupled to the adhesion layer.
- In an exemplary embodiment, the first grit particles are sized from about 0.04 to about 1.00 millimeters.
- In an exemplary embodiment, the second grit particles are sized from 0.004 to about 0.1 millimeters.
- In an exemplary embodiment, the ratio of size of the first grit particle size to the second grit particle size is 10-to-1. In an exemplary embodiment, each one of the first grit particles are configured with a grit spacing that is the linear length of 1 to 3 first grit diameters to produce sufficient spacing to produce channels for cut chips and debris to pass during the cutting process.
- In an exemplary embodiment the spacing of second grit particles on one or more total layers between the first grit particles is defined by the ratio of first and second particle quantities.
- In an exemplary embodiment, the turbine engine component is a blade, a single blade or a part of the integrated bladed rotor (sometimes referred to as a blisk).
- In another exemplary embodiment, a process for coating a turbine engine blade with an abrasive comprises applying an adhesion layer onto a tip of said component; adhering a plurality of first grit particles to the adhesion layer, wherein narrow spaces are formed between the first grit particles; placing within the narrow spaces between the first grit particles are a plurality of second grit particles. The first grit particles comprise 1-25% of the total particles in the mixture of grit particles. Matrix material is applied that can envelope the second grit particles with a matrix material; surrounding each of the first grit particles with the matrix material exposing a portion of the first grit particles above the matrix material and the second grit particles.
- In an exemplary embodiment, the process further comprises spacing the first grit particles apart, wherein the spacing is configured to protect the matrix material from wear by an abradable rub, and provide optimal channels to enable removal of cut chips and debris from the cutting process.
- In an exemplary embodiment, the process further comprises distributing a cutting load to individual first grit particles, thereby increasing the cutting force and effectiveness of the first grit particles.
- In an exemplary embodiment, the matrix material and the second grit particles combined comprise an effective composite strength and abrasion resistance greater than said matrix material alone.
- In an exemplary embodiment, the process further comprises applying a base layer to the blade tip prior to applying the adhesion layer.
- Other details of the abrasive blade tip coating are set forth in the following detailed description and the accompanying drawing wherein like reference numerals depict like elements.
-
FIG. 1 is a schematic representation of abrasive composite coating applied to a tip of a turbine engine component; and -
FIG. 2 is a schematic cross-sectional view of the exemplary abrasive blade tip coating. - Referring now to
FIG. 1 there is illustrated aturbine engine component 10, such as a compressor blade or vane. Theblade 10 has anairfoil portion 12 with atip 14. Thetip 14 has anabrasive coating 16 applied to it. Theabrasive coating 16 comprises a composite material that includes an abrasive particulate/grit or simplyfirst grit 18, such as cubic boron nitride (CBN), coated silicon carbide (SiC), or another hard ceramic phase. Thegrit 18 can be sized as a coarse grit. In an exemplary embodiment thegrit 18 can be sized from about 40 to about 1000 microns. Thefirst grit 18 is embedded in a plating, vapor deposited or other typelayer matrix composite 20. Thematrix 20 comprises a suitable oxidation-resistant alloy matrix. In an exemplary embedment the layer comprises a matrix formed from Ni, Co, or MCrAlY, the M standing for either Ni or Co or both. In an exemplary embodiment, thematrix 20 can comprise pure nickel, nickel alloy, copper, copper alloy, cobalt, cobalt alloy, chrome or other alloys. Asecond grit 22 is interspersed between thefirst grit 18. Thesecond grit 22 is a smaller sized particle than the largerfirst grit material 18. In an exemplary embodiment, thesecond grit 22 is sized to about 1/10 the size of thefirst grit 18. Thesecond grit 22 can be from about 5% to about 20% of the diameter of thefirst grit 18. Thesecond grit 22 may be Al2O3 (alumina), Si3N4 (silicon nitride), CBN (cubic boron nitride), or other similar abrasive particles. The percentage of particles within the mixture should range from 2% to 25% offirst grit 18 tosecond grit 22 particles. Second grit particles range from about 75% to about 98% of the total number of particles. -
