JPS649614B2 - - Google Patents

Info

Publication number
JPS649614B2
JPS649614B2 JP12051180A JP12051180A JPS649614B2 JP S649614 B2 JPS649614 B2 JP S649614B2 JP 12051180 A JP12051180 A JP 12051180A JP 12051180 A JP12051180 A JP 12051180A JP S649614 B2 JPS649614 B2 JP S649614B2
Authority
JP
Japan
Prior art keywords
radiation
copolymer
butyl
sensitivity
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12051180A
Other languages
Japanese (ja)
Other versions
JPS5744145A (en
Inventor
Hideo Saeki
Kazunori Saito
Tadao Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12051180A priority Critical patent/JPS5744145A/en
Publication of JPS5744145A publication Critical patent/JPS5744145A/en
Publication of JPS649614B2 publication Critical patent/JPS649614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高性能化された高感度放射線感応性ポ
ジ型レジスト組成物及びその溶液に関するもので
ある。 従来から、適宜の基板上に塗布した塗膜に所定
量の放射線を照射すると、照射をうけた部分の高
分子結合主鎖が切断され、その分子量が小さくな
り、可溶性となるいわゆる放射線感応性ポジ型レ
ジスト用高分子材料が知られている。例えば解像
度の良いことで知られているポリメチルメタクリ
レートはこれに対し5×10-5クーロン/cm2程度以
上の照射線量をもつた電子線を照射してやると、
照射部分だけがメチルイソブチルケトンや酢酸イ
ソアミル等の溶剤に著しく可溶性となる。 この種の材料は、例えば半導体素子の製造工程
において非常に微細な部分だけをエツチングする
ためのマスクを形成せしめるレジスト材、あるい
は他の放射線による情報を記録するための材料と
して用いることができる。 しかし、上記ポリメチルメタクリレート等の従
来から知られている放射線感応性ポジ型レジスト
材料の大部分は、いずれもそれに可溶性を与える
に至るまでのいわゆる放射線照射線量が比較的多
い、即ち感度が低いために、所望のポジ型照射像
を得るためは比較的長時間放射線照射を行わねば
ならないなどの欠点を有する。一方比較的短い照
射時間で済む2、3の高感度ポジ型電子線レジス
ト材料では耐エツチング性や耐溶剤性、解像度等
の特性が低い等の問題点を有しており、半導体製
造プロセスに実用可能なレジストとして両者共充
分満足するものはなかつた。 本発明は上述の如き従来の放射線感応性ポジ型
レジスト用高分子材料のうち、特定の原材料(単
量体)を組合せて共重合を行うことにより、著し
く高感度化されかつコントラストや耐熱性等の特
性も改善された高感度放射線感応性ポジ型レジス
ト組成物及びその溶液を得る事を目的として行わ
れた。 本発明の高感度放射線感応性ポジ型レジスト組
成物はi−プロピルメタクリレート単量体を主成
分とし、これに次の一般式〔〕で表わされるα
−位置換分岐ブチルアクレート単量体1種及びメ
チルメタクリレート単量体を一定組成割合で加え
て共重合して成ることを特徴とする。 (式中R1は−CH3、−C2H5、−C3H7、−CH2CN、
−CH2F、−H2Cl、−CN、−F、−Cl基を示し、R2
はs−ブチル、i−ブチル及びt−ブチル基を示
す。) 上述の如き共重合体からなる本発明の放射線感
応性ポジ型レジスト組成物によれば、従来の放射
線感応性ポジ型レジスト用高分子材料に比してそ
の1/10〜1/100程度の放射線照射線量で充分鮮明
なポジ像を得ることができ、またその解像度及び
耐熱性や耐エツチング性はPMMA・レジスト材
料のそれに比して殆んど遜色のないものである。 本発明になる高感度放射線感応性ポジ型レジス
ト組成物はi−プロピルメタクリレート(以下
“A”と称する)単量体を主成分とし、これと一
般式〔〕で表わされるα−位置換分岐ブチルア
クリレート(以下“B”と称する)単量体及びメ
チルメタクリレート(以下“C”と称する)単量
体とを特定の割合で共重合することが必要で、B
単量体の共重合体中に含まれる組成量は10〜40モ
ル%、またC単量体の組成量は5〜20モル%であ
る。 Bの組成量がこの範囲以下の場合にはこの共重
合体の溶剤に対する溶解性が非常に大きくなりす
ぎ、適正な現像条件が得られにくくなり高感度で
の使用が困難となる。またこの範囲以上では感度
の著しい向上が妨げられる。一方Cの組成量がこ
の範囲以下であると高感度現像により放射線未照
射部分の膨潤が著るしく、かつガラス転移点の低
下が著しい。またこの範囲以上では感度が著しく
低くなつてしまう。 共重合の方法としては特に限定されるものでは
なく、通常の重合方法、例えば乳化重合、懸濁重
合、バルク重合や溶液中におけるラジカルまたは
アニオン重合、さらにはグラフト重合やリビング
重合等の方法が単量体の物性や目的とする分子
量、分散度等に応じて適宜に選択される。 本発明によるポジ型レジスト用共重合体高分子
材料は、現在一般に用いられている他のポジ型レ
ジスト用材料と同程度の分子量の範囲で実行する
ことができる。即ち10万ないし数100万の広範囲
の分子量を有する形態にあり、実用的にも30万な
いし300万の範囲を用いており、種々の目的に応
じて選択される。分子量の上限はレジスト材料の
溶液粘度が高くなりすぎると共に作業余裕度が著
しく低下すること、下限は良好な像の現像が困難
になることや耐エツチング性等が低下することな
どにより決定される。 本発明による共重合体高分子材料をレジストと
して使用するための展開溶剤としては、本共重合
体高分子材料を均一に良く溶解し、適当な沸点を
有し、高分子材料の延展性に富んだ低粘度揮発性
有機溶剤であることが必要である。 上記溶剤として適したものは多数あるが、それ
らのうちから2、3の例を挙げると、トルエン、
キシレン、ベンゼン等の芳香族系列、トリクロル
エチレン、クロルベンゼン等の含塩素系溶剤、n
−プロピルアセテート、イソアミルアセテート、
エチルセロソルブアセテート、メチルセロソルブ
アセテート、t−ブチルプロピオネート等のエス
テル系溶剤、さらにメチルエチルケトン、メチル
イソブチルケトン、4−メトキシ−4−メチルペ
ンタノン−2、ジプロピルケトン等のケトン系溶
剤等があるが、もとより上記の例にのみ限定され
るものではなく、また2種またはそれ以上の溶剤
と混合して使用することも可能である。 以下実施例を挙げて詳細に説明する。 実施例 1 適宜の反応容器中にイオン交換水を取り、これ
に窒素ガスを通じて溶存酸素を追い出した後、例
えばアルキルベンゼンスルホン酸ナトリウム等か
ら成る乳化剤を添加し、これに所望の配合比で混
合したi−プロピルメタクリレート(A)とt−ブチ
ルメタクリレート(B)及びメチルメタクリレート(C)
との混合液を添加し、さらに微量のレドツクス系
重合開始剤例えば過硫酸ナトリウムと亜硫酸水素
ナトリウムを溶解した水溶液を加え、反応温度を
60〜80℃に保持して激しく撹拌しながら約6時間
反応させた後、重合生成物を分離してさらに溶
解、再沈させて精製を行う。 このようにしてガラス転移温度が80℃以上で、
Bの配合割合が各々5、15、20、30、40、60モル
%の共重合組成物を得た。 次に上記の共重合体組成物を各々キシレンに溶
解し、これをスピンナーを用いて3インチのシリ
コンウエハー上に塗布し、所定の条件で乾燥して
約0.5μm厚の上記共重合体塗膜面を形成せしめ
た。 第1表は上記本発明の各実施例になる共重合体
塗膜面に加速電圧20KVの電子線を照射した時に
鮮明なポジ像を得るのに要した電子線照射線量
(以下“ドース”と称する)と現像液の例とを示
したものである。
The present invention relates to a highly sensitive radiation-sensitive positive resist composition with improved performance and a solution thereof. Conventionally, when a coating film coated on a suitable substrate is irradiated with a predetermined amount of radiation, the main chain of the polymer bond in the irradiated part is cut, its molecular weight becomes smaller, and it becomes soluble, creating a so-called radiation-sensitive positive film. Polymeric materials for mold resists are known. For example, polymethyl methacrylate, which is known for its high resolution, can be irradiated with an electron beam with an irradiation dose of about 5 × 10 -5 coulombs/cm 2 or more.
Only the irradiated portion becomes significantly soluble in solvents such as methyl isobutyl ketone and isoamyl acetate. This type of material can be used, for example, as a resist material for forming a mask for etching only very fine parts in the manufacturing process of semiconductor devices, or as a material for recording information using other radiation. However, most of the conventionally known radiation-sensitive positive resist materials, such as the above-mentioned polymethyl methacrylate, require a relatively large radiation dose to become soluble, that is, their sensitivity is low. Another drawback is that radiation irradiation must be carried out for a relatively long time in order to obtain a desired positive irradiation image. On the other hand, a few high-sensitivity positive electron beam resist materials that require relatively short irradiation times have problems such as low properties such as etching resistance, solvent resistance, and resolution, making them practical for semiconductor manufacturing processes. As a possible resist, there was no one that fully satisfied both parties. The present invention utilizes the above-mentioned conventional polymeric materials for radiation-sensitive positive resists to achieve significantly higher sensitivity, contrast, heat resistance, etc. by combining specific raw materials (monomers) and copolymerizing them. The purpose of this research was to obtain a highly sensitive radiation-sensitive positive resist composition and its solution with improved properties. The highly sensitive radiation-sensitive positive resist composition of the present invention contains i-propyl methacrylate monomer as a main component, and α
It is characterized by being copolymerized by adding one type of -position-substituted branched butyl acrylate monomer and a methyl methacrylate monomer in a fixed composition ratio. (In the formula, R 1 is -CH 3 , -C 2 H 5 , -C 3 H 7 , -CH 2 CN,
-CH2F , -H2Cl , -CN, -F, -Cl group, R2
represents s-butyl, i-butyl and t-butyl groups. ) According to the radiation-sensitive positive resist composition of the present invention comprising the above-mentioned copolymer, the radiation-sensitive resist composition is about 1/10 to 1/100 of that of conventional radiation-sensitive positive resist polymer materials. A sufficiently clear positive image can be obtained with a certain amount of radiation exposure, and its resolution, heat resistance, and etching resistance are almost comparable to those of PMMA/resist materials. The highly sensitive radiation-sensitive positive resist composition of the present invention has i-propyl methacrylate (hereinafter referred to as "A") monomer as a main component, and α-substituted branched butyl expressed by the general formula []. It is necessary to copolymerize acrylate (hereinafter referred to as "B") monomer and methyl methacrylate (hereinafter referred to as "C") monomer in a specific ratio, and B