Second grit 22 are placed within theplating layer 20 in one or more layer, to produce a total height from the base tip material that is 10-60% of the height of thefirst grit 18.First grit particles 18 are 40%-90% recessed below the height of the first grit particle total height. The resultingblade tip 14 withabrasive coating 16 is particularly well suited for rubbing metal as well as ceramic abradable seals (not shown). - The turbine engine component/
blade 10 may be formed from a titanium-based, nickel-based, iron-base, or other alloy. In an exemplary embodiment, theblade 10 includes a (Ti) titanium-based alloy. - Referring to
FIG. 2 an exemplaryabrasive coating 16 is shown. Theabrasive coating 16 includes the largefirst grit particles 18 and relatively smallersecond grit particles 22 interspersed throughout thematrix 20, but typically in the range of 10 to 1 diameter ratio. - In an exemplary embodiment, the
first grit particles 18 range in size from about 0.04 to about 1.00 millimeters (mm) nominally.First grit 18 particle sizes can range up to about 1.00 mm nominally. - This abrasion protection thus, enables greater
first grit 18 retention by maintaining support from thematrix composite material 20. - In alternative embodiments, the
large grit particles 18 can comprise hard materials. In an exemplary embodiment, thegrit 18 can comprise: zirconia, aluminum di-boride, aluminum nitride, aluminum nitride-carbon, diamond or other engineered grit particles. In an exemplary embodiment, thesecond grit 22 can range in size from about 0.004 to about 0.10 mm nominally. Thesecond grit particles 22 can comprise the same material as thelarger grit particles 18. Other materials can be employed for thesmall grit 22. In an exemplary embodiment, thesecond grit particles 22 can comprise a smaller, high modulus, higher strength, and/or higher abrasion resistant material that is less costly than thefirst grit particle 18. Thus, the largerfirst grit particle 18 can be a more expensive material such as, diamond and thesecond grit 22 can be less expensive since, it does not perform the bulk of the cutting and instead performs the function of improving the strength of the matrix composite material and the function of spacing the first grits and also providing conduits for the chips anddebris removal 20. - The smaller
second grit particles 22 function to increase the strength and abrasion resistance of thematrix material 20 and support and hold thefirst grit particles 18 increasing the load resistance and adherence of thefirst grit 18. - The
abrasive coating 16 can include abase layer 24 bonded to theblade tip 14. Thebase layer 24 can be the same material as thematrix 20. Thebase layer 24 can be from about 1 to about 100 microns in thickness. In an exemplary embodiment, thebase layer 24 can be from about 25 to about 50 microns in thickness. Thebase layer 24 can be optionally applied. - An
adhesion layer 26 comprising the plating, vapor deposited, brazed or other application process material utilized in thematrix 20 can be applied to thebase layer 24 or can be coated directly to theblade tip 14. Theadhesion layer 26 prepares the surface of thetip 14 for thefirst grit 18 to adhere to during application of thefirst grit 18. Theadhesion layer 26 can comprise the same basic material as thematrix 20 or other beneficial materials that bind thefirst grit 18 to theblade tip 14 or alternatively thebase layer 24. In an exemplary embodiment theadhesion layer 24 comprises a Ni alloy matrix material. - The exemplary
abrasive coating 16 includes a portion of eachfirst grit particle 18 projecting outward above the surface of thematrix material 20, thereby enabling favorable sliding contact (rubbing) interaction with metal or ceramic seals during engine operation. The unexposed portion of thefirst grit particles 18 are surrounded bymatrix material 20 andsecond grit 22. Thefirst grit particles 18 can be spaced apart from each other with an optimal distance of separation and arranged uniformly spaced apart. The optimal distance of separation of large grit particles can be defined by the competition between the average heat generation at the abradable surface that reduces with the distance between the grits and the force acting on the individual grit that is increasing with the distance between the grits. The optimal point depends on the material properties of the rub couple and on the incursion rate. However, for typical incursion rates (lower than 80 mils/s) and for metallic porous abradable material the optimal distance would be close to half of the blade thickness. Thematrix material 20 and smallersecond grit 22, as well asfirst grit particles 18 can be securely bonded to theblade tip 14. - The spaces between the
first grit 18 should be such that the first particles are spaced at a linear length of 1 to 3 first grit diameters to produce sufficient spacing to producechannels 30 for cut chips and debris to pass during the cutting process. Thefirst grit particles 18 are specifically spaced apart. The spacing can providechannels 30 between eachfirst grit particle 18. Engineered abrasive resistance of the composite ofsecond particles 22 andmatrix composite material 20, which provides abrasion resistance of the recessedchannels 30 between thefirst particles 18. Thechannel 30 comprises a composite having a strength and abrasion resistance greater than a strength and abrasion of thematrix 20 alone. Thechannel 30 can be configured to provide superior support and bonding strength for thefirst grit particle 18. - The combination of the
smaller grit 22 blended with thematrix material 20 securely bonded and surrounding thegrit particles 18 achieve a higher strength and abrasion resistance than merely having only thematrix 20 surrounding thefirst grit 18. The combination ofsmaller grit 22 andmatrix 20 also provides superior support to thefirst grit 18. - The abrasive blade tip coating takes advantage of the characteristics of a composite structure within the channels by distributing cutting load from individual highly loaded grit particles to adjacent grit particles, thus reducing stress within the composite matrix, which holds individual grit particles. The exemplary abrasive blade tip coating demonstrates superior durability that is associated with the ability of individual grits to withstand higher loads. The principle is to create sufficient spacing between the coarse particles to increase the loading on them during the rub and therefore increase the cut-per-blade pass, which is beneficial for small incursion rates due to observed, as well as predicted by modeling, decrease of heat generation. It is also beneficial at both high and low incursion rates through providing optimal abrasion resistant channels for chips and debris to be removed, which in turn reduce the overall pressure within the rub system.
- Better transfer of loads between first abrasive particles and optimal abrasion resistant channels between first particles allows individual first grits to support higher cutting loads and higher cutting time before being pulled out of the abrasive composite blade tip. Another benefit of the exemplary abrasive tip coating is that the optimum first grit spacing and application of second grit particles within the composite matrix provides better protection of the Ni matrix from wear by abraded rub debris. The exemplary abrasive composite blade tip coating enables for retention of the matrix that also relates to better first grit retention.
- There has been provided an abrasive blade tip coating. While the abrasive blade tip coating has been described in the context of specific embodiments thereof, other unforeseen alternatives, modifications, and variations may become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations that fall within the broad scope of the appended claims.
Claims (22)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/162,699 US20170343003A1 (en) | 2016-05-24 | 2016-05-24 | Enhanced Blade Tipping For Improved Abradability |
| EP17172703.5A EP3249173A1 (en) | 2016-05-24 | 2017-05-24 | Abrasive coating for a substrate, turbine engine component and process for coating a turbine engine airfoil |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/162,699 US20170343003A1 (en) | 2016-05-24 | 2016-05-24 | Enhanced Blade Tipping For Improved Abradability |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170343003A1 true US20170343003A1 (en) | 2017-11-30 |
Family
ID=58800677
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/162,699 Abandoned US20170343003A1 (en) | 2016-05-24 | 2016-05-24 | Enhanced Blade Tipping For Improved Abradability |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20170343003A1 (en) |