The composition amount of the monomer contained in the copolymer is 10 to 40 mol%, and the composition amount of the C monomer is 5 to 20 mol%. If the amount of B is below this range, the solubility of this copolymer in a solvent will be too high, making it difficult to obtain appropriate development conditions and making it difficult to use with high sensitivity. Further, above this range, significant improvement in sensitivity is hindered. On the other hand, if the composition amount of C is below this range, the portions that have not been irradiated with radiation will swell significantly due to high-sensitivity development, and the glass transition point will drop significantly. Further, above this range, the sensitivity becomes extremely low. The copolymerization method is not particularly limited, and common polymerization methods such as emulsion polymerization, suspension polymerization, bulk polymerization, radical or anionic polymerization in a solution, and methods such as graft polymerization and living polymerization can be used. It is appropriately selected depending on the physical properties of the polymer, the desired molecular weight, degree of dispersion, etc. The copolymer polymer material for positive resists according to the present invention can be used in a molecular weight range comparable to that of other currently commonly used positive resist materials. That is, it has a form having a wide range of molecular weights ranging from 100,000 to several million millions, and in practice, a range of 300,000 to 3,000,000 is used, and is selected depending on various purposes. The upper limit of the molecular weight is determined by the fact that the solution viscosity of the resist material becomes too high and the working margin is significantly reduced, and the lower limit is determined by the fact that it becomes difficult to develop a good image and the etching resistance etc. decrease. The developing solvent for using the copolymer polymer material according to the present invention as a resist is a solvent that can dissolve the copolymer material uniformly and well, has an appropriate boiling point, and is a low-polymer solvent that has excellent spreadability for the polymer material. It is necessary that the viscosity is a volatile organic solvent. There are many suitable solvents, to name a few: toluene,
Aromatic solvents such as xylene and benzene, chlorinated solvents such as trichloroethylene and chlorobenzene, n
-propyl acetate, isoamyl acetate,
There are ester solvents such as ethyl cellosolve acetate, methyl cellosolve acetate, and t-butyl propionate, and ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, 4-methoxy-4-methylpentanone-2, and dipropyl ketone. However, the solvent is not limited to the above examples, and it is also possible to use a mixture of two or more solvents. A detailed explanation will be given below with reference to examples. Example 1 Ion-exchanged water was placed in a suitable reaction vessel, dissolved oxygen was expelled through nitrogen gas, and an emulsifier such as sodium alkylbenzene sulfonate was added thereto and mixed at a desired blending ratio. -Propyl methacrylate (A), t-butyl methacrylate (B) and methyl methacrylate (C)
Then add a small amount of an aqueous solution containing a redox polymerization initiator such as sodium persulfate and sodium bisulfite, and raise the reaction temperature.
After reacting for about 6 hours while maintaining the temperature at 60 to 80°C and stirring vigorously, the polymerized product is separated, further dissolved, and reprecipitated for purification. In this way, when the glass transition temperature is 80℃ or higher,
Copolymer compositions were obtained in which the proportions of B were 5, 15, 20, 30, 40, and 60 mol %, respectively. Next, each of the above copolymer compositions was dissolved in xylene, and this was applied onto a 3-inch silicon wafer using a spinner, and dried under predetermined conditions to form a coating film of the above copolymer with a thickness of about 0.5 μm. A surface was formed. Table 1 shows the electron beam irradiation dose (hereinafter referred to as "dose") required to obtain a clear positive image when the copolymer coating surface of each example of the present invention was irradiated with an electron beam at an acceleration voltage of 20 KV. Examples of developer solutions are shown.

【表】 第1表に示した結果のように、本発明の実施例
になる共重合体高分子組成物はBの共重合組成比
が45モル%以下でかつCの共重合組成比が20モル
%以下の場合には従来のPMMAレジストの場合
の約1/10〜1/50のドースで鮮明なポジ像を得るこ
とができ、微細パターンの解像性も優れたもので
あつた。一方Bの組成量が10モル%以下でかつC
の組成量が5%以下の場合(参考例1)では感度
は非常に良いが、膨潤が生じるなど適正な現像を
行うことが非常に困難となり、さらにパターンの
形成性が悪化してしまい微細加工用のレジスト材
料としては不適切となる。 実施例 2 充分乾燥した適宜の反応容器内に乾燥窒素ガス
を導入し、容器内の雰囲気を充分窒素置換した
後、脱水精製したトルエンを入れ、更に第2表に
示した配合比の精製単量体混合物を入れ、更にラ
ジカル重合開始剤、例えばベンゾイルパーオキサ
イド等の過酸化物もしくはアソビスイソブチロニ
トリル等のラジカル発生剤を微量添加し、反応温
度を60〜70℃に保つて48時間反応させる。重合終
了後実施例1と同様にして精製を行つた結果、第
2表に示したような共重合組成を有し、ガラス転
移点が70℃以上である共重合体を得た。
[Table] As shown in Table 1, the copolymer composition according to the present invention has a copolymerization ratio of B of 45 mol% or less and a copolymerization ratio of C of 20 mol%. % or less, a clear positive image could be obtained at a dose of about 1/10 to 1/50 of that of conventional PMMA resists, and the resolution of fine patterns was also excellent. On the other hand, if the composition amount of B is 10 mol% or less and
When the composition amount is 5% or less (Reference Example 1), the sensitivity is very good, but swelling occurs, making it very difficult to perform proper development, and furthermore, pattern formability deteriorates, making it difficult to perform microfabrication. It is unsuitable as a resist material for Example 2 Dry nitrogen gas was introduced into a sufficiently dried appropriate reaction vessel, and after the atmosphere inside the vessel was sufficiently replaced with nitrogen, dehydrated and purified toluene was added, and the purified monomers were added in the blending ratio shown in Table 2. Add a small amount of a radical polymerization initiator, such as a peroxide such as benzoyl peroxide, or a radical generator such as azobisisobutyronitrile, and maintain the reaction temperature at 60 to 70°C for 48 hours. . After the polymerization was completed, purification was carried out in the same manner as in Example 1 to obtain a copolymer having a copolymer composition as shown in Table 2 and a glass transition point of 70° C. or higher.

【表】 これらの共重合体組成物をメチルセロソルブア
セテート等の各々の展開溶剤に溶解し、実施例1
と同様にして電子線照射を行つた。それぞれの共
重合体組成物について鮮明なポジ像を得るのに必
要なドースとそのときの現像液を第2表にまとめ
て示した。また図に参考例3と実施例2−2につ
いて得られた感電子特性曲線を示した。図に於
て、縦軸は現像後のレジストの規格化膜厚、横軸
は電子線照射線量(ドース)である。なお縦軸の
ブロツトは未照射部の現像後膜厚を示す。曲線イ
は参考例3、ロは実施例2−2の特性を示す。 以上の結果から明らかなようにi−プロピルメ
タクリレート−i−ブチルメタクリレート共重合
体(参考例3)は0.07μC/cm2と著しく高感度とな
るが図に示したように現像によりかなりの膨潤が
現われる。一方適当量のメチルメタクリレート(C)
を加えて共重合して得られたもの(実施例2−
2)はガラス転移点:Tgは90℃から98℃に上昇
し耐熱性が向上しており、更に図から明らかなよ
うに現像による膨潤は認めらず、また感度も
0.08μC/cm2でほぼ同程度であつた。実施例2−4
から2−6ではやや感度が低いものの、同様の傾
向が認められかつ現像特性が良好でありまた微細
パターンの形成性に優れていた。 実施例 3 充分乾燥した適宜の反応容器内に乾燥窒素ガス
を導入し、容器内の雰囲気を充分窒素置換した
後、脱水精製したトルエンを入れ、更に第3表に
示した配合比の精製単量体混合物を加え、さらに
n−ブチルリチウム等のアニオン重合開始剤溶液
を微量添加し、反応温度を−70℃付近に保つて約
48時間反応させる。重合終了後実施例1と同様に
して精製を行つた結果、第3表に示したような
[Table] These copolymer compositions were dissolved in respective developing solvents such as methyl cellosolve acetate, and Example 1
Electron beam irradiation was performed in the same manner as above. Table 2 summarizes the doses and developing solutions required to obtain clear positive images for each copolymer composition. The figure also shows electrosensitive characteristic curves obtained for Reference Example 3 and Example 2-2. In the figure, the vertical axis is the normalized film thickness of the resist after development, and the horizontal axis is the electron beam irradiation dose (dose). The blot on the vertical axis indicates the film thickness of the unirradiated area after development. Curve A shows the characteristics of Reference Example 3, and curve B shows the characteristics of Example 2-2. As is clear from the above results, the i-propyl methacrylate-i-butyl methacrylate copolymer (Reference Example 3) has a significantly high sensitivity of 0.07 μC/ cm2 , but as shown in the figure, it swells considerably during development. appear. On the other hand, an appropriate amount of methyl methacrylate (C)
(Example 2-
2) The glass transition point: Tg has increased from 90°C to 98°C, improving heat resistance, and as is clear from the figure, no swelling was observed during development, and the sensitivity was also low.
It was approximately the same level at 0.08 μC/cm 2 . Example 2-4
Although the sensitivity was slightly lower in Sample No. 2-6, similar trends were observed, and the development characteristics were good and the ability to form fine patterns was excellent. Example 3 Dry nitrogen gas was introduced into a sufficiently dried appropriate reaction vessel, and after the atmosphere inside the vessel was sufficiently replaced with nitrogen, dehydrated and purified toluene was added, and the purified monomers were added in the blending ratio shown in Table 3. A small amount of an anionic polymerization initiator solution such as n-butyllithium was added, and the reaction temperature was maintained at around -70°C.
Incubate for 48 hours. After the polymerization was completed, purification was carried out in the same manner as in Example 1, and the results were as shown in Table 3.

【表】 共重合組成を有し、分子量が数十万から150万で
分散度1.6〜2.5、ガラス転移温度が70℃以上であ
る共重合体を得た。 これらの共重合体組成物を各々の展開溶媒に溶
解し、実施例1と同様にして75mm角のクロムブラ
ンクス基板上に塗布し、乾燥した後、電子線照射
を行つた。第4表は上記本発明の各実施例になる
共重合体塗膜面に加速電圧20KVの電子線を照射
した時に鮮明なポジ像を得るのに要したドースと
現像液さらに感電子曲線の傾きより得られたγ値
を示したものである。
[Table] A copolymer having a copolymer composition, a molecular weight of several hundred thousand to 1.5 million, a dispersity of 1.6 to 2.5, and a glass transition temperature of 70°C or higher was obtained. These copolymer compositions were dissolved in the respective developing solvents and applied on a 75 mm square chrome blank substrate in the same manner as in Example 1, dried, and then irradiated with an electron beam. Table 4 shows the dose, developer, and slope of the electron sensitivity curve required to obtain a clear positive image when the copolymer coating surface of each example of the present invention was irradiated with an electron beam at an accelerating voltage of 20 KV. This figure shows the γ value obtained from the above.

【表】 以上の結果から明らかなように本発明により得
られた放射線感応性ポジ型レジスト材料は高感度
であるにもかかわらず現像時の膨潤は殆んど認め
られず、またパタン形成性も良好であつた。更に
クロムマスクのエツチングを試みたところ、クロ
ムのウエツトエツチングに耐える密着性及びクロ
ムのドライエツチングに耐える耐熱性を有してい
ることが確認された。 以上のように本発明を実施することにより、従
来知られているPMMAレジストに比してはるか
に高感度、高コントラストでかつ現像時の膨潤の
少ない放射線感応性ポジ型電子線レジスト用高分
子材料を得ることができる。一般に放射線によつ
て1μm以下の微細パターンを有し、またサブミ
クロン以下の精度を要求されるパターンを描画
し、あるいは転写、記録する場合、後重合効果や
解像度の点で難点のあるネガ型レジストを用いる
よりも解像度に優れたポジ型レジストを用いるこ
とが望ましいとされており、本発明は上述の如き
精密かつ微細な加工もしくは図型の記録等に用い
て極めて大きな効果を発揮するものである。
[Table] As is clear from the above results, although the radiation-sensitive positive resist material obtained by the present invention has high sensitivity, almost no swelling is observed during development, and the pattern formation property is also low. It was good and warm. Furthermore, when etching a chrome mask was attempted, it was confirmed that the mask had adhesion that could withstand wet etching of chromium and heat resistance that could withstand dry etching of chromium. By carrying out the present invention as described above, a polymeric material for radiation-sensitive positive electron beam resist that has much higher sensitivity and contrast than conventionally known PMMA resists and has less swelling during development. can be obtained. Generally, negative resists have problems in terms of post-polymerization effects and resolution when drawing, transferring, or recording patterns that have fine patterns of 1 μm or less using radiation and require precision of submicron or less. It is said that it is desirable to use a positive resist which has better resolution than using a resist, and the present invention is extremely effective when used for precise and minute processing or recording of patterns as described above. .

【図面の簡単な説明】[Brief explanation of drawings]

図は参考例3及び本発明実施例2−2の感電子
特性を示す図である。
The figure shows the electrosensitive characteristics of Reference Example 3 and Example 2-2 of the present invention.

Claims (1)

【特許請求の範囲】 1 i−プロピルメタクリレート単量体(A)を主成
分とし、一般式 (式中R1は−CH3、−C2H5、−C3H7、−CH2CN、
−CH2F、−H2Cl、−CN、−F、−Cl基を示し、R2
はs−ブチル、i−ブチル及びt−ブチル基を示
す。) で表される単量体のうちの1種類(B)及びメチルメ
タクリレート単量体(C)とを共重合してなり、上記
共重合体中、上記単量体(B)を10〜40モル%含み、
上記メチルメタクリレート単量体(C)を5〜20モル
%含有することを特徴とする放射線感応性ポジ型
レジスト組成物。
[Claims] 1 The main component is i-propyl methacrylate monomer (A), and has the general formula (In the formula, R 1 is -CH 3 , -C 2 H 5 , -C 3 H 7 , -CH 2 CN,
-CH2F , -H2Cl , -CN, -F, -Cl group, R2
represents s-butyl, i-butyl and t-butyl groups. ) and a methyl methacrylate monomer (C), and in the above copolymer, 10 to 40 of the above monomers (B) are Including mole%,
A radiation-sensitive positive resist composition containing 5 to 20 mol% of the above methyl methacrylate monomer (C).
JP12051180A 1980-08-29 1980-08-29 Radiaton sensitive positive type resist composition and its solution Granted JPS5744145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12051180A JPS5744145A (en) 1980-08-29 1980-08-29 Radiaton sensitive positive type resist composition and its solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12051180A JPS5744145A (en) 1980-08-29 1980-08-29 Radiaton sensitive positive type resist composition and its solution

Publications (2)

Publication Number Publication Date
JPS5744145A JPS5744145A (en) 1982-03-12
JPS649614B2 true JPS649614B2 (en) 1989-02-17

Family

ID=14788017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12051180A Granted JPS5744145A (en) 1980-08-29 1980-08-29 Radiaton sensitive positive type resist composition and its solution

Country Status (1)

Country Link
JP (1) JPS5744145A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968264U (en) * 1982-10-30 1984-05-09 大崎電気工業株式会社 Analog-current conversion circuit
JPS60117244A (en) * 1983-11-30 1985-06-24 Fujitsu Ltd Formation of pattern

Also Published As

Publication number Publication date
JPS5744145A (en) 1982-03-12

Similar Documents

Publication Publication Date Title
US4156745A (en) Electron sensitive resist and a method preparing the same
KR20040002450A (en) Polymer blend and associated methods of preparation and use
US4318976A (en) High gel rigidity, negative electron beam resists
US5856071A (en) Resist material including si-containing resist having acid removable group combined with photo-acid generator
US4764247A (en) Silicon containing resists
US3931435A (en) Electron beam positive resists containing acetate polymers
US4279984A (en) Positive resist for high energy radiation
EP0119017B1 (en) Electron-beam and x-ray sensitive polymers and resists
US4476217A (en) Sensitive positive electron beam resists
JPS649614B2 (en)
US4414313A (en) Sensitive positive electron beam resists
US4405776A (en) Positive radiation sensitive resist terpolymer from omega alkynoic acid
JPH01215812A (en) Polyacrylic acid derivative
EP0064864B1 (en) Method of making sensitive positive electron beam resists
JPH087443B2 (en) High resolution positive type radiation sensitive resist
US4568734A (en) Electron-beam and X-ray sensitive polymers and resists
US4243742A (en) Radiation-sensitive positively acting materials
US4504631A (en) Photoresist material
JPS5857734B2 (en) Film forming method
US4678850A (en) Halogenated polystyrenes for electron beam, X-ray and photo resists
US4885344A (en) Polymeric materials and their use as resists
JPH0721055B2 (en) Copolymer of Sulfur Dioxide and Nuclear Substituted Styrene Derivative
JPH0358104B2 (en)
JPH0358103B2 (en)
JPH087442B2 (en) Radiation sensitive resist