| EP (1) | EP3249173A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180216478A1 (en) * | 2017-02-01 | 2018-08-02 | United Technologies Corporation | Wear resistant coating, method of manufacture thereof and articles comprising the same |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108975955B (en) * | 2018-07-12 | 2021-03-19 | 郑州人造金刚石及制品工程技术研究中心有限公司 | Preparation method of nano carbon crystal coating for marine sealing material and prepared nano carbon crystal coating |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100129673A1 (en) * | 2008-11-25 | 2010-05-27 | Rolls-Royce Corporation | Reinforced oxide coatings |
| US20160237832A1 (en) * | 2015-02-12 | 2016-08-18 | United Technologies Corporation | Abrasive blade tip with improved wear at high interaction rate |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4232995A (en) * | 1978-11-27 | 1980-11-11 | General Electric Company | Gas seal for turbine blade tip |
| GB2241506A (en) * | 1990-02-23 | 1991-09-04 | Baj Ltd | Method of producing a gas turbine blade having an abrasive tip by electrodepo- sition. |
| JP2002256808A (en) * | 2001-02-28 | 2002-09-11 | Mitsubishi Heavy Ind Ltd | Combustion engine, gas turbine and grinding layer |
| JP3801452B2 (en) * | 2001-02-28 | 2006-07-26 | 三菱重工業株式会社 | Abrasion resistant coating and its construction method |
| JP3902179B2 (en) * | 2001-05-31 | 2007-04-04 | 三菱重工業株式会社 | Film forming method, film forming material, and abrasive film forming sheet |
| DE102008003100A1 (en) * | 2008-01-03 | 2009-07-16 | Mtu Aero Engines Gmbh | Solder coating, method for coating a component, component and adhesive tape with a solder coating |
-
2016
- 2016-05-24 US US15/162,699 patent/US20170343003A1/en not_active Abandoned
-
2017
- 2017-05-24 EP EP17172703.5A patent/EP3249173A1/en not_active Withdrawn
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100129673A1 (en) * | 2008-11-25 | 2010-05-27 | Rolls-Royce Corporation | Reinforced oxide coatings |
| US20160237832A1 (en) * | 2015-02-12 | 2016-08-18 | United Technologies Corporation | Abrasive blade tip with improved wear at high interaction rate |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180216478A1 (en) * | 2017-02-01 | 2018-08-02 | United Technologies Corporation | Wear resistant coating, method of manufacture thereof and articles comprising the same |
| US10822967B2 (en) * | 2017-02-01 | 2020-11-03 | Raytheon Technologies Corporation | Wear resistant coating, method of manufacture thereof and articles comprising the same |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3249173A1 (en) | 2017-11-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3056679B1 (en) | Abrasive blade tip with improved wear at high interaction rate | |
| US10822967B2 (en) | Wear resistant coating, method of manufacture thereof and articles comprising the same | |
| US9581041B2 (en) | Abradable ceramic coatings and coating systems | |
| JP4322980B2 (en) | Gas turbine engine sealing mechanism | |
| US11028721B2 (en) | Coating to improve oxidation and corrosion resistance of abrasive tip system | |
| EP2899371B1 (en) | Fan blades with abrasive tips | |
| US7473072B2 (en) | Turbine blade tip and shroud clearance control coating system | |
| KR20150088278A (en) | Seal systems for use in turbomachines and methods of fabricating the same | |
| EP3318719B1 (en) | Turbomachine rotor with coated blades | |
| US10927685B2 (en) | Coating to improve oxidation and corrosion resistance of abrasive tip system | |
| GB2529854A (en) | Rotary blade tip | |
| US20120099971A1 (en) | Self dressing, mildly abrasive coating for clearance control | |
| EP3056676A1 (en) | Turbine engine component, process for coating and modified blade tip | |
| EP3508616A1 (en) | Method for applying an abrasive tip to a high pressure turbine blade | |
| EP3249173A1 (en) | Abrasive coating for a substrate, turbine engine component and process for coating a turbine engine airfoil | |
| EP3611350B1 (en) | Turbine abrasive blade tips with improved resistance to oxidation | |
| GB2551610B (en) | Gas turbine engine component with protective coating | |
| CN106150564A (en) | The abradable lip of combustion gas turbine | |
| KR102836881B1 (en) | Honeycomb structure containing a wearable material | |
| CN117083411A (en) | Coating for turbine blades subjected to heat and abrasive loads | |
| EP3901416A1 (en) | Process and material configuration for making hot corrosion resistant hpc abrasive blade tips |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: UNITED TECHNOLOGIES CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURLATSKY, SERGEI F;WUSATOWSKA-SARNEK, AGNIESZKA M;FURRER, DAVID ULRICH;SIGNING DATES FROM 20160511 TO 20160513;REEL/FRAME:038695/0001 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |